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Abstract

Static analysis frameworks (SAFs) such as Soot andWALA have pro-
vided the fundamental support in today’s software analysis. They
usually adopt various analysis techniques to transform programs
into different representations that imply specific properties, e.g., a
call graph can demonstrate the calling relationships between meth-
ods in a program, and users rely on these program representations
for further analysis, like vulnerability detection and privacy leak-
age recognition. Hence, providing proper program representation
is essential for SAFs. We conducted a systematic empirical study
on program representation faults of static analysis frameworks.
In our study, we first collected 141 issues from four popular SAFs
and summarized their symptoms, root causes, and fix strategies,
and revealed eight findings and some implications to avoid and de-
tect program representation faults. Additionally, we implemented
an automated testing framework named SAScope based on the
metamorphic and differential testing motivated by findings and im-
plications. Overall, SAScope can detect 19 program representation
faults where 5 have been fixed, demonstrating its effectiveness.
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1 Introduction

Nowadays, static analysis frameworks (SAFs) are playing a key
role in automating tasks like vulnerability or privacy leakage de-
tection [4], malware recognition [87], and performance issue pin-
point [21]. Such frameworks usually construct various program
representations [2, 42, 82] in the forms of call graphs, control flow
graphs, intermediate representations, etc., that encode the prop-
erties and behaviors of the given program for further analysis.
However, developers of static analysis frameworks may make mis-
takes when implementing different analysis algorithms, resulting in
incomplete/inefficient analysis processes and/or incorrect program

representations. For instance, prior research shows that buggy im-
plementation of the complex call graph construction algorithms
and missing support for certain programming language features are
two main reasons for incorrectly constructed call graphs [56, 66].

Although ensuring the correctness of generated program rep-
resentations is essential, prior studies mainly focused on (1) in-
vestigating one type of program representations (e.g., call graphs),
(2) pruning of false positive edges from call graphs [44, 66], and
(3) developing new call graph construction approaches that con-
sider more specific aspects like invocations to Java libraries and
implicit processes like object serialization/deserialization [1, 60].
To develop a good understanding of the reasons for, the impacts of,
and the fixes to the faults in static analysis frameworks that lead to
the aforementioned undesirable behaviors of SAFs, which we refer
to as program representation faults (PRFs), we conducted the first
empirical study of those faults in static analysis frameworks. Our
study aims to answer the following research questions (RQs):

RQ1: Which program representations are more likely to be faulty?
RQ1 aims to study the representations that are more prone to PRFs
and require more attention from developers during construction.
RQ2: What symptoms can PRFs induce, and their root causes at
each stage? RQ2 aims to understand the effects and causes of PRFs
at each stage of the SAF workflow.
RQ3: What strategies do developers adopt when fixing PRFs? In
RQ3, we aim to understand viable ways to fix PRFs, which is essen-
tial for reducing the efforts required to fix PRFs.
RQ4: How did the developers detect PRFs? In RQ4, we review the
oracles developers used to determine whether a fault is a PRF to
derive better designs on the automated detection of PRFs.

To address these research questions, we first manually collected
PRFs and their patches from four popular static analysis frame-
works, namely Soot, WALA, SootUp, and Doop. Subsequently, we
identified four symptoms, analyzed their root causes at each stage
of the static analysis workflow, and revealed six fix strategies for
helping SAF developers debug and repair PRFs. We also made eight
findings and discussed the implications of our study for developers
and researchers. In particular, we found that, while it is difficult in
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general to check the correctness of program representations since
they are often large and have distinct and complex structures, com-
paring the program representations based on their corresponding
analysis precision and functionality is a promising approach to
automatically detecting certain types of PRFs.

Based on the findings of our study, we proposed SAScope, a
novel automated testing framework that detects PRFs in static anal-
ysis frameworks using (1) a new metamorphic relation defined over
different program representations and algorithms, (2) differential
testing to verify the correctness of the same program representation
across different SAFs, and (3) a property-based approach to group
the detected faults. Our first key insight is that a static analysis
framework commonly supports multiple algorithms constructing
program representations with various precision levels. Based on the
precision lattice, we designed a metamorphic relation that detects
faults among program representations generated by different algo-
rithms with different precision levels in a SAF. We also observed
that the algorithms with the same functionality are implemented
in different SAFs. Since the computed results from the algorithms
with the same functionality should be equivalent under the same
inputs, we employed differential testing to find the discrepancies
among them. We evaluated SAScope on the aforementioned four
static analysis frameworks identifying 19 new faults. All of them
have been submitted to the corresponding developers, and five have
been fixed.

In summary, our work makes the following contributions:

• To the best of our knowledge, we conducted the first empir-
ical study on program representation faults in static analysis
frameworks, involving 141 issues from four popular SAFs.

• Inspired by the findings of our study, we implemented the SAS-
cope automated testing framework to detect program represen-
tation faults based on metamorphic and differential testing. In
our metamorphic testing component, we proposed a new meta-
morphic relation that uses the relative precision lattice of various
program representation algorithms.

• We evaluated SAScope on four studied static analysis frame-
works and found 19 new faults, five of which have been fixed by
developers.

The source code of SAScope and the replication package for the
experiments are available for download at https://sascope.github.io.

2 Background

2.1 Static Analysis Framework

Static analysis frameworks provide different APIs to reason about
the properties and behaviours of programs without executing them.
Based on the official tutorials and related literature [37, 41, 61],
we roughly split the analysis processes of SAFs into three phases,
namely data input/output, programming parsing, and core anal-
ysis, as shown in Figure 1. Given a program under analysis and
the tool configuration as input, a SAF parses the program into an
abstract syntax tree (AST) and/or generates an equivalent program
in an intermediate language. After that, the SAF performs different
static analyses like call graph construction and pointer analysis
as per the input configuration to construct and output program
representations in various forms. In other words, a SAF constructs

code representations of the input program in the first stage and
graphical representations of the input program in the second stage.

2.2 Program Representation

Static analysis frameworks encode the knowledge they derive about
the program under consideration in representations of various
forms. We reviewed existing literature [7, 13, 25, 37, 41, 76, 77] to
obtain a set of eight types of program representations commonly
supported by mainstream static analysis frameworks, including
abstract syntax tree (AST), intermediate representation (IR, i.e.,
code in an intermediate language), call graph (CG), control flow
graph (CFG), data flow graphs (DG), class hierarchy (CH), pointer
assignment graph (PAG), and program dependency graph (PDG).
On the one hand, a static analysis framework usually parses the
input program into an AST or converts the program into an inter-
mediate language, with both forms fully encoding the semantics
of the input program. For instance, Soot utilizes the Jimple [77]
intermediate language and performs optimization on Jimple code,
while Doop [7] uses the Shimple intermediate language, which is
essentially the static single assignment (SSA) variant of Jimple. On
the other hand, a static analysis framework may also construct
one or more graphical representations of the input program, each
focusing on one aspect of the program’s semantics. A call graph rep-
resents the calling relationships between different methods within
a program. A control flow graph adopts the graph notation to model
all paths that might be exercised during a program’s execution, A
data flow graph represents the set of values defined and used in
calculations at various locations of a program, whereas a pointer
assignment graph is a directed graph showing the viable types that
each variable can point to. A class hierarchy models the inheritance
relationships between program classes.
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Figure 1: General Workflow of a Static Analysis Framework

3 Study of Program Representation Faults

3.1 Static Analysis Frameworks Selection

We select static analysis frameworks for study based on the criteria
below: (1) it should be popular and widely used so that its issues
are representative of practical problems faced by the users of frame-
works. Particularly, we focus on frameworks with at least 100 stars
on GitHub and appeared in related researches [44, 50, 56, 60, 75];
(2) it must be open-source and use a public issue tracking system
to record all issues that have been reported and resolved so that
we can identify and analyze their program representation faults
and the corresponding fixes; (3) it should provide APIs for users

https://sascope.github.io
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to access fundamental program representations, such as different
intermediate representations and analysis graphs. Otherwise, it is
difficult for us to identify PRFs in collected issues. Based on these
criteria, we selected four static analysis frameworks: (1) WALA [40]
can analyze Java, Android, and JavaScript programs using many
standard static program analysis techniques. (2) Soot [41] is a frame-
work that analyzes, instruments, and optimizes Java and Android
applications. (3) SootUp [37] is a new version of Soot with a com-
pletely overhauled architecture. (4) Doop [7] is a framework for
Java pointer analysis.

Table 1: Issue distribution for four static analysis frameworks

SAF #Star #Issue𝑐 #Issue𝑘 #Issue𝑎

Soot 2782 773 168 64
Wala 724 321 119 30
SootUp 486 319 79 38
Doop 129 45 26 9

Total 4121 1458 392 141

3.2 Issue Collection

Among the studied static analysis frameworks, Doop uses BitBucket
for issue tracking, while the others use GitHub instead. Since there
are around 1458 closed issues in their issue tracking systems, we
filtered out the irrelevant ones to keep the manual inspection of the
issues manageable. In particular, we used keywords representing
various forms of program representations, including “IR”, “AST”,
“hierarchy”, and “graph”, to search for relevant closed issues. Overall,
we collected 392 issues based on the keywords. Then, we manually
reviewed the issues and removed the ones that are not faults, have
no fixing commits, or are irrelevant to program representations.
Table 1 lists, for each SAF, the number of stars in its open-source
repository, the total number of closed issues in its issue tracking
system (#Issue𝑐 ), the number of program representation issues
returned by the keyword-based search (#Issue𝑘 ), and the number
of PRFs confirmed by the manual analysis (#Issue𝑎). In the rest of
this paper, we refer to the PRFs using their IDs in the form Tool-
###, where Tool denotes the name of a static analysis framework,
whereas ### represents the corresponding issue ID on BitBucket or
GitHub. As developers have confirmed and fixed all the PRFs, we
did not try to reproduce them manually.

3.3 Issue Labeling and Reliability Analysis

This study focuses on issues related to program representation
faults and analyzes them from three aspects, i.e., the symptoms
it exhibits, root causes at each stage, and fix strategies. The en-
tire study took us around six months to complete. To categorize
(or label) the issues from each aspect, we followed taxonomies of
previous work [11, 63, 67, 86, 88] and adapted them to our task.
Specifically, one author first looked through all the issue reports
and pull requests to determine the labels in these three aspects,
including adding domain-specific categories and eliminating unnec-
essary categories. Then, two authors independently labeled these
issues using the previously defined categories. We use Cohen’s
Kappa coefficient [78] to assess the agreement between these two

authors. First, the two authors labeled 5% of the issues, and Co-
hen’s Kappa coefficient was nearly 0.65. Then, they had a training
discussion and labeled 10% of the issues (including the previous
5%). At this stage, Cohen’s Kappa coefficient reached 0.92. After an
in-depth discussion on the issues with different labels, the two au-
thors labeled the remaining issues in nine iterations, each covering
ten more percent of the issues. Cohen’s Kappa coefficient remained
greater than 0.9 in the process, and the two authors discussed with
a third author to settle any disagreement between them in each
iteration. Finally, all issues were labeled consistently.

3.4 RQ1: Bug-Prone Program Representations

In this RQ, we focus on understanding which program representa-
tions are more prone to bugs. Table 2 shows, for each SAF, the total
number of PRFs we inspected and the breakdown of that number
to different types of program representations.

Table 2: The total number of PRFs we inspected and the breakdown

of that number to different types of program representations.

SAF CG IR CFG CH DG PAG PDG AST Total

Soot 14 17 11 11 5 3 1 2 64
SootUp 9 12 9 5 3 0 0 0 38
WALA 16 1 2 5 3 1 1 1 30
Doop 4 1 0 1 0 1 2 0 9

Total 43 31 22 22 11 5 4 3 141

IR: Intermediate Representation, CG: Call Graph, CFG: Control Flow Graph, DG:
Dataflow Graph, CH: Class Hierarchy, PAG: Pointer Assignment Graph, PDG: Pro-
gram Dependency Graph, AST: Abstract Syntax Tree.

Table 2 confirms that static analysis frameworks have bugs that
affect all of the studied program representations. The call graph
is the most bug-prone program representation among the eight
program representations partly because call graphs can be rather
complex and hard to get all right and partly because they provide
the foundation for many other analyses and, therefore, are more
thoroughly tested. Intermediate representation is the second com-
mon bug-prone representation, especially in issues related to Soot
and SootUp. The number of issues related to AST is the lowest
because static analysis frameworks usually adopt class files as the
input and convert them into IR for further analysis, only WALA
supports mature source code frontend among four evaluated SAFs.

Finding 1: The top two most bug-prone program representa-
tions are call graph and intermediate representation, accounting
for 52.5% of the studied issues.

3.5 RQ2: Symptoms and Root Causes

In this section, we attempt to understand the symptoms caused
by the analysed issues, their distribution across different stages of
the SAF workflow, and their root causes. Overall, we summarize
four symptoms. Table 3 shows the symptom distribution in the
workflow of static analysis frameworks.

3.5.1 Missing Elements in Program Representation (MEPR). Ta-
ble 3 shows that missing elements in program representation is the
most popular symptom. This symptom category involves the pro-
gram representations that are missing elements. Table 3 shows that
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Table 3: Distribution of symptoms at each phase of workflow

Symptom Core Analysis Program Parse Data Input/Output Total

MEPR 40 7 5 52
FPRG 21 26 2 49
IEPR 18 11 0 29
IPRG 8 3 0 11

Total 87 47 7 141

MEPR: Missing Elements in Program Representation, FPRG: Failed Program Repre-
sentation Generation, IEPR: Incorrect Elements in Program Representation, IPRG:
Inefficient Program Representation Generation.

this symptom may be observed in all phases, and it occurred most
frequently in the core analysis stage (40/52, 76.9%). Most MEPR
issues at this stage were due to improper handling of (implicit) in-
vocations to special methods during call graph construction (23/40,
57.5%). For instance, Figure 2 shows a piece of code that reveals
SootUp-459 [27]. SootUp should be able to identify an invocation
from A.foo to the class initialization method A.clinit in the code if
method foo is set as an entry method during call graph construction,
but it failed to do that. Besides, the developers may understand pro-

1 class A {
2   static { System.out.println("A.<clinit>"); }
3   public void foo(){
4     System.out.println("foo");
5   }

6}

missing

Figure 2: SootUp incorrectly processes clinit methods

gram representation construction algorithm incorrectly. In SootUp-
456 [29], Rapid Type Analysis (RTA) algorithm [5] wrongly set the
processed methods as completed after the first-round process as
RTA algorithm is implemented via a worklist, which can traverse
the methods iteratively to find more caller and callee targets. Hence,
the RTA algorithm may process each method multiple times rather
than once. Figure 3 shows SootUp-456 [29] that the call edge from
A.process to C.target should be added to the call graph, but A.process
method was labeled as “completed” after the first visit at line 6, caus-
ing the re-visiting at line 10 not having any effect. In general, to
construct correct call graphs, developers should (1) take note of
special methods like clinit and concrete methods in an abstract
class, (2) consider the inheritance relationships between classes,
and (3) traverse the graphs to obtain information of all classes.

Meanwhile, class hierarchy and control flow graph are other
common representations triggering MEPR issues at core analysis
stage. For instance, in WALA-322 [51], developers failed to add
unresolved superclasses to the class hierarchy graph. However, un-
resolved superclasses may not affect some analysis functionalities,
e.g., building IR, and developers provided the phantom class to
handle it. In Soot-385 [70], Soot tried to convert Shimple-based
control flow graph to Jimple-based, both of which are intermediate
representations. To achieve that, Soot had to eliminate the Phi()
function in Label 2 of Figure 4. However, it incorrectly put the
instruction r0_2=r0 in the last slot of Label 1 block as this block is a
try handler of a trap statement, and preceding statements may lead
to uninitialization errors of r0_2.

1  class B { public void target() {} }
2  class C extends B { public void target() {} }
3  class D extends B { public void target() {} }
4  class A {
5    public void foo() {
6      process(new D());
7      second();
8    }
9    public void process(B b) { b.target(); }
10  public void second() { process(new C()); }
11}

missing

Figure 3: SootUp wrongly implemented RTA algorithm

Label 2:
$r4 = @caughtexception
r0_2 = Phi(r0 #0,r0_1 #1)
r5 = $r4

r0 = null
Label 1:

$r2 = new java.util.Scanner
$r3 = java.lang.System.in
r0_2 = r0 // wrong slot

Specialinvoke $r2.<init>($r3)

r1 = $r2

r0_1 = r1.nextLine()

Figure 4: Soot-385: Incorrect control flow graph construction

Data input/output is also a common phase for MEPR issues (5/52)
due to the wrong process for setting input/output data related to
program representations. For instance, in Soot-524 [22], developers
did not reset the variable that configures input class path, leading
to incomplete elements in analysis results.

Finding 2:MEPR is the most common symptom of PRFs, and
many such PRFs occur at the core analysis phase. Two common
root causes of MEPR are (1) neglecting certain methods and (2)
misunderstanding of graph construction algorithms.

3.5.2 Failed Program Representation Generation (FPRG). Failed
program representation generation is the second most popular
symptom (49/141, 34.7%), especially for the program parsing stage
(26/49, 53%). This refers to the scenario where the program repre-
sentation generation terminates unexpectedly. At program pars-
ing stage, most issues are due to lack of consideration of specific
language features. Figure 5 shows an example where WALA used
LambdaMetaFactory to parse a lambda invocation expression (repre-
sented by invokedynamic instruction in bytecode) and get the callee
target (println) method at line 1. However, developers wrongly used
this function to parse the new LambdaMetaFactory statement at line
2 as they mistakenly treated this call site as being generated by the
compiler to handle lambda invocations, and actually this statement
is an invokevirtual instruction in bytecode. Our study revealed that
all evaluated SAFs (except for Doop) have issues parsing lambda
expressions.



Characterizing and Detecting Program Representation Faults of Static Analysis Frameworks

1 new Thread(() -> System.out.println("Lambda")).start();
2 LambdaMetaFactory factory = new LambdaMetaFactory();

Figure 5: Wrong IR construction for lambda expression
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Figure 6: SootUp-326 [35]: An operand stack underrun issue

The second root cause triggering FPRG is incorrect intermediate
representation (IR) optimization. SAFs include many optimization
algorithms to optimize IR (e.g., dead assignment and unused local
variable elimination [41]), but these algorithmsmay have implemen-
tation errors. For example, in Soot-358 [6], developers mistakenly
marked the code in the trap to-be-removed as reachable when per-
forming dead code elimination. The third root cause is related to the
operand stack. As JVM is a stack-based virtual machine, SAFs adopt
an operand stack for simulation. Figure 6 shows SootUp-326 [35]
that developers first initialized the operand stack before block 1 to
simulate the IR construction of the left path (1->2->4). However,
they did not recover the operand stack before the IR construction of
the right path. Hence, the operand stack has insufficient elements
when basic block 4 is re-processed, causing a stack underrun error.

Finding 3: Three common root causes for failed program repre-
sentation generation at program parsing stage are (1) missing
consideration of specific program elements, (2) incorrect IR opti-
mization, (3) wrong operand stack for simulating JVM stack.

The second FPRG-prone stage is core analysis (21/49, 42.9%).
Two leading root causes are (1) concurrency bugs in class hier-
archy and (2) inadequate handling of edge representation. Class
hierarchy is often accessed and modified by different threads. Fig-
ure 7 shows Soot-1189 [53] that different threads simultaneously
invoked getOrMakeFastHierarchy, leading to runtime error due to
concurrent hierarchy construction. Besides, inadequate handling
of edge representation is the second most popular root cause. In
Soot-416 [26], Soot threw an runtime exception when handling a
graph where the dominator of a block is the same as the block itself.

1 public FastHierarchy getOrMakeFastHierarchy() {
2   if (!hasFastHierarchy()) { setFastHierarchy(new FastHierarchy()); }
3   return getFastHierarchy();
4 }

Figure 7: The concurrency bug in class hierarchy of Soot

3.5.3 Incorrect Elements in Program Representation ( IEPR). IEPR
is the third common symptom (29/141, 20.6%). This category in-
volves program representations with incorrect or redundant pro-
gram elements. 62.1% IEPR issues occurred at core analysis stage.
For example, in SootUp-495 [30], developers fixed the RTA imple-
mentation by only considering new() expression as the instantiated
class rather than init method in bytecode. Otherwise, RTA may
wrongly regard statements like super(); as the class instantiation,
leading to incorrect edges in the call graph. In SootUp-715 [32],
developers did not add the essential libraries from the configura-
tion for specifying dependency (used to provide knowledge for
analyzing input programs) to the call graph, and SAFs should not
perform core analyses to the libraries. The remaining 37.9% issues
are related to program parsing stage, including two root causes:
(1) incorrect type assignment and (2) miscompilation in compiler-
synthetic methods. Figure 8 shows an example of the incorrect type
assignment in SootUp-103 [9] where the developer incorrectly re-
solved boolean expression at line 1 to integer type because SootUp
did not support boolean type and used integer 1 or 0 to represent
true or false, resulting in an incorrect return statement at line 8.
Figure 9 shows an example of miscompilation in compiler-synthetic

1 public boolean logicalOr(boolean a,boolean b){ return a||b; }

1 r0 := @this:BinaryOperations
2 $z0 := @parameter0: boolean
3 $z1 := @parameter1: boolean
4 if $z0 ==0 goto $i0 = $z1
5 $i0 = 1
6 goto [?= return $i0]
7 $i0 =$z1

8 return $i0

Figure 8: Incorrect boolean expression resolution in SootUp

methods where the compiler would generate a get method for the
Supplier<Object> at line 1 to obtain the inner object, but Soot fails
to consider the return type of new at line 1 when parsing the gen-
erated get method, causing an incorrect return statement with void
type at line 7.

1 public java.lang.Object get() {
2   A$init__1 $r0;
3   java.lang.Object $r1;
4   $r0 := @this: A$init__1;
5   $r1 = new java.lang.Object;
6   specialinvoke $r1.<java.lang.Object: void <init>()>();
7   return;

8 }

1 public Supplier<Object> constructorReferereturn(){ return Object::new; }

Figure 9: Wrong return of a compiler-synthetic method

Finding 4: IEPR mainly appeared at core analysis and program
parsing stages. Developers should take note of (1) type resolution
and (2) IR generation of compiler-synthetic methods to avoid it.

3.5.4 Inefficient Program Representation Generation ( IPRG). This
symptom category occurs when the time cost for the program repre-
sentation exceeds the expectations of developers or users. Although
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this symptom occurs less frequently (11/141, 7.8%), it still affects
the usability of SAFs. 72.7% (8/11) IPRG issues arose during core
analysis phase. This phase involves three common root causes. First,
developers implemented inefficient core analysis algorithms (e.g., in
SootUp-728 [31], CHA is invoked twice to resolve call sites for the
inter-procedural CFG construction, which is time-consuming). The
second root cause is using immutable data structures. In SootUp-
281 [68], developers used Guava library [54] to implement the graph
structures but Guava only provided immutable structures, and each
operation on them involved costly deep copying of objects. The
third root cause is the lack of a cache for storing program represen-
tation. In WALA-9 [14], developers repeatedly constructed the IR
and def-use chain (two time-consuming operations) of a method.
To avoid the performance downgrading, developers cached the IR
and def-use chain and adoptedWeakReference to relieve GC release
problem. Overall, we suggest developers to: (1) avoid redundant
analysis operations (e.g., resolving call sites when constructing
ICFG); (2) avoid using immutable data structures to store analysis
results; (3) use cache to store results of time-consuming operations.

Finding 5: Most inefficient program representation generation
took place at the core analysis stage (8/11) due to algorithm
implementation, immutable structure, and cache missing.

3.6 Fix Strategy

We uncovered six fix strategies for fixing PRFs. In this section, we
first summarize each strategy and show fix patterns in each strategy.
Table 4 shows the fix strategy distribution among the four SAFs.

Table 4: Distribution of fix strategy among SAFs

Symptom FAD FIR FIT FPC FLF FCB Others Total

Soot 24 17 8 4 4 5 2 64
SootUp 18 9 6 0 4 1 0 38
WALA 7 9 12 1 1 0 0 30
Doop 0 3 2 4 0 0 0 9

Total 49 38 28 9 9 6 2 141

3.6.1 Fix Improper Program Representation Construction Algorithm
Design (FAD). Table 4 shows that FAD is the most popular fix strat-
egy (49/141). This strategy fixes design flaws like misunderstanding
the construction algorithm or neglecting specific program elements
that affect the results. FAD involves three patterns: (1) adding func-
tionality to handle specific program elements, e.g., concrete methods
in abstract class or interface. In Soot-514 [79], developers forgot
to consider all types of concrete methods when computing the lo-
cal pointer assignment graphs (PAG). To fix the bug, developers
change the conditions to filter these unprocessed methods. (2) fixing
incorrect logic of algorithm implementation. Figure 10 shows Soot-
486 [48] that developers inserted goto instructions to implement
control flow jumps from current instruction 𝑆 to target instruction
𝑇 . However, due to the restriction of jump distance, one goto cannot
fulfill the gap between 𝑆 and 𝑇 . Developers used multiple goto and
inserted one 𝑆

′
in the next slot which cannot reduce the actual

distance to 𝑇 as it was also moved to the next slot, causing endless
goto insertion and an infinite loop. To fix this, developers used a

binary search to determine the farthest slot a goto instruction can
reach and insert it, closing the gap to𝑇 . (3) avoiding redundant com-

putational operations. In SootUp-728 [31], developers constructed
call graphs twice to build the inter-procedural CFG. Hence, they
removed the second CG construction and reused previous results.

Jump Instruction S  

Target Instruction T

Jump Instruction S

Target Instruction T

New Jump Instruction  S’      Distance x

Distance x

…

…

Figure 10: Incorrect goto instruction insertion

Finding 6: FAD is the most frequently used fix strategy (34.8%),
covering three fix patterns: (1) fix missing functionalities to han-
dle specific program elements, (2) fix incorrect logic of algorithm
implementation, (3) avoid redundant computational operations.

3.6.2 Fix Incorrect Program Element Resolution (FIR). The second
common fix strategy is FIR (38/141). SAFs rely on the resolution to
understand the type and property of a specific program element
(e.g., for a call site, the resolution analyzes the symbolic informa-
tion attached to the call site and finds the actual method to be
invoked). Fixing the call site resolution of invokedynamic instruc-
tion introduced by JSR-292 [59] is a popular pattern in FIR. In
WALA-285 [20], developers misused invokedynamic handler to re-
solve the statement new LambdaMetaFactory, causing a crash. To
fix this, they changed the condition of resolving the invokedynamic

instruction to filter <init> methods. Type dispatch via class hier-
archy is a common practice when resolving classes or methods.
Type dispatch analyzes program elements from two perspectives:
(1) searching for unimplemented methods or fields in the super-
class, e.g., constructor ; (2) traversing down the hierarchy to find the
potential targets when the call site target defined in the superclass
does not have specific implementation. In SootUp-499 [28], SootUp
did not find the concrete method implementation in the current
class, and the fix involves getting it from the superclass. Another
common strategy is fixing incorrect type resolution as developers
either ignore the type resolution or confuse the types with similar
ones. In Soot-1739 [24], WeakObjectType is a subclass of RefType
which includes a SootClass-type field. However, Soot only resolves
the name ofWeakObjectType-defined variables without the informa-
tion saved in SootClass like internal fields or methods. Developers
added the missing resolution for the SootClass-type field to fix the
issue. The last sub-strategy of FIR is fixing incorrect dependent
libraries which involves the original symbolic information for type
resolution. Developers usually added missing libraries or updated
dependent libraries. In Doop-1 [73], developers updated the version
of Souffle in Doop to fix the fault.

Finding 7: FIR is the second most common fix strategy (27%),
which includes fixing incorrect dispatch or resolution of dynam-

icinvoke call site, repairing expression type assignment, and ac-
complishing type resolutions due to inheritance.
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3.6.3 Fix Incorrect Program Representation Traversal (FIT). Fixing
incorrect program representation traversal is the third common fix
strategy (28/141). Traversal is used to obtain information from pro-
gram representation. We find two main fix patterns of this strategy.
The first pattern is fixing incomplete traversal, e.g., in Soot-875 [52],
developers did not visit and resolve the inner class so the fix involves
rounding out the traversal. The second pattern is fixing incorrect
setting of state variables. Soot’s developers did not realize that the
successor of a statement may include itself and failed to mark the
visited statements, leading to a dead loop fault in SootUp-798 [36].
Developers added a state label to mark the visited statement. Fig-
ure 6 shows another example when traversing the two control flow
paths, SootUp did not recover the operand stack after traversing
the first path. To fix this, developers used a deep copy stack instead
of directly using the operand stack attached in the entry block.

3.6.4 Fix Incorrect Processing of Configuration (FPC). FPC includes
nine issues that fixes incorrect configuration. We divide them into
two categories. The first category is fixing incorrect logic for pro-
cessing configurations. For example, in Doop-4 [74], Doop gave
incorrect results when given an input name with spaces as it splits
input commands by spaces, and the name was incorrectly divided
into multiple tokens. To fix the issue, developers used quotation
marks to isolate the file path to avoid segmentation. Another cat-
egory is adding new options to offer more analysis methods for
users to choose. For instance, Figure 11 shows Soot-109 [64] that
the pedantic throw analysis added an edge from each statement
in the try branch to catch handler (namely statements at lines 3–7
to handler 8–10). However, the edge from line 6 to catch handler
is incorrect as the path (1–2)->6->(9–10) led to an uninitialization
error of r4 at line 10. Hence, developers added an option for users
to select the throw analysis mode to avoid applying pedantic throw
analysis to such input programs.

1 java.lang.Object $r4;
2 if $r1 != null goto Label 1;
3 $r4 = <com.google.ads.AdActivity: java.lang.Object b>;
4 goto Label 2;
5 Label 1:
6   return;
7 // ...
8 Label 2:
9   $r8 := @caughtexception;
10 exitmonitor $r4;

Figure 11: Pedantic throw analysis leads to verification error

3.6.5 Fix Concurrency Bug (FCB). We find six issues due to incor-
rect concurrency operations. Five of them stem from concurrent
access to the hierarchy. Developers adopted two sub-strategies:
(1) using thread-safe data structures (e.g., in SootUp-591 [10], as
HashMap cannot support concurrent operations, developers re-
placed it with Cache from Guava); (2) use synchronized statements
(e.g., in Soot-1125 [33], different threads simultaneously visited the
hierarchy triggering concurrent modification exception, and devel-
opers added synchronized to the read(), write(), and clear() methods
of hierarchy). The remaining issue is due to the fields defined in

a transformation class used by multiple threads, and developers
changed these fields to local variables.

3.6.6 Fix Neglected Language Feature (FLF). Due to frequent up-
dates of Java/Android versions, static analysis frameworks may not
meet the specification requirements. For instance, in Soot-35 [69],
developers considered the neglected annotations in Dalvik bytecode
that Jimple converts.

3.6.7 Others. Two faults were not fixed by previously discussed fix
strategies. In Soot-502 [16], developers wrongly used decrement op-
erators (index-- instead of --index), causing out-of-bounds read error.
In Soot-1874 [45], this reference was missing on the object leading
to edges.remove(edges) which should be this.edges.removeedges.

3.7 RQ4: Oracle Design

In this section, we try to understand how developers identify an
issue as a PRF and the oracles developers use. This research question
helps us to design oracles for automated PRF detection.

Most issues ofmissing or incorrect elements in program represen-
tation are found by the analysis results violating the expectations
of SAF users or the unit tests manually crafted by the developers.
These two approaches rely on the prior knowledge of developers
and users. Hence, they cannot be directly applied to detect pro-
gram representation faults automatically. Another two approaches
are based on the comparison between analysis results. The first
approach compares the analysis results between algorithms with
the same purpose but different precision [17, 19], and the second
approach compares the analysis results from different tools with the
same target (e.g., Doop-1 [73] compared the results from different
datalog engines). This leads us to a differential testing approach that
can be automated. All failed program representation generation
issues were recognized by exceptions that led to crashes. Inefficient
program representation generation issues were usually identified
by measuring the actual waiting time of the generation. Users may
perceive long waiting time as a performance issue, especially when
the input program is relatively small (e.g., 10 minutes in SootUp-
558 [81]). Hence, failure to achieve results within a conservative
time limit can be an oracle for detecting performance issues. The
others are spotted by developers as they proactively found redun-
dant computational operations.

Finding 8: Comparing the analysis results based on algorithm
precision and functionality is a promising approach for MEPR
and FPRG detection. For FPRG faults, inspecting the exception
stack trace can recognize them.

4 Methodology of SAScope

We proposed and implemented SAScope, an automated testing
framework to detect program representation faults via two-dimensional
testing. Figure 12 shows the overall workflow of SAScope. It in-
volved two main parts: metamorphic testing and differential testing
components, which are inspired by our study Finding 8. First, we
give a formal definition 4.1 of program representation based on
existing work [2, 42, 82]. For instance, a node 𝑉 in the call graph
is a method representing caller or callee, and an edge 𝐸 represents
the calling relationship between two methods.
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Definition 4.1 (Program Representation). Program representations
contain different forms of modeling programs, including graphical
representations and instruction representations. For a graphical
representation, we adopt a directed graph G =< 𝑉 , 𝐸 > to describe
it formally. 𝑉 involves all program elements and 𝐸 =< 𝑣𝑖 , 𝑣 𝑗 >

depicts the relationships between program elements 𝑣𝑖 and 𝑣 𝑗 in 𝑉 .
For the instruction representation, we use a listL = [𝑙1, . . . , 𝑙𝑛] (𝑛 ≥
1) to define it, and each element 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑛) in L represents an
instruction.

Algorithm 1 shows more details of these two components, and
currently we focus on testing graphical program representation.
Given an input program 𝑝 in 𝑃𝑟𝑜𝑔𝑠 , SAScope first invoke a static
analysis framework 𝑆 via the invocation template (lines 4–5) to
get program representations via different algorithms at lines 27–
33. ResList stores the program representations of 𝑆 sorted by the
precision in ascending order. If 𝐼𝑛𝑣𝑜𝑘𝑒𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 terminates unex-
pectedly or cannot obtain any analysis result within the 𝑡𝑖𝑚𝑒𝐿,
𝑅𝑒𝑠𝐿𝑖𝑠𝑡 will be empty, and SAScope records a potential crash (Line
6–8). For the program representations generated by identical SAF
with different algorithms, SAScope leverages metamorphic testing
at lines 9–16 to reveal potential faults. Then, the analysis results
will be appended to 𝑅. In lines 18–25, SAScope uses differential
testing to inspect program representations from different SAFs
with the same input program and analysis algorithm. It records the
inconsistencies between them as potential faults.

Invocation Template

SAF: SootUp 
Program Representation: 
Call graph
Analysis Precision: CHA

SAF: Wala
Program Representation: 
Call graph
Analysis Precision (CHA)

Differential
Analysis

Metamorphic
Relation

SAF: SootUp 
Program Representation: 
Call graph
Analysis Precision: VTA

Property-Based
Grouping

……

Static Analysis Frameworks

……

Oracle 

Fault Warnings

Potential Faults

Figure 12: Overall Workflow of SAScope

Invocation Template. For input programs to be analyzed, we de-
signed a template to invoke various analysis modules in evaluated
static analysis frameworks (SAFs). For a SAF, the template will re-
tain all configurations except for input programs before starting an
analysis. Figure 13 shows a template example used to activate RTA
analysis in Soot. For configurations not involved in the templates,
we reuse the default values of the evaluated SAFs.

1 AnalysisInputLocation input = new JavaClassPathAnalysisInputLocation(
2                                                            "INPUT_PATH", SourceType.Application);
3 JavaView view = new JavaView(new ArrayList<>() {{add(input);}});
4 CallGraphAlgorithm rta = new RapidTypeAnalysisAlgorithm(view);
5 CallGraph cg = rta.initialize(entryMethods);

Figure 13: A template example for Soot RTA algorithm

Algorithm 1: Overall SAScope Testing Approach
Input: Input programs Progs, a set of static analysis frameworks SAFs,

timeout 𝑡𝑖𝑚𝑒𝐿

Output: A set of potential issues in static analysis frameworks I
1 I ← ∅
2 for 𝑃 ∈ Progs do
3 R← []
4 for 𝑆 ∈ SAFs do
5 𝑅𝑒𝑠𝐿𝑖𝑠𝑡 = InvokeTemplate(𝑃 , 𝑆 , 𝑡𝑖𝑚𝑒𝐿)
6 if 𝑅𝑒𝑠𝐿𝑖𝑠𝑡 == 𝑛𝑢𝑙𝑙 then

7 𝐼 = 𝐼 ∪ {𝑃, 𝑆 }
8 continue

9 for 𝑖 = 1→ |ResList | − 1 do
10 if 𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖 .𝑉 ⊉ 𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖+1 .𝑉 then

11 𝐼 = 𝐼 ∪ {𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖 .𝑉 , 𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖+1 .𝑉 }
12 for 𝑣 ∈ ResListi .V ∩ ResListi+1 .V do

13 𝐸1 = 𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒 (𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖 , v)
14 𝐸2 = 𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒 (𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖+1, v)
15 if |𝐸1 | ⊉ |𝐸2 | then
16 𝐼 = 𝐼 ∪ {𝐸1, 𝐸2 }

17 𝑅.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑅𝑒𝑠𝐿𝑖𝑠𝑡 )
18 for 𝑖 = 1→ |R | − 1 do
19 if 𝑅𝑖 .𝑣 ≠ 𝑅𝑖+1 .𝑣 then
20 𝐼 = 𝐼 ∪ {𝑅𝑖 .𝑉 , 𝑅𝑖+1 .𝑉 }
21 for 𝑣 ∈ Ri .V ∩ Ri+1 .V do

22 𝐸1 = 𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒 (𝑅𝑖 , v)
23 𝐸2 = 𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒 (𝑅𝑖+1, v)
24 if 𝐸1 ≠ 𝐸2 then
25 𝐼 = 𝐼 ∪ {𝐸1, 𝐸2 }

26 return I

27 Func InvokeTemplate (P , S, 𝑡𝑖𝑚𝑒𝐿):

28 𝑅𝑒𝑠𝐿𝑖𝑠𝑡 ← ∅
/* Ψ denotes algorithms supported by 𝑆, sorted by the

precision in ascending order */

29 while 𝑒𝑥𝑒𝑐𝑇𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒𝐿 do

30 for𝜓 ∈ Ψ do

/* Invoke S on P to get analysis results */

31 = 𝑆.𝑖𝑛𝑣𝑜𝑘𝑒 (𝑃,𝜓 )
32 𝑅𝑒𝑠𝐿𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑅𝑒𝑠𝑢𝑙𝑡 )

33 return 𝑅𝑒𝑠𝐿𝑖𝑠𝑡

4.1 Testing Approaches and Oracle Design

In general, SAScope depends on two testing components to rec-
ognize program representation faults. Both of them rely on the
analysis results of the static analysis frameworks. In the rest of
this section, we adopt 𝜙 denotes a program representation and 𝛿
denotes its generation algorithm.

4.1.1 Metamorphic Testing. Our key insight is that static analysis
frameworks usually support multiple program representations con-
structed using different algorithms with various precision levels
(where one representation is more precise than the other). Based
on this insight, we design SAScope that adopts a new metamorphic
relation. Specifically, the metamorphic relation leverages the total
order relation of different program representation algorithms in
the precision lattice. As prior work [25] includes the proofs for
many algorithms in the precision lattice, we extract and focus only
on the related algorithms supported by evaluated SAFs. Figure 14
shows the precision lattice of tested algorithms in our work. “CFA”
means call site sensitive, “Obj” denotes object sensitive, and the
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precision increases gradually from the bottom-up direction in the
lattice. For instance, rapid type analysis (RTA) and class hierarchy
analysis (CHA) are popular call graph generation algorithms. Fig-
ure 14 shows that RTA is more precise than CHA as it prunes nodes
where internal types are never instantiated [5]. Currently, our meta-
morphic relation only conservatively supports algorithms for call
graphs and pointer assignment graphs that have been proven in
prior work [25]. In the future, it is worthwhile to include other
program representations with different precision levels (e.g., IR
with different precision [58]) to detect more faults. Def. 4.3 presents
the metamorphic relation used in our metamorphic testing.

Definition 4.2 (Less Precise Operator (≼)). Given two program
representation construction algorithms 𝛿1 and 𝛿2, we denote 𝛿1 ≼
𝛿2 if and only if 𝛿1 is less precise than 𝛿2 based on the precision
lattice in Figure 14.

Lower
Bound

CHA

RTA

VTA

1-CFA 1-Obj

0-CFA

2-CFA 2-Obj

Upper
Bound

…… ……

Lower
Bound

CHA

RTA

VTA
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…… ……

Figure 14: Relative precision lattice of tested algorithms

Definition 4.3 (Metamorphic Relation). Given the program repre-
sentation 𝜙1 and 𝜙2 generated by 𝛿1 and 𝛿2 under the same input
program, they should possess the property 𝜙1 ⊇ 𝜙2 if 𝛿1 ≼ 𝛿2.

According to Definition 4.3, 𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖+1 .𝑉 (line 10 in Algorithm 1)
should be a subset of 𝑅𝑒𝑠𝐿𝑖𝑠𝑡𝑖 .𝑉 as the former is more precise than
the latter. Hence, we first check the node set relationship at lines 10–
11. Then, we compute the intersection of node sets and compare the
adjacent edges of each common node at lines 12–16. Any violation
of the Definition 4.3 will be regarded as a fault.

4.1.2 Differential Testing.

Definition 4.4 (Equivalent Program Representation). Two program
representation 𝜙1 and 𝜙2 are equivalent if and only if (1) G1 = G2
or L1 = L2; (2) 𝜙1 and 𝜙2 are generated by the same algorithm.

We observe that different static analysis frameworks usually
implement the same analysis algorithms, and they should produce
analysis reports with equivalent program representation (Def. 4.4)
given the same input program. Hence, differential testing is natu-
rally well-suited for this scenario. Specifically, SAScope first selects
two analysis reports 𝑅𝑖 .𝑣 and 𝑅𝑖+1 .𝑣 , which are generated by the
same algorithm in different static analysis frameworks (lines 18–19
in Algorithm 1), and performs differential analysis on these reports.
SAScope compares the node sets (lines 19–20) and adjacent edges
(lines 21–25). Then, it reports all discrepancies as potential faults.

4.2 Property-Based Grouping

As too many warnings are reported from previous steps, we need to
group them based on the underlying root causes to reduce the man-
ual efforts in examining these warnings. As observed from Findings
3–4 and 7, most program representation faults have their own syn-
tax and type features. Hence, we consider several characteristics to
classify the detected warnings: (1) the testing approach; (2) types
of related static analysis frameworks;(3) types of related generation
algorithms; (4) fine-grained properties of related program elements
(e.g., for a call graph bug, we consider the invocation instruction
type and the access modifiers of the caller and callee). Figure 15
shows a missing element in program representation fault found by
SAScope, the left is the minimized code example, and the right is
the group that includes this fault. Incorrect implementation of CHA
algorithm in WALA caused this fault, leading to a missing call edge
from constructor Test() to foo(). We identified it via metamorphic
testing as 0-CFA algorithm correctly constructed the call graph.

1  public class Test {
2    public Test() {
3      foo();
4    }
5    public void foo() {}

6  }

Approach: Metamorphic Testing
SAF: Wala
Algorithm: <CHA, 0-CFA>
Invocation Type: InvokeVirtual
Modifier: <public, public>

Figure 15: A MEPR fault in WALA and its group

5 Effectiveness of SAScope
We applied SAScope to Soot 4.4.2, WALA 1.6.2, SootUp 1.1.2, and
Doop 4.24.10 and conducted experiments to evaluate the effective-
ness of SAScope based on the experimental questions below:
Q1: How many unique bugs can SAScope find?
Q2: What is the effectiveness of the property-based grouping?
Input ProgramSelection.We selected the top 200 popular projects
(ranked by the number of usages) inMaven Central [23] as the input
programs because they are popular real-world projects. We did not
reuse benchmarks from prior testing approaches of static analysis
tools [56, 65, 80, 85] because: (1) benchmarks in prior work [34, 57]
are designed for specific tasks, whereas JCG [56] was designed for
evaluating the recall of call graphs and only used top 50 popularity
projects in Maven, Defects4J was used for debugging and program
repair with only 17 projects. Both of them are too small to reveal
bugs in static analysis frameworks. (2) some approaches [80, 85]
used the official test suites to test static analysis tools, but the test
suites of SAFs usually include small programs for unit testing which
may not contain complex structures (e.g., programs with multiple
methods are required for call graph constructions) for reaching
deep state of SAFs and revealing faults.

All experiments were conducted on a server with Intel Xeon(R)
CPU 3.20GHz and 192GB RAM. For each input library, we ran
SAScope on all analyzers in parallel and set the timeout 𝑡𝑖𝑚𝑒𝐿 as 5
hours. Note that we did not test SAScope on analyzed issues as it
was designed based on insights from these issues. Testing SAScope
on the same issues would introduce bias. There are two challenges
in evaluating SAScope on known issues: (1) it involves building
old versions of frameworks from their source code, which can
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be quite demanding (e.g., due to the absence of required external
libraries and the intricacies of the compilation process) and (2)
we are missing compilable input programs to reproduce some of
the known issues, but these programs can be hard to construct
manually, and SAScope requires them as input. Overall, the testing
times for SAFs are 10 (SootUp), 32 (WALA), 35 (Soot), and 37 (Doop)
hours.

5.1 Q1: Evaluating Effectiveness of SAScope
Table 5 shows the experiment results. We measure the effectiveness
of SAScope by counting the unique faults detected by each ap-
proach (“#UniqFaults” column). We use a property-based approach
(Section 4.2) to group warnings and consider all warnings within
the same group as one unique bug. In total, SAScope found 19
faults in evaluated SAFs, 5 have been fixed via merged pull requests
(“#Fixed” column).

Table 5: Effectiveness of SAScope

SAFs #Warnings #Groups #UniqFaults #Fixed

WALA 26951 10 8 1
SootUp 31734 11 7 4
Soot 21051 6 3 0
Doop 12896 4 1 0
Overall 92632 31 19 5

5.1.1 Case Study. We select two faults found by SAScope to show
SAScope’s fault detection capability. For each fault, we present its
root cause, the affected analyzer, and how SAScope found the issue.
A Missing Elements in Program Representation Fault in

SootUp [71]. Figure 16 shows a fault detected by SAScope where
the call graph misses an edge from m1 to m2. The fault occurs
due to the incorrect resolving of the lambda invocation at lines
3–4. As WALA currently supports MethodHandle resolving and has
this edge in the call graph, SAScope can detect this via differential
testing. We submitted this fault and SootUp’s developer replied to
us saying that it is an indirect edge which is currently not covered as
MethodHandle resolving is currently not supported in SootUp.

1 public class Test { 
2   public void m1() {
3     Runnable runnable = this::m2;
4     runnable.run(); 
5   }
6   public void m2() { System.out.println("m2"); }

7 }

missing

1 public class Test { 
2   public void m1() {
3     Runnable runnable = this::m2;
4     runnable.run(); 
5   }
6   public void m2() { System.out.println("m2"); }

7 }

missing

Figure 16: A MEPR fault in SootUp

An Incorrect Elements in Program Representation Fault in

Soot [38]. Figure 17 shows a fault caused by the incorrect imple-
mentation of RTA algorithm in Soot, causing an incorrect call edge
from main to Thread2.run(). SAScope found it via metamorphic
testing as the CHA algorithm correctly constructed the call graph.

1 class Thread1 extends Thread { public void run() {}}
2 class Thread2 extends Thread { public void run() {}}
3 public class Main {
4   public static void main(String[] args) {
5     Thread t = new Thread1();
6     t.start(); 
7   }

8 }

Figure 17: An IEPR fault in Soot

5.1.2 Limitations. Similar to other testing tools, SAScope may re-
port false positives. Our manual analysis shows that it only reported
two FPs. Both FPs are caused by the minor difference among SAFs.
The first FP is due to Soot adding single quotes ("’") around reserved
words that appear in signatures. For instance, Soot use ‘with’ when
the method name is with, leading to the signature discrepancy with
other SAFs. Another FP is related to the bridge method handling.
The bridge method is generated by the compiler to fill the gap
between the subclass methods with different erasure signatures
and their superclass methods. WALA connect them via compiler-
synthetic bridge methods, but Soot and SootUp directly add a CG
edge connecting methods in subclass and superclass. Both FPs can
be removed by configuring SAScope to consider these special cases.

5.2 Q2: Evaluating Effectiveness of Grouping

Table 5 also shows the grouping results of evaluated SAFs. The
“#Warnings” column represents the number of overall fault warn-
ings and the“#Group” column shows the number of groups gener-
ated by the approach in Section 4.2. In total, the property-based
grouping approach can refine 92632 warnings down to 31 groups.
After investigation, we found some groups represent duplicated
bugs and 19 of them are unique faults. We randomly sampled 30
warnings from each group (930 warnings in total) to validate the
uniqueness of each group; all warnings in the same group are
caused by identical root cause. This indicates that our property-
based grouping helps SAScope identify unique bugs and save time
in manually checking the 92632 warnings.

6 Implication

Based on our study and findings, we discuss below implications:
Implication for Developers. Our study identifies the common
symptoms and their corresponding root causes at each stage and fix
strategies that may help developers of static analysis frameworks to
detect, understand, and fix program representation faults. We also
study program representations that are bug-prone, implying that
developers should pay attention to these representations (Finding
1). Based on the two most common symptoms of program repre-
sentation faults in our study (MEPR and FPRG), we realized that
developers of static analysis frameworks tend to either (1) neglect
specific program elements or (2) misunderstand the construction or
optimization algorithms (Finding 2–3). We hope that our study will
raise awareness among developers on the importance of generating
correct program representations to improve the accuracy of SAFs.
In terms of the workflow, our study revealed that developers should
pay careful attention to the core analysis stage because all studied
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SAFs have the greatest number of PRF faults at this stage, espe-
cially when constructing a call graph and class hierarchy. With the
evolution of Java specification, developers should also consider pro-
gram representation faults when updating the grammar (Finding
3,7). Meanwhile, as our study also revealed that redundant analysis
operations, immutable structures, and the lack of cache can lead to
performance issues, developers should consider these scenarios when
designing SAFs to improve the efficiency of the analysis.

Implication for Researchers. Our study and proposed frame-
work establish a basis for research in two promising directions.
First, automated detection of program representation faults is im-

portant but yet often neglected. For a static analysis framework,
completing missing or eliminating incorrect elements in various
forms of program representations is a worthwhile and long-term
research direction [44, 65, 66]. As shown in Table 3, MEPR and
IEPR account for 57.4% in all analyzed issues, which means detect-
ing PRFs is rewarding for fixing MEPR and IEPR faults. Finding 8
indicates that metamorphic testing is a promising approach for de-
tecting PRFs. Researchers can produce program representations in
various precision levels and perform differential analysis based on
their metamorphic relations to detect PRFs. Second, our fix strate-
gies (Findings 6–7) serve as preliminary studies for future research

on automated repair of PRFs. We observe that several fix strategies
in our study can be automated to reduce the effort in fixing them.
(e.g., Fix Incorrect Algorithm Design (FAD) can fix over one-third
of the issues). Most of them are implemented using similar patterns
(e.g., considering a particular element in program representation)
or fixing the logic errors in the generation algorithms.

7 Threats to Validity

External. Our study may not generalize beyond the studied frame-
works and other programming languages beyond Java. To ensure
the generalizability of our study, we select four representative static
analysis frameworks based on our selection criteria in Section 3.1,
and we systematically examine issues in these frameworks.
Internal. Manually categorizing PRFs may be biased. To reduce
this threat, we refer to prior literature to obtain program repre-
sentations commonly used by target SAFs, and we adopt existing
taxonomies before conducting our empirical study using an open-
coding scheme. Our code and scripts may have bugs that can affect
the results. To mitigate this, we open-sourced our tool and data.

8 Related Work

Studies related to Program Representation Faults. Several
prior studies focus on evaluating and improving unsoundness and
recall of call graphs [44, 56, 65, 66]. Our work differs from the prior
study in several key aspects: (1) we conduct the first study to under-
stand program representation faults of static analysis frameworks,
covering the bug-prone stages of the analysis workflow, symptoms,
root causes, and fix strategies; and (2) we propose metamorphic
relations and differential testing to automatically detect program
representation faults (which includes several call graph algorithms
and pointer assignment graphs). Several techniques [18, 47, 55, 62]
proposed novel program representation algorithms to support new
language features or improve its performance, but they did not
focus on program representation faults.

Testing Static Analysis Techniques. Several techniques have
been proposed for testing static analysis tools [3, 12, 15, 39, 46, 50,
72, 80] or compiler fuzzing [83, 84]. The most related work to us
is ECSTATIC [50], which can identify partial order relation bugs
of configuration in static analyzers. However, most program repre-
sentation faults are not triggered by configurations (only 6%, 9/141
issues in our study in Section 3.6.4) are related to configuration),
and SAScope can perform differential testing to detect faults across
different SAFs (but ECSTATIC only focuses on configuration faults
without differential testing). Several techniques use metamorphic
relation to solve the lack of oracle problem in testing static analyzer
tools [8, 43, 49, 85, 86]. Similarly, we use metamorphic relation
to address the oracle problem, but our metamorphic relation uses
the relative precision lattice of analysis algorithms. Meanwhile,
prior approaches [72, 85] specialized in finding other types of faults
in static analysis tools, whereas our technique focuses on finding
program representation faults.

9 Conclusion

We conducted the first empirical study which focuses on character-
izing and detecting program representation faults of static analysis
frameworks (SAFs) as program representation is the core of SAFs.
We studied 141 issues from four representative and diverse SAFs
(Soot, WALA, SootUp, and Doop), identify four symptoms and six
fix strategies. Moreover, we also summarized eight findings. Based
on these findings, we introduced a set of guidelines for PRF detec-
tion and repair. We also proposed SAScope, the first metamorphic
and differential testing framework to automatically find PRFs in
SAFs. With a two-dimensional testing approach, SAScope can au-
tomatically inspect the generated program representations based
on top the 200 popular projects in Maven Central and find 19 faults.
Currently, SAScope uses program representations generated by
real-world projects to detect PRFs. In the future, we can improve
SAScope by designing mutation operators specialized in generating
diverse program representations to detect more PRFs.
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