
Effective Unit Test Generation for Android Apps
Guojun Ma∗, Yu Pei†§, Liushan Chen∗§, Chenqing Gan∗, Hao Zhang‡, Hao Liang∗, Tian Zhang‡
∗Douyin Co., Ltd., Shenzhen, China, {maguojun,chenliushan,ganchenqing,lianghao.roger}@bytedance.com

†The Hong Kong Polytechnic University, Hong Kong, China, yupei@polyu.edu.hk
‡Nanjing University, China, mf21330110@smail.nju.edu.cn, ztluck@nju.edu.cn

Abstract—While the received wisdom says that testing at levels
like classes and methods is necessary for detecting bugs in
programs, the application of unit testing to Android development
in practice is limited so far due to the lack of sufficient technical
and tool support. This paper proposes the EVODROID approach
to the automated unit test suite generation for Android code.
EVODROID is inspired by EVOOBJ, a SOTA test generation
technique for object-oriented Java programs based on EVO-
SUITE. EVOOBJ generates unit test suites for Java methods and
constructs object construction graphs to guide the synthesis of
complex objects as test inputs. In contrast to that, EVODROID
generates test suites for Java classes, and its object synthesis is
driven by input structure maps which are comparably effective
but much less expensive to construct. EVODROID also integrates
the ROBOLECTRIC framework to support running Android unit
tests on regular Java virtual machines. Experimental evaluation
results show that EVODROID is both effective and efficient in
generating unit test suites for Android.

Index Terms—search-based unit test generation, static analysis,
Android

I. INTRODUCTION

Android is now the dominant operating system on mobile
devices, and the number of Android apps on the market
is growing rapidly [1]. Given that our work and life rely
more and more on the correct functioning of Android apps,
considerable effort has been dedicated in the past years to
detect bugs in Android apps via testing effectively. Since
most Android apps have a graphical user interface (GUI) for
better usability, GUI testing has been the most popular form
of testing performed on Android apps. Particularly, various
techniques and tools have been developed to automatically
generate GUI tests [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], to augment existing GUI tests [15],
[16], [17], [18], and to repair obsolete GUI tests after the
apps have evolved [19], [20], [21], [22]. While GUI testing
is essential for checking whether an Android app behaves as
expected at the system level, the received wisdom says that
testing at levels of smaller code units like classes and methods
is necessary since system-level testing, like GUI testing, alone
is insufficient for detecting many bugs in the app. In fact,
unit testing for Android apps is not only necessary but also
feasible. Although most code in Android apps depends on
the Android environment, a significant portion of such code
encodes only the internal processing logic of the corresponding
apps and is suitable for unit testing. For example, given a
class Bitmap from Android.jar that abstracts bitmap images,

§ Yu Pei and Liushan Chen are the corresponding authors.

it is quite reasonable to unit test a client class BitmapUtils

that relies on class Bitmap and provides utility methods to
manipulate bitmap images.

However, the application of unit testing to Android devel-
opment in practice is limited so far. One major reason is
that many unit tests for Android code can only be executed
on Android platforms like Android emulators and devices,
making the unit testing process quite heavy. More concretely,
many classes in Android apps are Android specific, i.e.,
they directly or indirectly depend on the Android environ-
ment (including support libraries like Android.jar and kotlin-
stdlib.jar), while full-fledged Android environments are only
available on Android platforms. Therefore, given a unit test
that exercises an Android-specific class, executing the unit test
typically involves the following steps: Packing the test with the
corresponding app code into an APK file, deploying the file to
an Android platform, and launching the app and running the
test.1 Note that although Android IDEs like Android Studio
and IntelliJ IDEA enable programmers to develop Android
apps on desktop computers, they only support the compilation,
but not the execution, of Android-specific code since they
merely mock the APIs of the Android environment.

The restriction that unit tests for Android-specific code
must be executed on Android platforms not only significantly
increases the already huge effort required for Android unit
testing but also limits the tool support for generating, ana-
lyzing, and enhancing Android unit tests. On the one hand,
existing Java testing techniques and tools are ineffective on
Android apps since they do not run on Android platforms
and can only handle code that is not Android-specific. On
the other hand, it is challenging to migrate techniques like
dynamic analysis to the Android platform because they rely
on the platform APIs and must meet the platform restrictions.
For example, when generating GUI tests for an Android app,
besides utilizing an emulator to run the app, an automated tool
also needs to gather information about the current status of the
app GUI, decide which event is to be triggered on which GUI
widget next based on the gathered information, and actually
trigger the selected event. The process is only feasible because
the emulator supports the corresponding operations and makes
them readily accessible via clearly defined APIs. The Android
platform, however, provides little, if any, support for gathering
information about the execution of Android apps at the method

1AndroidJUnitRunner [23] streamlines the process, but an Android emula-
tor or device is still needed.

The following publication G. Ma et al., "Effective Unit Test Generation for Android Apps," 2024 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Flagstaff, AZ, USA, 2024, pp. 820-832 is available at https://doi.org/10.1109/ICSME58944.2024.00085.

This is the Pre-Published Version.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

or statement level.

Recently, new techniques have been proposed to facilitate
the unit testing of Android-specific code, which includes, e.g.,
ROBOLECTRIC, an industry-standard unit testing framework
for Android [24]. The ROBOLECTRIC framework supports
the execution of Android-specific code on a regular Java
virtual machine (JVM) by simulating an Android environment
atop the JVM. By avoiding the aforementioned overhead,
ROBOLECTRIC makes unit testing for Android-specific code
considerably more affordable to Android developers.

To further reduce the burden of manually preparing those
unit tests, we propose the EVODROID approach to sup-
port effective automated unit test generation for Android-
specific code in this paper. EVODROID is inspired by the
EVOOBJ [25] approach. EVOOBJ extends the EVOSUITE [26]
evolutionary test generation technique to generate unit test
suites for Java methods effectively, and it constructs object
construction graphs to guide the synthesis of complex ob-
jects as test inputs. While EVOOBJ produced better results
than EVOSUITE on open-source Java code in the reported
experimental evaluation [25], in our experience, its efficiency
degrades significantly and often becomes unacceptable on
more complex code. Compared with EVOOBJ, EVODROID is
also built atop EVOSUITE, but it aims to generate unit test
suites for Java classes, and object synthesis in EVODROID is
driven by input structure maps, which are comparably effective
but less expensive to construct. EVODROID also incorporates
the ROBOLECTRIC framework to streamline the execution
of Android unit tests on regular Java virtual machines. We
summarize the advantages of class-level unit test generation
based on input structure maps over method-level unit test
generation based on object construction graph in Section III.

The EVODROID approach has been implemented into a
tool with the same name. We have experimentally compared
EVODROID with the STOAT tool in test generation for open-
source Android apps and with EVOOBJ in unit test generation
for Java code, and we have applied EVODROID to facilitate the
unit and regression testing of production-level Android code.
The experimental results clearly show that EVODROID com-
plements STOAT in test generation for Android, outperforms
EVOOBJ in unit test generation for Java, and is effective in
testing production-level Android code.

This paper makes the following contributions:

1) We propose the EVODROID approach to effective unit
test generation for Android; To the best of our knowl-
edge, EVODROID is the first class-level unit test gener-
ation technique for Android code.

2) We implement the EVODROID approach into a tool with
the same name to facilitate the easy application of the
approach by developers;

3) We evaluate the effectiveness and efficiency of the
approach based on the results it produces on real-world
Android and Java code.

II. BACKGROUND

A. Android Environment and Platform

Every Android app directly or indirectly depends on the
libraries that come with the Android SDK and invokes meth-
ods in those libraries to provide its functionalities at runtime.
For example, Android framework classes are usually contained
in a library named android.jar. Correspondingly, full-fledged
implementations of those libraries can be viewed as Android
environments necessary for Android apps to run successfully.
While all Android devices and emulators, which we refer to
as Android platforms, are equipped with full Android environ-
ments, no such native environments exist on popular desktop
platforms like Windows2, MacOS, and other Linux-based
operating systems, and therefore Android apps cannot directly
execute on those platforms. Note that although Android IDEs
like Android Studio and IntelliJ IDEA enable programmers
to develop Android apps on desktop computers, libraries like
Android.jar that come with the IDEs merely mock the APIs
of the Android environment and support only the compilation,
but not the execution, of Android apps.

B. ROBOLECTRIC

ROBOLECTRIC is a testing framework that enables unit
tests of Android-specific code to execute on regular JVMs. It
achieves so by providing a native implementation of the An-
droid environment and redirecting calls to Android APIs in the
test code to that implementation. In particular, ROBOLECTRIC
introduces a home-brewed class SandboxClassLoader, which
wraps around the JVM’s default class loader. During class
loading, SandboxClassLoader first replaces classes from the
Android libraries with their matching native implementations,
then modifies the other classes’ bytecode so that invocations
to Android APIs are redirected to the corresponding methods
in the native implementation, and finally delegates the loading
of the replaced/modified classes to the JVM’s default class
loader. The sandbox environment supports access to Android
resources in a similar way.

To be able to run an Android unit test method in the
ROBOLECTRIC environment, developers just need to anno-
tate the method with class RobolectricRunner, which is a
ROBOLECTRIC executor defined by the framework. Upon
running the unit test with ROBOLECTRIC, a singleton instance
of RobolectricRunner will first be instantiated and utilized to
initialize the ROBOLECTRIC sandbox environment (including,
e.g., SandboxClassLoader), and then the test method will be
executed in the sandbox.

C. EVOSUITE and EVOOBJ

EVOSUITE is an automated, search-based unit test genera-
tion tool for Java. It employs an evolutionary algorithm [27]
to construct a suite of unit test cases that maximizes the code
coverage with respect to a given criterion. Each generated test
case contains a sequence of statements that set up input objects
and invoke methods on those objects. During its execution,

2Essentially, the Windows Subsystem for Android functions as an emulator.

public class GenericMarkupMenuItemRenderer extends ... {

private String text; private HashMap attributes;

public void setAttributes(HashMap attr) { attributes = attr; }

public void setText(String text) { this.text = text; }

public void startRender(IMarkupWriter writer, IMenuItem item) {

writer.begin(element);

if (attributes != null && attributes.keySet() != null) {

Iterator attrNames = attributes.keySet().iterator();

while(attrNames.hasNext()) {

String attrName = (String)attrNames.next();

String attrValue = (String)attributes.get(attrName);

writer.attribute(attrName, attrValue);

}

}

...

}

/* other details omitted */

}

Listing 1: Method GenericMarkupMenuItemRenderer.startRender from the
BluePenguinMail web-based Email application.

GenericMarkupMenuItemRenderer renderer0 = new

GenericMarkupMenuItemRenderer();

HashMap<Object, Object> hashMap0 = new HashMap<Object, Object>();

Object object0 = new Object();

hashMap0.put("framework", (Object) null);

renderer0.setAttributes(hashMap0);

NullWriter nullWriter0 = new NullWriter();

DefaultMenuItem defaultMenuItem0 = new DefaultMenuItem(object0);

renderer0.startRender(nullWriter0, defaultMenuItem0);

Listing 2: One unit test generated for method writeByteSized.

EVOSUITE first randomly generates an initial generation of
test suites and then iteratively evolves those suites. In each
iteration, EVOSUITE dynamically analyzes the execution of
the current generation of test suites, calculates for each suite
a fitness value that summarizes its usefulness for fulfilling
its overall goals, and derives from the test suites with the
highest fitness values the next generation of test suites via two
operations, namely mutation and crossover. Here, the mutation
operation involves adding new test cases to a test suite and
modifying existing test cases from a test suite, which in turn
involves adding, removing, or changing statements from the
test cases; The crossover operation involves exchanging test
cases from two test suites.

One important aspect in EVOSUITE’s implementation is
that it installs a customized class loader named Instrument-

ClassLoader to replace the default one of the JVM, and
the instrumentation performed by InstrumentClassLoader is
essential for the overall effectiveness and efficiency of the
tool [28]. For instance, InstrumentClassLoader heavily instru-
ments all app classes loaded during the execution of a test
both to log their traces at runtime and to reduce the overhead
induced by mutation testing.

The evolutionary algorithm implemented by EVOSUITE is
only effective when its search space is continuous and mono-
tonic with respect to the fitness function used. However, that is
seldom the case when testing object-oriented programs, which
often involves generating objects with complex structures as

test inputs. In view of that, Lin et al. [25] proposed the
EVOOBJ approach that extends the EVOSUITE technique with
a mechanism to effectively generate unit tests for hard-to-cover
branches in programs under testing. Given a target branch
within a method to cover, EVOOBJ first builds an object
construction graph to capture the fields that a test covering the
target branch may access and the dependence relations among
those fields. Then, it synthesizes unit tests with instructions to
instantiate the method’s input objects, change the object states
by assigning different values to the relevant fields based on
the object construction graph, and invoke the method using
the input objects. Finally, it reuses the evolutionary algorithm
from EVOSUITE to search for appropriate values to be used
for setting the object fields. By breaking complex objects into
collections of fields, EVOOBJ makes the input space of unit
tests easier to navigate with an evolutionary algorithm.

III. EVODROID IN ACTION

EVODROID has two major components as its cornerstones.
One is the integration of ROBOLECTRIC to enable automated
unit test generation for Android, whose value can be confirmed
once the tool is able to generate and run useful unit tests
for Android apps. The other is the effective unit test suite
generation technique for Java classes. In this section, we use
class GenericMarkupMenuItemRenderer (shown in Listing 1)
from the SF100 benchmark [29] (See Section V-A for more
information about the benchmark) as an example to demon-
strate EVODROID’s effectiveness and efficiency in class-level
unit test suite generation.

The class is part of the BluePenguinMail web-based Email
application and is responsible for rendering the generic markup
menu items on the application’s GUI. In particular, the class
stores the attribute name and value pairs to be used in
rendering menu items in a HashMap field named attributes.
Taking an IMarkupWriter and an IMenuItem as the parameter,
its method startRender applies all the attributes stored in field
arributes when constructing the markup node for the menu
item and sends the constructed markup element to the writer.
The loop in the method body iterates through all the name
and value pairs stored in field attributes and sends them to
the writer. For a unit test to enter the loop, the render’s field
attributes should not be empty, and all the names and values
stored in it should be convertible to strings. It, however, is none
trivial for a test generation tool to construct such a non-empty
hashmap and assign it to field attributes.

When applied to generate unit tests for method startRender,
EVOOBJ always produced three unit tests that cover 51% of
the method’s instructions, with the average generation time for
each test being around 0.6 minutes. Although EVOOBJ suc-
cessfully identified attributes as a relevant field for a test to
cover the method’s while loop, and it also included invocations
to method setAttributes in the generated tests to diversify
the renderer’s states, the hashmaps used in those tests were
either empty or populated with references to IMarkupWriter

and GenericMarkupMenuItemRenderer instances as the keys and
values. In the former case, the if condition in the method body

Instrumentation

EvoSuite &
Robolectric

Instrumentation

Random
Population
Generation

Fitness
Evaluation

Best Suite
Selection

Mutation &
Crossover

Test Suite
Minimization

Object
Reuse

Object
Instantiation

Test
Construction

Test
Generation

Genetic
Algorithm

ISM-based
Object

Instantiation

Legend EvoSuite step EvoDroid replacement step Is followed by Invokes

Figure 1: The main workflow of EvoDroid and EvoSuite.

shall evaluate to false, causing the execution to skip the while

loop; In the latter case, the explicit type conversions in the loop
body shall fail, causing the test to terminate prematurely. As
a result, tests generated by EVOOBJ were not able to properly
cover the loop body.

In contrast to that, when applied to generate unit tests
for class GenericMarkupMenuItemRenderer, EVODROID always
produced four unit tests for method startRender that cover
85% of the method’s instructions, with the average generation
time for each test being around 0.3 minutes. For instance,
Listing 2 gives one generated unit test that successfully
exercised the whole while loop because it properly populated
the renderer’s field attributes with key and value references
that are convertible to strings.

EVODROID was considerably more effective and efficient
than EVOOBJ for two main reasons. First, EVOOBJ and
EVODROID were designed to effectively generate high-quality
unit test suites for methods and classes, respectively. On the
one hand, class-level unit test suite generation makes it easier
for EVODROID to come across objects in more diversified
and hopefully useful states, which increases the chance of
generated tests exercising more program behaviors. On the
other hand, class-level unit test suite generation also makes
EVODROID more sensitive to the differences among test
input object states because the differences are more likely
to cause distinct behaviors if the objects are used to test
more methods, which increases the chance of EVODROID
retaining the useful objects during the genetic evolution of
the unit tests. For example, it is inevitable for EVODROID
to construct String objects when testing the other methods
(e.g., setText) in class GenericMarkupMenuItemRenderer, and
such String objects can be easily reused by EVODROID
when populating the attributes hashmap. In contrast, since
EVOOBJ has a narrow focus on fields accessed in method
startRender and by the while loop, the chance it stands of
constructing a String object is almost negligible. Second,
although the analysis that EVOOBJ performs to construct the
input objects is more sophisticated, it is rather expensive and
has to be repeated on each target branch to be covered, which
adds huge overhead to the unit test generation process. In
contrast, EVODROID conducts only a lightweight analysis,
once on each method, for the same purpose. The analysis runs
much faster and is sufficient to support the effective generation
of unit test suites with high coverage.

IV. THE EVODROID APPROACH

Figure 1 shows the major steps involved in test genera-
tion with EvoSuite and the corresponding replacement steps
EvoDroid introduces for program instrumentation and object
instantiation. Correspondingly, we explain in this section how
EVODROID generates tests for methods expecting complex
objects as the input and how the ROBOLECTRIC framework
is integrated into EVODROID to support running Android-
specific code on JVMs.

A. Construction of Complex Objects as Test Inputs

EVODROID adopts EVOSUITE’s overall unit test generation
process, but its object synthesis algorithm is inspired by
EVOOBJ. There are two important differences between unit
test suite generation in the two approaches. First, EVOOBJ
generates test unit suites for methods, while EVODROID
does that for classes, which aligns better with EVOSUITE’s
underlying idea of whole test suite optimization [26]. Second,
EVOOBJ employs object construction graphs to guide the
generation of test input objects, while EVODROID constructs
input structure maps for the same purpose. Compared with
object construction graphs, input structure maps are much
easier and less expensive to build but still contain sufficient
information to steer the generation of useful unit tests.

In general, three groups of input variables are accessible in
a method, namely the explicit parameters, if any; the implicit
this parameter, if the method is an instance method; and the
static fields defined in the containing and other classes. These
input variables and the variables they directly or indirectly
refer to via their fields determine the behaviors (including the
output, if any) of a method. Therefore, to construct complex
objects so as to drive a method under testing to exercise more
behaviors, EVODROID first statically analyzes the method’s
definition to gather information about which objects are used
as the input to the method and which fields of the objects may
influence the behaviors of the method. Note that the analysis
reasonably ignores local variables defined and initialized inside
the method since their values can always be derived from the
aforementioned three groups of input variables.

EVOOBJ builds an object construction tree to abstract the
input object states in terms of class fields that are relevant
to a given target branch to be covered. In contrast to that,
EVODROID constructs for each method under testing an
input structure map, where each key corresponds to a class
whose instance(s) may be accessed during the execution of
the method, while each value contains two collections of
accessed fields of the class, one for instance fields and the
other for static fields, respectively. In other words, each input
structure map contains the structural information about the
input objects for one method under testing, and the fields
directly or indirectly accessible via these variables are grouped
and recorded by their defining classes. For example, Figure 2
shows part of the input structure map for method startRender

shown in Listing 1.

Key

GenericMarkupMenuItemRenderer

Value

IMarkupWriter

HashMap

({text: String, attributes: HashMap, …}, {…})

({…}, {…})

({entrySet: Set<Map.Entry<K,V>>, size: int, …}, {…})

Figure 2: Part of the input structure map for method startRender in Listing 1.

1) Construction of Input Structure Map
Given a method m from a class C to be processed, EVO-

DROID traverses the instructions in the method to gather in-
formation about which fields are accessed during the execution
of the method. The traversal focuses on the objects directly or
indirectly reachable from the input objects and the exact fields
of those objects accessed by the method. Upon encountering
an access to a field f of a reference o, e.g., in the form of
o.f, EVODROID will first resolve o’s class co and f’s type tf.
Afterward, EVODROID incorporates the structural information
reflected by the access into the input structure map of the
current method by first making sure a key of class co is
contained in the map and then adding the field f with its type
tf to the corresponding collection, depending on whether f

is static or not. Note that all fields of class C, either defined
in the class or inherited from its super-classes/interfaces, are
always contained in the input structure maps for all methods
from the same class. This is to ensure that every object created
for class C in the generated tests has all its fields set up, which
helps to diversify the C objects used in the generated tests.

To find out which objects and fields are accessed in other
methods invoked by method m, EVODROID conservatively
follows all the possible invocation relationships and tracks the
usage of those input objects across method boundaries, using
the same strategy as described above. In particular, if a method
invocation o’.m’() in method m can be dispatched to different
implementations of method m’, EVODROID conservatively
processes all the overriding versions of method m’ when con-
structing the input structure map for method m. In this way, the
input structure map constructed for a method captures both the
classes and the fields of all objects possibly accessed during
the method’s execution, whose values essentially determine the
behaviors of the method. Afterward, generating proper input
objects to exercise the method in different ways boils down
to assigning appropriate values to those fields.

2) Test Generation Based on Input Structure Map
After constructing the input structure map for method m,

EVODROID generates unit tests for the method under the guid-
ance of the input structure map. Each test contains statements
both to prepare the input objects and to invoke the method,
and the search algorithm adopted from EVOSUITE will evolve
the tests to achieve the overall testing goals.

When preparing the input objects, if an object is of a prim-
itive type, EVODROID reuses the process from EVOSUITE to
determine a value of the proper type for the object [26]. For an
input object of a reference type, EVODROID either constructs
a new object (with a probability of 0.1 to reduce overhead)
or reuses an existing object of a compatible type (with a
probability of 0.9 to promote object reuse). To construct a

new object of a reference type, EVODROID first collects all
methods that may return an object of the type, including the
corresponding class’s constructors, then picks one method f’

from them, and finally recursively builds the inputs required
by f’ and invokes the method. Note that, in case that method m

is non-static, EVODROID considers the receiver of the method
invocation as an (implicit) input object for the method.

After an object is obtained, EVODROID generates state-
ments to set all the non-final fields of the object that were
recorded in method m’s input structural map. In particular,
EVODROID attempts to set a private or protected field by
invoking a method and set a public field by either invoking a
method or directly assigning a value to it. Here, EVODROID
applies a light-weight static analysis technique to gather the
set of public methods defined in class co that modify the field
f of the objects of the class and invokes only such methods in
attempts to set the values of the field. If the field itself is of a
reference type, an object of a compatible type will be reused or
constructed recursively and then assigned to the field. Besides,
EVODROID will stochastically invoke state-changing methods
to diversify the states of the objects before they are actually
used to invoke a target method.

Two more things about the generation of unit tests are
worth extra attention. First, all the generated objects are put
into a pool and can be reused later as the input for method
invocations in other tests. Second, to control the overall
length of the statement sequences produced by this essentially
recursive process, we set the upper bound of the sequence
length to 40 and stop adding statements to a sequence once
its length reaches this limit.

B. Integration of ROBOLECTRIC and EVOSUITE

As explained in Section II, both ROBOLECTRIC and EVO-
SUITE require their own customized class loader to function
correctly. However, naively combining the two tools as black-
box systems will not work because of how Java class loaders
work in general. According to the JVM specification, the same
class loader for loading a Java class K will be used to load the
classes on which K depends, and class K is only aware of the
classes loaded by the very class loader that loaded itself.

Correspondingly, having two active class loaders, from
ROBOLECTRIC and EVOSUITE, respectively, in EVODROID
will cause two major issues. First, since each class loader
is also responsible for instrumenting the classes it loads, a
class will miss out on an important type of instrumentation
no matter which class loader is used to load it. Second,
we may end up loading a class twice, each time using one
class loader, which may cause data fragmentation and other
problems. For instance, EVOSUITE employs a singleton class
named ExecutionTracer to gather the execution traces of
the generated test cases, and the class will be loaded twice
if ROBOLECTRIC and EVOSUITE are integrated in a naive
way, one time by InstrumentClassLoader when EVOSUITE is
running as the class is clearly part of the EVOSUITE tool,
and the other time by SandboxClassLoader since its methods
will be invoked when the generated test cases are executed

class InstrumentationClassLoader{

ClassLoader loader = ...;

void injectClassLoader(SandboxClassLoader scl){ loader = scl; }

void loadClass(String name){ loader.loadClass(name); }

/* other details omitted */

}

class SandboxClassLoader{

ClassLoader loader = /*default class loader*/;

void loadClass(String name){

ByteCode bc = retrieveClassByteCode(name);

bc = sandboxInstrument(bc); bc = evosuiteInstrument(bc);

loadBytecode(bc);

}

/* other details omitted */

}

Listing 3: Implementation of the two class loaders in pseudo-code.

in ROBOLECTRIC’s sandbox environment. As a result, two
distinct instances of class ExecutionTracer may coincide, with
different knowledge about the coverage achieved by the test
generation process.

For instance, EVOSUITE employs a singleton class named
ExecutionTracer to gather the execution traces of the gen-
erated test cases, and the class will be loaded twice if
ROBOLECTRIC and EVOSUITE are integrated in a naive way.
On the one hand, class ExecutionTracer will be loaded by
InstrumentClassLoader when EVOSUITE is running as the
class is clearly part of the EVOSUITE tool. On the other
hand, the class will also be loaded by SandboxClassLoader

since its methods will be invoked when the generated test
cases are executed in ROBOLECTRIC’s sandbox environment.
As a result, two distinct instances of class ExecutionTracer

may coincide, with different knowledge about the coverage
achieved by the test generation process.

To overcome that problem, EVODROID combines the class
loaders from the two tools in the following way. First, we mod-
ify both SandboxClassLoader and InstrumentationClassLoader

so that a class is always loaded via the same process as
defined in method SandboxClassLoader.loadClass, no matter
which loader is the one to initiate the class loading process.
In particular, we revise class InstrumentClassLoader so that
1) its default class loader is replaced with an instance of
SandboxClassLoader from the ROBOLECTRIC environment and
2) its method loadClass simply delegates class loading to
SandboxClassLoader.loadClass. Meanwhile, we also modify
method SandboxClassLoader.loadClass so that, when load-
ing a class, the method will a) read the bytecode of the
class, b) perform the intrumentation originally implemented
in ROBOLECTRIC (see Section II) so that the class’s code
will execute inside ROBOLECTRIC’s sandbox, c) invoke via
reflection the instrumentation logic originally implemented in
EVOSUITE to further instrument the class code so that the
execution trace will be recorded during testing, and d) load
the class code with both types of instrumentation into the
Java virtual machine. In the revised implementation, while two
types of instrumentation are still implemented in two class
loaders, we are certain that both types of instrumentation are

applied to all classes under testing and that all the classes
loaded in this way are aware of each other. The pseudo-code
in Listing 3 shows the main steps performed by each loader
when loading a class.

To make sure both class loaders are properly config-
ured at the very beginning of the unit test generation pro-
cess, during the initialization of EVODROID, we initial-
ize the ROBOLECTRIC environment, get a handle of its
SandboxClassLoader object, and store the handle in EVO-
SUITE’s InstrumentClassLoader.

C. Support for Android Specific Environments

1) Running view-related Android code in the main thread
During test generation, the generated test cases are often

executed in a different thread from the tool’s main thread.
Such a design is necessary because the generated test cases
may crash or run into other problems, and running them
in separate threads enables the tool to control the damage
the test threads may cause and even kill those threads when
necessary. The Android platform, however, stipulates that all
view-related operations must be performed in an Android main
thread. Hence, ROBOLECTRIC especially devises a method
named runOnMainThread to encapsulate the support for that
requirement. The method takes a Runnable object as the
argument and executes the run method of the Runnable object
in an Android main thread mimicked by the framework.

2) Constructing meaningful GUI-level Android objects
To effectively test methods requiring GUI-level Android

objects (e.g., of types Application, Activity, and Button) as
parameters, we must be able to construct or obtain meaningful
objects of those types. Since those objects are typically highly
complex, constructing them by directly calling the correspond-
ing constructors is seldom sufficient and often produces only
trivial instances of the classes with limited usefulness in
driving interesting test executions. In view of that, EVODROID
exploits class RobolectricTestRunner from ROBOLECTRIC to
launch the application and activities of the app under testing
and stores one instance of each GUI-level Android object type
as a globally shared resource. Later, whenever such an object
is needed during test generation, the stored one can be used.

While such objects may be inappropriate for invoking cer-
tain methods, e.g., because they violate the methods’ (explicit
or implicit) preconditions, they are usually more complex and
realistic than the ones randomly constructed from scratch and
therefore are useful for exercising the code under testing in
more diversified ways. A similar idea was explored by Jaygarl
et al. to test object-oriented Java code [30] and by Arcuri et
al. to test code that involves networking [31].

3) Accessing shared preferences
Operations on shared preferences often involve accessing

the related XML files on Android. In the sandbox envi-
ronment provided by ROBOLECTRIC, such access to local
files, however, is not allowed and may cause the execution
of the corresponding tests to hang. To work around such
a limitation, EVODROID provides a customized, map-based

implementation for the SharedPreference interface and re-
places the original SharedPreference implementation with it.
With the new implementation, reading from and writing to a
particular preference is achieved by retrieving and storing the
value associated with a key, i.e., the preference text, from and
to the map, respectively.

D. Implementation

We have implemented the EVODROID technique into a tool
with the same name atop the EVOSUITE tool. Regarding the
object synthesis process, during unit test generation, EVOOBJ
stochastically selects targets from branches that have not been
covered yet and invokes its customized algorithm to generate
objects as test inputs. The design is suitable for EVOOBJ
since its analysis of the code under testing is rather heavy,
and the design can help reduce the overhead introduced by its
analysis. The analysis that EVODROID performs, however, is
much lighter and does not introduce much overhead. Hence,
EVODROID always delegates the generation of new tests
from scratch to the process described in Section IV-A. Test
generation via mutation and cross-over in EVODROID remains
the same as in EVOSUITE.

V. EVALUATION

We have applied EVODROID to generate unit tests for both
Android and Java code. Based on the generation results, we
address the following research questions:

RQ1: How effective and efficient is EVODROID in Android
test generation? In RQ1, we evaluate the test generation
results produced by EVODROID on open-source Android
apps, and we compare the results with that achieved by
STOAT [32], a state-of-the-art GUI test generation tool
for Android, as all Android test generation tools that we
have access to produce GUI tests3.

RQ2: How does EVODROID compare to state-of-the-art tools
for Java unit test suite generation? Recall that EVO-
DROID has two major components as its cornerstones.
One is the integration of ROBOLECTRIC to enable
automated unit test generation for Android, and the
other is the effective unit test suite generation at the
class level. In RQ2, we investigate the usefulness of the
second component by comparing it to its counterpart
algorithm implemented in EVOOBJ. Previous work has
shown that EVOOBJ outperforms EVOSUITE in gener-
ating unit tests for Java code [25]. Here, we did not
compare EVODROID with EVOOBJ in terms of their
bug-finding capability mainly because, due to the lack
of high-quality, automatic test oracle, it is challenging
to determine whether a failing unit test reveals a bug or
is caused by invalid input.

RQ3: How useful is EVODROID in unit testing production-
level Android code? Considering that the open-source
Android apps may be smaller in size and less complex,

3TCTATCG [33] only generates unit tests for Android apps at the compo-
nent level and is not available for download.

we investigate in RQ3 whether EVODROID can gen-
erate unit tests to exercise a significant percentage of
production-level Android code.

RQ4: To what extent the generated unit tests can help develop-
ers detect regression bugs in real-world Android apps?
Previous work has shown that automatically generated
unit tests can effectively detect regression bugs in pro-
grams [26]. Because of that, we study in RQ4 the useful-
ness of the unit test suites generated by EVODROID for
detecting regression bugs in real-world Android apps.

A. Subjects

To answer RQ1, we used as subjects all the 25 open source
Android apps with STOAT test generation results from the
PREFEST benchmark of Android apps [34]. We determined
to use these apps as subjects in our experiments for two
major reasons. First, the PREFEST benchmark contains a
highly diversified collection of open-source Android apps,
which were initially gathered from multiple research studies
on Android apps, came from a wide range of categories,
and vary significantly in size. Therefore, experimental results
produced on those apps are more likely to represent how
EVODROID performs in different situations when applied
in practice. Second, STOAT has been applied to generate
GUI tests for these apps, and the corresponding experimental
results are readily available for the apps, which provides us
with a natural benchmark for assessing the effectiveness and
efficiency of EVODROID in testing Android apps. Given that
EVODROID failed to run on one of the 25 apps because of
the conflicts between different versions of Gradle and other
libraries required by the project itself and EVODROID, we use
the test generation results on the remaining 24 apps to address
research question RQ1. Table I lists, for each app, a unique id
(ID), the name (App), the version, and the total numbers of
classes (#C) and lines of code (#L).

The comparison between EVODROID and EVOOBJ to an-
swer RQ2 was based on the SF100 dataset. The SF100
dataset [29] is a standard benchmark consisting of 100 open-
source Java projects, and it has been used to compare EVOOBJ
and EVOSUITE experimentally [25].

Since EVOOBJ generates unit tests at the method level,
while EVODROID does that at the class level, to make sure
we compare the two tools in a fair way, we applied both
tools to generate unit tests for selected methods and classes
from the SF100 dataset and compared their generation results
separately. At the method level, since EVOOBJ has been
applied in a previous experiment to generate unit tests for
2500 randomly selected methods from the SF100 dataset [25],
we applied EVODROID to generate unit tests for the same
2500 methods. At the class level, we refrained from using
all the classes in this study for time reasons. Instead, we
randomly selected a collection of 750 classes, each with at
least two public methods (including public constructors), from
the SF100 dataset and used both tools to generate tests for all
methods in each class. The 750 classes had in total 10577
public methods.

TABLE I: Subject apps and the test case generation results achieved by EVODROID and STOAT on the apps.

ID App Version #C #L EvoDroid STOAT

#Test #Lc #Lu T (min) #Lc #Lu T (min)

A01 a2dpvolume-master 2.13.0.4 427 3756 39 1534 (40.8%) 590 (15.7%) 21.9 1480 0 120.0
A02 AlwaysOnDisplayAmoled 0.9.5.2 506 3163 64 1522 (48.1%) 630 (19.9%) 15.8 1391 0 120.0
A03 AmazeFileManager 3.3.0-rc1 2441 17067 453 4256 (24.9%) 1375 (8.1%) 462.7 3511 0 120.0
A04 android-money-manager-ex 2018.11.15.987 4117 21041 373 6813 (32.4%) 3055 (14.5%) 210.0 5617 0 120.0
A05 AntennaPod 1.7.1 1561 9463 88 2520 (26.6%) 0 (0.0%) 222.1 2739 859 120.0
A06 APhotoManager 0.7.2.181027 1647 9683 263 4596 (47.5%) 1616 (16.7%) 172.6 4326 0 120.0
A07 apps-android-commons-master 2.9 2235 10001 249 2721 (27.2%) 51 (0.5%) 56.9 2700 0 120.0
A08 forecastie 1.6.2 256 1761 31 1172 (66.6%) 595 (33.8%) 30.2 998 0 120.0
A09 good-weather 4.4-1 399 2464 298 1711 (69.4%) 1037 (42.1%) 43.9 1460 31 120.0
A10 hn-android-master 5.0 524 2256 90 1567 (69.5%) 95 (4.2%) 46.7 1559 0 120.0
A11 KISS 3.7.2 760 4554 130 2611 (57.3%) 1035 (22.7%) 156.9 2207 0 120.0
A12 materialistic 3.2 1765 7082 123 3265 (46.1%) 493 (7.0%) 175.7 3131 0 120.0
A13 nanoConverter-master1 0.7.87 71 996 28 425 (42.7%) 328 (32.9%) 1.0 374 0 120.0
A14 Notepad-102 1.0.2 216 1757 27 977 (55.6%) 144 (8.2%) 36.0 925 0 120.0
A15 OpenBikeSharing 1.10.0 196 1223 30 768 (62.8%) 114 (9.3%) 26.1 748 0 120.0
A16 opensudoku 2.5.2 645 3674 108 1873 (51.0%) 381 (10.4%) 15.7 1771 0 120.0
A17 radiocells-scanner-android 0.8.18 1158 7424 144 2943 (39.6%) 1118 (15.1%) 107.1 2675 0 120.0
A18 runnerup 1.90.1 2277 15609 1 3883 (24.9%) 0 (0.0%) 2.9 3457 0 120.0
A19 Signal-Android 4.33.0 9824 43727 1121 11985 (27.4%) 0 (0.0%) 1891.4 10057 0 120.0
A20 SuntimesWidget 0.13.4 2481 12996 220 5889 (45.3%) 7425 (57.1%) 195.2 5038 28 120.0
A21 Timber 1.6 2101 11792 165 3343 (28.3%) 962 (8.2%) 187.3 3199 0 120.0
A22 uhabits 1.7.9 975 4445 92 2808 (63.2%) 220 (4.9%) 180.9 2614 0 120.0
A23 vanilla-master 1.0.80 1472 10733 78 5924 (55.2%) 3527 (32.9%) 166.2 4866 0 120.0
A24 wikipedia-r 2.7.237 6354 24069 397 10816 (44.9%) 1611 (6.7%) 547.8 10117 0 120.0

Overall 44408 230736 4612 85922 (37.2%) 26402 (11.4%) 4973.0 76960 918 2880.0

TABLE II: Production-level Android code repositories and the test suite
generation results achieved by EVODROID on them.

ID #Class #Linetot #Test #Linecov %Cov T (min)

Repo1 169 2717 1014 2188 80.5% 17.1
Repo2 455 2433 6474 1811 74.4% 23.4
Repo3 459 11806 3673 4870 41.3% 29.1
Repo4 634 16610 4072 5574 33.6% 44.0
Repo5 2014 37542 24226 14093 37.5% 108.9
Repo6 6416 126793 50579 58741 46.3% 368.2
Repo7 7412 82807 33345 26506 32.0% 324.6
Repo8 10640 175621 47875 37742 21.5% 476.6
Repo9 12206 352405 79442 98993 28.1% 456.8

Overall 40405 808734 250700 250518 31.0% 1848.7

We used nine Android code repositories from Douyin Co.,
Ltd., as the subjects to address RQ3. For confidentiality rea-
sons, we refer to the code repositories as Repo1, Repo2, etc.,
hereafter. Table II lists all the nine repositories in increasing
order of the number of classes contained in them. For each
repository, the table gives its ID and the numbers of classes
(#Class) and lines of code (#Linetot) in it, respectively.

To address RQ4, we applied EVODROID to two popu-
lar Android apps developed at Douyin Co., Ltd. Table III
summarizes the basic information about the apps. For each
app, the table gives its ID, its number of monthly active
users (MAUs) in millions, and the total number of merge
requests checked with the generated tests (#MR). In particular,
App1 is an online video-sharing social media platform, and
App2 is an online video editing system. These two apps are
from different problem domains, aim for different users, and
have different levels of popularity, which helps increase the
representativeness of the experimental results as EVODROID’s
behaviors in practical use.

TABLE III: Using the generated unit tests to detect regression bugs in
production-level Android apps.

ID MAU #MR #ISSUES

DETECTED CONFIRMED FIXED

APP1 > 600m 2096 46 46 36
APP2 > 130m 433 35 35 34

Overall 2529 81 81 70

B. Experimental Protocol

All the experiments on EVODROID and EVOOBJ ran on a
cloud infrastructure, with each run of a tool using exclusively
one virtual machine instance, configured to use one core
of an Intel Xeon Platinum 8362 CPU@2.80GHz, 32GB of
RAM, Debian 5.4.143, and Oracle’s JDK 1.8.0. In view of the
randomness involved in test generation with both EVODROID
and EVOOBJ, we repeat the experiments of a tool under
each configuration for five times and use the average results
achieved for the analysis and comparison.

To address RQ1, we simply apply EVODROID to generate
tests for all classes in each app and compare the results with
that produced by STOAT.

To address RQ2, we apply both EVODROID and EVOOBJ
to generate unit tests for the selected methods and classes
and compare their generation results. Here, applying EVOOBJ
at the method or class level and applying EVODROID at the
class level are straightforward. When applying EVODROID to
generate unit tests for a particular method, we first identify the
method’s containing class, then apply EVODROID to generate
unit tests for the identified class, and finally measure the code
coverage achieved by the produced tests with respect to the

method. Note that, in such settings, EVODROID’s running time
obviously includes the time spent on generating unit tests for
other methods, so the two tools’ execution times should not
be compared directly.

To address RQ3, we apply EVODROID to generate unit tests
for all classes in each repository and assess the results.

To address RQ4, we first apply EVODROID to generate unit
tests for classes from the base version of each app and then
run the produced tests against the updated versions of the same
app. Since a passing test for the base version app may fail for
various reasons when executed on the updated version app,
but not all such failures reveal regression faults in the app, we
introduced a group of rules to automatically filter out failures
that are less likely caused by regression faults and report
only the remaining failed tests to the developers. For instance,
failures causing exceptions like UnsatisfiedLinkError are
often due to discrepancies between the actual and shadow
implementations of the Android environment and should be
filtered out. Similarly, failures causing exceptions in packages
like org.robolectric.res usually are caused by limitations in
the ROBOLECTRIC framework and should be ignored too. We
then invite the developers to manually inspect the reported
cases to determine whether they uncover any regression bugs.

C. Metrics

Each run of a test generation tool produces a collection of
tests for the target code. We use the line coverage achieved by
the resultant tests, with respect to the total number of lines of
code contained in the target code unit, be it a method, a class,
or a group of classes, to measure the effectiveness of the test
generation process. Meanwhile, to evaluate the efficiency of a
test generation process, we utilize the commonly used metric
T that measures the wall clock generation time. Since we let
EVODROID run to its end in our experiments, but STOAT had
exactly 120 minutes to produce the results listed in Table [34],
we also compare the average line coverage achieved by the
two tools per minute. We measure EVODROID’s effectiveness
for bug detection in terms of the number of regression bugs
discovered, confirmed, and fixed.

D. Experimental Results

In this section, we report on the experimental results and
answer the research questions.

1) RQ1: Unit Test Generation for Open-Source Android
Apps

Table I lists, for each open-source Android app, the num-
ber of tests EVODROID generated (#Test), the number of
LoCs covered by EVODROID/STOAT generated tests (#Lc),
the number of LoCs uniquely covered by EVODROID/STOAT
generated tests (#Lu), and the wall-clock time in minutes that
EVODROID/STOAT used to generate the tests (T), respectively.

On the one hand, EVODROID generated in total 4612 unit
tests that covered 85922 lines of the source code in the 24
apps, achieving a code coverage of 37.2%, while the test
cases generated by STOAT covered 76960 lines of code. A
Wilcoxon signed rank test [35] confirms that the difference

Figure 3: Distribution of the line coverage achieved by EVODROID and STOAT
per minute.

0

50

100

150

200

1 2 3 4 5 6 inf

(a)

0

20

40

60

80

100

1 2 3 4 5 6 inf

(b)

Figure 4: Distribution of the ratio a/b, where a and b are the line coverage
achieved by EVODROID and EVOOBJ on individual methods and classes,
respectively (a ̸= 0 ∧ b ̸= 0 ∧ a ̸= b).

between the achieved coverage is statistically significant at
α = 0.05 (p = 2.3e − 6), and Cohen’s d effect size [36],
i.e., a measure that estimates the magnitude of the observed
differences, is 0.28, which suggests the difference is small. On
the other hand, 26402 lines of code, or 11.4% of the total lines
of code, were only covered by EVODROID but not by STOAT.
Overall, such results suggest that EVODROID is effective in
generating unit tests for Android apps and complementary to
GUI test generation tools like STOAT.

Figure 3 plots the distribution of line coverage achieved
by EVODROID and STOAT per minute over various apps.
The figure demonstrates that EvoDroid is more efficient than
STOAT regarding the line coverage achieved per minute.
Answer to RQ1: EVODROID is effective and efficient in
generating unit tests for open-source Android apps, and it
complements the STOAT GUI test generation tool.

2) RQ2: Unit Test Generation for Java Code
At the method level, EVODROID and EVOOBJ achieved

25.7% and 19.7% line coverage on the 2500 methods, respec-
tively. On 361 methods, EVODROID and EVOOBJ generated
at least one test case and achieved different coverage. The
histogram in Figure 4(a) shows the distribution of the ratio a/b,
where a and b are the line coverage achieved by EVODROID
and EVOOBJ, respectively, across the 361 methods. In the
figure, a bar at position x of height y (x ≤ 6) indicates that, for
y methods, the ratio of line coverage achieved by EVODROID
to that achieved by EVOOBJ was in range [x-1, x), and the
bar at position inf of height y indicates that, for y methods,
that ratio was greater than or equal to 6.

At the class level, EVODROID and EVOOBJ generated at
least one test on 619 of 750 classes, containing in total
6657 methods. The two tools achieved 52.4% and 19.4%
line coverage on those classes, respectively, and the coverage

they achieved was different on 218 classes. The histogram in
Figure 4(b) shows the distribution of the ratio a/b, where a and
b are the line coverage achieved by EVODROID and EVOOBJ,
respectively, across the 218 classes.

Figure 4 clearly demonstrates that, while EVOOBJ was
highly effective on a significant number of methods, probably
because EVOOBJ’s highly focused analysis of their branches
and relevant object states is really necessary to find out what
kind of input objects are needed to execute those branches,
EVODROID is more effective in test suite generation overall,
likely because it strikes a better balance between the costs
and effectiveness of its analysis on object structures. Besides,
the overall higher line coverage achieved by EVODROID also
confirms the rationale that, generating a unit test suite for all
methods in a class instead of for individual methods makes it
easier for test generation tools to come across objects in more
diversified states, which, when used in new tests, are more
likely to trigger executions covering different program paths.

Note that the test generation results achieved by EVOOBJ
in our experiments are significantly worse than those reported
in the EVOOBJ paper [25] (but they are still better than what
EVOSUITE achieved). In fact, despite running the experiments
in EVOOBJ’s replication package multiple times, we could
not reproduce the coverage reported earlier or achieve similar
results. Given that we consulted the authors of the EVOOBJ
paper, and they could not reproduce the previous results
either, we decided to use the new results we obtained in our
experiments to address this RQ.
Answer to RQ2: EVODROID was more effective in terms of
line coverage achieved than EVOOBJ in unit test generation
at both the method and the class level.

3) RQ3: Test Generation for Production-Level Android
Table II lists for each code repository the number of tests

generated (#Test), the number of lines of code covered by
the tests (#Linecov), the coverage achieved (%Cov), and the
amount of time in minutes EVODROID needed to generate tests
for the repository. It is clear that the classes in these reposito-
ries are considerably larger (with an average size of ≈20.01
LoC/class), and therefore most likely also more complex, than
those in the open-source Android apps (with an average size
of ≈5.20LoC/class). Nevertheless, EVODROID generated in
1,848.7 minutes 250,700 tests for the repositories, covering
250,518 lines of code and achieving an overall line coverage
of 31.0%, which is comparable to the line coverage that
EVODROID achieved on open-source Android apps in RQ1.
Given that the overall test generation time for the repositories
is only 205.4 minutes per repository, which is in the same order
of magnitude as the average test generation time for open-
source Android apps (i.e., 207.2 minutes per app), we consider
the test generation process on these repositories efficient.
Answer to RQ3: EVODROID is both effective and efficient in
unit testing production-level Android code.

4) RQ4: Detecting Regression Bugs in Production-Level
Android Code

Table III reports for each production-level app the number
of regression bugs detected by the generated unit tests as well

as the numbers of such bugs manually confirmed and fixed by
the corresponding developers. In our experiments, unit tests
generated by EVODROID helped developers detect 81 bugs
in the two Android apps. All 81 bugs were later manually
confirmed to be real regression bugs, and 70 of them have
been fixed. The developers decided not to fix the remaining
11 bugs mainly for two reasons. First, the bug is of low priority
because the chance of the bug being triggered in practice is
slim, and the negative impact of the bug is small. Second,
the risk that a fix will introduce new, more severe bugs is
too high. This often happens when, e.g., the bug is located in
legacy code that is no longer actively maintained.
Answer to RQ4: Tests generated by EVODROID effectively
revealed regression bugs in production-level Android code.

E. Discussion

The experimental results presented in Section V-D highlight
the importance of properly balancing various features and/or
objectives when devising automated test generation techniques
and tools that are practically beneficial. In this section, we dis-
cuss some of these features and objectives and the implications
of our work for practitioners and researchers.

Scalability vs. effectiveness. EVOOBJ was highly effective
on open-source Java projects that were relatively smaller and
less complex but had limited scalability and, therefore, appli-
cability to production-level code, which was a major reason
why we devised EVODROID. Interestingly, by striving to make
EVODROID a more scalable technique, we actually improved
the overall effectiveness of EVODROID as well. Such results
suggest that, compared with effectiveness, scalability probably
should carry equal, if not greater, weight when devising new
and practical test generation techniques and tools.

Unit vs. GUI testing. There are a number of automated
GUI testing techniques and tools for Android in the literature
nowadays. Research on automated unit test generation for
Android, however, is very limited. Given the widely acknowl-
edged importance of unit testing in software quality assurance
and the clearly imbalanced investment in unit and GUI testing
for Android apps, we call on researchers and practitioners to
pay more attention to and provide better technical and tool
support for automated Android unit testing.

Property-based vs. regression testing. The oracle problem
has been a long-standing challenge in automated unit testing.
Instead of deriving the assertions for and detecting the defects
in the same version of an Android app, EVODROID automati-
cally generates unit tests mainly for the purpose of regression
testing, as was done in previous [26] and recent [37] work. The
experimental results in both works show that automatically
generated tests complement manually prepared tests in regres-
sion testing and can effectively reveal real bugs in the updated
versions of programs under consideration. However, we still
relied on human expertise in designing the rules for filtering
out failed tests that were unlikely caused by regression faults.
Developing reliable techniques to automatically differentiate
such tests is an interesting direction to advance automated unit
test generation in general and for Android code in particular.

F. Threats to Validity

One obvious threat to internal validity comes from possible
mistakes in our implementation of EVODROID. To mitigate
this threat, we carefully reviewed our code and scripts to en-
sure their correctness before conducting the final experiments.

We mitigated the threats to external validity by conducting
the experimental evaluation on subject Android apps from
various sources and of different natures. We also applied
EVODROID to production-level Android apps so as to ascertain
that it is effective on real-world Android apps.

VI. RELATED WORK

A. Search-Based Test Generation

Search-based test generation was pioneered by Miller et
al. [38]. In that work, Miller et al. proposed a search-based
technique to generate test cases for functions with parame-
ters of primitive types. Following their work, to handle the
challenges involved in preparing appropriate, complex objects
to test object-oriented programs, researchers have proposed
various techniques to better represent the generated tests [39],
to diversify the constructed object instances [40], and to more
effectively test object-oriented containers [41].

Recently, Fraser et al. developed the EVOSUITE technique
that incorporates the aforementioned techniques and uses a
search-based approach to evolve unit test suites [26]. EVO-
SUITE starts by randomly generating an initial generation of
unit test suites, which is then evolved with an evolutionary
search toward satisfying a coverage criterion. The finally gen-
erated test suite is minimized before being returned to the user.
EVOSUITE employs not only standard evolutionary algorithms
like the standard genetic algorithm and the cellular genetic
algorithm but also evolutionary algorithms tailored for test
generation like many-objective sorting algorithm (MOSA) [42]
and DynaMOSA [43] to achieve high code coverage. EVO-
SUITE has been extended to effectively handle the environ-
mental dependencies [44], the network communications [31],
and the implicit branching due to situations such as throwing
runtime exceptions in unbranched control blocks [45]. Such
extensions lay the foundation for the practice of test generation
on enterprise-level applications.

The effectiveness of EVOSUITE relies on the assumption
that the search space is overall continuous and monotonic for
fitness measurements, which, however, is seldom true with
programs requiring object inputs. Lin et al. proposed the
EVOOBJ approach that builds atop EVOSUITE to address this
problem [25]. EVOOBJ first builds through static analysis an
object construction graph for each coverage target to capture
the fields of the required input objects and their relationships.
Then, it generates tests consisting of statements preparing
the objects and invoking the corresponding methods under
the guidance of the graph, and those tests are evolved by
EVOSUITE to satisfy the given coverage criterion. EVODROID
employs static analysis to build an input structure map for each
method and utilizes the map to guide input generation for the
method. Compared with that implemented in EVOOBJ, static

analysis in EVODROID is effective, much lighter, and less
frequently invoked, which makes EVODROID more effective
and efficient in generating tests at the class level.

Interested readers are referred to survey papers by Phil
McMinn [46] and Khari et al. [47] for more details.

B. Automated Test Generation for Android

Most existing techniques for automated Android test gener-
ation work at the GUI level. Monkey [48] is a test framework
released and maintained by Google. It generates and sends
pseudo-random streams of user/system events to running An-
droid apps, and it has been applied to automatically identify
defects in apps. Su et al. developed STOAT [32], an automated
GUI test generation technique for Android. STOAT combines
model-based stochastic exploration of app GUIs and random
injection of system-level events to maximize the code coverage
achieved by the generated tests. STOAT has been shown to
outperform prior Android testing tools [32]. Ape [6] leverages
runtime information during testing to improve the precision of
models constructed for Android apps and utilizes the models
to effectively generate GUI tests for the apps.

Efforts have also been made to generate unit tests for
Android in the past two years. Particularly, JUnitTestGen [49]
aims to generate unit tests for APIs of the Android platform,
while TCTATCG [33] aims to create unit tests for Android
components (e.g., activities, services, and intents). In contrast,
EvoDroid is the first class-level unit test generation technique
for Android code written by mobile developers.

ROBOLECTRIC [24] provides a unit testing framework for
Android by simulating the Android execution environment on
Java virtual machines. By waiving the requirement that An-
droid tests must be executed on Android devices or emulators,
and therefore avoiding the overhead of packaging and deploy-
ing the tests, ROBOLECTRIC greatly reduces the overall costs
for Android unit testing. The integration of ROBOLECTRIC
into EVODROID also enables Android unit test generation to
benefit from techniques like dynamic analysis which are only
accessible in Java, but not Android, environments.

VII. CONCLUSION

In this paper, we propose the EVODROID approach to the
automated generation of unit test suites for Android apps.
EVODROID generates high-quality unit test suites at the class
level, and it employs a novel algorithm to effectively synthe-
size complex objects as test inputs based on input structure
maps. Besides, it integrates the ROBOLECTRIC framework to
support running Android-specific tests on Java virtual ma-
chines. Experimental evaluation results show that EVODROID
is effective and efficient in generation unit tests for Android.

ACKNOWLEDGMENT

Yu Pei’s work is supported in part by the Hong Kong
Polytechnic University Fund under Grants P0051205 and
P0051074.

REFERENCES

[1] “appbrain,” https://www.appbrain.com/stats/number-of-android-apps,
last accessed May. 30, 2023.

[2] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation
system for Android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 224–234.

[3] D. Amalfitano, N. Amatucci, A. R. Fasolino, P. Tramontana, E. Kowal-
czyk, and A. M. Memon, “Exploiting the saturation effect in automatic
random testing of Android applications,” in Proceedings of the Second
ACM International Conference on Mobile Software Engineering and
Systems. IEEE Press, 2015, pp. 33–43.

[4] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE’20), 2020, pp. 1–12.

[5] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[6] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 269–280.

[7] D. Lai and J. Rubin, “Goal-driven exploration for android applications,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, 2019, pp. 115–127.

[8] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective automated
testing for Android applications,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. ACM, 2016, pp.
94–105.

[9] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-based energy testing
of android,” in Proceedings of the 41st International Conference on
Software Engineering, 2019, pp. 1119–1130.

[10] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017, pp. 12–22.

[11] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering, 2019, pp.
42–53.

[12] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: a deep learning-based
approach to automated black-box android app testing,” in Proceedings
of the 34th IEEE/ACM International Conference on Automated Software
Engineering, 2019, pp. 1070–1073.

[13] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 153–164.

[14] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of Android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering. ACM, 2014, pp. 599–609.

[15] T. B. de Assis, A. A. Menegassi, and A. T. Endo, “Amplifying tests for
cross-platform apps through test patterns,” in SEKE, 2019, pp. 55–74.

[16] P. Zhang and S. Elbaum, “Amplifying tests to validate exception
handling code,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 595–605.

[17] ——, “Amplifying tests to validate exception handling code: An ex-
tended study in the mobile application domain,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 23, no. 4, pp.
1–28, 2014.

[18] M. Pan, Y. Lu, Y. Pei, T. Zhang, and X. Li, “Preference-wise testing of
android apps via test amplification,” ACM Trans. Softw. Eng. Methodol.,
vol. 32, no. 1, feb 2023.

[19] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li,
“ATOM: automatic maintenance of GUI test scripts for evolving mobile
applications,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017, 2017, pp. 161–171.

[20] N. Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, “Change-based
test script maintenance for android apps,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS), July
2018, pp. 215–225.

[21] M. Pan, T. Xu, Y. Pei, Z. Li, T. Zhang, and X. Li, “GUI-guided test script
repair for mobile apps,” IEEE Transactions on Software Engineering,
2020.

[22] T. Xu, M. Pan, Y. Pei, G. Li, X. Zeng, T. Zhang, Y. Deng, and X. Li,
“Guider: Gui structure and vision co-guided test script repair for android
apps,” in Proceedings of the 30th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ser. ISSTA 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 191–203.

[23] “Androidjunitrunner,” https://developer.android.com/training/testing/
junit-runner, last accessed Feb. 15, 2023.

[24] “Robolectric,” http://robolectric.org/, last accessed Oct. 10, 2022.
[25] Y. Lin, Y. S. Ong, J. Sun, G. Fraser, and J. S. Dong, “Graph-based seed

object synthesis for search-based unit testing,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021, pp.
1068–1080.

[26] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,”
in 2011 11th International Conference on Quality Software. IEEE,
2011, pp. 31–40.

[27] J. Campos, Y. Ge, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for test suite generation,” in Search
Based Software Engineering: 9th International Symposium, SSBSE 2017,
Paderborn, Germany, September 9-11, 2017, Proceedings 9. Springer,
2017, pp. 33–48.

[28] Y. Li and G. Fraser, “Bytecode testability transformation,” in Search
Based Software Engineering: Third International Symposium, SS-
BSE 2011, Szeged, Hungary, September 10-12, 2011. Proceedings 3.
Springer, 2011, pp. 237–251.

[29] G. Fraser and A. Arcuri, “Sound empirical evidence in software testing,”
in 2012 34th International Conference on Software Engineering (ICSE),
2012, pp. 178–188.

[30] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “Ocat: Object capture-based
automated testing,” in Proceedings of the 19th International Symposium
on Software Testing and Analysis, ser. ISSTA ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 159–170.

[31] A. Arcuri, G. Fraser, and J. P. Galeotti, “Generating tcp/udp network
data for automated unit test generation,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, 2015, pp.
155–165.

[32] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,
2017, E. Bodden, W. Schäfer, A. van Deursen, and A. Zisman, Eds.
ACM, 2017, pp. 245–256.

[33] J. Cao, H. Huang, and F. Liu, “Android unit test case generation based
on the strategy of multi-dimensional coverage,” in 2021 IEEE 7th
International Conference on Cloud Computing and Intelligent Systems
(CCIS), 2021, pp. 114–121.

[34] M. Pan, Y. Lu, Y. Pei, T. Zhang, and X. Li, “Preference-wise testing
of android apps via test amplification,” ACM Transactions on Software
Engineering and Methodology, 2022.

[35] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[36] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed.
Routledge, 1988.

[37] N. Alshahwan, M. Harman, A. Marginean, R. Tal, and E. Wang,
“Observation-based unit test generation at meta,” in Companion
Proceedings of the 32nd ACM International Conference on the
Foundations of Software Engineering, ser. FSE 2024. New York,
NY, USA: Association for Computing Machinery, 2024, p. 173–184.
[Online]. Available: https://doi.org/10.1145/3663529.3663838

[38] W. Miller and D. L. Spooner, “Automatic generation of floating-point
test data,” IEEE Transactions on Software Engineering, no. 3, pp. 223–
226, 1976.

[39] S. Wappler and J. Wegener, “Evolutionary unit testing of object-
oriented software using a hybrid evolutionary algorithm,” in 2006 IEEE
International Conference on Evolutionary Computation, 2006, pp. 851–
858.

[40] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance generator and
problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering, vol. 41, no. 3, pp. 294–313, 2015.

[41] A. Arcuri and X. Yao, “Search based software testing of object-oriented
containers,” Inf. Sci., vol. 178, no. 15, p. 3075–3095, aug 2008.

https://www.appbrain.com/stats/number-of-android-apps
https://developer.android.com/training/testing/junit-runner
https://developer.android.com/training/testing/junit-runner
http://robolectric.org/
https://doi.org/10.1145/3663529.3663838

[42] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, 2017.

[43] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri,
“An empirical evaluation of evolutionary algorithms for unit test suite
generation,” Information and Software Technology, vol. 104, pp. 207–
235, 2018.

[44] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit test generation
for classes with environment dependencies,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing, 2014, pp. 79–90.

[45] P. Derakhshanfar and X. Devroey, “Basic block coverage for unit test
generation at the sbst 2022 tool competition,” in 2022 IEEE/ACM 15th
International Workshop on Search-Based Software Testing (SBST), 2022,
pp. 37–38.

[46] P. McMinn, “Search-based software testing: Past, present and future,”
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, 2011, pp. 153–163.

[47] M. Khari and P. Kumar, “An extensive evaluation of search-based
software testing: A review,” Soft Comput., vol. 23, no. 6, p. 1933–1946,
mar 2019.

[48] “Ui/application exerciser monkey,” https://developer.android.com/studio/
test/monkey, last accessed Oct. 10, 2022.

[49] X. Sun, X. Chen, Y. Zhao, P. Liu, J. Grundy, and L. Li, “Mining android
api usage to generate unit test cases for pinpointing compatibility
issues,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’22. New York, NY,
USA: Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3551349.3561151

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://doi.org/10.1145/3551349.3561151

	Introduction
	Background
	Android Environment and Platform
	Robolectric
	EvoSuite and EvoObj

	EvoDroid In Action
	The EvoDroid Approach
	Construction of Complex Objects as Test Inputs
	Construction of Input Structure Map
	Test Generation Based on Input Structure Map

	Integration of Robolectric and EvoSuite
	Support for Android Specific Environments
	Running view-related Android code in the main thread
	Constructing meaningful GUI-level Android objects
	Accessing shared preferences

	Implementation

	Evaluation
	Subjects
	Experimental Protocol
	Metrics
	Experimental Results
	RQ1: Unit Test Generation for Open-Source Android Apps
	RQ2: Unit Test Generation for Java Code
	RQ3: Test Generation for Production-Level Android
	RQ4: Detecting Regression Bugs in Production-Level Android Code

	Discussion
	Threats to Validity

	Related Work
	Search-Based Test Generation
	Automated Test Generation for Android

	Conclusion
	References

