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Abstract
Supercritical airfoils are critical components in the design of commercial wide-body aircraft wings due to their ability to
enhance aerodynamic performance in transonic flow regimes. However, traditional design methods for supercritical airfoils
can be time-consuming and require significant manual effort, not to mention the high cost associated with computational fluid
dynamics analysis. To address these challenges, this paper introduces a highly automated approach for supercritical airfoil
design, called Evolutionary Generative Design (EvoGD). The EvoGD approach is based on the framework of Evolutionary
Computation and employs a series of sophisticated data-driven generative models incorporated with physical information to
iteratively refine initial airfoil shapes, resulting in improved aerodynamic performances and reduced constraint violations.
Moreover, to speed up the evaluation of the generated airfoils, a series of accurate and efficient data-driven predictors are
utilized. The efficacy of the EvoGD approach was demonstrated through experiments on a dataset of 501 supercritical airfoils,
including one baseline design and 500 randomly perturbed airfoils. On average, the generated airfoils showed improved
performance in terms of buffet lift coefficient, cruise lift-to-drag ratio, and thickness by 5%, 4%, and 1%, respectively. The
best generated airfoil outperformed the baseline design in terms of critical buffet lift coefficient and cruise lift-to-drag ratio
by 7.1% and 6.4%, respectively. The entire design process was completed in less than an hour on a personal computer,
highlighting the high efficiency and scalability of the EvoGD approach.
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VAE Variational autoencoder

Introduction

Modern commercial wide-body aircrafts often operate at
relatively high speeds, typically exceeding 0.8 Mach or
980km/h. The presence of high-speed transonic air flows
in certain regions around the aircraft, particularly above the
wings, requires mitigation. Supercritical airfoils are utilized
as cross sections in the design of commercial wide-body
aircraft wings to decrease drag, improve lift, and increase
stability and comfort. Given the growing importance of
environmental and economic efficiency in commercial wide-
body aircraft design, well-designed supercritical airfoils are
crucial for success.

However, the design of supercritical airfoils presents
a number of challenges, particularly the requirement for
precise determination of shape parameters as aerodynamic
performance is extremely sensitive to small geometric varia-
tions. This design process often necessitates the involvement
of experienced professionals and multiple rounds of design
iterations, simulations, and real-world testing.

In recent years, the rapid advancement of Artificial Intel-
ligence (AI) has led to an increase in attention towards
AI-assisted positive [1–6] and inverse [7, 8] supercritical air-
foil design. Despite the notable progress made in the field,
its development is still in its infancy and several critical open
challenges remain to be addressed.
❶ Costly datasets. Existing AI-assisted supercritical airfoil
designmethods often require a significant number of samples
for effective functioning. However, the collection of large-
scale datasets through computationally costly and sometimes
labor-intensive Computational Fluid Dynamics (CFD) anal-
yses can be prohibitively expensive.
❷ Complicated physical constraints. Existing AI-assisted
supercritical airfoil design approaches commonly use super-
critical airfoil parametrization methods such as sampled
coordinates or plain images. However, these approaches
do not effectively encode the rigid and complex physical
constraints of supercritical airfoils, resulting in potentially
unstable design outcomes.
❸ Inefficient design generation. ExistingAI-assisted super-
critical airfoil design methods frequently rely on random
or stochastic sampling for the generation of new airfoils.
However, due to the highly sensitive nature of aerodynamic
performance to design variables, these conventionalAImeth-
ods can be inefficient in producing high-quality designs.
❹ Imbalanced diversity and reliability. Existing AI-
assisted supercritical airfoil design methods either directly
optimize a limited number of designs or do not incorporate
local search operations. However, given the complex nature
of supercritical airfoil design, these AI approaches may only

produce airfoils that are either diverse or reliable, but not
both.

The Evolutionary Computation (EC) paradigm has been
widely recognized for its power in solving optimization prob-
lems [9]. In recent years, the application of data-driven EC
has shown promise in optimizing real-world problems [10].
However, despite efforts to apply data-driven EC to airfoil
design [11–13], the precision of the designs remains subpar,
particularly in the case of supercritical airfoils, which require
higher precision as their aerodynamic performance is more
sensitive than that of subcritical airfoils.

The limitations in precision of data-driven EC can be
attributed mainly to the fact that previous studies have pri-
marily focused on surrogate modeling of evaluators, leaving
the EC framework underutilized in terms of fully exploiting
the potential of data for solution generation. Although recent
research has investigated the use of generative learning in
EC for efficient solution generation [14], its low precision
remains a challenge to its practical application in tasks such
as airfoil design.

Therefore, to address the challenges faced by existing
AI-assisted supercritical airfoil design methods by fully
leveraging the potential of EC, this work proposes an Evo-
lutionary Generative Design (EvoGD) approach. On the one
hand, the framework of EC provides an optimal platform for
the generation of diverse and innovative supercritical airfoils.
On the other hand, filled by carefully designed data-drive
evaluators and generators, the proposed EvoGD approach is
able to generate and identify high-performing supercritical
airfoils with a high degree of accuracy and efficiency. The
main contributions of this work are:

– The proposed approach in this work offers a departure
from the traditional supercritical airfoil design process,
which often involves the expertise of experienced pro-
fessionals and multiple rounds of design iterations, sim-
ulations, and real-world testing. In contrast, the proposed
approach is purely data-driven, offering the potential to
significantly reduce the human effort and computational
costs involved in supercritical airfoil design.

– To address challenge ❶, the proposed approach in this
work leverages the EC framework and integrates it with
a unique type of generative models for accommodat-
ing unpaired inputs, thus allowing for effective operation
even on small datasets.

– To address challenge ❷, the proposed approach in
this work conducts an empirical comparison of vari-
ous parameterization methods for supercritical airfoils.
Based on the comparison, a suitable parameterization
method is selected that is capable of effectively capturing
most of the physical constraints of supercritical airfoils.

– To address challenge ❸, the proposed approach incorpo-
rates an AI generative model that is capable of directly
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generating high-performing supercritical airfoils with
improved aerodynamic and geometric characteristics.
Additionally, the approach minimizes the number of
designs that violate physical constraints, ensuring a
robust design solution.

– To address challenge ❹, the proposed approach in this
work employs amulti-objectiveEC framework integrated
with fast and accurate data-driven supercritical airfoil
generators and performance predictors. This allows for
the inherent consideration of both design diversity and
design reliability in the proposed approach.

– To accommodate the proposed approach with small data,
this work introduces a new generative model training
method. First, it incorporates physics information into
the training process to boost the accuracy and efficiency.
Second, it employs a combination of multiple generative
models rather than a single one, to enhance robustness at
the system level.

The remainder of this paper is organized as follows.
In “Related work” section, we provide a comprehensive
overview of previous studies on the application of AI to
airfoil design. In “Problem formulation” section, we jus-
tify our choice of parameterization method and formulate
the optimization problem for supercritical airfoil design.
In “Method” section, we elaborate our proposed EvoGD
approach andprovide a thoroughdescriptionof its implemen-
tation. In “Experimental study” section, we demonstrate the
comprehensive experimental results. In “Conclusion” sec-
tion, we conclude this paper with a summary of our findings
and future directions for research.

Related work

In recent years, the application of AI to airfoil design, partic-
ularly supercritical airfoils, has become a topic of increasing
interest due to the prohibitive computational expense of tra-
ditional CFD solvers. Early work by Yilmaz and German
[15] utilized Convolutional Neural Networks (CNNs) to pre-
dict subcritical airfoil performance, whichwas latermodified
by Hui et al. [16] to include wall pressure coefficients. In
addition to the use of data-driven surrogate models as per-
formance predictors, there has also been a growing body
of research on data-driven airfoil shape generation models.
For instance, Sekar et al. [17] used CNNs for inverse air-
foil design, where a subcritical airfoil was generated from
a given wall pressure distribution. On the other hand, direct
airfoil generation models have been explored, such as the
use of Generative Adversarial Networks (GANs) by Chen
et al. [18] and the use of Conditional Generative Adversar-
ial Networks (CGANs) by Yilmaz [19] for the generation of
subcritical airfoils with desired aerodynamic performance.

Despite the ease of generalization to different airfoil design
problems offered by these methods, which often adopt plain
images as representations for airfoil shapes and prediction
results, they may not be directly applicable to supercritical
airfoil design due to the highly sensitive nature of aerody-
namic performance to small changes in supercritical airfoil
shape.

The application of AI-assisted approaches towards super-
critical airfoil design has received growing attention in recent
years. A number of studies have proposed utilizing AI
optimization methods and/or AI predictors to address the
challenges in this field. For example, Wang et al. [1] used a
modified Particle Swarm Optimization (PSO) method and a
simple back-propagation neural network as the performance
predictor. Liu et al. [2] adopted a hybrid of Differential Evo-
lution (DE) and InvasiveWeedOptimization (IWO)methods
combined with a Gaussian Process (GP) as the predictor. The
rapid advancements inAI techniques, particularly deep learn-
ing, have also shown promising potential in this field. For
example, Bouhlel et al. [4] employed a CFD-enhanced Arti-
ficial Neural Network (ANN) to achieve a prediction error of
0.48%.Wu et al. [20] combined CNN and (GAN) to establish
a mapping between supercritical airfoils and transonic flow
fields. Wang et al. [8] employed a Conditional Variational
Autoencoder with Generative Adversarial Network (CVAE-
GAN) to generate supercritical airfoils’ wall Mach number
distributions and aDeepNeuralNetwork (DNN) tomap them
back to supercritical airfoils. Theseworks have demonstrated
the potential of utilizing AI techniques in supercritical airfoil
design.

Despite the recent progress inAI-assisted supercritical air-
foil design, the development of the filed is still in its infancy,
and there remain several technical details that require further
investigation. For example, the precision of existing data-
driven predictors can be limited when working with a small
dataset, and the combination of high-performing predictors
with simple, non-explorative AI optimization methods may
not yield optimal results. Furthermore, the sophisticated AI
generators currently in use do not guarantee the generation of
supercritical airfoils with improved performance compared
to existing designs. These limitations have underscored the
ongoing need for further research and advancements in AI-
assisted supercritical airfoil design.

Problem formulation

In this section, we will first introduce the NURBS as the
method for parameterizing the supercritical airfoils. Then,
the problem of supercritical airfoil design optimization will
be mathematically formulated by defining its optimization
objectives and constraints.
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Parametrizationmethod

Since we are considering supercritical airfoils whose aero-
dynamic performances are highly sensitive to shape modi-
fications and defects, the reasonable design variables shall
be the parameterized ones that perfectly describe super-
critical airfoil shapes. Apparently, the design variables of
plain images are impractical due to the relatively low pre-
cision and too much redundant variables. As summarized in
Table 1, although there are also other specified parameteriza-
tion methods for supercritical airfoil design, not all of them
are suitable in our case. For example, a commonly adopted
method was proposed by Kulfan et al. [21], where class and
shape functions are used to represent geometric Class Shape
Transformations (CSTs) and fitted to many supercritical air-
foils with an experienced Bernstein Polynomial Order (BPO)
as shape functions. However, one defect of thismethod is that
their parameters are not quite physicallymeaningful.Another
commonly usedmethod is the Parametric Section (PARSEC)
method proposed by Sobieczky [22]. This method has all
physically meaningful parameters that correspond only to
smooth airfoils with high robustness, but it cannot precisely
control supercritical airfoil shapes.

Out of comprehensive considerations, we have chosen the
Non-Uniform Rational B Spline (NURBS) curve [23] as our
parametrization method in this work. Below are detailed jus-
tifications.

First, sampled coordinates can be converted to a NURBS
curve easily. The general form of a NURBS curve, �C(u) ≡[
Cx (u),Cy(u)

]
, is given by:

�C(u) =
m∑

i=1

Ni,o(u)wi∑m
j=1 N j,o(u)wi

�Pi , (1)

where u ∈ [0, 1] signifies the parameter of the function �C(u),
while �Pi ≡ [

Pi,x , Pi,y
]
denotes the i th control point. The

array P = [ �P1, . . . , �Pm
]T represents the collective set of

all control points. Further, wi refers to the weight of �Pi , and
Ni,o(u) is the i th basis function of a Non-Uniform Ratio-
nal B-Spline (NURBS) curve of order o. Notably, the vector
notation corresponds to either a vector or a point in a two-
dimensional Cartesian coordinate system. It can be shown
that it is simple to fit a NURBS curve to a set of coordinates
X = [�x1, . . . , �xn

]T , which is equivalent to solving for P in
the least-squares solution of the system of equations:

NP = X, (2)

where

N i, j = N j,o

( ∑i−1
l=1 ‖�xl+1 − �xl‖

∑n−1
l=1 ‖�xl+1 − �xl‖

)

(3)
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is the basis matrix.
Second,NURBScan achievehigh representation accuracy

with a relatively small number of control points (i.e., design
variables). For example, in our study, a NURBS curve can
achieve amaximum relative error deviation of 10−5 with only
18 control points of order 3. By further removing redundant
variables, the actual number of design variables can be even
reduced to 16 real values, represented by the vector q, i.e., all
the y-coordinates except the first and last control points. The
control points P can then be reconstructed using a simple
function P(q), where P : Q → P and q ∈ Q, P(q) ∈ P .

Third, the relative geometric flexibility of NURBS makes
it desirable for use in our EvoGD approach. This feature
provides us with an enhanced level of control over the details
of supercritical airfoil shapes, making it possible to generate
novel and diverse supercritical airfoils that are distinct from
those in the dataset.

Additionally, the use of the Cartesian coordinate system
for the design variables makes it easier for our AI gener-
ators and predictors to model and calculate the validity of
designs. Furthermore, the actual supercritical airfoil shape
depends almost linearly and locally on the NURBS control
points, which helps to avoid the issue of generating designs
with small non-smoothness or fluctuations that can occur in
Proper Orthogonal Decomposition (POD) [24] and sampled
coordinate methods.

Optimization objectives and constraints

For our proposed EvoGD approach to be practical and appli-
cable in real-world scenarios, we consider several optimiza-
tion objectives, including: (1) aerodynamic performance, (2)
geometric performance, and (3) a series of aerodynamic and
geometric constraints. In particular, we take the following
geometric and aerodynamic performances of supercritical
airfoils into consideration:

– h: Thickness. This is the maximum distance between the
upper and lower surfaces of the supercritical airfoil, as
illustrated in Fig. 1.

– K (u): Convex metric. A smooth supercritical airfoil
implies that its convex metric has one and only one zero
point on the lower surface.

– α0: Cruise angle of attack. This is the angle at which the
supercritical airfoil produces a lift coefficient of CL,0,
which is 0.8 in this work, as shown in Fig. 2.

– CLD: Cruise lift-to-drag ratio. This is defined asCL,0/CD

(α0), where CD is the drag coefficient; it is depicted in
Fig. 2 as well.

Fig. 1 The shape of NASA SC(2)-0410 supercritical airfoil. The digits
“04” represent the theoretical optimal lift coefficient; the digits “10”
represent that the maximum thickness is 10% of its total width or chord
length c

Fig. 2 The curves of lift coefficients and lift-to-drag ratios vs. the angles
of attack for the baseline supercritical airfoil. The physical meanings
of α0, CLD and CL are depicted: at the cruise angle of attack α0, the
lift coefficient is exactly CL,0; at the same angle, the lift-to-drag ratio
is the CLD

– CL : Buffet lift coefficient. This is the lift coefficient at
the buffet angle of attack, which is defined as

α1 = (C ′
L)

(−1)
{
C ′
L

[
argmax
αl≤α≤αh

∣
∣C ′′

L(α)
∣
∣
]

− kdiff

}
,

where αl = −2, αh = 1 and kdiff = 0.1 for this work.
The buffet lift coefficient is also shown in Fig. 2.

– C P (α0): Wall pressure coefficients at cruise angle of
attack. In practice, the suction peak point Fsp is the
highest value of the wall pressure coefficients before
maximum thickness, while the shock wave point Fsw is
the wall pressure coefficient at the wall Mach number of
1. An acceptable wall pressure coefficient should have
limited decrease from Fsp to Fsw and contain exactly one
Fsw. This is plotted in Fig. 3.

In this work, we selectCL ,CLD and h as our optimization
objectives, and α0, C P (α0), h and K (u) as our constraints.
These values are functions of the NURBS control points,
represented by the design variables q. For the rest of the
paper, these values will be written as CL (q) and so on.

The cruise angle of attackα0 (q)must liewithin a specified
range, such as:

αmin ≤ α0 (q) ≤ αmax, (4)
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Fig. 3 The curve of wall pressure coefficients (C P ) vs. the horizontal
coordinates (x/c). The chord length c is set to 1 throughout this work.
The suction peak point Fsp and the shock wave point Fsw are the key
features. The suction peak point Fsp is the highest value of the wall
pressure coefficients before the maximum thickness, while the shock
wave point Fsw is the wall pressure coefficient at the wall Mach number
of 1

where αmin = 1◦ and αmax = 2◦ are commonly used.
Additionally, the suction peak Fsp (q, α0 (q)) should not

exceed Fsp,0 ≈ −1.2 to avoid sharp leading edges. Similarly,
the difference between the absolute values of Fsw (q, α0 (q))

and Fsp (q, α0 (q))must lie in a certain range, typically 0.05:

{
Fsp (q, α0 (q)) ≥ Fsp,0

0.05 ≤ Fsw (α0) − Fsp (α0) ≤ 0.05
. (5)

Moreover, the convex metric of the supercritical airfoil
must satisfy the following conditions:

K (u) ≡ x ′(u)y′′(u) − x ′′(u)y′(u)
{

≥ 0, u ∈ [0, 1/2) ∪ (uc, 1]

≤ 0, otherwise,

(6)

where [x(u), y(u)] ≡ �NT
o (u)P (q) is the parametric repre-

sentation of the supercritical airfoil defined by the design
variables q in terms of the NURBS basis functions �NT

o (u)

and the control points P(q), and [x (uc) , y (uc)] is the point
on the lower surface of the supercritical airfoil where the
curve changes from convex upward to concave upward.

Finally, to prevent extrapolation outside the range of our
prediction models, we also consider the maximum values of
CL (q) and CLD (q) among the given dataset D:

⎧
⎪⎨

⎪⎩

CL (q) < (1 + ε)max
q∈D

CL (q)

CLD (q) < (1 + ε)max
q∈D

CLD (q)
, (7)

where ε is a small number that has been validated to be safe
for prediction extrapolation.

Based on the above, problem formulation of the supercrit-
ical airfoil design is summarized in Table 2. In general, the

Table 2 The optimization objectives and constraints of the supercritical
airfoil design in this work. d is short for dimension

Formulation d

Design variable q from NURBS control points 16

Optimization objectives maxq CL (q), maxq CLD (q),
maxq h (q)

3

Constraints αmin ≤ α0 (q) ≤ αmax,
Fsp (q, α0 (q)) ≥ Fsp,0,
|Fsp (q, α0 (q)) −
Fsw (q, α0 (q)) | ≤ 0.05,
h (q) ≥ hmin,
CL (q) <

(1 + ε)maxq∈D CL (q),
CLD (q) <

(1 + ε)maxq∈D CLD (q),

K (u)

{ ≥ 0, u ∈ [0, 1/2) ∪ (uc, 1]

≤ 0, otherwise

optimization objectives are highly conflicting, particularly
between h and CL , CLD . Hence, h is not only a constraint
but also an optimization objective in this work. This modifi-
cation may make the design process more challenging, but it
can also result in improved outcomes for supercritical airfoil
design.

Method

The proposed EvoGD approach for supercritical airfoil
design consists of four components in its main itera-
tive loop: Generator, Evaluator, Selector, and
Interactor, as illustrated in Fig. 4. In each iteration, first,
the Generator generates a new batch of supercritical air-
foils based on the information obtained from the previous
iteration, with the goal of improving the design diversity
and performance of the existing supercritical airfoils; the
Evaluator is then utilized to assess the aerodynamic per-
formances and constraint violations of the new batch of
airfoils; afterwards, the Selector selects high-quality air-
foils by ranking with optimization objectives of CL , CLD

and h, as well as constraints of α0, CL , CLD , C P (α0) and h;
finally, the designer has the option to interact with the process
via Interactor before the next iteration begins.

In the case of supercritical airfoil design, the Selector
is not data-driven since all optimization objectives and con-
straints are deterministic and well-defined, and thus it is not
imminent to supply Selector with data. Hence, we adopt
the selection method of [25] as our Selector. However,
in other cases where selection process is nondeterministic or
ill-defined, the proposed EvoGD can still be applied with an
implementation of data-driven selector(s). Moreover, even
though the Interactor in this work is merely used to dis-
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Fig. 4 Main loop of the proposed EvoGD approach. There are
four main components—Generator, Evaluator, Selector,
and Interactor. In the case of supercritical airfoil design, both
Generator and Evaluator are purely data-driven ones, where
Selector and Interactor are not

play the results to the designer, it can also show the selected
supercritical airfoils to designers and asking for new informa-
tion such as aerodynamic performances to update data-driven
models on the fly. Specifically, the data-driven Generator
and Evaluator are further elaborated in the following sub-
sections.

Generator

Our Generator component further encompasses several
data-driven generators, which offer a more efficient alterna-
tive to manual supercritical airfoil design. The generators
previously adopted in AI-assisted supercritical airfoil design
are instances of the conditional probability

P (Q|T = t) , (8)

where T ≡ T (α0,CL ,CLD,CP , h) represents the joint
distribution of target performances, t represents an arbi-
trary instance of T , and Q represents the joint distribution
of design variables q. Various generators, such as Varia-
tional Autoencoders (VAEs) [26], Generative Adversarial
Networks (GANs) [27] Conditional Generative Adversar-
ial Networks (CGANs) [28], and SoloGAN [29], have been
introduced in previous studies to model this Probability Den-
sity Function (PDF).

However, the target aerodynamic performance space
spanned by T in the training dataset for this model is often
limited and discrete, leading to an uneven distribution. This
can result in generators’ failure in accurately modeling the
target performance space and the generated supercritical air-
foils may even be infeasible. To address the issue of uneven
distribution of the target aerodynamic performance space, in
this work, we adopt the following model:

q
(
q ′) = E

(
q
∣∣q ′) =

∫
qTP

(
Q = qT

∣∣qT ′
)
dqT , (9)

where qT ′ ∼ P
(
Q

∣∣T = t ′
)
and qT ∼ P (Q|T = t) repre-

sent two conditional probabilities in a traditional generator,
and t ′ � t indicates that the target performances of t ′ are
generally worse than t’s.

The adopted model in this work can be considered as
a redesign/refine model that generates a new supercritical
airfoil based on learned dominance relations between the
aerodynamic performances. Local and global search opera-
tors for optimization objectives such as CL , CLD , and h, as
well as their combination, are examples of such generators.
To implement these search operators, Artificial Neural Net-
works (ANNs) are commonly utilized. Specifically, in this
work, we use the generators in the Cycle Generative Adver-
sarial Networks (Cycle GANs) [30].

Notably, the model described in Eq. (9) can be viewed as a
generative model that integrates physics information, result-
ing in the inherent consideration of physical performance
and constraints during the training of our Cycle GANs. This
integration of physics information enhances the stability of
the training process, while the use of multiple generators for
each physical performance improves the robustness of the
entire Generator. Further details of the training process
can be found in “Model training” section.

As illustrated in Fig. 5, the Cycle GAN is originally
designed to find a pair of generators mapping between two
domains, X and Y , using two generator-discriminator pairs:
G : X → Y with DG and F : Y → X with DF . The dis-
criminators, DG and DF , aim to minimize the classification
error rates between real and generated fake inputs, while
the generators, G and F , aim to maximize the discrimina-
tors’ classification error rates for fake inputs. Additionally,
the Cycle GAN minimizes the cyclic consistency losses,
‖F (G (x)) − x‖ and ‖G (F ( y)) − y‖, where x ∈ X and
y ∈ Y are samples from the two domains.

Specifically, there are four different loss functions in train-
ing the Cycle GAN:

LGF , LFG, LDG and LDF . (10)

They can be written as

LGF = ‖F (G (x)) − x‖ ,

LFG = ‖G (F ( y)) − y‖ ,

LDG = log DG ( y) + log [1 − DG (G (x))] ,

and

LDF = log DF (x) + log
[
1 − DF (F ( y))

]
.
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Fig. 5 Structure of a Cycle GAN. The input samples from domain X
are input as x and the samples from domain Y are input as y. The gen-
erator G maps the samples from domain X to domain Y , generating
the fake 2 output Y . Likewise, the generator F , maps the samples from
domain Y to domain X , generating the fake 1 output X . The discrim-
inators DF , DG receive x and X , y and Y , respectively, and output
cross-entropy losses LDF and LDG , respectively, for classifying real
and fake supercritical airfoils. The fake outputs X and Y are also sent
to their corresponding generators G and F , respectively, to produce
the reconstructed supercritical airfoils y′ and x ′. The cyclic consistency
losses LGF and LFG of the Cycle GAN is the difference between x , x ′
and y, y′, respectively. The model minimizes the LGF and LFG with
respect to both generators G and F . In the mean time, it also minimizes
the LDG and LDF with respect to the DG and DF , respectively. Addi-
tionally, like in a traditional GAN, the classification errors for Y and X
are inverted to train G and F , respectively

To train the discriminators DG and DF , the loss functions
LDG and LDF are minimized with respect to the parame-
ters of DG and DF , respectively. Since the data never flows
between the discriminators, it is equivalent to minimize

Ldiscriminator = log DG ( y) + log [1 − DG (G (x))]

+ log DF (x) + log
[
1 − DF (F ( y))

] (11)

with respect to the parameters of DG and DF combined.
To train the generatorsG and F , the loss functionLgenerator

is minimized with respect to the parameters of G and F
combined:

Lgenerator = λ (LGF + LFG) − log [1 − DG (G (x))]

− log
[
1 − DF (F (y))

]
,

(12)

where λ is the coefficient that characterizes the importance
of cyclic consistency losses in training.

When adopting Cycle GAN in the proposed EvoGD
approach, the input datasets are carefully divided based on
the aerodynamic and geometric performance objectives CL ,
CLD , and h. The original dataset consists of design variables
of supercritical airfoils (NURBS control points) and their

respective performance objectives, defined as:

D = {(
q1,CL,1,CLD,1, h1

)
, . . . ,

(
q501,CL,501,CLD,501, h501

)}
.

(13)

It is then divided into three pairs of input datasets:

Q1,1 ≡ {
qi ∈ D∣∣CL,i > CL,ε

}
,

Q1,2 ≡ {
qi ∈ D∣∣CL,i < CL,ε

}
,

Q2,1 ≡ {
qi ∈ D∣

∣CLD,i > CLD,ε

}
,

Q2,2 ≡ {
qi ∈ D∣∣CLD,i < CLD,ε

}
,

Q3,1 ≡ {
qi ∈ D∣∣hi > hε

}
,

Q3,2 ≡ {
qi ∈ D∣∣hi < hε

}
,

(14)

where CL,ε , CLD,ε and hε are the tunable separation thresh-
olds of three targets. Specifically, multiple thresholds are
used for each target ti to train different generators. To further
enhance the performances of our generators, another pair of
input dataset is also provided:

Q4,1 ≡ {
qi ∈ QD

∣∣t � tε
}
,Q4,2 ≡ {

qi ∈ QD
∣∣t � tε

}
,

(15)

which are divided by Pareto dominance relations of all objec-
tives.

As mentioned earlier, our generators can be represented
as

Gi = E

[
qti

∣∣∣Q = q t ′i

]
, (16)

where E (ti ) > E
(
t ′i
)
. The generator Gi maps the super-

critical airfoil design variable space with lower target per-
formance t ′i to the one with higher target performance ti .
In our implementation, the generator Gi is the generator G
of the i th Cycle GAN, trained by providing samples to y
and x inputs with Qi,1 and Qi,2, respectively. Upon conver-
gence, the generators will possess the ability to refine the
given supercritical airfoils to produce new ones with better
optimization objectives at high probabilities. In addition, the
use of random divisions to separate median samples from the
original dataset increases the diversity of generated supercrit-
ical airfoils.

Evaluator

Our Evaluator is also composed of data-driven predic-
tors, which serve as computationally inexpensive surrogates
for estimating the aerodynamic performances of supercriti-
cal airfoils, rather than relying on computationally intensive
CFD simulations.
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In general, a predictor is an instance of the discrimina-
tive/regression model—a model of conditional probability

P (T |Q = q) , (17)

where q is the given supercritical airfoil’s design vari-
ables (obtained from NURBS curve control points) and
T ≡ T (α0,CL ,CLD,CP ) is the target aerodynamic perfor-
mances’ joint distribution. To optimize both buffet and cruise
performance of a supercritical airfoil, we need to model and
predict its cruise angle of attack

α0 (q) = E (α0|q) ≡
∫

αP (A0 = α|Q = q) dα, (18)

its buffet lift coefficient

CL (q) = E (CL |q) ≡
∫

cP (CL = c|Q = q) dc, (19)

its cruise lift-to-drag ratio

CLD (q) = E (CLD |q) ≡
∫

cP (CLD = c|Q = q) dc, (20)

and its cruise surface pressure coefficients

C P (q) = E (C P |α0; q)

≡
∫

cP (C P = c|A = α0 (q) ; Q = q) dc,
(21)

where the vector notation of C P indicates that it is a vec-
tor representation of curve at any given angle of attack and
supercritical airfoil. It can be noticed that the angle of attack
is not a condition variable for the first three predictors, but we
directly target the aerodynamic performances at cruise and
buffet angles of attack. This is crucial for these predictors to
work properly on a dataset with an unprecedented small size
of 501.

Specifically, each predictor is a Multi-Layer Perceptron
(MLP) [31] composed of an input layer, two–three hidden
full-connection layers, and an output layer. The adoptedMLP
is simple and efficient, with input layers consisting of the
16 design variables of the supercritical airfoil, output layers
being the corresponding prediction values of size 1 or 30,
and hidden layers of size 60–100. The hidden layer configu-
rations vary between different predictors due to differences in
purposes and complexities. All predictive models use Mean
Squared Error (MSE) as the loss function L:

L = ‖nlast − nreal‖2 , (22)

where nlast are the output values of the last layer of the MLP
and nreal are the actual values to predict.

For each predictor for cruise angle of attack (α0(q)),
buffet lift coefficient (CL(q)), and cruise lift-to-drag ratio
(CLD(q)), a MLP with two hidden layers and hyperbolic
tangent activation function is employed. To ensure proper
performance, the α0, CL , and CLD values in the dataset are
first normalized and any anomalies are removed. After this
preprocessing, the threeMLPs are trained, one for each value
to be predicted.

For the predictor of cruise surface pressure coefficients
C P (q), theProperOrthogonalDecomposition (POD)method
is utilized. The POD method transforms the original data
points of C P and extracts the first few modes for prediction.
In this case, only 30modes are required for the decomposition
for achieve a high prediction accuracy. To further improve the
overall performance of the predictive model of C P (q), the
C P (α; q) of all provided α values are included in the dataset,
using the regression model:

C P (α; q) = E (C P |α; q)

≡
∫

cP (C P = c|A = α; Q = q) dc,
(23)

where c is the POD modes’ singular values. The MLP struc-
ture for this predictor is compact, consisting of only three
hidden layers of size 100–200, with a hyperbolic tangent
activation function.

Selector

As articulated above, in the context of supercritical airfoil
design, all optimization objectives and constraints are deter-
ministic. Consequently, our Selector does not rely on a
data-driven approach. The general process of theSelector
can be summarized as follows:

1. Compute all objectives and violations of constraints for
the current population;

2. Determine the Pareto rank r utilizing the fast non-
dominant sort method as proposed in NSGA-II [25];

3. Compute the shared fitness values by

fi = 1

ri · ∑N
j=1 max{1 − [‖Fi − F j‖], 0}

,

where Fi is the rescaled objectives of individual i and N
is the number of individuals in the population;

4. Adjust their shared fitness fi by subtracting their con-
straint violations;

5. The subsequent generation is selected randomly by
weights wi = e fi /

∑N
j=1 e

f j .
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Experimental study

In this section, we present the details of the experimental
study conducted to validate the proposed EvoGD approach.
First, we introduce the dataset used in the experiment and
present the design results. Then, we delve deeper into the
key components of EvoGD:Evaluator and Generator,
respectively.

Dataset

The dataset is an essential component for data-driven models
to achieve better training and testing performance. There-
fore, an adaptive sampling strategy was applied to generate
a diverse range of supercritical airfoil shapes, ensuring the
diversity of the dataset. To ensure its practicality, constraints
such as a leading-edge radius of less than 0.007 and a thick-
ness ranging from 0.113 to 0.123 were imposed. In this
paper, the dataset consists of 501 supercritical airfoils in total,
including one baseline plus 500 randomly perturbed variants.
The aerodynamic performance of each airfoil was calculated
using high-fidelity CFD simulations.

For the CFD simulations, a structuredO-grid with a radius
of 30c was adopted, where c = 1 is the chord length of all
the supercritical airfoils. The grid sizes along the normal
direction to the surface were kept relatively small to take
the thickness of the boundary layer into account. After grid
independence verification, the adopted grid consisted of 385
points along the circumference of the supercritical airfoil and
193 points along the normal direction. The Reynolds Aver-
age Navier–Stokes (RANS) equations with the Shear Stress
Transport (SST) turbulence model were used, and the solu-
tions were calculated using the open-source code CFL3D.1

The MUSCL scheme was used for state-variable interpola-
tion at the cell interfaces, the Roe schemewas used for spatial
discretization, and the lower-upper symmetric Gaussian–
Seidel method was used for time advancement.

As an overview, the shapes and performances of the super-
critical airfoils in the dataset are depicted in Fig. 6.

General design results

With the above dataset, we ran the proposed EvoGD for 100
iterations and obtained a new set of 240 airfoils, where 95%
meet all design constraints and 75% (i.e., 180 elite airfoils)
successfully achieved the basic design goals as shown in
Table 3. Notably, it only took less than a hour on a PC with
i7 CPU to complete the entire design process, including the
training of the Generator and Evaluator.

As summarized in in Fig. 7, generally, our EvoGD man-
aged to improve the buffet lift coefficient CL by at most 9%,

1 https://github.com/nasa/CFL3D.

Fig. 6 The stacked plot of the baseline and dataset supercritical air-
foils (a), and the parallel axis plot of the aerodynamic and geometric
performances (CL , CLD and h) of the baseline and dataset supercriti-
cal airfoils (b). In the parallel axis plot, each vertical axis represents a
performance of supercritical airfoils. The orange and blue lines in each
plot represent the baseline supercritical airfoil and its 500 randomly
perturbed variants respectively

Table 3 The basic design goals of the supercritical airfoil optimization
design problem

CL CLD h

Improvement goals 2% 1% −2%

The buffet lift coefficient CL , the cruise lift-to-drag ratio CLD shall be
improved by at least 2% and 1%, respectively; and the thickness h shall
not be reduced more than 2%

the cruise lift-to-drag ratioCLD by at most 9%, and the thick-
ness h by at most 4%, as shown in Fig. 7. Out of the 180 elite
airfoils as obtained, there are 120 that fully dominate the
baseline airfoil in all optimization objectives. It can also be
seen from the Fig. 7 that the distributions of improved CL ,
CLD , and h all havemean values that are significantly greater
than 0. Furthermore, on average, CL and CLD were signifi-
cantly improved by 5–6%, much more than the design goals
of them. From the distribution of improved h in Fig. 7, it can
be implied that our approach did not compromise geomet-
ric performance for better aerodynamics. Besides, from the
parallel axis plot in Fig. 8b, one can also notice such impli-
cation. Moreover, the diversity of the generated supercritical
airfoils was well preserved, as demonstrated by the stacked
plot in Fig. 8a. By contrast, none of the 500 randomly per-
turbed airfoils in the dataset can achieve the results stated
above.
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Fig. 8 The stacked plot of the baseline and the generated elite super-
critical airfoils (a) and the parallel axis plot of the aerodynamic and
geometric performances (CL , CLD and h) of the baseline and the gen-
erated elite supercritical airfoils (b). Each vertical axis in the parallel
axis plot represents a supercritical airfoil’s performance. The orange
and blue lines represent and the baseline supercritical airfoil and the
ones generated by EvoGD, respectively

Assessment of generator

In this subsection, wewill conduct the experiment for assess-
ing the performance of Generator in the proposed EvoGD
approach, including model training and model testing.

Model training

With the fully dataset consisting of 501 supercritical airfoils

Q =
{
q1, . . . , q501

}
, (24)

we adopt distinct separation criteria with different thresh-
olds to separate the original dataset into 20 pairs of training
datasets to train four different types of generators. Specifi-
cally, as shown in Eq. (14), the tunable separation thresholds
CL,ε , CLD,ε , and hε are randomly selected to ensure diver-
sity. Each separation thresholds are five samples from distri-
bution N (mt , σt/10), where t represents each optimization
objective andmt andσt are themedian and standard deviation
of t in the original dataset, respectively. As for the separa-
tion of all objectives CL , CLD , and h, it is performed using
Pareto dominance sorting. The first Pareto optimal set of the
original supercritical airfoils is defined as

Q1 =
{
qi , q j

∣∣∣�
(
Ci
L > C j

L ∧ Ci
LD > C j

LD ∧ hi > h j
)}

.

(25)

Then, the set Q1 is removed from Q to find the next
Pareto optimal set Q2. This process is repeated until∣
∣Q1 ∪ · · · ∪ Qr

∣
∣ > 501/2. The median group Qr is then

divided into 5 different datasets by random choices to form
the datasets for the last type of generators.

To increase diversity in generating supercritical airfoil
search directions and steps, our proposed Generator
includes 20 generators (from 20 Cycle GANs), each trained
on a different pair of datasets. During the training for each
generator, the λ in Eq. (12) is set to 10, the batch size is fixed
to 64 and it is stopped when training time exceeds 100s.
Moreover, the sum of all losses in Eq. (10),

L = λ(LGF + LFG) + LDG + LDF , (26)

is used formodel preservation:L is calculated for each epoch
and the epoch with lowestL is selected as the final generator.

Model testing

After applying all the generators to the design variables of
the original supercritical airfoils, their modifications (i.e.,
search steps) can be partially characterized by their marginal

Fig. 7 The histograms of the
improvements on aerodynamic
and geometric performances
(CL , CLD and h) of the
generated elite supercritical
airfoils compared to the baseline
supercritical airfoil
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Fig. 9 The probability density function (PDF) of all generators’ modi-
fications to the original supercritical airfoil design variables. The solid
line represents the overall PDF, while the horizontal axis represents the
search steps of the generators and the vertical axis represents the prob-
ability densities of the corresponding search steps. The dashed lines are
the Gaussian mixture model fittings of three Gaussians with different
means and variances. It is notable that the areas of these components
are equal, implying that the generators have modeled both small and
large search steps in a balanced manner

probability density function (PDF), as shown in Fig. 9. The
decomposition of this PDF into Gaussian mixture models is
also depicted. It is noticeable that our generators provide both
large and small search steps: since the range of the original
supercritical airfoil design variables is only 0.02, the mean
values of the left or right Gaussian mixtures (around 0.002)
correspond to an average search step size of around 10%,
while the main Gaussian mixture corresponds to an average
step size of around 1.5%.

Since the PDFs shown in Fig. 9 are only marginal PDFs
that flattens all themodifications of different supercritical air-
foil design variables, it is necessary to view the covariance
matrices of such modifications to verify that our generators
do models the performance improvement mapping Eq. (9).
For example, the covariance matrices of theCLD generators’
modifications to original supercritical airfoils are shown in
Fig. 10. Their relatively stable mean valuesμ and covariance
matrices � imply that the generators have learned certain
modification directions from the given datasets. However,
it does not imply that our generators are randomly perturb-
ing the design variables (i.e., p) by N (μ,�). For example,
Fig. 11 depicts the side-by-side comparison of the objective
improvements between randomly perturbed p with covari-
ance matrix the same as Fig. 10 and modified p via CLD

generators. It shows that our generators are inherently differ-
ent from high-dimensional Gaussian distributions.

Moreover, the autocorrelation function (ACF) of our gen-
erators’ modifications is distinct from that obtained from
randomly perturbing design variables, as shown in Fig. 12.
Specifically, the ACF we adopt is calculated as follows:

Fig. 10 The plot of the covariance matrix of the CLD generators’ mod-
ifications to original supercritical airfoils. The CLD generators are the
ones trained with Q2,1 and Q2,2 in Eq. (14). Hence, it is aimed to
improve the CLD objective of the given supercritical airfoils. Since
the differences between the covariance matrices of different generators
are marginal, they are not shown and the mean value of the matrices are
plotted instead

Fig. 11 A comparison of the probability distribution functions (PDFs)
of the objective improvements between randomly perturbed p follow-
ing N (μ,�) with the same � as in Fig. 10a and modified p via the
CLD generators (b). The comparison reveals that random perturbations
are more likely to alter CL than the generators, which is undesirable
since our goal is to improve CLD . Additionally, the random perturba-
tions tend to reduce the thicknessmore significantly than the generators.
Furthermore, the random perturbations’ CLD improvements are evenly
distributed around 0, indicating that they are not as effective in improv-
ing CLD as the generators
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Fig. 12 The average autocorrelation function (ACF) of modifications
to all original supercritical airfoil curves. The blue line represents the
average ACF of modifications made by all generators, while the orange
line represents the average ACF of random perturbations. The horizon-
tal axis (distance on curve) indicates the distances between the pairs
of points on the parametric modification curves being considered. The
vertical axis indicates the average correlation between the point pairs
of the corresponding distance. It is observed that the ACF of the ran-
dom perturbations rapidly decreases to near 0, while the ACF of our
generators has much longer tails. This difference implies that our gen-
erators tend to globally modify the shape of the supercritical airfoils
with dedicated correlations

ACF
[
Cy, ul

] =
(
Cy(u) − E

[
Cy

]) ∗ (
Cy (u + ul) − E

[
Cy

])

V
[
Cy

] ,

(27)

where Cy represents the y coordinate of the modification
curve, u is its parameter, and Cy(u + 1) = Cy(u). The oper-
ator ∗ represents the convolution with respect to u, E

[
Cy

]

is the expectation of Cy , and V
[
Cy

]
is the variance of Cy .

Empirically, the ACF at ul indicates the average relationship
between all point pairs separated by a distance of ul on Cy :
values close to 1 imply that most point pairs are positively
related; values close to −1 imply that most are negatively
related; while values close to 0 imply that they are on aver-
age not related.

Compared to random perturbation of the original super-
critical airfoils’ design variables, our generators generate
or redesign supercritical airfoils in a more global manner
in their geometries, as demonstrated in Fig. 12. In addi-
tion, Fig. 13 shows that our generators generally produce
supercritical airfoils with better aerodynamic performance
compared to the input ones. 43% of the generated supercriti-
cal airfoils show dominant performance over the input ones,
while 40.5% exhibit trade-off between the two aerodynamic
performances. Only 16.5% of the generated supercritical air-
foils are dominated by the input ones, with the majority
clustered around the origin. This further supports that our
generators correctly model the performance improvement
mapping as described in Eq. (9).

Fig. 13 The improvements in aerodynamic performance of all the
generators applied to all supercritical airfoils in the dataset. The four
numbers in the figure indicate the percentages of supercritical airfoils in
each region. It is evident that our generators can generate supercritical
airfoils with superior performance compared to the input ones

In conclusion, our proposed Generator has been shown
to be an effective approximation of both local and global
search operators in the supercritical airfoil design space.
Through training on a dataset, the generators have acquired
the ability to learn the natural constraints and generate rea-
sonable modifications to supercritical airfoils by refining
them globally with both small and large steps, while main-
taining their geometric constraints.

Assessment of evaluator

In this subsection, wewill conduct the experiment for assess-
ing the performance of Evaluator in the proposed EvoGD
approach, including model training and model testing.

Model training

With the full dataset consisting of 501 supercritical airfoils,
the following datasets are used for training the CL , CLD , α0,
and C P predictors, respectively:

D =
{(

q1,C1
L

)
, . . . ,

(
q501,C501

L

)}
,

D =
{(

q1,C1
LD

)
, . . . ,

(
q501,C501

LD

)}
,

D =
{(

q1, α1
0

)
, . . . ,

(
q501, α501

0

)}
and

D =
{(

q1, α1,1,C1,1
P

)
, . . . ,

(
q501, α501,57,C501,57

P

)}
.

(28)

The superscripts of q indicate the index of the supercritical
airfoil, while the other superscripts indicate the sample index.
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Fig. 14 The actual vs. predicted plots forCL ,CLD , and α0 predictors in
the testing dataset. The orange dots represent the predicted normalized
performances and the actual normalized performances, respectively,

with the horizontal positions indicating the predicted values and the
vertical positions indicating the actual values. The dashed lines repre-
sent the ideal predictions

For the predictors of CL , CLD , and α0, the aerodynamic
performances are first normalized:

t̃ i = t i − min {t}
max {t} − min {t} , (29)

where t is the aerodynamic performance. This normalization
ensures that the error εi = t̃ ipredict − t̃ ireal is inherently nor-
malized. The datasets are then randomly divided into training
sets of size 450 and testing sets of size 51.

For the C P predictor, the angle of attacks are first normal-
ized with same extreme values of α0 as above:

α̃k,i = αk,i − min {α0}
max {α0} − min {α0} , (30)

which ensures that the predictor models no additional nor-
malization. Then, proper orthogonal decomposition (POD)
is applied to Ck,i

P through the following procedure: first, all

Ck,i
P are combined into a matrix

MCP :=
[
C1,1

P , . . . ,C
1,i1max
P ,C2,1

P , . . . ,C
501,i501max
P

]
, (31)

where MCP ∈ R
353×27,514 for our dataset; second, Singular

Value Decomposition (SVD) is applied to MCP to obtain
MCP → USV T , where S = diag {s1, . . . , s353}; finally, the
first 30 columns of the left singular vectors U and the entries
of the mode amplitudes S are retained to achieve the desired
decomposition accuracy as shown in Fig. 16. In this way, the
dataset is transformed into

D̃ =
{ {

q1, α̃1,1
}

→
{
s1,11 , . . . , s1,130

}
,

{
q1, α̃1,2

}
→

{
s1,21 , . . . , s1,230

}
, . . . ,

{
q501, α̃501,i501max

}
→

{
s
501,i501max
1 , . . . , s

501,i501max
30

}}
.

(32)

The training and testing sets for the C P predictor are ran-
domly divided into 90% and 10%, respectively, prior to
training the model.

In the training process of each predictor, the batch size
is set to the maximum possible value (24,762 for the C P

predictor and 450 for the others) and training is stopped if it
exceeds 200s. The loss function inEq. (22) is used to evaluate
the performance of each predictor, and the epoch with the
lowest loss on the testing set is selected as the final predictor.

Model testing

For the CL , CLD and α0 predictors, the actual vs. predicted
plots of the testing set are shown in Fig. 14. In addition, the
prediction errors on thewhole datasets are depicted inFig. 15.

Overall, our predictive models for CL , CLD , and α0 show
high accuracy, with normalized mean absolute errors of
0.44%, 0.45%, and 0.47%, respectively. The probability den-
sity functions of the prediction errors are all close to each
other, and the probabilities of predicting absolute normal-
ized errors beyond 1% are small. Null hypothesis tests of
H0 : P(ε) � N (μ, σ ) can all be rejected at a confidence
level of 95%, indicating that our predictive models are unbi-
ased in this confidence level (Fig. 15).

The C P predictor achieved a prediction error of only
0.33% formode amplitudes s on the testing dataset. The PDF
of the prediction error is not significantly degraded compared
to the POD result, as shown in Fig. 16

In conclusion, our proposed Predictor has demon-
strated its ability to efficiently and accurately evaluate
aerodynamic performance for both optimization objectives
and constraints, even with a limited dataset of 501 supercriti-
cal airfoils. The results showgreat potential for improvement,
and these models could be further enhanced with a larger
dataset.
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Fig. 15 The normalized error probability density functions (PDFs) for
the CL , CLD and α0 predictors on combined dataset (training and test-
ing). Due to the limited amount of original supercritical airfoils, no
meaningful figure can be made if we only plot the PDF of normalized
error on testing dataset. Generally, the predictors are of high accuracy,
with maximum relative errors less than 3%. The errors are evenly dis-
tributed around zero, indicating that the predictors are unbiased

Fig. 16 The normalized error probability density functions (PDFs) of
proper orthogonal decomposition (POD) alone and POD with C P pre-
dictor on combined dataset (training and testing). Due to the limited
amount of original supercritical airfoils, no meaningful figure can be
made if we only plot the PDF of normalized error on testing dataset.
It can be noticed that the POD accuracy is high: its maximum relative
error is less than 0.3%. Moreover, the prediction error is quite similar
to the POD error, proving that our C P predictor is accurate enough

CFD assessment

As the evaluations previously discussed were all performed
using the provided dataset and Multi-Layer Perceptron
(MLP) evaluators, theComputational FluidDynamics (CFD)
results for the initial batch of generated supercritical airfoils
were calculated to confirm that we have attained the improve-
ment goals as detailed in Table 3. These results are presented
in Table 4. Due to the high computational burden of CFD,
only the first 28 supercritical airfoils were processed.

Table 4 The CFD results for the initial 28 generated supercritical air-
foils. The zeroth row represents the CFD outcome for the baseline
supercritical airfoil. It can be seen that over half (16 out of 28) of the
generated supercritical airfoils achieved the design goal, while none of
the original dataset did

Airfoil
#

CLD CL h Meet the
design goal

0 56.3778 1.01759 0.117488 N/A

1 58.1864 1.09286 0.115910 True

2 51.5491 1.07917 0.118859 False

3 55.9990 1.07422 0.119807 False

4 53.8398 1.06056 0.117586 False

5 58.8495 1.06240 0.116724 True

6 55.5598 1.08737 0.117906 False

7 59.9797 1.09027 0.117423 True

8 59.5910 1.05622 0.115402 True

9 51.8578 1.09073 0.118985 False

10 52.0998 1.09003 0.118844 False

11 58.6832 1.08712 0.118026 True

12 58.1554 1.08654 0.117480 True

13 56.0767 1.08007 0.117301 False

14 53.6372 1.08824 0.117469 False

15 58.6273 1.08447 0.118579 True

16 54.0305 1.09387 0.117754 False

17 50.4746 1.05661 0.119389 False

18 56.0766 1.08744 0.117307 False

19 61.8557 1.04844 0.115494 True

20 59.2281 1.08529 0.118956 True

21 60.5269 1.08306 0.116861 True

22 59.9101 1.08788 0.118540 True

23 46.5633 1.09144 0.117627 False

24 60.1678 1.05575 0.118106 True

25 60.4934 1.08304 0.116006 True

26 59.8208 1.04798 0.118078 True

27 58.5782 1.08883 0.116787 True

28 58.5473 1.07518 0.116605 True

Conclusion

In thiswork,weproposed a highly efficient and accurate data-
driven evolutionary generative design (EvoGD) approach
based on AI for supercritical airfoil design. The approach
consisted of an evolutionary computational framework com-
bined with data-driven generators and predictors. The results
of this approach were highly impressive, producing 180
diverse supercritical airfoils within an hour on a personal
computerwhile improving thedesignoptimizationobjectives
CL , CLD , and h by 2–9%, 1–9%, and up to 4% compared to
the baseline, respectively.
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The study on supercritical airfoil parametrizationmethods
showed that the NURBS curve was a balanced choice and
was especially suitable for the proposed AI-assisted design
approach. The data-driven generators, consisting of a series
of Cycle GANs incorporated with physics information, were
able to refine the given airfoils towards better-performing
ones while maintaining the geometric constraints. Moreover,
the data-driven predictors were able to accurately estimate
the aerodynamic performances of the airfoils, reducing the
need for computationally expensive CFD simulations.

However, there are a few limitations associated with
the proposed EvoGD approach. First, to bolster the
Generator’s performance, a suite of generative models
is trained during the process, which inevitably contributes to
a significant startup time for the algorithm. Second, accord-
ing to the CFD result, the current CLD MLP model does
not extrapolate effectively, as it fails to accurately predict
some generated CLD values. Lastly, the proposed EvoGD
approach has not been tested on other problems, and hence,
further adjustments may be required when comprehensive
experiments are conducted.

Nonetheless, the proposed EvoGD approach was purely
data driven and could work with a small dataset, making it
highly efficient and effective. This approach has great poten-
tial to be generalized to other industrial design processes,
reducing costs and increasing the diversity and performance
of the design outcomes.
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