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Abstract
Federated Collaborative Filtering (FedCF) is an emerging
field focused on developing a new recommendation frame-
work with preserving privacy in a federated setting. Exist-
ing FedCF methods typically combine distributed Collabora-
tive Filtering (CF) algorithms with privacy-preserving mech-
anisms, and then preserve personalized information into a
user embedding vector. However, the user embedding is usu-
ally insufficient to preserve the rich information of the fine-
grained personalization across heterogeneous clients. This
paper proposes a novel personalized FedCF method by pre-
serving users’ personalized information into a latent vari-
able and a neural model simultaneously. Specifically, we de-
compose the modeling of user knowledge into two encoders,
each designed to capture shared knowledge and personal-
ized knowledge separately. A personalized gating network is
then applied to balance personalization and generalization be-
tween the global and local encoders. Moreover, to effectively
train the proposed framework, we model the CF problem as
a specialized Variational AutoEncoder (VAE) task by inte-
grating user interaction vector reconstruction with missing
value prediction. The decoder is trained to reconstruct the im-
plicit feedback from items the user has interacted with, while
also predicting items the user might be interested in but has
not yet interacted with. Experimental results on benchmark
datasets demonstrate that the proposed method outperforms
other baseline methods, showcasing superior performance.

Code — https://github.com/mtics/FedDAE

Introduction
In the digital age, Recommendation Systems have become
essential tools for filtering online information and helping
users discover products, content, and services that match
their preferences (Ko et al. 2022). Collaborative Filtering
(CF) is widely recognized for its ability to generate person-
alized recommendations by analyzing the relationships be-
tween users and items based on user interaction data (Shen,
Zhou, and Chen 2020). However, with the enforcement of
data privacy laws like GDPR (Voigt and Von dem Buss-
che 2017), safeguarding privacy has become increasingly
critical.Traditional CF methods typically require centraliz-
ing user data on servers for processing, a practice that is no
longer viable in today’s privacy-conscious environment.
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To address this challenge, Federated Collaborative Filter-
ing (FedCF) has emerged, combining the principles of fed-
erated learning (FL) and CF (Yang et al. 2020). FedCF en-
ables models to be trained on users’ devices, eliminating the
need to upload private data to central servers, thus ensur-
ing data privacy while still providing recommendation ser-
vices (Ammad-Ud-Din et al. 2019). Existing work on FedCF
(Chai et al. 2020; Lin et al. 2020b,a) is mostly based on
matrix factorization (MF) (Koren, Bell, and Volinsky 2009),
which is favored for its computational efficiency and strong
interpretability. MF effectively captures the latent relation-
ships between users and items, making it widely used in
many practical applications and delivering strong perfor-
mance in recommendation systems (Mehta and Rana 2017).

However, the fundamental assumption of MF is that the
relationships between users and items are linear, which may
limit the model’s ability to handle complex, non-linear re-
lationships. The success of Neural Collaborative Filtering
(NCF) (He et al. 2017) demonstrates the necessarity of
building non-linear relationships among users and items. In
addition to FedNCF (Perifanis and Efraimidis 2022) which
is a federated NCF algorithm, some recent works proposed
to preserve the personalization on neural models in feder-
ated settings. PFedRec (Zhang et al. 2023a) proposed using
personalized item embeddings to capture each user’s unique
perspective about the relationships among items. FedRAP
(Li, Long, and Zhou 2024) decomposes the item embedding
to two additive components that preserve shared and person-
alized knowledge respectively. However, these methods rely
on personalized item embedding that may lead to poor per-
formance on model generalization, and maintaining a per-
sonalized item embedding is computation consuming.

Main Contribution. To effectively preserve fine-grained
personalization and non-linear user-item relationships, we
propose a novel gating dual-encoder structure that trans-
forms the user-item interaction vector into two separate la-
tent subspaces. Specifically, through collaborative training
across clients, the global encoder maps the user profile into
a universal latent subspace shared among clients. Mean-
while, the local encoder remains on the client side, where
it is trained to map the user profile into a user-specific latent
subspace. Consequently, the global encoder retains shared
knowledge across clients, while the local encoder preserves
personalized knowledge. It is worth noting our proposed
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framework preserves personalized information at three lev-
els. First, the user profile includes user-specific interaction
records, allowing the global encoder to transform it into a
user-specific vector within a universal latent subspace. Sec-
ond, the personalized local encoder further transforms the
user profile into a unique latent subspace. Third, the gating
network adaptively adjusts the importance weights of the
two encoders, balancing the performance of our proposed
model between personalization and generalization.

To effectively train the proposed gating dual encoders,
we revisit the FedCF problem from the perspective of Vari-
ational Autoencoders (VAEs) (Kingma and Welling 2013)
and propose a novel personalized FedCF method, which in-
corporates a gating dual-encoder VAE, named FedDAE. To
enhance the model’s generalization capability, FedDAE em-
ploys a gating network that generates weights based on user
interaction data, dynamically combining the outputs of the
two encoders to achieve additive personalization. To train
our method FedDAE, a global decoder is attached to the
dual encoders, and the objective function of FedDAE is op-
timized through an designed alternating update process.

The paper’s main contributions are summarized as below:

• This work reformulates the FedCF problem as a VAE
task to capture complex nonlinear relationships and
maintain fine-grained personalization;

• We adopt a dual-encoder structure to separate shared
and personalized knowledge, coupled with a personal-
ized gating network that dynamically adjusts encoder
weights, effectively balancing generalization and person-
alization to enhance FedCF tasks;

• Comprehensive experimental analyses are conducted to
validate the effectiveness of FedDAE.

Related Work
Personalized Federated Learning. Standard federated
learning methods, such as FedAvg (McMahan et al. 2017),
learn a global model on the server while considering data
locality on each device (Li and Long 2024). However, these
methods are limited in their effectiveness when dealing with
non-IID data. PFL aims to learn personalized models for
each device to address this issue (Tan et al. 2022), often
necessitating server-based parameter aggregation (Arivazha-
gan et al. 2019; T Dinh, Tran, and Nguyen 2020; Collins
et al. 2021; Li et al. 2024; Zhang et al. 2024b). Several stud-
ies (Ammad-Ud-Din et al. 2019; Chen et al. 2023, 2024;
Yang et al. 2024) accomplish PFL by introducing vari-
ous regularization terms between local and global models.
Meanwhile, some work focus on personalized model learn-
ing by promoting the closeness of local models via variance
metrics (Flanagan et al. 2020), or enhancing this by clus-
tering users into groups and selecting representative users
for training (Li et al. 2021; Luo, Xiao, and Song 2022; Tan
et al. 2023; Yan and Long 2023), instead of random selec-
tion. APFL (Deng, Kamani, and Mahdavi 2020) proposes
adaptive PFL and derives the generalization bound for the
mixture of local and global models, thereby achieving a bal-
ance between global collaboration and local personalization.

Federated Collaborative Filtering. As privacy protection
becomes increasingly important, many studies (Hegedűs,
Danner, and Jelasity 2019; Chai et al. 2020; Zhang and Jiang
2021; Zhang et al. 2024a,d,c) have focused on FedCF. In this
paper, we mainly focus on model-based personalized FedCF,
which leverages users’ historical behavior data, such as rat-
ings, clicks, and purchases, to learn latent factors that repre-
sent user and item characteristics (Aggarwal and Aggarwal
2016). To mitigate the impacts caused by client heterogene-
ity, personalized FedCF has received considerable attention
due to its ability to take into account personalized informa-
tion for each user. Early works (Lin et al. 2020a; Liang, Pan,
and Ming 2021; Zhu et al. 2022; Luo et al. 2023; Yuan et al.
2023; Zhang et al. 2023b) primarily focused on modeling
user preferences. In contrast, PFedRec (Zhang et al. 2023a)
and FedRAP (Li, Long, and Zhou 2024) have implemented
dual personalization, which means they personalized both
user preferences and item information. However, the nature
of most existing work on matrix factorization limits their
ability to model complex nonlinear relationships in data.

Variational Autoencoders. VAEs have become increas-
ingly important in recommendation systems due to their
ability to model complex data distributions and handle data
sparsity issues (Liang et al. 2024). VAEs learn latent rep-
resentations of user-item interaction data by mapping high-
dimensional data to a low-dimensional latent space, which
effectively captures complex patterns in user preferences
and item characteristics (Kingma and Welling 2013). This
latent space enables efficient encoding of both user and item
information, facilitating accurate predictions of future inter-
actions (Shenbin et al. 2020). Recent research has focused
on enhancing VAE models to improve recommendation per-
formance, including combining VAEs with Generative Ad-
versarial Networks (Lee, Song, and Moon 2017; Yu et al.
2019; Gao et al. 2020), integrating VAEs with more ef-
fective priors (Tomczak and Welling 2018; Klushyn et al.
2019; Shenbin et al. 2020; Tran and Lauw 2024), and en-
hancing VAEs with contrastive learning techniques (Aneja
et al. 2021; Xie et al. 2021; Wang et al. 2022). These strate-
gies have significantly boosted the performance of VAEs in
recommendation tasks. HI-VAE (Nazabal et al. 2020) has
demonstrated the effectiveness of VAE in density estimation
and missing data imputation through experiments on het-
erogeneous data completion tasks. Mult-VAE (Liang et al.
2018) proves that using multinomial distribution as the like-
lihood function is more suitable for implicit feedback. Fed-
VAE (Polato 2021) represents the first attempt to extend
VAE to a federated setting; however, it aggregates gradients
for all parameters on the server, which can lead to the loss
of personalized information from individual clients.

Problem Formulation
Given n users and m items, let U and I be the sets of users
and items respectively. We assume of knowing the users’ im-
plicit feedback, i.e., R = [r1, r2, · · · , rn]T ∈ {0, 1}n×m,
where rui = 1 if the u-th user interacted with the i-th
item, and rui = 0 otherwise. For the u-th user, we use
ru ∈ {0, 1}m to indicate the interaction history, Iu to de-



note the set of all interacted items, and its length is mu.

Federated Collaborative Filtering (FedCF)
In recommendation tasks with implicit feedback, Collabo-
rative Filtering (CF) methods typically rely solely on users’
interaction patterns R to capture the relationships between
users U and items I, allowing for generating item recom-
mendations without the need for exogenous information
about the users or items (Koren, Rendle, and Bell 2021).
However, in the context of FL, the task of FedCF is to model
the latent relationships between each user u and items I
at their client using the observed portions of their interac-
tion data ru locally. The goal is to generate predicted ratings
r̂u while simultaneously ensuring the protection of user pri-
vacy. Thus, we have the following for recommendation:

min
n∑
u=1

Lrecon(r̂u, ru), (1)

where Lrecon measures the reconstruction loss between r̂u
and ru. By optimizing Eq. 1, we ensure that r̂u follows the
same distribution as ru, i.e., r̂u ∼ p(ru) (u = 1, 2, . . . , n).

A VAE Perspective For FedCF
From the perspective of VAEs, we first sample a latent vari-
able zu ∼ N (0, Ik), which is assumed to model the u-th
user’s decision logic of the preference in recommendation
system. It is worth noting that the work (Liang et al. 2018)
suggested that multi-nominal distribution might be an appro-
priate option for recommendation with implicit feedback.

Given the sampled variable zu, the user’s preference prob-
abilities for items can be generated by a nonlinear function
fθ : Rk → Rm, parameterized by θ, applied to zu:

π(zu) = fθ(zu), (2)

s.t. ru is drawn from ru ∼ Mult(mu, π(zu)). To measure
the correctness of the predicted user preference, we use log-
likelihood of ru conditioned on zu defined as follows:

log pθ(ru|zu) =
m∑
i=1

rui log πi(zu). (3)

We apply variational inference (Jordan et al. 1999) to ap-
proximate the intractable posterior distribution p(zu|ru) us-
ing variational distribution to estimate θ for the function fθ:

qΦu(zu|ru) = N (µΦu(ru),diag{σ2
Φu

(ru)}). (4)

Given k << {n,m}, both of the vectors µΦu
(ru) and

σ2
Φu

(ru) in Eq. (4) are k-dimensional outputs of the data-
dependent function gΦu

(ru) = [µΦu
(ru), σΦu

(ru)] ∈ R2k,
where the parameter Φu is used to capture the representation
of item features on the u-th client (u = 1, 2, . . . , n).

Methodology
Framework
Fig. 1 shows the overall framework of FedDAE. For each
client u, FedDAE inputs the interaction vector ru into the
global encoder qφ, the local encoder qφu

, and the gating
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Figure 1: The framework of FedDAE.

network hψu
, separately. By multiplying the outputs of the

dual encoders by the weights generated by hψu
based on

the user’s interaction data and then summing them, Fed-
DAE achieves adaptive additive personalization. The result-
ing output is then passed to the global decoder pθ to recon-
struct the user’s interaction data r̂u (u = 1, 2, . . . , n). Dur-
ing the training phase, the global encoder and global decoder
are collaboratively trained across clients, while the local en-
coder and gating network are trained locally.

Dual Encoders
We propose a dual-encoder mechanism to separately pre-
serve shared knowledge across clients and client-specific
personalized knowledge. Specifically, the encoder qΦu

in
Eq. 4 is implemented through a dual-encoder structure, con-
sisting of a global encoder qφ and a local encoder qφu

for
each user u. The parameters φ and φu capture the glob-
ally shared representation of item features and the person-
alized representation specific to user u, respectively. This
enables FedDAE to achieve personalized item feature rep-
resentations while maintaining shared information.

Gating Network
To effectively combine the global and local representations,
we use a gating network hψu

(ru) = [ωu1, ωu2] ∈ R2, pa-
rameterized by ψu, which dynamically assigns weights ωu1
and ωu2 to the outputs of gφ and gφu

based on the data ru.
Lemma 1 (Additivity of Gaussian distributions) Given
two independent Gaussian random variables X and Y ,
distributed as N(µ1, σ

2
1) and N(µ2, σ

2
2), respectively. Then

Z = w1X + w2Y follows a new Gaussian distribution
Z ∼ N(w1µ1 + w2µ2, w

2
1σ

2
1 + w2

2σ
2
2).

Considering Lemma 1, since the latent variable zu is
drawn from qΦu

(zu|ru) according to Eq. (4), the combined
µΦu

(ru) and σ2
Φu

(ru) are then defined as follows:

µΦu
(ru) = ωu1 · µφ(ru) + ωu2 · µφu

(ru),

σ2
Φu

(ru) = ω2
u1 · σ2

φ(ru) + ω2
u2 · σ2

φu
(ru),

(5)

where Φu = {φ,φu, ψu}. Through the gating network hψu
,

FedDAE can adaptively adjust the balance between shared
and personalized information based on each client’s interac-
tion data, thereby achieving personalized FedCF.



Reconstruction and Prediction
We define the VAE loss for the FedCF problem as follows.
By combining Eq. (3) and Eq. (4) to form a VAE, the evi-
dence lower bound (ELBO) on the u-th client is given by:

Lβ(ru;Φu, θ) =

EqΦu (zu|ru)[log pθ(ru|zu)]− β ·KL(qΦu
(zu|ru)∥pθ(zu)),

(6)

where KL(·) is the Kullback-Leibler divergence, and β ∈
[0, 1] is a hyperparameter controlling the strength of reg-
ularization, following the β-VAE (Higgins et al. 2017) .
The first term in Eq. (6) is the reconstruction loss, which
equals to −Lrecon(r̂u, ru), while the second term is for
prior matching. By jointly maximizing Eq. (8) of all users,
we obtain the reconstructed interactions r̂u for each user u
(u = 1, 2, . . . , n). However, relying solely on sharing θ is
insufficient for effective information sharing across clients,
which may result in suboptimal recommendation perfor-
mance in a federated setting. To address this issue, we pro-
pose a novel personalized FedCF method called FedDAE.

After sampling zu from qΦu
(zu|ru), it is decoded using

the decoder pθ defined in Eq. (3) to obtain the reconstructed
interactions r̂u. Combining Eq. (6), the objective of FedDAE
is to maximize the ELBO to approximateas log p(ru) across
all clients (u = 1, 2, . . . , n), which is defined as follows:

max
φ,{φu},{ψu},θ

n∑
u=1

αuLβ(ru;φ,φu, ψu, θ). (7)

Here, αu is the weight of the loss for the u-th client,
used to balance the contribution of this client, satisfying∑n
u=1 αu = 1. Once the objective function in Eq. (7) is

optimized, we obtain the final prediction r̂u = µΦu(ru),
which will be used to personalize recommendations for the
u-th user, suggesting items they might be interested in.

Algorithm
To optimize the objective function outlined in Eq. (7), we
utilize an alternative optimization algorithm for training the
FedDAE method. The overall workflow of this algorithm is
summarized in several steps, as demonstrated in the Alg. 1.

The process begin by initializing φ and θ on the server,
and all φu and ψu on their respective clients. For each com-
munication round t, the server randomly selects a subset
of clients to participate in the training, denoted as St. It is
important to note that, as discussed in (Chai et al. 2020;
Li, Long, and Zhou 2024), for privacy protection, no client
should participate in training for two consecutive rounds.
According to the line 4 in the GlobalProcedure, the la-
tent variable zu is sampled from the normal Gaussian dis-
tribution using the reparameterization trick. After receiving
φ and θ, the selected clients call the ClientUpdate function
to update their local models with the learning rate η.

In the ClientUpdate function, The local model updates
are performed over E epochs (line 13). Once the update
is completed, the accumulated gradients ∇(u)

φ and ∇(u)
θ ,

and the predicted scores r̂u are uploaded to the server for
global aggregation. The server then apply the updated φ
and θ to the next training round. After the training phase is

Algorithm 1: FedDAE
Input: R, β, k, η, T , E
Initialize: φ, {φu}, {ψu}, θ
GlobalProcedure:
1: for t = 1, 2, . . . , T do
2: St ← randomly select ns from n clients
3: for all client index u ∈ St do
4: Sample ϵ ∼ N (0, Ik) and compute zu via repa-

rameterization trick;
5: r̂u,∇(u)

φ , ∇(u)
θ ← ClientUpdate(φ, θ);

6: end for
7: φ = φ− η

ns

∑
u∈St

∇(u)
φ ;

8: θ = θ − η
ns

∑
u∈St

∇(u)
θ ;

9: end for
10: return: R̂ = [r̂1, r̂2, . . . , r̂n]

T

ClientUpdate:
1: ∇φ = 0,∇θ = 0;
2: for e = 1, 2, . . . , E do
3: Compute gradients ∇φLβ , ∇φu

Lβ , ∇ψu
Lβ , ∇θLβ

according to Eq. (7);
4: Use gradient descent to update φ, φu, ψu, θ with η;
5: ∇φ = ∇φ +∇φLβ ;
6: ∇θ = ∇θ +∇θLβ ;
7: Compute r̂u;
8: end for
9: return: r̂u,∇φ, ∇θ

completed, FedDAE use the predicted scores R̂ as the rec-
ommendation guide. On each client, FedDAE constructs a
global encoder to model the global representation of item
features and a local encoder to capture the personalized
representation of features influenced by user preferences.
The outputs of these encoders are weighted and combined
through a gating network, achieving adaptive additive per-
sonalization in recommendations. Therefore, despite varia-
tions in users’ interaction data due to their preferences, Fed-
DAE ensures that data within a user adheres to the i.i.d.
assumption. Additionally, the user-related local encoder is
stored only locally on the client, protecting user privacy.

Discussions
Matrix Factorization
In recommendation systems, MF-based CF methods typi-
cally decompose the interaction data matrix into an item
embedding that preserves shared knowledge and a user em-
bedding that retains personalized knowledge. In our pro-
posed method, we model the data distribution of the inter-
action matrix and use the weights of the dual encoders to
capture both the globally shared knowledge across clients
and the personalized knowledge for each user. This allows
our method, FedDAE, to retain more complex information,
rather than being limited to the form of user-item vectors.

Complexity Analysis
Given n users and m items, the input dimension of the en-
coder is m. Assuming each encoder on the client side con-
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sists of L fully connected layers with a hidden layer di-
mension of d >> k, the time complexity of the encoder is
O(Lmd), and the space complexity is O(L(m+ 1)d). Sim-
ilarly, assuming the decoder has L′ fully connected layers
with the same hidden layer dimension d, the time and space
complexities of the decoder are O(L′md) and O(L′(m +
1)d) respectively. The reparameterization involves generat-
ing the mean and variance of the latent subspace zu and sam-
pling using a standard normal distribution, with a time com-
plexity of O(k). Additionally, the gating network on each
client requires O(2m) time and space complexity. Thus,
the overall time complexity is O(n(2L + L′)md). Due to
each client in FedDAE having an independent gating net-
work, an independent encoder, a globally shared encoder,
and a globally shared decoder, the overall space complexity
is O(((n+ 1)L+ L′)(m+ 1)d).

Privacy-preservation Enhancement
The proposed framework adopts a decentralized architecture
from the FL scheme, which significantly reduces the risk
of privacy leaks by maintaining data locality, which gener-
ally performs well in a trusted environment. Similar to most
FedCF methods (Chai et al. 2020; Zhang et al. 2023a; Li,
Long, and Zhou 2024), our approach only transmits the gra-
dients of global model parameters,∇(u)

φ Lβ and∇(u)
θ p, with-

out sharing any raw data with third parties. Additionally, if in
an untrusted environment, the proposed method can be eas-
ily combined with other advanced privacy-preserving tech-
niques, such as differential privacy (Abadi et al. 2016) or
randomly cropping gradients, to further strengthen user pri-
vacy guarantees. In our experiment, we perform an ablation
study to evaluate the effectiveness of privacy protection.

Experiments
Datasets
We perform an extensive experimental analysis to assess the
performance of FedDAE on four widely utilized datasets:
MovieLens-100K (ML-100K), MovieLens-1M (ML-1M),
Amazon-Instant-Video (Video), and QB-article. Table 1 pro-
vides the statistical details of the datasets. Each dataset ex-
hibits a high degree of sparsity, with the percentage of ob-
served ratings compared to the total possible ratings (#Users
× #Items) exceeding 90%. The first three datasets contain
explicit ratings ranging from 1 to 5. Since FedDAE focuses
on generating recommendation predictions for data with im-
plicit feedback, any rating above 0 in these datasets is con-
sidered a positive interaction by the user and is assigned 1.
The QB-article dataset is an implicit feedback dataset that
records user click behavior. In each dataset, we only include
users who rated at least 10 items. All datasets used are pub-
licly available, and details are provided in the appendix.

Baselines
The efficacy of FedDAE is comparatively evaluated against
several cutting-edge approaches in both centralized and fed-
erated environments for validation:
Mult-VAE (Liang et al. 2018): A variational autoencoder
model that uses a multinomial distribution as the likelihood

Datasets #Ratings #Users #Items Sparsity
ML-100k 100,000 943 1,682 93.70%
ML-1M 1,000,209 6,040 3,706 95.53%
Video 23,181 1,372 7,957 99.79%
QB-article 266,356 24,516 7,455 99.81%

Table 1: The statistical information of the used datasets.

function to generate latent representations of users, suitable
for collaborative filtering tasks with implicit feedback data
in recommendation systems.
RecVAE (Shenbin et al. 2020): significantly improves the
performance of Mult-VAE by introducing a composite prior
distribution and an alternating training method,
LightGCN (He et al. 2020): enhances recommendation per-
formance to a new level while retaining the advantages of
GCN models by simplifying the design of graph convolu-
tional networks (GCNs) and removing nonlinear transfor-
mations and weight matrices,
FedVAE (Polato 2021): extends Mult-VAE to the FL frame-
work, achieving collaborative filtering by only transmitting
model gradients between clients and the server without ex-
posing the raw user data, ensuring user privacy and security.
PFedRec (Zhang et al. 2023a): achieves the personalization
of user information and item features by introducing a dual
personalization in the FL framework, enabling the recom-
mendation system to adapt to the needs of different users.
FedRAP (Li, Long, and Zhou 2024): enhances the perfor-
mance of recommendation systems by applying dual person-
alization of user and item information in federated learning
while retaining the shared parts of item information, partic-
ularly excelling in handling heterogeneous data.

The implementations of these baselines are publicly avail-
able in their respective papers. Additionally, we implement
a central version of FedDAE, named CentDAE, to explore
the performance of a VAE with dual encoders.

Experimental Setting
We refer to previous work (He et al. 2017; Zhang et al.
2023a; Li, Long, and Zhou 2024), randomly selecting 4 neg-
ative samples for each positive sample in the training set,
and using the leave-one-out strategy to validate the meth-
ods. In this work, we set hψu

(ru) = softmax(ru · ψu)
and thus wu1 + wu2 = 1. We perform hyper-parameter
tuning for FedDAE and select the learning rate η from
{10i|i = −8, ...,−1}. The Adam optimizer (Kingma and
Ba 2014) is applied to update FedDAE’s parameters. Re-
ferring to previous work (Liang et al. 2018; Polato 2021),
we gradually anneal β = 1. To ensure fairness, we fix the
latent embedding dimension to 256 and the training batch
size to 2048 for all methods. The number of layers for meth-
ods with hidden layers is fixed at 3. We set αu = 1/n for
the average schemes of all userd federated methods. Follow-
ing Mult-VAE, FedDAE also employs a dropout (Srivastava
et al. 2014) layer before inputting ru into the encoders to
reduce the risk of over-fitting and uses the reparametrization
trick (Kingma and Welling 2013) to eliminate the stochas-
ticity caused by sampling zu, which allows the model to be
optimized using gradient descent. In the main experiments,



Method ML-100K ML-1M Video QB-Article
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

Central

MultiVAE 0.1093 ± 0.0143 0.0436 ± 0.0065 0.0682 ± 0.0016 0.0276 ± 0.0005 0.0689 ± 0.0088 0.0245 ± 0.0028 0.0129 ± 0.0025 0.0061 ± 0.0008
RecVAE 0.1526 ± 0.0046 0.0590 ± 0.0017 0.1067 ± 0.0029 0.0409 ± 0.0010 0.0693 ± 0.0041 0.0257 ± 0.0028 0.0195 ± 0.0075 0.0064 ± 0.0020
LightGCN 0.1761 ± 0.0166 0.0953 ± 0.0128 0.1207 ± 0.0015 0.0677 ± 0.0014 0.0761 ± 0.0056 0.0323 ± 0.0013 0.0204 ± 0.0067 0.0070 ± 0.0039
CentDAE 0.1119 ± 0.0024 0.0453 ± 0.0010 0.0702 ± 0.0008 0.0275 ± 0.0004 0.0702 ± 0.0084 0.0254 ± 0.0034 0.0185 ± 0.0033 0.0064 ± 0.0007

Federated

FedVAE 0.1200 ± 0.0040 0.0501 ± 0.0032 0.0639 ± 0.0012 0.0250 ± 0.0006 0.0634 ± 0.0128 0.0227 ± 0.0036 0.0116 ± 0.0031 0.0045 ± 0.0013
PFedRec 0.0541 ± 0.0054 0.0115 ± 0.0026 0.0600 ± 0.0002 0.0231 ± 0.0000 0.0138 ± 0.0064 0.0026 ± 0.0012 0.0065 ± 0.0002 0.0033 ± 0.0000
FedRAP 0.0626 ± 0.0032 0.0122 ± 0.0017 0.0625 ± 0.0015 0.0240 ± 0.0003 0.0142 ± 0.0097 0.0028 ± 0.0019 0.0116 ± 0.0026 0.0035 ± 0.0010
FedDAE 0.1232 ± 0.0023 0.0503 ± 0.0014 0.0650 ± 0.0039 0.0261 ± 0.0011 0.0654 ± 0.0080 0.0230 ± 0.0029 0.0124 ± 0.0030 0.0052 ± 0.0014

Table 2: Experimental results on HR@20 and NDCG@20 shown in percentages on four real-world datasets. Central and
Federated represent centralized and federated methods, respectively. The best results are highlighted in boldface.
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Figure 2: The visualization of FedDAE’s convergence and
efficiency across the four used datasets.

all clients participated in the training for FedVAE, PFedRec,
FedRAP, and FedDAE, and no additional privacy protection
measures are applied. In addition, the number of local epoch
is set to 5 for these federated methods, and we do not use
any pre-training strategies for any methods.

Evaluation
We evaluate the prediction performance in the experiments
using two widely used metrics: Hit Rate (HR@K) and Nor-
malized Discounted Cumulative Gain (NDCG@K). These
criteria were formally defined in the work (He et al. 2015).
HR measures hit rate to show whether relevant items are rec-
ommended, while NDCG accounts for ranking quality, em-
phasizing user experience by ranking items of greater inter-
est higher. In this study, we set K = 20 and repeat all experi-
ments five times to report the mean and standard deviations.

Comparison Analysis
Table 2 presents the experimental results of all baseline
methods and FedDAE on four widely used recommenda-
tion datasets, demonstrating that FedDAE outperforms all
federated methods and achieves performance close to cen-
tralized methods. This is attributed to FedDAE’s ability to
adaptively and individually model each user’s data distribu-
tion, retaining shared information about item features while
better integrating user-specific item representations. This in-
dicates that FedDAE has learned fine-grained personalized
features, effectively leveraging user preferences.

Additionally, to study FedDAE’s convergence, we evalu-
ated its performance over 100 iterations on all datasets and
visualized the HR@20 and NDCG@20 results, as shown
in Fig. 2. Insights from Table 2 and Fig. 2 reveal that the
sparsity and scale of the datasets significantly affect Fed-
DAE’s performance. On datasets with lower sparsity and

FedDAE FedDAEw=0.25 FedDAEw=0.5 FedDAEw=0.75

HR@20 0.1287 0.1213 (5.75%↓) 0.1245 (3.26%↓) 0.1191 (7.46%↓)
NDCG@20 0.0524 0.0506 (3.44%↓) 0.0513 (2.10%↓) 0.0469 (10.50%↓)

Table 3: Performance Comparison of FedDAE and its fixed
weight variants FedDAEw (w = 0.25, 0.5, 0.75) on the ML-
100K dataset. The values in parentheses indicate the per-
centage decrease compared to the FedDAE method.

moderate scale, such as ML-100K and ML-1M, FedDAE
shows rapid convergence and better results. In contrast, on
datasets with higher sparsity, like Video and QB-article, the
model’s convergence speed and final performance are no-
ticeably slower. This indicates that additional strategies may
be needed to improve the model’s learning ability when
dealing with highly sparse datasets. Furthermore, while the
Adam optimizer helps quickly find optimal model param-
eters and enhances recommendation performance, it also
causes more noticeable fluctuations in FedDAE’s conver-
gence curves. These fluctuations might be due to the hetero-
geneity and noise in the datasets. A theoretical convergence
analysis of the convergence is provided in our appendix.

Ablation Study
To investigate the impact of each component on the model’s
performance, we propose a variant of the FedDAE method,
named FedDAEw. It uses a fixed weight ww for each client
to weigh the output of the global encoder. Since the weight
of the local encoder is complementary to w (i.e., 1 − w),
the local encoder’s weight is also fixed. For more ablation
studies, please refer to our appendix.

Abalation Study on Adaptive Weights. To explore the
impact of the gating network output weight on each client
in FedDAE, we compared the performance of FedDAEw
with different fixed weights (w = 0.25, 0.5, 0.75) and Fed-
DAE on the ML-100K dataset. Table 3 shows that when
the weight w = 0.5, FedDAEw performs most similarly to
FedDAE. However, as the weight increases to 0.75, perfor-
mance significantly decreases, indicating that personalized
information plays a crucial role in FedDAE. The lack of per-
sonalized information results in a greater decline in recom-
mendation performance compared to the lack of shared in-
formation. Overall, this ablation study demonstrates the ef-
fectiveness of the gating network in FedDAE.

Ablation Study on Item Representation. To visually
demonstrate the differentiated capability of FedDAE en-
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Figure 3: The t-SNE visualization of item features learned
by FedDAE on the ML-100K dataset illustrates the repre-
sentations across different users. In the visualization, red in-
dicates items that users have interacted with, while blue in-
dicates items they have not interacted with. The global rep-
resentation is generated by FedDAE’s global encoder, and
the local representation is produced by the user-specific en-
coder. Average Combination refers to the simple average of
the global and local representations, while Weighted Com-
bination reflects the weighted combination based on the gat-
ing network outputs tailored to the client data. FedDAE’s
adaptive personalization enhances its ability to distinguish
between items users have interacted with and those they
haven’t, leading to improved recommendation performance.

coders in modeling item features, we selected three local
encoders {qφu

}u=43,178,345 from different users and the
global encoder qφ, all learned from the ML-100K dataset.
The weights of all layers of each encoder were multiplied
and then visualized. Since this study primarily focuses on
implicit feedback recommendation, where each item is ei-
ther interacted with by the user or not, We employe t-SNE
(Van der Maaten and Hinton 2008) to map these item em-
beddings into a two-dimensional space, with the normalized
results shown in Fig. 3. In these visualizations, blue repre-
sents items not interacted with by the user, while red rep-
resents items that have been interacted with. From the first
column of Fig. 3, we can see that in the global encoder’s
modeled item representation, interacted and non-interacted
items are mixed together, indicating that qφ only models the
shared features of items. The second column illustrates that
each user’s local encoder can divide the item features into
two distinct clusters, proving that the local encoder qφu can
learn user-specific personalized features. The third column
shows the average combination of global and local repre-
sentations, but its boundaries are not as distinct compared to
the weighted combination of FedDAE shown in the fourth
column. The weighted combination, based on the output of
the gating network hψ from user interaction data ru, more
clearly differentiates the two clusters. This demonstrates that
FedDAE’s adaptive additive personalization can more effec-

κ2 Metric FedDAE FedDAEw=0.25 FedDAEw=0.5 FedDAEw=0.75

0.2 HR@20 0.1255 0.1213 (3.35%↓) 0.1245 (0.80%↓) 0.1149 (8.45%↓)
NDCG@20 0.0505 0.0483 (4.36%↓) 0.0486 (3.76%↓) 0.0476 (5.74%↓)

0.5 HR@20 0.1245 0.1181 (5.14%↓) 0.1213 (2.57%↓) 0.1170 (6.02%↓)
NDCG@20 0.0494 0.0479 (3.04%↓) 0.0481 (2.63%↓) 0.0470 (4.86%↓)

0.8 HR@20 0.1191 0.1170 (1.76%↓) 0.1181 (0.84%↓) 0.1160 (2.60%↓)
NDCG@20 0.0489 0.0473 (3.27%↓) 0.0486 (0.61%↓) 0.0464 (5.11%↓)

1 HR@20 0.1191 0.1085 (8.90%↓) 0.1096 (7.98%↓) 0.1085 (8.90%↓)
NDCG@20 0.0479 0.0453 (5.43%↓) 0.0466 (2.71%↓) 0.0450 (6.05%↓)

Table 4: Performance comparison of FedDAE and
FedDAEw variants under Different Noise Variance Levels
on the ML-100K Dataset, showing the performance metrics
HR@20 and NDCG@20 for FedDAE and its variants with
fixed weights (w = 0.25, 0.5, 0.75) under different noise
variance levels (0.2, 0.5, 0.8, 1). The values in parentheses
indicate the percentage decrease compared to FedDAE.

tively represent item features, supporting its superior perfor-
mance in personalized recommendation.

Abalation Study on Privacy Protection. To evaluate the
impact of additional privacy protection measures on the rec-
ommendation performance of FedDAE and FedDAEw, we
introduce noise into the gradients uploaded by users and
test these methods on the ML-100K dataset across vari-
ous noise levels (κ2 = 0, 0.2, 0.5, 0.8, 1). Table 4 shows
that while performance declines as noise increases, Fed-
DAE consistently outperforms other variants at all noise lev-
els, likely due to its adaptive balancing of global and lo-
cal encoder outputs. FedDAEw=0.5 ranks second, demon-
strating strong robustness across different noise levels. In
contrast, FedDAEw=0.25 performs worse than both Fed-
DAE and FedDAEw=0.5 but better than FedDAEw=0.75.
As the weight parameter w increases, FedDAE becomes
more reliant on the global encoder, which may explain why
FedDAEw=0.75 performs the worst under all noise condi-
tions. These results highlight the importance of balancing
the weights of the dual encoders, especially when imple-
menting privacy protections.

Conclusion
This paper first revisits FedCF from the perspective of VAEs
and proposes a novel personalized FedCF method called
FedDAE. FedDAE constructs a VAE model with dual en-
coders and a global decoder for each client, capturing user-
specific representations of item features while preserving
globally shared information. The outputs of the two en-
coders are dynamically weighted through a gating network
based on user interaction data, achieving adaptive additive
personalization. Experimental results on four widely used
recommendation datasets demonstrate that FedDAE outper-
forms existing FedCF methods and various ablation base-
lines, showcasing its ability to provide efficient personal-
ized recommendations while protecting user privacy. Addi-
tionally, our research reveals that the sparsity and scale of
the datasets significantly impact the performance of Fed-
DAE, suggesting that highly sparse datasets require addi-
tional strategies to enhance the model’s learning capability.
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