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ABSTRACT

The problem of automated feedback generation for introductory
programming assignments (IPAs) has attracted significant attention
with the increasing demand for programming education. While ex-
isting approaches, like Refactory, that employ the "block-by-block"

repair strategy have produced promising results, they suffer from
two limitations. First, Refactory randomly applies refactoring and
mutation operations to correct and buggy programs, respectively,
to align their control-flow structures (CFSs), which, however, has a
relatively low success rate and often complicates the original repair-
ing tasks. Second, Refactory generates repairs for each basic block
of the buggy program when its semantics differs from the counter-
part in the correct program, which, however, ignores the different
roles that basic blocks play in the programs and often produces
unnecessary repairs. To overcome these limitations, we propose the
Brafar approach to feedback generation for IPAs. The core innova-
tion of Brafar lies in its novel bidirectional refactoring algorithm
and coarse-to-fine fault localization. The former aligns the CFSs
of buggy and correct programs by applying semantics-preserving
refactoring operations to both programs in a guided manner, while
the latter identifies basic blocks that truly need repairs based on
the semantics of their enclosing statements and themselves. In our
experimental evaluation on 1783 real-life incorrect student sub-
missions from a publicly available dataset, Brafar significantly
outperformed Refactory and Clara, generating correct repairs for
more incorrect programs with smaller patch sizes in a shorter time.

CCS CONCEPTS

• Social and professional topics→ Computing education; •
Theory of computation→ Program analysis.
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1 INTRODUCTION

The demand for programming education has witnessed significant
growth across various college-level subjects, ranging from computer
science to psychology [34]. Numerous students are enrolling in of-
fline programming classrooms and Massive Open Online Courses
∗Corresponding authors.

(MOOCs) [26], making it challenging for instructors to provide per-
sonalized feedback in a timely manner [23, 37]. Effective feedback
is crucial for learning, but accomplishing this task in large-scale
settings becomes impractical. Simply providing failed test cases
or an instructor’s solution as feedback is often insufficient [7, 33].
To address this issue, researchers have explored automated feed-
back generation approaches to offer more guided feedback, helping
students understand and resolve coding issues effectively.

One line of the work utilizes error models, manually constructed
[32] or learned from data [30, 31], to correct student programming
errors. However, they still require manual effort or suffer from low
repair rates. Another line of the work, including Clara [13], Sarf-
gen [37], and Refactory [16], leverages a corpus of correct programs
and applies a "block-by-block" repair strategy, focusing on aligning
the control flow and data flow between incorrect and reference
correct programs separately, achieving impressive repair results.
Simultaneously, they make different efforts to generate smaller
patches. More recent techniques [4, 23] introduce new repair strate-
gies but come with their limitations, such as AssignmentMender’s
reliance on automated fault localization (AFL) and Verifix’s need to
match function and loop structures (see §5 for details). Therefore,
we adhere to the "block-by-block" repair strategy in our approach.

The "block-by-block" repair strategy is a promising approach that
leverages the local structure of code. It takes a buggy program and
a correct reference program with an identical control-flow struc-
ture as input, aiming to generate repairs for each basic block of the

buggy program by replacing expressions with those from correspond-

ing blocks in the reference program. This narrows the search space
and preserves the buggy program’s overall structure. However, de-
spite its potential, two primary challenges persist: (1) How to utilize

a correct program to repair a buggy program with a different control-

flow structure? and (2) How to minimize the number of unnecessary

block repairs to aid student comprehension?

Our Approach: In response to the first challenge, we introduce
a novel bidirectional refactoring algorithm. This algorithm offers
bidirectional refactoring guidance for two programs with differ-
ent control-flow structures, aligning the control-flow structures
without introducing any semantic changes. This avoids the risk of
introducing new errors to the buggy program. To tackle the second
challenge, we integrate a coarse-to-fine fault localization approach
along with statement matching techniques into the "block-by-block"
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Table 1: Comparison of Brafar against the most related

feedback generation approaches.

Approach

Control-flow

Repair

Minimal

Control-flow

Repair

Minimal

Block Repair

Minimal

Repair

Clara [13] % % % %

Sarfgen [37] % % ! !

Refactory [16] ! % ! %

Brafar ! ! ! !

repair strategy. This combination optimizes the repair process by
reducing unnecessary repairs and improving overall repair quality.

Implementation and Evaluation: We have implemented the above-
mentioned approaches in a tool named Brafar1 and conducted
experiments to evaluate its performance. Experiments with 1783
real-world incorrect student programs from the Refactory [16]
benchmark have indicated that Brafar achieves a higher repair rate,
smaller patch size, and less overfitting when compared to the state-
of-art tools Refactory and Clara. At the same time, we designed
additional experiments to individually evaluate the performance of
bidirectional refactoring algorithm and the integrated repair strategy

with fault localization. The experimental results demonstrate that
both of these components play a crucial role in reducing unnec-
essary repairs and improving the repair quality. Additionally, we
conducted a preliminary evaluation on the performance of Chat-
GPT [1] to emphasize the relevance and importance of our work in
the current context of large language models (LLMs).

Contributions: We summarize our contributions below:
• We propose a general feedback generation framework called

Brafar for introductory programming assignments (IPAs).
• We present a bidrectional refactoring algorithm (including a novel

control-flow matching algorithm) to align two different control-
flow structures with small modifications and without altering
semantics, facilitating the generation of high-quality repairs.

• We integrate a coarse-to-fine fault localization approach along
with statement matching techniques into the "block-by-block"
repair strategy to reduce unnecessary repairs.

• We evaluate Brafar in a realistic setting and make the tool
publicly available, which can facilitate future research.

2 MOTIVATION

To better clarify the motivation behind our approach, we conducted
an exploratory study on why existing techniques that employ the
"block-by-block" approach encounter the two mentioned challenges.
Table 1 summarizes their strengths and weaknesses. Among them,
Clara [13] and Sarfgen [37] fail to provide feedback for buggy
programs with unique control-flow or loop structures. They assume
that there is always a correct program available with an identical
control-flow or loop structure to the buggy program. Refactory
[16] addresses this by using refactoring rules to generate multiple
correct solution variants, but this can lead to efficiency and effec-
tiveness concerns: Refactory just randomly refactors the correct
codes without proper guidance, creating a vast search space and
potentially infinite code variants, making it difficult to generate
1Bidrectional Refactoring, Alignment, Fault Localization, and Repair

1 def search(x, seq):

2 for i,elem in enumerate(seq):

3 if seq == False:

4 return 0

5 elif x <= elem:

6 return i

7 elif i == (len(seq)-1):

8 return i+1

9 else:

10 continue

11

1

(a)  A buggy program. (b)  A reference program.

(c)  Refactroy’s repair result. (d)  BRAFAR’s repair result.

1 def search(x, seq):

2 for i,elem in enumerate(seq):

3 if seq == False:

4 return 0

5 if elem == x:

6 return i

7 elif elem > x:

8 return i

9 return len(seq)

10

11

1 def search(x, seq):
2 for i,elem in enumerate(seq):
3 if seq == False:
4 return 0
5 elif x <= elem:
6 return i
7 elif i == (len(seq)-1):
8 return i+1
9 else:

10 continue

1 def search(x, seq):
2 for i,elem in enumerate(seq):
3 if elem < x:
4 continue
5 if elem == x:
6 return i
7 elif elem > x:
8 return i
9 return len(seq)

1 def search(x, seq):
2 for i,elem in enumerate(seq):
3 if seq == False:
4 return 0
5 if elem == x:
6 return i
7 elif elem > x:
8 return i
9 return len(seq)

1 def search(x, seq):
2 for i,elem in enumerate(seq):
3 if seq == False:
4 return 0
5 elif x <= elem:
6 return i
7 elif i == (len(seq)-1):
8 return i+1
9 else:

10 continue
11 return len(seq)

Figure 1: Motivation example of real student submissions.

a match in finite time, particularly for complex programs. When
Refactory fails,it attempts structure mutation. Similar to code differ-
encing problem [11, 35], it modifies the control-flow structure of
the buggy program to match that of a reference program. However,
without preserving semantic equivalence, this often complicates
the original program to repair, resulting in unnecessary repairs.

More specifically, we discuss the motivation of our approach
through a real example in Fig. 1, focusing on student attempts for
the assignment Sequential Search, which outputs how many

numbers in a sorted number sequence seq are smaller than x. To
repair the buggy program (as depicted in Fig. 1(a)), Refactory ini-
tially tried to generate a matching correct variant with an identical
control-flow structure but failed. Consequently, Refactory employed
"structure mutation" to modify the control-flow structure of the
buggy program to that of the reference program (as depicted in
Fig. 1(b)). This involved removing the first "elif" statement (line 5),
updating the second "elif" statement (line 7) to "if", and changing
the "else" statement (line 9) to "elif". This significantly altered the
semantics of the original buggy program, causing it to fail more
test suites. As a result, Refactory had to put in more effort to repair
the buggy program, leading to the need for additional, unnecessary
repairs, as evident in Fig. 1(c). This example demonstrates that al-
tering the control structure without preserving semantics can lead
to unnecessary repairs and reduced quality. In an alternative ap-
proach, if we align the control-flow structures without introducing
semantic changes, we would generate a better repair with a smaller
patch size, as experimentally proven in Fig. 1(d). Simultaneously,
reducing unnecessary block repairs after structure alignment re-
mains a challenging task. While Refactory introduces specification
inference and block patch synthesis, optimization is still needed. We
propose integrating a coarse-to-fine fault localization approach and
statement matching to generate more concise patches.

3 THE BRAFAR TECHNIQUE

We design and build Brafar, a general automated feedback gener-
ation system for IPAs – bidirectional refactoring, alignment, fault

localization, and repair. Fig. 2 presents an overview of our approach.
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Figure 2: Overview of our approach.

It takes three inputs: a buggy program 𝑃𝑏 , (one or more) correct
programs 𝐶 , and test cases 𝑇 . Initially, we search for the closest
correct program 𝑃𝑐 as a repair reference. If 𝑃𝑏 and 𝑃𝑐 share different
control-flow structures, we will use a novel bidirectional refactoring
algorithm, described in Section 3.2, to align them. We then use
three major components to generate feedback for 𝑃𝑏 : (1) Aligner,
described in Section 3.3.1, aligns the blocks and variables between
𝑃𝑏 and 𝑃𝑐 . (2) Fault Locator, described in Section 3.3.2, locates the
suspicious basic block in 𝑃𝑏 in a coarse-to-fine manner. And (3)
Repairer, described in Section 3.3.3, takes the suspicious basic block
and its corresponding basic block in 𝑃𝑐 as input, and outputs block
repairs. Notably, fault localization and block repair are repeatedly
conducted until the generated program passes all test suites.

3.1 Searcher

Like existing techniques, our approach starts by identifying the
closest correct program to the buggy program for repair. This is
done using a coarse-to-fine method which considers control-flow
structure similarities first and refines the selection based on overall
syntax. First, we perform exact matching between correct programs
and the buggy programw.r.t their control-flow structures (Definition
3.1). If no match is found, we rank the correct programs by control-
flow sequence edit distance and select the top𝑘 (𝑘=10). In the second
step, we calculate the token-level edit distance between the buggy
program and these top 𝑘 programs to identify the closest one.

Definition 3.1 (Control-flow Structure). Given a program 𝑃 , the
control-flow structure (CFS) of 𝑃 , is a representation derived from the
abstract syntax tree (AST) that captures the program’s control flow
while discarding other details. It is constructed by identifying the
control statements during AST traversal and creating corresponding
nodes for each control statement. Table 2 shows three types of CFS
nodes. One specific enhancement in the CFS construction is adding
branch nodes to represent different branches of an If statement.
The CFSs of 𝑃𝑏 and 𝑃𝑐 in Fig. 3 are shown in Fig. 4.

This two-step approach effectively narrows the search space and
leverages the availability of existing correct solutions. However,
when only a few correct programs are available, the similarity
between the reference program and the buggy program cannot be
guaranteed. In such cases, the search process becomes unnecessary,
and the feasibility of our tool highly relies on the robustness and

adaptability of the bidirectional refactoring algorithm. For example,
even if the closest correct program 𝑃𝑐 in Fig. 3(b) has a different
CFS from the buggy problem 𝑃𝑏 in Fig. 3(a), our approach remains
effective. The following sections detail how 𝑃𝑐 is used to repair 𝑃𝑏 .

Table 2: The types and labels of control-flow structure nodes

Type Description Label

Method

Entry

Nodes represent the entry of
the methods under considera-
tion. They are the root nodes of
the control-flow structures.

"M" for "MethodEntry".

Control-

flow Node

Nodes represent the control
statements of the program.

"F" for "ForStatement";
"W" for "WhileStatement";
"If" for "IfStatement".

Branch

Node

Nodes represent the branches of
the IfStatement.

"T" for "ThenBranch";
"E" for "ElseBranch".

1 def search(x, seq):

2 for i,elem in enumerate(seq):

3 if seq == False:

4 return 0

5 elif x <= elem:

6 return i

7 elif i == (len(seq)-1):

8 return i+1

9 else:

10 continue

11

1

(a)  A buggy program 𝑃! . (b)  A correct program 𝑃".

1 def search(x, seq):
2 i = 0
3 while i<len(seq) and x<seq[i]:
4 i += 1
5 if i==len(seq):
6 seq += (x,)
7 else:
8 seq.insert(i, x)
9 return seq

1 def search(x, seq):
2 i = 0
3 while i<len(seq):
4 if x <= seq[i]:
5 return i
6 i += 1
7 return len(seq)

Figure 3: Real student submissions.

M

If𝑊

T 𝐸

M

𝑊

If

T

(a) The control-flow structure of Pb . (b)  The control-flow structure of Pc .

Figure 4: The control-flow structures of Pb and Pc in Fig. 3

and the best legal match between them.

3.2 Bidirectional Refactoring

Our goal of bidirectional refactoring is to achieve structure align-

ment between the buggy program 𝑃𝑏 and its reference program 𝑃𝑐
without semantic changes. To maintain the overall semantics of the
code, our algorithm carefully restricts the refactoring operations
during the process, in contrast to structure mutation, which allows
additions, deletions, updates, or movements. Specifically, we support
the following semantic preserving refactoring operations:

A. Introduce new control-flow node Rules 𝑅𝐴1 − 𝑅𝐴3 in Fig. 5
introduce new control-flow nodes without semantic change. Rule
𝑅𝐴1 introduces a new If statement. Rule 𝑅𝐴2 introduces a new While
statement. Rule 𝑅𝐴3 introduces a new For statement.

B. Exchange branches of conditional The rule 𝑅𝐵 in Fig. 5 states
that the blocks in different branches of an If statement can be
exchanged after the condition is negated.

C. Introduce new guard Rules 𝑅𝐶1 and 𝑅𝐶2 in Fig. 5 introduce new
guards for block 𝐵 without semantic change. 𝑅𝐶1 /𝑅𝐶2 consists of
two operations: (1) add a new if statement with the condition being
true/false; (2) move block 𝐵 to the then/else branch.

The refactoring rules themselves are straightforward. Our con-
tribution extends beyond providing these rules; we focus on iden-
tifying the differences between CFSs to guide refactoring. To
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Category A. Introduce new control-flow node.
if True then

Empty Block B

(a) 𝑅𝐴1

while True do
Break
(b) 𝑅𝐴2

for i in range(0) do
Empty Block B

(c) 𝑅𝐴3

Category B. Exchange branches of conditional
if Condition C then

Block B1

else
Block B2

(a)

if not C then
Block B2

else
Block B1

(b)
Category C. Introduce new guard

Block B

(a)

if True then
Block B

(b) 𝑅𝐶1

if False then
pass

else
Block B
(c) 𝑅𝐶2

Figure 5: List of refactoring rules.

achieve this, we propose a bidirectional refactoring algorithm with
two steps: (1) determining the best legal match between the CFSs,
and (2) generating a bidirectional edit script based on this match.

3.2.1 Control-flow Matching Algorithm. In the initial step of bidi-
rectional refactoring, we introduce an innovative control-flow match-

ing algorithm to establish the best legal match between the two
CFSs. This step holds paramount importance, as the quality of the
match significantly influences the overall success and safety of
the entire process. Ensuring the legality of the match is critical so

that the effective application of the existing refactoring rules in Fig.

5 is sufficient for structure alignment. Meanwhile, the match length

guarantees minimal modifications to the CFSs.

Definition 3.2 (Control-flow Sequence). A control-flow sequence

is a list 𝐿 derived from a preorder traversal of a CFS, where each
node is an element within the tree itself, preserving its hierarchical
structure. The head 𝐿𝑛 is defined as the first 𝑛 nodes of 𝐿. For 𝐿 =
(M,𝑊 , If, T, 𝐸), 𝐿0 = (), 𝐿1 = (M), 𝐿2 = (M,𝑊 ), 𝐿5=(M,𝑊1, If, T, 𝐸).

Definition 3.3 (isCompatible Function). Let isCompatible(ni, nj)
represent whether control-flow structure nodes 𝑛𝑖 and 𝑛 𝑗 are com-
patible. This function returns true if 𝑛𝑖 and 𝑛 𝑗 satisfy one of the
following conditions: (1) both are Method Entry; (2) both are Branch
Node or (3) both are Control-flow Node with the same label.

Definition 3.4 (Control-flow Match). The control-flow match is a
set of node pairs that establishes a correspondence between the
control-flow sequences of two programs. Formally, for control-flow
sequences 𝑋 (𝑥1𝑥2 ...𝑥𝑚) and 𝑌 (𝑦1𝑦2 ...𝑦𝑛), a control-flow match
M={(𝑥𝑖1 , 𝑦 𝑗1 ), ..., (𝑥𝑖𝑠 , 𝑦 𝑗𝑠 )}, where 𝑖1, ..., 𝑖𝑠 ∈ 1..𝑚 are different in-
dices and 𝑗1, ..., 𝑗𝑠 ∈ 1..𝑛 are different indices. ∀(𝑥,𝑦) ∈ 𝑀 satisfies
the constraint of isCompatible function. A match is called the
"longest control-flow match" if no other match has a greater length.
To find this match to minimize control-flow modifications, a feasi-
ble solution is the longest common subsequence (LCS) algorithm
[8]. LCS works as follows (let the function 𝐿𝑜𝑛𝑔𝑒𝑠𝑡 (𝑄) return the
subset of set 𝑄 , where each element has the longest length):

LCS Algorithm Let LCS(𝑋𝑖 , 𝑌𝑗 ) function represent the set of
longest matches between 𝑋𝑖 and 𝑌𝑗 . The problem can be broken down

into smaller, simpler subproblems, with solutions saved for reuse. To

𝑀 𝑊 𝐼𝑓

𝑀 𝑊 𝐼𝑓

𝑀

𝑊

𝐼𝑓

𝑀

𝑊 𝐼𝑓

t1 t2

X

Y

Figure 6: An example of the longest, but illegal, match.

find the LCS of 𝑋𝑖 and 𝑌𝑗 , we compare 𝑥𝑖 and 𝑦 𝑗 . If they cannot be
matched, then 𝐿𝐶𝑆 (𝑋𝑖 , 𝑌𝑗 ) = 𝐿𝑜𝑛𝑔𝑒𝑠𝑡 (𝐿𝐶𝑆(𝑋𝑖 , 𝑌𝑗−1)∪𝐿𝐶𝑆 (𝑋𝑖−1, 𝑌𝑗 )).
If 𝑥𝑖 and 𝑦 𝑗 can be matched, then each match 𝑚 ∈ 𝐿𝐶𝑆 (𝑋𝑖−1, 𝑌𝑗−1 )
is extended by the match pair (𝑥𝑖 , 𝑦 𝑗 ), and 𝐿𝐶𝑆(𝑋𝑖 ,𝑌𝑗 ) = 𝐿𝑜𝑛𝑔𝑒𝑠𝑡

(𝐿𝐶𝑆 (𝑋𝑖 , 𝑌𝑗−1 ) ∪𝐿𝐶𝑆 (𝑋𝑖−1, 𝑌𝑗 ) ∪ (𝐿𝐶𝑆 (𝑋𝑖−1, 𝑌𝑗−1 ) ⊕(𝑥𝑖 , 𝑦 𝑗 ) ) . For se-
quences X (𝑀 , 𝑊1, 𝑊2) and Y (𝑀 , 𝑊1), isCompatible (𝑥3, 𝑦2) re-
turns true, thus 𝐿𝐶𝑆 (𝑋3, 𝑌2 ) = 𝐿𝑜𝑛𝑔𝑒𝑠𝑡 (𝐿𝐶𝑆 (𝑋3, 𝑌1 ) ∪ 𝐿𝐶𝑆 (𝑋2, 𝑌2 ) ∪
(𝐿𝐶𝑆 (𝑋2, 𝑌1 ) ⊕ (𝑊2,𝑊1 ) ) ) = {{(𝑀,𝑀), (𝑊1,𝑊1 )}, {(𝑀,𝑀), (𝑊2,𝑊1)}}.

Definition 3.5 (Legal Control-flow Match). A control-flow match
M is considered legal if it aligns with the existing refactoring rules
in Fig. 5. In other words, a legal control-flow match identifies the
differences in refactoring between two CFSs, providing a foundation
for compliance with the predefined rules. Based on a legal match,
we can identify two sets of refactoring operations E1 and E2, such
that applying these operations to the CFSs 𝐶𝐹𝑆 (𝑃𝑏 ) and 𝐶𝐹𝑆 (𝑃𝑐 )
results in structurally equivalent 𝐶𝐹𝑆 (E1 (𝑃𝑏 )) ≡ 𝐶𝐹𝑆 (E2 (𝑃𝑐 )).

Considering the example in Fig. 6, the longest control-flow match
{(𝑡1 .𝑀 , 𝑡2 .𝑀), (𝑡1 .𝑊 ,𝑡2 .𝑊 ), (𝑡1 .𝐼 𝑓 ,𝑡2 .𝐼 𝑓 )} between the two CFSs is
deemed illegal. This is because the if node outside the loop of 𝑡1
is matched with the if node inside the loop of 𝑡2. Aligning the
two CFSs based on this match would require moving 𝑡1 .𝐼 𝑓 to the
children of 𝑡1 .𝑊 . However, no existing refactoring rules in Fig. 5

permit such a movement, as it might alter the program’s semantics.
To ensure the legality of the generated match in each subproblem,
additional checks are essential. Thus, we provide four rules to
check whether a matching pair (𝑥𝑖 , 𝑦 𝑗 ) can be legally added to the
given legal matchM, incorporating specific constraints of the CFS.

Rule1. If any CFS node xc/yc in ancestors(xi)/ancestors(yj) is
matched inM, the corresponding yd/xd matched with xc/yc
inM should also be the ancestor of yj/xi. The ancestor nodes
of node 𝑛 are the nodes on the path from the root to node 𝑛.

As shown in Fig. 7(a), pair (𝑡1 .𝐼 𝑓2, 𝑡2 .𝐼 𝑓2) cannot be legally added
to theM ({(𝑡1 .𝑀 , 𝑡2 .𝑀), (𝑡1 .𝐼 𝑓1, 𝑡2 .𝐼 𝑓1)}), because 𝑡2 .𝐼 𝑓1 is the ances-
tor of 𝑡2 .𝐼 𝑓2 and 𝑡2 .𝐼 𝑓2 is matched inM but the corresponding node
𝑡1 .𝐼 𝑓1 is not the ancestor of 𝑡1 .𝐼 𝑓2. (Nodes 𝑡1 .𝐼 𝑓1 and 𝑡1 .𝐼 𝑓2, which
are siblings, are matched with parent-child nodes 𝑡2 .𝐼 𝑓1 and 𝑡2 .𝐼 𝑓2.)

Rule2. If xi and yj are Branch Nodes,M should contain pair
(parent(xi), parent(yj)).

As shown in Fig. 7(b), pair (𝑡1 .𝑇 , 𝑡2 .𝑇2) cannot be legally added
toM ({(𝑡1 .𝐼 𝑓 , 𝑡2 .𝐼 𝑓1)}). It is because 𝑀 does not contain pair (𝑡1 .𝐼 𝑓 ,
𝑡2 .𝐼 𝑓2). (Node 𝑡1 .𝑇 should be matched with 𝑡2 .𝑇1 since they both
represent the then branch of matched if statements.)

Rule3. If xi/yj is a descendant of loop nodes, any loop node

xc/yc in ancestors(xi)/ancestors(yj) should be matched inM.
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Figure 7: Illegal match between two CFSs.

As shown in Fig. 7(c), pair (𝑡1 .𝐼 𝑓 , 𝑡2 .𝐼 𝑓 ) cannot be legally added
toM ({(𝑡1 .𝑀 ,𝑡2 .𝑀)}). It is illegal because 𝑡2 .𝐼 𝑓 is the descendant
of a loop node 𝑡2 .𝑊 while 𝑡1 .𝐼 𝑓 is not. No refactoring rule permits
adding a while parent to 𝑡1 .𝐼 𝑓 to align their control-flow structures.

Rule4. If xi/yj is a descendant of an unmatched Else node ne
(this scenario occurs when parent(ne) – nif is unmatched), the
descendants of nif ’s then branch should be unmatched inM.

As shown in Fig. 7(d), pair (𝑡1 .𝑊2, 𝑡2 .𝑊2) cannot be legally added
toM ({(𝑡1 .𝑀 , 𝑡2 .𝑀), (𝑡1 .𝑊1, 𝑡2 .𝑊1)}), because 𝑡2 .𝑊2 is a descendant
of the unmatched else node 𝑡2 .𝐸 but a descendant 𝑡2 .𝑊1 of 𝑡2 .𝐼 𝑓 ’s
Then branch is matched inM. (Nodes 𝑡1 .𝑊1 and 𝑡1 .𝑊2 of the same
branch are matched with 𝑡1 .𝑊1 and 𝑡1 .𝑊2 of different branches.)

Definition 3.6 (Legal extension). Given a set of legal matches 𝑄
and a pair (𝑥𝑖 , 𝑦 𝑗 ), the legal extension of 𝑄 by (𝑥𝑖 , 𝑦 𝑗 ), denoted by
𝑄 ⊙ (𝑥𝑖 , 𝑦 𝑗 ), is defined as follows: For any match 𝑞 in 𝑄 that can be
legally extended by the pair (𝑥𝑖 ,𝑦 𝑗 ), we extend match 𝑞 with (𝑥𝑖 ,𝑦 𝑗 ).
Matches in 𝑄 that cannot be legally extended remain unchanged.

However, the introduction of additional checks during the LCS
algorithm compromises the optimality of the global solution. This
happens because dynamic programming relies on the principle of
optimal substructure, where each subproblem’s solution must be
optimal and unaffected by other conditions. Therefore, we propose
a novel Extremely Long Legal Match (ELLM) algorithm which is
built upon LCS algorithm and maintains the optimal substructure
property by changing the subproblem into finding a set of Extremely

Long Legal Control-flow Matches between control-flow structures.

Definition 3.7 (Extremely Long Legal Match). A legal control-flow
matchM ({(𝑥𝑖1 , 𝑦 𝑗1 ), ..., (𝑥𝑖𝑠 , 𝑦 𝑗𝑠 )}) between two CFSs is considered
extremely long only when it is not a subset of any other legal
control-flow matches between the two CFSs.
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Figure 8: An example of a legal match.

ELLM Algorithm. Let ELLM(𝑋𝑖 , 𝑌𝑗 ) represent the set of ex-
tremely long legal matches of 𝑋𝑖 and 𝑌𝑗 . The optimal value
function is given by the following (Let 𝐸𝑏 = 𝐸𝐿𝐿𝑀 (𝑋𝑖−1, 𝑌𝑗 ),
𝐸𝑐 = 𝐸𝐿𝐿𝑀 (𝑋𝑖 , 𝑌𝑗−1), 𝐸𝑑 = 𝐸𝐿𝐿𝑀 (𝑋𝑖−𝑘 , 𝑌𝑗−𝑘 ) (𝑘 =𝑚𝑖𝑛({𝑘 ∈
(1,𝑚𝑖𝑛(𝑖, 𝑗)) |∃M ∈ 𝐸𝐿𝐿𝑀 (𝑋𝑖−𝑘 , 𝑌𝑗−𝑘 ),M can be legally ex-
tended by the pair (𝑥𝑖 , 𝑦 𝑗 ).}), and function 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦𝐿𝑜𝑛𝑔(𝑄)
represent a subset of set 𝑄 , where ∀𝑞 ∈ ExtremelyLong(Q) is
not a subset of any other matches in 𝑄 .):
• If 𝑖 = 0 or 𝑗 = 0, 𝐸𝐿𝐿𝑀 (𝑋𝑖 , 𝑌𝑗 ) = {∅}.
• If 𝑖, 𝑗 > 0 and 𝑖𝑠𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 (𝑥𝑖 , 𝑦 𝑗 ) returns false, ELLM(𝑋𝑖 ,

𝑌𝑗 ) = 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦𝐿𝑜𝑛𝑔(𝐸𝑏 ∪ 𝐸𝑐 ).
• If 𝑖, 𝑗 > 0 and 𝑖𝑠𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 (𝑥𝑖 , 𝑦 𝑗 ) returns true, ELLM(𝑋𝑖 ,

𝑌𝑗 ) = 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦𝐿𝑜𝑛𝑔(𝐸𝑏 ∪ 𝐸𝑐 ∪ (𝐸𝑑 ⊙ (𝑥𝑖 , 𝑦 𝑗 ))).

Definition 3.8 (FindBestMatch Function). The function findBest-

Match selects the best legal match among all extremely long legal
matches between the two sequences. The best match is determined
in two steps: (1) Ranking the matches based on the number of loop
node mappings and selecting those with the maximum value, and
(2) Considering the total number of node mappings in the selected
matches. In our approach, loop node mappings are prioritized over
If node mappings, ensuring that CFSs related to repetitive and
iterative behavior are aligned as accurately as possible.

Control-flow Matching Algorithm. The algorithm is illustrated
with a real example. Considering the CFSs of 𝑃𝑏 and 𝑃𝑐 in Fig. 4, the
best match between them is shown in the same figure. It is generated
through the following steps: (1) Firstly, the two CFSs are translated
into control-flow sequences 𝑋 (𝑀,𝑊 , 𝐼 𝑓 ,𝑇 , 𝐸 ) and 𝑌 (𝑀,𝑊 , 𝐼 𝑓 ,𝑇 ) . (2)
Then, the ELLM algorithm is run on the two sequences, identifying
a set of extremely long legal matches: {{(𝑀,𝑀 ), (𝑊,𝑊 )}}, and (3)
Finally the FindBestMatch function is employed to determine the
best legal match, resulting in {(𝑀,𝑀 ), (𝑊,𝑊 )}.

3.2.2 Overall Algorithm. Algorithm 1 shows the overall bidirec-
tional refactoring process (where the function add (a, b, i) ormove(a,
𝑏, 𝑖) means introducing or moving node 𝑎 to index 𝑖 of the children
list of node 𝑏): (1) First, we adopt the control-flow matching algo-
rithm on the two CFSs 𝑡1 and 𝑡2 to get the original best legal match
M. Notably, if this match contains pairs where the "then" branch
of an "If" statement in one CFS is matched with the "else" branch of
another CFS (as shown in Fig. 8), we will use refactoring rule 𝑅𝐵 to
exchange the branches on certain "If" nodes in 𝑡2. The above pro-
cess will be repeatedly conducted until no requirement for branch
changes (lines 1–7). (2) Next, we traverse the control-flow sequence

𝑋 , generated by preorder traversal of CFS 𝑡1. For each unmatched
node 𝑥 inM, we will introduce a new control-flow node 𝑦𝑛 into
CFS 𝑡2 using refactoring rule 𝑅𝐴 and add the new pair (𝑥 , 𝑦𝑛) toM
(lines 13–16). Especially, if a new branch node 𝑦𝑛 is introduced, we
will relocate its children accordingly, following the refactoring rule
𝑅𝐶 (lines 17–21). (3) Similarly, we then traverse the control-flow
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Algorithm 1: Bidirectional Refactoring Algorithm
Input: Control-flow structures 𝑡1 and 𝑡2 .
Output: Refactored control-flow structures 𝑡1 and 𝑡2

1 do

2 M← controlFlowMatch(𝑡1 , 𝑡2), isBranchHasChanged← false;
3 foreach pair(𝑥 , 𝑦) ∈ M do

4 if type(𝑥) is Branch-Node and label(𝑥) ≠ label(𝑦) then
5 exchangeBranch(parent(𝑦)) ; // Rule 𝑅𝐵

6 isBranchHasChanged← true;
7 while isBranchHasChanged is false;
8 𝑡2 ←Refactor (𝑡1 , 𝑡2 ,M), 𝑡1 ←Refactor (𝑡2 , 𝑡1 ,M);
9 return Refactored control-flow structures 𝑡1 , 𝑡2 ;

10 procedure Refactor(T1 , T2 ,M)
11 𝐿← preorderTraversal(T1); ⊲ Get control-flow sequence of T1 ;
12 foreach 𝑥 ∈ 𝐿 do

13 if 𝑥 is matched inM then continue;
14 𝑦𝑝 ← getMatchFromBy(M, parent(𝑥));
15 𝑦𝑛 ← newNode(type(𝑥)),M.add(pair(𝑥 , 𝑦𝑛));
16 add(𝑦𝑛 , 𝑦𝑝 , positionInfer(𝑥)) ⊲ Based on the index and

context of 𝑥 , infer where 𝑦𝑛 should be inserted ; // Rule 𝑅𝐴

17 if type(𝑥) is Branch-Node then
18 N ← getMatchFromBy(M, children(𝑥));
19 move(N, 𝑦𝑛 , 0) ; // Rule 𝑅𝐶
20 if label(𝑦𝑛) is ELSE and N is not None then
21 conditionalNegation(𝑦𝑝) ; // Rule 𝑅𝐶2
22 return T2 ;

(a)  𝑃!!

1 def search(x, seq):

2 for i,elem in enumerate(seq):

3 if seq == False:

4 return 0

5 if elem == x:

6 return i

7 elif elem > x:

8 return i

9 return len(seq)

10

11

(b)  𝑃!" (c)  𝑃!

def search(x, seq):
i = 0
while i<len(seq):

if x <= seq[i]:
return i

i += 1
if i==len(seq):

pass
else:

seq.insert(i, x)
return len(seq)

def search(x, seq):
i = 0
while i<len(seq):

if x <= seq[i]:
return i

i += 1
if True:

pass
else:

pass
return len(seq)

def search(x, seq):
i = 0
while i<len(seq)

and x<seq[i]:
if True:

pass
i += 1

if i==len(seq):
seq += (x,)

else:
seq.insert(i, x)

return seq

Figure 9: The refactored and repaired programs.

sequence 𝑌 , generated by preorder traversal of 𝑡2, and repeat the
above process to refactor CFS 𝑡1 (line 8). The refactoring guidance
for aligning the CFSs in Fig. 4 is as follows: (i) add(newIf, 𝑡2 .𝑀 , 1), (ii)
add(newT, 𝑡2.newIf, 0), (iii) add(newE, 𝑡2.newIf, 1), (iv) add(newIf,
𝑡1.W, 0) and (v) add(newT, 𝑡1.newIf, 0). More intuitively, the refac-
tored programs of 𝑃𝑏 and 𝑃𝑐 in Fig. 3 are shown in Fig. 9(a) and Fig.
9(b), which are generated by: introducing a new If conditional to
𝑃𝑏 to get the refactored buggy program 𝑃𝑟𝑏 and introducing a new
If-else conditional to 𝑃𝑐 to get the refactored correct program 𝑃𝑟𝑐 .

3.2.3 Discussion. The time cost of bidirectional refactoring is pri-
marily determined by the control-flow matching process. For two
sequences of lengths n and m, compared to the dynamic program-
ming approach (LCS) whose time complexity is 𝑂 (𝑛 ×𝑚), the time
cost of our ELLM algorithm grows exponentially in the worst-case
scenario due to the additional checks. However, since real-world
programs, especially student programs, typically do not have many
CFS nodes per method, our algorithm is practical in most cases.

3.3 Program Repair

In this section, our goal is to utilize the reference correct program
𝑃𝑐 to repair the buggy program 𝑃𝑏 , given that they share identical

control-flow structures. This will be achieved through three primary
components: an aligner, a fault locator, and a repairer.

3.3.1 Aligner. Aligning a reference solution with the buggy pro-
gram is crucial in generating accurate fixes, and in turn feedback,
[37]. This process includes block alignment and variable alignment.

Definition 3.9 (Program Partitioning). The program 𝑃 is divided
into blocks from coarse to fine granularity. Initially, the function
body of 𝑃 is divided into composite blocks and basic blocks with
each composite block bordered by basic blocks. Composite blocks
are then systematically divided into smaller units. For example,
the refactored buggy program 𝑃𝑟𝑏 in Fig. 9(a) is divided into {basic
block, while block, basic block(empty), if block, basic block}. Then,
the while block and the if block are further subdivided into smaller
units: the while block into {while condition (basic block), while
body}, with continuous division occurring within the while body.
The basic blocks of a program form a set {𝐵𝑖 }𝑖∈1...𝑛 .

A. Block Alignment. Given a buggy program 𝑃𝑏 and a reference
solution 𝑃𝑐 with the same CFS, we can find a 1-1 mapping of the
blocks due to CFS(𝑃𝑏 )≡CFS(𝑃𝑐 ). The criteria for dividing a program
into blocks is according to its CFS (Definition 3.9). Programs with
the same CFS share the same program partition criteria.

B. Variable Alignment. The goal of this stage is to map the vari-
ables of 𝑃𝑏 to those of 𝑃𝑐 . We apply Enhanced Define/Use Analy-

sis(EDUA) to match variables with similar def/usage. This method
is more reliable than the traditional Define/Use Analysis (DUA) pro-
posed in [16], as it incorporates a new similarity calculation method.

Definition 3.10 (Variable Mapping). Let 𝑉𝑎𝑟𝑠(𝑃𝑏 )={𝑣1, 𝑣2, ..., 𝑣𝑚},
with a length of 𝑚, represent the variable set of the given buggy
program 𝑃𝑏 . Similarly, let 𝑉𝑎𝑟𝑠(𝑃𝑐 )={𝑢1, 𝑢2, ..., 𝑢𝑛}, with a length
of 𝑛, be the variable set of the correct program 𝑃𝑐 . Then, {𝑣𝑖1 ↦→
𝑢 𝑗1 , ..., 𝑣𝑖𝑠 ↦→ 𝑢 𝑗𝑠 } is a mapping of variables, where 𝑖1, ..., 𝑖𝑠 ∈ 1..𝑚
are different indices and 𝑗1, ..., 𝑗𝑠 ∈ 1..𝑛 are different indices.

Definition 3.11 (Def/Usage Weight). Let functionW(𝑣𝑝 , 𝑖) repre-
sent the def/usage weight of variable 𝑣 in the 𝑖-th basic block in
program 𝑃 . If variable 𝑣 is defined or used in the 𝑖-th basic block,
and if the 𝑖-th basic block is an if/while condition or a for iterator,
W(𝑣 , 𝑖) = 𝛼 ; if not,W(𝑣 , 𝑖) = 1. (We consider the control statements
have a higher weight and set 𝛼 to 2 in our work.) Otherwise, if
variable 𝑣 is not defined or used in the 𝑖-th basic block,W(𝑣 , 𝑖) = 0.

Definition 3.12 (Def/Usage Similarity). We compute the similarity
for each pair of variables <𝑣 , 𝑢>, where 𝑣 is defined in 𝑃𝑏 and 𝑢 is
defined in 𝑃𝑐 . Let the function 𝑓𝑖 (𝑣 , 𝑢) represent the extent to which
𝑣 and 𝑢 are defined/used similarly in the 𝑖-th basic block. If 𝑣 and
𝑢 are both defined or used in 𝑖-th basic block, and if the 𝑖-th basic
block is an if/while condition or a for iterator, 𝑓𝑖 (𝑣 , 𝑢) = 𝛼 ; if not,
𝑓𝑖 (𝑣 , 𝑢) = 1. Otherwise, if 𝑣 and 𝑢 are not both defined or used in
the 𝑖-th basic block, 𝑓𝑖 (𝑣 , 𝑢) = 0. The similarity between 𝑣 and 𝑢 is
computed as follows (supposing there are 𝑛 basic blocks):

𝑆𝑖𝑚(𝑣,𝑢) =
∑𝑛
𝑖=1 𝑓𝑖 (𝑣,𝑢)

𝑚𝑎𝑥 (∑𝑛
𝑖=1W(𝑣, 𝑖),

∑𝑛
𝑖=1W(𝑢, 𝑖))

(1)

Definition 3.13 (Enhanced Define/Use Analysis (EDUA)). M𝐸𝐷𝑈𝐴

stores a set of variable pairs matched using EDUA. EDUA follows a
conservative approach, matching variables in multiple rounds to
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minimize erroneous matches. In the first round, parameter variables
are matched in order. In the second round, variables 𝑣𝑏 and 𝑣𝑐 with
similarity 𝑆𝑖𝑚(𝑣𝑏 ,𝑉𝑐 ) = 1.0 are matched. Subsequent rounds match
variables with progressively relaxed similarity thresholds: ≥0.9,
≥0.8, ≥0.7, ≥0.6, or ≥0.5. For the programs in Fig. 9(a) and 9(b), the
variable mapping would be: {x ↦→ x, seq ↦→ seq, i ↦→ i}.
3.3.2 Fault Locator. To reduce unnecessary block repairs, we intro-
duce a fault localization technique for identifying suspicious blocks.
The core concept behind this approach involves inferring a specifi-
cation for each block within the buggy program and conducting
fault localization in a coarse-to-fine manner.

Definition 3.14 (Specification). Let 𝐵 be a block in a program 𝑃 ,
𝑉 be the set of variables defined or used in 𝐵 and 𝐷 be the set of
possible values of 𝑉 . A program state S during the execution of 𝐵
is a mapping S : 𝑉 → 𝐷 . The specification of a block 𝐵, denoted
by 𝑆𝑝𝑒𝑐 (𝐵), is defined as a set of input-output state pairs {〈S𝐼𝑖 ,
S𝑂𝑖

〉}𝑖 ∈ 1, ..., 𝑟 , where 𝑖 denotes the 𝑖-th variable 𝑣𝑖 in 𝑉 and S𝑂𝑖

denotes the output value of 𝑣𝑖 when given S𝐼𝑖 as the input state of 𝐵.
Specifically, if 𝐵 is an if/while condition, the specification 𝑆𝑝𝑒𝑐 (𝐵)
will include the output state of this expression.

Definition 3.15 (Specification Inference). Let 𝐵𝑐 be a block in the
correct program 𝑃𝑐 , and {〈S𝑐

𝐼𝑖
, S𝑐

𝑂𝑖
〉}𝑖 ∈ 1, ..., 𝑟 be a specification

of 𝐵𝑐 , and 𝐵𝑏 be the corresponding block in the buggy program
𝑃𝑏 , and 𝑀 be a valid variable mapping. Each input-output state
pair 〈S𝑏

𝐼 𝑗
, S𝑏

𝑂 𝑗
〉 of 𝐵𝑏 should satisfy the following condition: if there

exists a variable 𝑣𝑐
𝑖

in 𝑃𝑐 which is mapped to 𝑣𝑏
𝑗

in 𝑀 and the input
state S𝑏

𝐼 𝑗
equals S𝑐

𝐼𝑖
, the output state S𝑏

𝑂 𝑗
should be the same as S𝑐

𝑂𝑖
.

A. Specification Construction. Run the refactored buggy program
𝑃𝑏 on the failed test-suite 𝑇 to collect Specification for each block
of 𝑃𝑏 . Run the refactored correct program 𝑃𝑐 on the same test-suite
𝑇 to collect Specification for each block of 𝑃𝑐 . Here, the input state
refers to the values of all variables before executing the block, and
the output state refers to these values after executing the block.

B. Fault Localization. Similar to program partitioning, we em-
ploy a coarse-to-fine strategy to locate the suspicious basic block.
This process is initiated by scanning the composite blocks and basic

blocks within the function body of the buggy program. If the speci-
fications of the current block fail to meet expectations, we consider
it suspicious. If the located block is not a basic block, we continue
refining our search until a suspicious basic block is identified. For
example, for the test case search(42, (-5, 1, 3, 5, 7, 10)),
we first identify the while block in Fig. 9(a) as suspicious, because
the output of variable i in 𝑃𝑏 is 0 while it is expected to be 6. Sub-
sequently, we identify the while condition as suspicious, as it
yields a false output when it is expected to be true.

3.3.3 Repairer. We focus on repairing only the suspicious basic
block to guarantee minimum repair. The key idea is to generate
block patches for 𝐵𝑏 until 𝐵𝑏 is semantically equivalent to its cor-
responding basic block 𝐵𝑐 in the correct program 𝑃𝑐 . This process
includes two steps: (1) statement match and (2) patch generation.

A. Statement Match. We match the statements between 𝐵𝑏 and
𝐵𝑐 in rounds [35], each with progressively less strict match condi-
tions. In the first round, we match statements that become identical

after replacing variable names. In the second round, we match
statements that become identical after swapping variable orders. In
the third round, we match statements that contain matched vari-
ables. Statements matched in earlier rounds are “safer” matches
and are excluded from subsequent rounds. Finally, the unmatched
statements in 𝐵𝑏 and 𝐵𝑐 would be matched with empty statements.

B. Patch Generation. Given the statement matchM(𝐵𝑏 , 𝐵𝑐 ), we
generate block patches as follows: Given a pair (𝑆𝑏 , 𝑆𝑐 ),
• Insertion Fix: if 𝑆𝑏 is ∅, meaning 𝑆𝑐 is not matched to any

statement in 𝐵𝑏 , an insertion fix will be produced to insert 𝑆𝑐 .
• Deletion Fix: if 𝑆𝑐 is ∅, meaning 𝑆𝑏 is not matched to any state-

ment in 𝐵𝑐 , a deletion fix will be produced to delete 𝑆𝑏 .
• Modification Fix: if 𝑆𝑏 and 𝑆𝑐 are not ∅, a modification fix will

be produced to turn the AST of 𝑆𝑏 to that of 𝑆𝑐 .
After performing insertion or modification operations, we will re-
place variable names in 𝑆𝑐 with those in 𝑃𝑏 based on the established
variable mapping. If a variable 𝑣𝑐 in𝑉𝑎𝑟𝑠(𝑆𝑐 ) is not matched to any
variable in 𝑃𝑏 , we will insert a new variable initialization into the
corresponding declaration block and add a new variable mapping
pair. Note that statements of type Variable Declaration will not
be deleted during this process. Unnecessary definitions will be
removed after the entire program has been repaired.

3.3.4 Overall Repair Process. First, we align the blocks and vari-
ables between the buggy program 𝑃𝑏 and its reference program 𝑃𝑐 .
Next, we systematically identify the suspicious basic blocks of 𝑃𝑏
in a coarse-to-fine manner. Upon locating a suspicious basic block,
the fault localization process concludes, and the identified block
undergoes repair. It is crucial to note that block repair targets only
a single block but does not guarantee the complete program repair.
Therefore, we repeatedly conduct the fault localization and block

repair steps until the repair program passes all the test suites. We
generated the repaired program 𝑃𝑟 in Fig. 9(c) for the program 𝑃𝑏 .

3.4 Implementation

The Brafar technique has been developed into a tool with the same
name. Given one or more reference programs and test cases, Brafar
supports repairing compilable incorrect Python programs. The
implementation of Brafar tool is composed of five components:
(1) Searcher, (2) Bidirectional refactoring algorithm, (3) Aligner, (4)
Fault localization algorithm, and (5) Repair algorithm.

4 EXPERIMENTAL EVALUATION

In this section, we conduct a series of experiments to evaluate
the effectiveness and efficiency of Brafar. The evaluation aims to
address the following research questions:
RQ1 How does the overall approach perform in terms of repair-

ing incorrect programs, considering its overall effectiveness,
efficiency, and repair quality?

RQ2 How does our bidirectional refactoring algorithm perform
in terms of aligning control-flow structures?

RQ3 How does our repair strategy perform in fixing the incorrect
programs with a matching correct reference program?

Besides, we have conducted a preliminary evaluation of ChatGPT [1]
to discuss the significance of our work in the current LLM context.
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Table 3: Overall results on five IPAs: The repair rate (RR), average repair time (Time), and relative patch size (RPS). The column

"%Match" gives the percentage of incorrect programs for which correct programs with matching CFSs are found.

ID Description LOC #Correct #Incorrect #Test %Match

Brafar Refactory Clara

RR Time RPS RR Time RPS RR Time RPS

1 Sequential search 26 768 575 11 80.0% 99.8% 0.38s 0.28 99.3% 1.43s 0.40 81.2% 0.36s 0.31
2 Unique dates/months 24 291 435 17 33.3% 94.0% 0.43s 0.31 78.4% 2.49s 0.47 41.8% 1.67s 0.33
3 Duplicate elimination 37 546 308 6 87.3% 100.0% 0.25s 0.29 97.4% 3.35s 0.32 88.6% 0.16s 0.44
4 Sorting tuples 34 419 357 6 52.9% 100.0% 0.33s 0.24 82.6% 5.95s 0.27 62.5% 0.31s 0.60
5 Top-k elements 18 418 108 5 80.6% 100.0% 0.28s 0.22 85.1% 10.58s 0.26 88.0% 0.22s 0.48

Overall 27 2442 1783 45 64.5% 98.5% 0.35s 0.28 89.7% 3.38s 0.37 69.5% 0.49s 0.41

4.1 Experiment Setup

Benchmark Setup. We evaluate Brafar on a large dataset from
Refactory [16]. This dataset consists of 2442 correct submissions
and 1783 incorrect student programs from 5 different introductory
programming assignments, along with reference programs and
instructor-designed test suites. We consider repairs correct only if

they pass all the test suites. Table 3 gives the fundamental informa-
tion about the dataset, with more details available in Refactory.

Baseline Feedback Generation Techniques. We selected Refactory
2

[16] and Clara3 [13] as baselines for their relevance as publicly ac-
cessible Python feedback generators. While previous research [16]
evaluated them on the same dataset, we have re-executed Refactory

and Clara under identical conditions for fair comparison. Note
that during the reproduction of Clara, we made some necessary
code modifications to adapt to the dataset. Comparisons with other
recent approaches like AssignmentMender [23] and Fapr [25] were
not feasible due to their lack of public availability. Additionally, Veri-
fix [4], designed for C programs, was excluded from our comparison
since Brafar is specifically tailored for Python programs.

Environment. All the experiments were performed on a desktop
equipped with an Intel® CoreTM i7-10700 CPU, 32GB RAM, run-
ning Ubuntu 22.04. During the experiment, all the tools were set
to operate in single-thread mode, with a one-minute timeout for
repairing each incorrect program. Specifically, Clara requires an
offline phase where it clusters the correct programs, for which we
allocate an additional five-minute timeout per assignment.

4.2 RQ1: Overall Performance

Table 3 presents the overall performance comparison among Bra-
far, Refactory, and Clara. Clara successfully generates correct
repairs for 69.5% of 1783 incorrect programs, with an average time
of 0.49 seconds. Refactory achieves correct repairs for 89.7% of in-
correct submissions, averaging 3.38 seconds per repair. In contrast,
Brafar can generate correct repairs for 1756 programs in total
(≈98.5%) within an average time of 0.35 seconds. This indicates that
Brafar outperforms Refactory and Clara, as it can repair a greater
number of incorrect submissions while requiring less time.

4.2.1 Repair Rate. The low repair rate of Clara is mainly due to
its inability to repair incorrect programs with unique looping struc-
tures, accounting for about 67.0% (364 out of 543) of the failures.

2https://github.com/githubhuyang/refactory
3https://github.com/iradicek/clara
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Figure 10: Relative Patch Size Comparison.

For the remaining failures in Clara, 143 are due to unsupported
Python features, 8 are attributed to numeric precision errors in
the ILP solver and 28 result from misjudging that a repair is un-
necessary. In comparison, Brafar and Refactory achieve higher
repair rates due to their structure alignment phases. Between them,
Brafar failed to generate a repair in only 27 cases. The only reason
for Brafar’s failure is the invocation of an unknown method in the

reference programs. Using these correct solutions to repair the incor-
rect programs risks introducing an unknown method invocation
into the incorrect program, rendering it non-compilable. Refactory
also encounters this failure reason, but it fails to generate repairs in
more cases. This is because Refactory struggles to generate repairs
without valid variable mappings, and nearly half of its failures occur
due to exceptions or timeouts during the repair process.

4.2.2 Repair Size. For further evaluating generated patches, we
use the Zhang-Shasha [15] tree-edit-distance algorithm to calculate
the patch size and normalize the patch size by dividing it by the size
of the original buggy program, using the Relative Patch Size (RPS)
metric. The formula for RPS is RPS = Dist(𝐴𝑆𝑇𝑟 , 𝐴𝑆𝑇𝑏 )/Size(𝐴𝑆𝑇𝑏 )
which is widely used in existing techniques. To ensure a fair com-
parison, we recalculated Clara’s patch size (repair cost) to align
with Brafar and Refactory. As shown in Table 3, repairs generated
by Brafar have a smaller average RPS compared to those generated
by Refactory and Clara. This indicates that our repairs are smaller

and, therefore, more likely to be easier for students to comprehend.

Fig. 10 shows a more detailed RPS comparison. Fig. 10(a) compares
the distribution of RPS and Fig. 10(b) plots the Kernel Density Es-

timate (KDE) of RPS for Brafar, Refactory and Clara. From Fig.
10(a) and 10(b), we observe that (1) 67% of all repairs generated by
Brafar have RPS < 0.3, 53% have RPS < 0.2 and 31% have RPS <
0.1; and (2) Brafar produces a higher number or density of RPS
values compared to when RPS is less than Refactory and Clara
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when RPS is less than 0.3 and 0.25 (x-axis), respectively. That is, a
larger proportion of repairs generated by Brafar have a small RPS.

4.2.3 Repair Quality. To evaluate the quality of repairs generated
by Brafar and compare them with those produced by Refactory

and Clara, we randomly and proportionally selected 100 buggy
programs for which both Brafar and Refactory were able to gen-
erate repairs. Note that we excluded Clara from consideration
due to its relatively poor repair performance. We then manually
inspected the repairs produced by these tools. In total, we inspected
148 buggy methods, as each buggy submission for the second as-
signment required an average of 3 methods to be repaired.

Among the 148 methods, Brafar generated: (a) minimal repairs
that involve only necessary and natural modifications that program-
mers would make in 109 cases, (b) small repairs that involve some
unnecessary modifications in 22 cases, (c) distant repairs that are
correct but deviate somewhat or entirely from the students’ ideas
in 7 cases, and (d) free repairs that fix incorrect methods which
have almost empty bodies in 9 cases. Given that most, or 88.5% to
be precise, of the generated repairs are minimal and small, not caus-
ing the repaired programs to deviate from the students’ ideas and
therefore being easier to comprehend, the quality of the generated
repairs is generally high. Meanwhile, the significant numbers of
distant repairs suggest future directions to improve the current re-
pair quality. On the one hand, to reduce the number of large repairs,
we should utilize both the semantic and the syntactic information
about the buggy methods when generating repairs. On the other
hand, to better align the free repairs with the implementations of
the other existing methods, the repair generation process needs to
incorporate semantic and syntactic information across methods.

Brafar compared favorably with Refactory in terms of the qual-
ity of their generated repairs. Among the 148 buggy methods, the
two tools generated the same repairs in 90 cases; In 19 cases, they
generated different repairs, but the repairs were of comparable
quality, being minimal, small, distant, or free. In one case, repair
from Refactory was considered better; In the remaining 38 cases,
repairs from Brafar were considered better. Within these 38 cases,
Brafar generated minimal and small repairs in 32 and 6 cases,
respectively, while Refactory generated distant repairs in 19 cases.
Besides, the quality difference between the repairs generated by
the two tools was more striking on buggy methods that demand
more complex repairs. In particular, 35 of the buggy methods went
through the structure alignment process, where Brafar produced
minimal and small repairs in 16 and 13 cases, respectively, while
Refactory produced distant repairs in 26 cases.

In comparison, Clara failed to generate repairs in 53 cases,
with 49 of these failures due to structure mismatch issues. For the
remaining repaired cases, Brafar and Clara produced repairs of
comparable quality in 65 cases. Brafar produced better repairs in
28 cases, while Clara produced better repairs in only 2 cases.

Overall, our manual analysis confirms that Brafar can produce
high-quality repairs for buggy programming assignments and that
compared to the repairs generated by Refactory and Clara, the
repairs from Brafar often have comparable or better quality.

4.2.4 Sampling Rate. As Refactory [16] reported, with a sampling
rate of 0%, i.e., using only the master solution as the input cor-
rect program, Refactory achieved over 90% repair rate while Clara
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archived less than 40% repair accuracy. We evaluated the effective-
ness of Brafar under the same condition, and the tool managed
to successfully repair 1772, i.e., 99.4%, of the 1783 cases with a
sampling rate of 0%. Meanwhile, the different sampling rates did
not significantly affect the average time taken by Brafar to re-
pair a buggy student program. Therefore, we conclude that the
effectiveness of both Brafar and Refactory in repairing buggy pro-
gramming assignments is insensitive to the number of input correct
submissions. In contrast, Clara relies on diverse correct programs.
Moreover, Brafar is more effective than Refactory when the input
correct programs are reduced to the minimum.

4.3 RQ2: Bidirectional Refactoring Evaluation

The higher repair rates achieved by Brafar and Refactory are due
to their structure alignment algorithms. As shown in Table 3, only
64.5% of the incorrect programs have a matching correct program
with identical CFS. To repair the remaining 633 programs, both
Brafar and Refactory initially perform structure alignment. How-
ever, 233 programs were repaired by both tools without further
alignment by separately finding matching correct methods and com-
bining them as references. Excluding these 233 incorrect programs
and 61 incorrect programs where Refactory encountered exceptions,
this section focuses on evaluating the structure alignment abilities
of Brafar and Refactory in terms of their effectiveness, efficiency,
and CFS edit distance for the remaining 339 incorrect programs,
which include a total of 387 methods requiring structure alignment.

To help these incorrect programs find correct programs with
matching structures, Refactory attempts to use a set of refactoring
rules to generate new correct variants. However, Refactory faces
effectiveness and efficiency concerns during this process, as men-
tioned in the previous section (§2). For the effectiveness concern,
Refactory only helps 94 of 339 incorrect programs (27.7%) find a
new matching correct program. For the efficiency concern, the av-
erage time taken (the deviation values are removed) during the
online refactoring process is around 3.0s per method. To further
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analyze the performance, we refer to Fig. 11: (1) As the complexity
of the method’s control structure increases, Refactory’s approach of
simply refactoring correct programs without any guidance proves
to be insufficient and unsuccessful for structure alignment. (2) The
average time taken by Refactory’s refactoring process increases ex-
ponentially. In contrast, after applying the bidirectional refactoring

algorithm, Brafar achieves successful structure alignment for all
the incorrect programs (100%) in a short amount of time (≈ 0.0s).

The remaining 245 incorrect programs (containing 277 incorrect
methods) that do not have a CFG match with correct programs
undergo structure mutation during Refactory’s structure alignment
phase. We focused on the CFS modifications made by both Refactory

and Brafar for these programs and gave the comparison in Fig. 12:
(1) Fig. 12(a) illustrates that most of the CFS modification made by

Brafar does not exceed 2 operations and the number falls faster than

Refactory. (2) Fig. 12(b) shows that the CFS modification made by
Refactory tends to be large as the CFS nodes increase. In contrast,
Brafar exhibits a more consistent behavior. We conclude that, in

most cases, our bidirectonal refactoring algorithm achieves effective

structure alignment with a small CFS modification size.

Moreover, as discussed in Section 2, Refactory’s structure muta-

tion, which cannot preserve the program’s semantics, might ulti-
mately require more effort to repair the incorrect programs. We
simply compared the number of test cases passed by the incorrect
programs before and after structure mutation and found that 63.7%
(156/245) of the mutated programs generated by Refactory failed
more test cases. Focusing on the repair results for these incorrect
programs that undergo structure mutation, Refactory successfully
repairs 93.9% (230/245) of them, with an average RPS reaching up
to 0.68. In contrast, Brafar achieves a higher repair rate of 99.2%
and generates repairs with a smaller average RPS of 0.49 for these
incorrect programs. The smaller RPS result is made possible by
our bidirectional refactoring algorithm and our integrated repair
strategy. To separately evaluate how the bidirectional refactoring

algorithm helps reduce RPS, we created Refactory+ by replacing
structure mutation’s results with this algorithm’s results. The mixed
tool’s average RPS for these incorrect programs is 0.55. This demon-

strates that Brafar can achieve structure alignment while preserving

semantic consistency, which ultimately helps generate smaller repairs.

4.4 RQ3: Repair Strategy Evaluation

The smaller average relative patch size (RPS) by Brafar is mainly
attributable to its integrated repair strategy, which incorporates
a coarse-to-fine fault localization approach. To compare our re-
pair strategy with that of Refactory, we focus on these incorrect
programs (totaling 1150) that have a matching correct submission
with an identical CFS, thereby obviating the need for the structure

alignment process. In summary, Refactory generated 1119 repairs
with an average RPS of 0.26, while Brafar generated 1150 repairs
with a smaller average RPS of 0.22. Specifically, for assignment 1,
the average RPS is 0.25 in Brafar and 0.31 in Refactory. For assign-
ment 2, the average RPS is 0.15 in Brafar and 0.20 in Refactory.
For assignment 3, the average RPS is 0.25 in Brafar and 0.27 in
Refactory. For assignment 4, the average RPS is 0.16 in Brafar
and 0.20 in Refactory. For assignment 5, the average RPS is 0.16 in

Table 4: Repairing results of ChatGPT 4.0 in repair rate (RR)

and relative patch size (RPS) for the three types of queries.

ID

Type I Type II Type III Brafar

RR1 RPS1 RR2 RPS2 RR3 RPS3 RR RPS

1 57.9% 0.39 89.0% 0.51 91.7% 0.56 99.8% 0.28
2 65.7% 0.51 79.8% 0.59 94.7% 0.71 94.0% 0.31
3 62.3% 0.33 78.6% 0.40 94.5% 0.55 100.0% 0.29
4 37.8% 0.22 88.8% 0.40 65.8% 0.96 100.0% 0.24
5 84.3% 0.39 89.8% 0.50 89.8% 0.50 100.0% 0.22

Overall 58.2% 0.39 85.0% 0.49 87.6% 0.66 98.5% 0.28

Brafar and 0.18 in Refactory. This demonstrates that our integrated

repair strategy can help generate smaller repairs than Refactory.

4.5 ChatGPT Evaluation

Recent advancements in large language models (LLMs) have led
to their widespread use in programming tasks. To gain insight
into how Brafar stacks up against LLMs in repairing IPAs, we
conducted a preliminary experiment where OpenAI ChatGPT 4.0
was applied to repair the buggy Python programs sourced from the
same dataset as described earlier in this section. In the experiment,
we configured ChatGPT 4.0 to utilize the default values for all its
hyperparameters, e.g., temperature, max_length, and top_p.

In the experiment, we designed three types of queries to assess
ChatGPT’s effectiveness under different conditions: one without
any additional information, one with test cases, and one with a
reference program. To standardize the procedure, queries of Type I
are in the form “Repair the following incorrect code 𝑃𝑏 with minimal
modifications.”, where 𝑃𝑏 is the buggy student code; queries of
Type II are in the form “Repair the following incorrect code 𝑃𝑏 with
minimal modifications along with the test cases 𝑇 ”, where 𝑇 is a
set of test cases; and queries of type III are in the form “Repair the
following incorrect code 𝑃𝑏 with minimal modifications along with
the reference correct code 𝑃𝑐 ”, where 𝑃𝑐 is the reference program
provided by the instructors. The repair results of ChatGPT for the
five IPAs using each query type are shown in Table 4, alongside the
results achieved by Brafar for easy reference.

We acknowledge that our experiment with ChatGPT, compared
with those done in related work [42], was rudimentary and insuffi-
cient for quantitative analysis, e.g., we only used the default values
for ChatGPT’s hyperparameters, and we did not really interact
with ChatGPT so it has a chance to refine its answers. Neverthe-
less, based on the results, we make the following two observations
about ChatGPT’s effectiveness in repairing IPAs: (1) First, Chat-
GPT faced challenges in fixing the programming assignments when
no additional information was available but showed a significant
improvement in repair rates when provided with test cases and ref-
erence implementations. This suggests that even higher repair rates
might be achievable with more comprehensive input. (2) Second,
properly encoding additional information or requirements into the
prompts is crucial for ChatGPT to understand and utilize them ef-
fectively. Manual inspection revealed that in 47.2% (737/1562) of the
successfully repaired cases with the third type of queries, ChatGPT
simply returned the exact reference programs as the repair results.
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These results are considered less valuable, indicating that Chat-
GPT has limited capability to comprehend and utilize contextual
information effectively. Meanwhile, while ChatGPT was instructed
to generate repairs “with minimal modifications”, the repairs it
produced were significantly larger than those returned by Brafar,
showing that ChatGPT’s capability to comprehend and fulfill the
requirements without extra help is also limited.

We believe that our work remains meaningful despite the rapid
development of LLMs and their successful applications in program-
ming tasks. The reason is that, given a buggy student program, a
group of tests, and a non-empty set of correct implementations as
the reference as the input, there are solutions to derive high-quality
repairs to the buggy program step by step, and Brafar is such
a systematic and effective solution. In contrast, while LLMs are
extremely powerful, they are probabilistic in nature, and there is
a long way to go before they can fully understand and utilize the
input data and constantly produce high-quality repairs accordingly.

4.6 Threats to Validity

In this section, we outline possible threats to the validity of our
experimental findings.

Construct Validity. Threats to construct validity of our findings
in the experimental evaluation concern whether the measurements
accurately capture the studied phenomena. We classify a repair as
correct if it passes all input tests. While this approach may mistak-
enly accept incorrect repairs if the input tests miss some aspects
of the program specification, it is reasonable in the context of pro-
gramming assignment grading since it mimics how instructors
determine program correctness in practice, and it is consistent with
how other researchers in this area assess correctness [13, 16].

Internal Validity. Threats to internal validity concern whether
the experiments controlled for possible confounders. One obvious
threat comes from possible mistakes in our implementation of Bra-
far. To mitigate this threat, we reviewed Brafar’s implementation
and the experimental scripts to ensure their correctness before
conducting the final experiments.

External Validity. Threats to external validity concern whether
the experimental findings generalize to other contexts. We eval-
uated Brafar on a dataset of buggy programming assignments
from a related work [16], which contains a large number of correct
and incorrect implementations for five different introductory pro-
gramming assignments and constitutes a good representative for
introductory programming assignments in practice.

5 RELATEDWORK

The problem of automated feedback generation has seen much re-
cent interest over the last years [4–6, 9, 10, 12–14, 16–18, 22, 23, 28–
33, 36, 37, 41, 43]. It appears to be related to automated program
repair (APR). However, compared with professional software, stu-
dent programs have different characteristics [41], leading to the
poor performance of traditional APR tools [7, 19–21, 24, 27, 38–40].

Our work builds upon prior feedback generation techniques
which apply the "block-by-block" repair strategy. Among them,
Clara [13] clusters the correct submissions by dynamic analysis
and uses them to repair buggy programs with matching loop struc-
tures. Sarfgen [37] proposes a new method of embedding ASTs

into numerical vectors to accelerate the process of searching for the
closest correct solution. They fail to generate patches for buggy pro-
grams with unique control-flow/loop structures. Refactory [16] tries
to address this problem by using refactoring rules to create multiple
correct variants, but as noted earlier, it has limited effectiveness.

The state-of-the-art techniques for repairing student programs
written in OCaml include FixML [22] and the newly released work
Cafe [33]. While FixML is limited to fixing multi-location errors,
Cafe leverages a context-aware matching algorithm to repair in-
correct programs by using multiple partially matching reference
programs to repair methods separately. However, in our approach,
context-sensitive interprocedural analysis is not under discussion.

Newly released techniques for automated feedback generation
take different repair strategies but introduce new limitations. For
instance, AssignmentMender [23] uses partial repair to generate
concise feedback by reusing fine-grained code snippets from sub-
missions. However, its performance heavily relies on existing au-
tomated fault localization (AFL) techniques [3] and is limited in
generating complex fixes, such as repairing multiple statements.
On the other hand, Verifix [4] aims to generate verifiably correct
program repairs as student feedback. But Verifix fails to generate
repairs for incorrect programs with unique loop structures.

While the techniques mentioned above and our approach focus
on code-level feedback, Fan et al. [12] open up a new avenue for
exploration. They abstracted programs into "concept graphs" to
provide concept-level feedback. These concept graphs contain ex-
pressions translated into natural language to enhance readability,
making them more suitable as hints for students.

Large-scale language models (LLMs) like Copilot [2] and Chat-
GPT [1] have proven effective for code-related tasks. This paper
evaluates ChatGPT on our dataset. While it performs well in some
cases, careful evaluation and verification of its suggestions are cru-
cial, especially for complex scenarios. Effective prompting, which
enhances ChatGPT’s performance, relies on traditional program
analysis, underscoring the continued relevance of our work.

6 CONCLUSION

We present Brafar, a general feedback generation framework for
programming assignments. To tackle two challenges, Brafar incor-
porates a bidirectional refactoring algorithm for control-flow repairs
and employs a coarse-to-fine fault localization approach to reduce
unnecessary repairs. Our evaluation results on real student submis-
sions indicate Brafar can achieve a better repair success rate in a
shorter time with a smaller repair size than existing approaches.

DATA AVAILABILITY

The tools/datasets implemented/analyzed during the current study
are available at https://github.com/LinnaX7/brafar-python.
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