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Abstract—Advancements in adapting deep convolution archi-
tectures for Spiking Neural Networks (SNNs) have significantly
enhanced image classification performance and reduced com-
putational burdens. However, the inability of Multiplication-
Free Inference (MFI) to align with attention and transformer
mechanisms, which are critical to superior performance on high-
resolution vision tasks, imposing limitations on these gains. To
address this, our research explores a new pathway, drawing
inspiration from the progress made in Multi-Layer Perceptrons
(MLPs). We propose an innovative spiking MLP architecture
that uses batch normalization to retain MFI compatibility and
introducing a spiking patch encoding layer to enhance local fea-
ture extraction capabilities. As a result, we establish an efficient
multi-stage spiking MLP network that blends effectively global
receptive fields with local feature extraction for comprehensive
spike-based computation. Without relying on pre-training or
sophisticated SNN training techniques, our network secures a
top-1 accuracy of 66.39% on the ImageNet-1K dataset, surpassing
the directly trained spiking ResNet-34 by 2.67%. Furthermore,
we curtail computational costs, model parameters, and simulation
steps. An expanded version of our network compares with the
performance of the spiking VGG-16 network with a 71.64% top-
1 accuracy, all while operating with a model capacity 2.1 times
smaller. Our findings highlight the potential of our deep SNN
architecture in effectively integrating global and local learning
abilities. Interestingly, the trained receptive field in our network
mirrors the activity patterns of cortical cells. Source codes are
publicly accessible at https://github.com/EMI-Group/mixer-snn.

Index Terms—Spiking Neural Network, Multi-layer Percep-
tron, Image Classification.

I. INTRODUCTION

OVER the years, Convolutional Neural Networks (CNNs)
have garnered considerable success within the field of

computer vision. However, the advent and subsequent accom-
plishments of Transformer [1] in natural language processing
have led to the emergence of the Vision Transformer (ViT) [2]
as a promising contender. The ViT model replaces the con-
volution operation in CNNs with the self-attention operation
from the Transformer, enabling it to model visual relationships
across different spatial locations of an image. ViT and its later
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versions [3], [4] have showcased performance on par with, or
even superior to, CNNs. Unlike CNNs, which require intri-
cate convolution kernel designs, ViTs utilize several standard
Transformer blocks, thus minimizing manual manipulations
and reduce inductive biases.

More recently, the MLP-Mixer [5] researchers proposed a
simpler approach, leveraging Multilayer Perceptrons (MLP)
to further mitigate induction bias. The fundamental block of
MLP-Mixer consists of two components: the channel-mixing
MLP and the token-mixing MLP. The channel-mixing module
performs MLP calculations on the channel dimension of the
feature map, facilitating information exchange across different
channels. Simultaneously, the token-mixing module conducts
MLP calculations across varying positions of the feature map,
enabling communication over the spatial dimension. By har-
monizing these two modules, the MLP-Mixer can efficiently
extract and integrate features from both dimensions, enhancing
the model’s overall performance. This methodology presents a
simpler approach to reduce induction bias in comparison with
previous models.

Rooted in computational neuroscience, SNNs have been
extensively utilized for the modeling of brain dynamics and
functions [6], [7], [8], [9], [10]. Recently, the successes and
challenges experienced by deep Artificial Neural Networks
(ANNs) in tackling machine learning problems have fostered
a growing curiosity towards SNNs. Researchers are exploring
them as alternatives and are keen to leverage their bio-inspired
properties to address similar issues.

The competence of SNNs has been convincingly demon-
strated, with their performance showing promising results [11],
[12], [13], [14], [15], [16], [17], [18], [19]. This has been
achieved through the astute application of adaptive learning
algorithms [20], [21], [22], [23] and the integration of efficient
architectures borrowed from ANNs. These architectures span
from the Boltzmann machines [24], prominent during the
nascent stages of deep learning, to the currently dominant
CNNs [25]. Furthermore, to identify task-specific cells or
network structures for SNNs, recent research has employed
Neural Architecture Search (NAS) [26], [27]. This approach
not only strengthens the performance of SNNs but also
broadens their potential application scope within the realm of
machine learning.

While these networks have achieved significant reductions
in spike occurrence and established new benchmarks in im-
age classification, their underlying architectures still closely
resemble deep CNNs. Recently, ANNs equipped with visual
attention and transformer mechanisms [2], [28] have outper-
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formed pure CNNs by learning global image dependencies.
However, these mechanisms typically rely on matrix multipli-
cation and softmax functions, presenting a contradiction to the
Multiplication-Free Inference (MFI) principle that character-
izes SNNs [29], [30]. Recent research, such as the SNN-MLP
study [31], offers a hybrid model that blends MLP and SNN
neurons, effectively enhancing the MLP model’s performance.
Nonetheless, this model does not conform to a fully spiking
architecture, suggesting that it does not constitute a strict SNN
in the traditional sense.

In this study, we propose a novel approach to implementing
MLPs to be inherently compatible with the MFI principle
in a spike-based format. This partially comes on the heels
of recent findings illustrating the equal efficiency of MLPs
and transformers [5]. However, challenges persist as the orig-
inal MLP-Mixer architecture for ANNs involves real-valued
matrix multiplication, thus violating the MFI principle. To
overcome these challenges, our contribution is twofold. First,
we design a spiking MLP-Mixer architecture by utilizing MFI-
friendly batch normalization (BN) combined with lightweight
axial sampling in the token block. This architecture enables
us to create a multi-stage spiking-MLP network, facilitating
full spike-based computation. Second, we propose a spiking
patch encoding module, anchored on a directed acyclic graph
structure. This module replaces the original patch partition
for downsampling, thereby enhancing local feature extraction
capabilities of the MLP network. Moreover, our study un-
derscores the critical role of skip connection configuration in
achieving an optimal spiking MLP-Mixer design. Our efforts
yield the following primary outcomes:

• We successfully engineer an efficient spiking MLP-Mixer
using MFI-friendly BN and lightweight axial sampling in
the token block, further emphasizing the importance of
optimal skip connection configuration.

• By proposing a spiking patch encoding module, we
enrich local feature extraction and enable downsampling,
allowing for a multi-stage spiking-MLP network fully
operating on spike-based computation.

• Our network delivers a 66.39% top-1 accuracy on
the ImageNet-1K classification, marking a 2.67% im-
provement over the current state-of-the-art deep spiking
ResNet-34 network. Moreover, the network operates with
a similar model capacity, but with 2/3 of its simulation
steps and significantly reduced computation cost. A larger
variant of our network achieves a 71.64% top-1 accu-
racy, representing a 7.92% improvement and rivalling the
spiking VGG-16 network. All of this is achieved without
resorting to advanced training techniques.

• When fine-tuned on CIFAR10, CIFAR100, and
CIFAR10-DVS datasets, our pre-trained networks
on ImageNet set new benchmarks for SNNs, registering
accuracies of 96.08%, 80.57%, and 81.12% respectively.
This showcases the broad applicability of our
architectural design as pre-trained models.

The rest of this paper is organized as follows: Section
II delves into the related works MLPs and SNNs, two dis-
tinct deep learning approaches; Section III first provides an

overview of our network architecture, followed by a detailed
discussion on the vital Spiking MLP Block module; Section
IV describes the tests conducted on three distinct datasets
(ImageNet-1K, CIFAR10/100, and CIFAR10-DVS) for clas-
sification tasks, and presents our findings, including results
from ablation, network spiking rate, and neuronal weight
visualization experiments; finally, Section V encapsulates the
results and explores the implications of our work.

II. RELATED WORK

A. Multi-Layer Perceptrons in Deep Learning
The recent advancements in attention and transformer mech-

anisms, particularly in speech [1] and vision tasks [2], have
stimulated further investigations into similar mechanisms but
in forms more biologically plausible. Studies outlined in [32],
[33] demonstrated that the attention mechanism of trans-
formers is equivalent to the update rule of modern Hopfield
networks with continuous states. The high storage capacity of
these networks in large-scale multiple instance learning was
also highlighted. However, akin to the original transformer,
these networks involve matrix multiplication and softmax
function, both of which are incompatible with spike-based
computation.

In the quest for an alternative architecture, the ground-
breaking work of the MLP-Mixer [5] offered a model rely-
ing solely on MPLs, eschewing both convolution and self-
attention layers. The MLP-Mixer consists of two unique parts
- the channel-mixing MLP and the token-mixing MLP. The
channel mixing module primarily focuses on conducting MLP
computations within the channel dimension of the feature
map, leading to an exchange of information among various
channels and thereby fostering the extraction of effective fea-
tures. Conversely, the token mixing module carries out MLP
computations among different feature map positions. This
enhances communication across spatial dimensions, fostering
integration of diverse features from various map locations.
Together, these modules equip the MLP-Mixer model with a
robust proficiency for feature extraction and integration from
both dimensions.

The MLP-Mixer model offers a simple yet powerful method
to mitigate induction bias, surpassing previous models. This
straightforward approach has proven highly successful in
boosting model performance and has drawn considerable at-
tention from the machine learning community.

Freed from the inductive biases of local connectivity and
self-attention, the token-mixing MLP features enhanced flexi-
bility and superior fitting capability [34], [35]. However, it also
displays a higher susceptibility to overfitting and typically re-
lies on pre-trained models with large-scale datasets to achieve
competitive performances. These performances are on par
with image classification benchmarks such as Vision Trans-
former (ViT) and Convolutional Neural Networks (CNNs). To
overcome the issues of over-parametrization and overfitting
associated with MLP-Mixer, a recent work proposed the
SparseMLP [36]. This approach adopts a multi-stage pyramid
network structure and applies axial sampling, as opposed to
full sampling, in the token mixing MLP. This concept has also
been echoed in other MLP variants [37], [38], [39].
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B. Spiking Neural Networks in Deep Learning

Spiking Neural Networks (SNNs) have established their
prowess in effective information processing, primarily due to
their bio-inspired mechanisms [40], [41], [42], [43]. Deriving
their roots from computational neuroscience, SNNs are fre-
quently employed to model brain dynamics and functions [6],
[7], [8], [9], [10]. As machine learning evolves through its
successes and challenges, SNNs have emerged as promising
alternatives with researchers exploring their biological proper-
ties for functional advantages in similar applications.

Although SNNs were not originally designed for gradient-
based supervised learning, their bio-inspired architecture and
capability to process spiking neural activity have led to a surge
in popularity. Traditional training methods for SNNs, such as
Spike Timing-Dependent Plasticity (STDP) [44], while effec-
tive, pose limitations in incorporating global information. This
shortfall can slow convergence speed and impede applicability
to large models.

Consequently, there has been a burgeoning interest in al-
ternative SNN training techniques such as Backpropagation
Through Time (BPTT) and surrogate gradients, which promise
more efficient and effective learning for large-scale neural
networks. Wu et al. advocated explicitly iterative LIF neuron
training to enhance speed and accuracy [13], while Zheng
et al. proposed a threshold-dependent batch normalization to
streamline the training process [45]. Despite the advantages
of gradient-based training, such as the production of efficient
SNNs requiring minimal time steps, SNNs lag behind CNNs
trained similarly, in terms of accuracy. This discrepancy stems
from the complex spiking dynamics of SNNs, creating unique
challenges in accurately modeling the underlying computa-
tions and optimizing network performance.

A different approach to creating SNN models involves trans-
forming pre-trained ANN/CNN models into spiking neural
networks. This strategy retains the original models’ accuracy
by first training non-spiking ANNs/CNNs using standard
methods, followed by a conversion into spiking neural net-
works [46]. Despite the ease of this conversion process, it
poses significant challenges, primarily requiring larger time
steps to compensate for the reduced accuracy resulting from
the transition from full-precision to binary output. Conse-
quently, recent research has focused on integrating the con-
version and training processes, exemplified by novel method-
ologies such as progressive conversion [47] and conversion
during initialization [48].

Recently, the exploration of Neural Architecture Search
(NAS) has led to the discovery of task-specific cells or network
structures applicable to SNNs [26], [27]. These networks
have achieved spike reduction and set new benchmarks in
image classification. While these SNNs resemble deep CNNs,
significant differences have emerged, such as alterations to
traditional convolutional layers. In contrast, artificial neural
networks that use visual attention and transformer mechanisms
have recently outperformed pure CNNs in capturing global
image dependencies [2], [28]. However, these models typi-
cally require heavy matrix multiplication and normalization
operations, which contravene the Multiplication-Free Inference

(MFI) principle integral to SNNs [29], [30]. Notably, these
operations could lead to increased power consumption on
neuromorphic hardware, which often possesses limited com-
putational resources [49], [50], [51], [52], [53].

C. Discussion

The structural simplicity and efficacy of MLPs hint at a
promising network paradigm. However, previous implemen-
tations of MLPs with non-spiking full-precision neurons fail
to fulfill the MFI principle and eschew spike-based commu-
nication, rendering the network non-identical to typical SNNs
[31]. Therefore, a pressing challenge lies in designing an MLP-
based architecture compatible with spike-based computation
and aligned with the MFI principle.

One promising direction is to combine the advantages of
MLPs and SNNs, a strategy that could bridge the perfor-
mance gap between spike-based models and state-of-the-art
deep learning models. It would also potentially unlock the
advantages of spiking computation, such as low energy usage
and robustness to noise. However, to realize this promise, re-
searchers must overcome several hurdles, including addressing
the challenge of matrix multiplication and softmax operations,
as these operations are incompatible with the spike-based
computation and the MFI principle inherent to SNNs.

Overall, the emergence and development of SNNs have
shown promising potential for efficient and biologically in-
spired computation. As the research progresses, SNNs could
pave the way for a new generation of neural networks that
bridge the gap between artificial and biological systems, ulti-
mately advancing our understanding of both machine learning
and neurobiology.

III. PROPOSED APPROACH

This section introduces our novel approach to addressing the
challenges associated with the implementation of the MLP-
Mixer in spiking neural networks. We propose a new network
architecture, an optimized version of the MLP-Mixer that
leverages the strengths of SNNs, and a unique implementation
of the Leaky Integrate-and-Fire (LIF) neuron model. Key
elements include a multi-stage pyramid network structure, the
Spiking Patch Encoding (SPE) module, and the Spiking MLP-
Mixer. We then elaborate on the structure of the spiking token
block and the spiking channel block respectively, and discuss
the implementation of the LIF spiking neuron model within
the network.

A. Network Architecture

The architecture used by MLP-Mixer [5] is characterized
by an isotropic design. This design holds the input and
output resolutions constant across different layers. This type
of structure tends to create a profuse number of parameters,
leading to overfitting when training on medium-scale datasets,
such as ImageNet-1K. To overcome this issue, we utilize
a multi-stage pyramid network architecture as suggested by
[28], [54], [36]. Fig. 1 provides a visual representation of our
network architecture.
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Fig. 1: The overall network architecture. The multi-stage network is down-
sampled with an SPE module at each stage. Within each stage, the SPE is
followed by a sequence of spiking MLP-Mixers with identical architecture,
each containing a spiking token block with axial sampling and a spiking
channel block with full sampling.

Specifically, our approach starts with an RGB input image
of size 3×H×W. The original MLP-Mixer breaks this image
down into non-overlapping patches of size p×p, subsequently
projecting the new channel dimension of 3 × p2 to a hidden
dimension of C1. This process parallels a 2D convolution
operation with a kernel and stride size of p, and an output
dimension of C1. Although the MLP-Mixer benefits from a
global receptive field, it lacks the necessary inductive bias for
learning local features. To address this deficiency, we develop
an SPE module to replace the original patch partitioning
approach. We construct the SPE with a spike-based directed
acyclic graph, following the design outlined in a recent work
[18], as illustrated in Figure 3. Since this structure draws
inspiration from DARTS [55], we term it as a spiking cell,
which comprises three nodes. Each node receives the same
input from the previous stage, which is processed through
a convolution operation followed by Batch Normalization
(BN). Node pairs (1,2) and (2,3) are interconnected through a
convolution operation followed by BN, whereas node pair (1,3)
is connected via an identity connection. Within each node,
multiple operations are added after BN, with the subsequent
spiking activation serving as the output of the node. The cell’s
output is the concatenated spiking states of all nodes.

The output of the spiking cell is then fed into a sequential
of spiking MLP-Mixers which finally output a spiking feature
map of the same shape. In the following stages, this process
is repeated with the input feature consecutively downsampled
in spatial dimension and expanded in channel dimension,
both with a ratio of 2. The output of the final stage is fed
into a spiking classification head with a spiking MLP block
consisting of a fully connected (FC) layer followed by BN
and a spiking activation, with the FC layer performing full
sampling on the flattened spatial dimension of the feature map.

Finally, a linear classifier projects the output of spiking MLP
block to a label layer. The loss function is a cross entropy
function with the network output averaged over simulation
time steps.

B. Spiking MLP-Mixer

A straightforward adoption of existing MLP block designs
from artificial neural networks (ANNs) by substituting the
real-valued activation function with a spiking activation func-
tion (SAF) results in a violation of the MFI principle of spike-
based computation. In both the token and channel blocks of
the original MLP-Mixer, the fully connected (FC) operation is
carried out on the layer normalization (LN) [56] state of the
feature map, leading to real-valued matrix multiplication. To
rectify this, we move the normalization process to after the FC
operation and replace LN with batch normalization (BN). This
adjustment enables the parameters of the latter to be integrated
with the linear projection weights during inference, aligning
with the MFI principle [57], [46].

The spiking MLP-Mixer comprises a token block and a
channel block, each of which includes multiple FC layers with
spiking activation, as depicted in Fig. 2.

1) Spiking Token Block: Given input patched image I of
shape C × H × W , the token block of the original MLP-
Mixer flattens its spatial dimension to form a 2D tensor. The
process performs full sampling on the token dimension with
weights shared across the channel dimension, thus creating a
global receptive field that can be heavily parameterized for
small patch sizes. Drawing inspiration from previous works
[38], [37], [36], [39], we design a two-branch structure for
the spiking token block. This structure separately encodes
the feature representation along the horizontal and vertical
spatial dimensions. It learns long-range dependencies along
one direction while preserving positional information along
the other.

Given input patched image I of shape C × H × W , the
token block of the original MLP-Mixer flattens its spatial
dimension to form a 2D tensor. The process performs full
sampling on the token dimension with weights shared across
the channel dimension, thus creating a global receptive field
that can be heavily parameterized for small patch sizes.
Drawing inspiration from previous works [38], [37], [36], [39],
we design a two-branch structure for the spiking token block.
This structure separately encodes the feature representation
along the horizontal and vertical spatial dimensions. It learns
long-range dependencies along one direction while preserving
positional information along the other. As illustrated in Figure
1(c), each branch comprises an FC layer followed by a BN and
an SAF. The two binary feature maps are then concatenated
along the channel dimension, along with an identity connection
from the input feature map, and projected back to C through
an FC layer with BN and an SAF. Furthermore, we add a skip
connection from the BN states of the SPE.

In a single stage of the Spiking MLP-Mixer, assuming the
input X of shape C×(HW ) and the output Y , we can express
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Fig. 3: Spiking patch encoding with a directed acyclic graph structure. The structure adheres to the MFI principle, with additions performed on BN states
and multiplications performed between convolution weights and binary spikes.

the Spiking Token Block as follows:

I = f(X), (1)

Uh = BN(WhI
h), (2)

Uw = BN(WwI
w), (3)

Y = BN(WfConcat[f(Ũh), f(Ũw), I]) +X, (4)

where BN signifies batch normalization, f represents an SAF,
Wh and Ww are the token FC weights acting on the height and
width dimensions with shapes H×H and W×W respectively.
Wf are the branch fusion weights with a shape of C × 3C.
Superscripts h and w denote the matrix reshape operation that
retains the height, width, and channel dimensions, and˜denotes
the reshape operation that flattens the spatial dimension with
Ũh and Ũw of shape C × (HW ).

2) Spiking Channel Block: The channel block, comprised
of two spiking FC layers, takes the transposed output from the
token block as its input. The initial layer expands the channel
dimension by a predetermined ratio, α, and the subsequent
layer restores this dimension to its original state. A skip

connection is integrated between the BN state of the second
layer and the aggregated BN state from the token block.

In a single stage of the Spiking MLP-Mixer, given the input
X with shape C×(HW ) and the output Y , we can formulate
the Spiking Channel Block as follows:

I = f(X), (5)
V = Xc +BN(Wc2f(BN(Wc1I

c))), (6)

Y = f(Ṽ ), (7)

where Wc1 and Wc2 are the channel FC weights with shapes
αC × C and C × αC respectively, and α is the channel
expansion ratio.

To counteract the gradient vanishing issue commonly ob-
served in deep SNNs, we incorporate skip connections be-
tween the final BN states of both the token and channel blocks,
as well as the BN states from the SPE. Our ablation studies
highlight the significance of this design in achieving optimal
network efficiency.

It is noteworthy that all matrix multiplications involve a
real-valued matrix and a binary matrix, which implies that the
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spiking MLP-Mixer essentially operates without requiring any
multiplications. In subsequent spiking MLP-Mixers, the input
tensor is the output generated from the channel block of the
preceding Mixer.

C. LIF Spiking Neuron

In our study, we employ the Leaky Integrate-and-Fire (LIF)
neuron model, which is characterized by a hard threshold and
decay input, as described by the following equation:

ut,pre = ut−1 +
zt − ut−1

τ
, (8)

yt = g(ut,pre), (9)
ut = (1− yt)ut,pre, (10)

where t signifies the time step, τ represents the membrane
time constant, and u is the membrane potential, denoted by
a bold, italicized letter to represent a vector. y stands for the
spike output and g is a threshold function. zt = Wyt,pre

refers to the synaptic input, where W is the weight matrix,
and yt,pre signifies the afferent spikes originating from pre-
synaptic neurons.

When the membrane potential of a neuron surpasses a
certain threshold Vth, the neuron fires a spike and conveys it
to the post-synaptic neuron. This action is followed by a hard
reset of the membrane potential. If the membrane potential
does not exceed the threshold, the neuron does not transmit
any signals, as delineated by:

yti =

{
1 if ut,pre

i ≥ Vth

0 otherwise
. (11)

Previous works have shown that training thresholds or mem-
brane dynamics could potentially improve network perfor-
mances [30], [58], [59]. Since this work focuses more on
architectures, we set τ = 2 and Vth = 1 during experiments.
Given a loss L and using the chain rule, the weight update of
a Spiking Neural Network (SNN) can be expressed as follows:

∂L

∂W
=

∑
t

∂L

∂yt

∂yt

∂ut,pre

∂ut,pre

∂zt

∂zt

∂W
, (12)

where ∂yt

∂ut,pre is the gradient of the firing function, which
equals zero at all points except at the threshold. The surrogate
gradient method leverages continuous functions to estimate
the gradients. Various continuous functions have been used
in previous studies, such as rectangular [45], triangular [60],
and exponential curves [61], [62], among others. In our
experiments, we chose to use the sigmoid function.

IV. EXPERIMENTS

In order to thoroughly evaluate the performance and ca-
pabilities of our model, a variety of image classification
benchmarks are utilized. These include the ImageNet-1K [63],
CIFAR10/100 [64], and CIFAR10-DVS [65] datasets. The
SpikingJelly [66] toolkit, complemented by its cupy backend,
enables rapid simulation of Leaky Integrate-and-Fire (LIF)
neurons. The SPE module incorporated in our architecture

utilizes 3× 3 convolution operations. The stride for input-to-
node connections is set to 2, while node-to-node connections
have a stride of 1. To avoid statistical bias, the batch mean
and variance are synchronized across each device, following
the approach suggested by [15].

The following sections will present results from the afore-
mentioned datasets, discuss an ablation study, assess the net-
work spiking rate and computational cost, and finally visualize
our findings.

A. Results on ImageNet-1K

The ImageNet-1K dataset is comprised of a training set,
validation set, and a test set, with 1.28M, 50K, and 100K
224×224 images, respectively. Our training settings are pre-
dominantly derived from [36], encompassing data augmenta-
tion. We adopt a cosine decay learning rate strategy, initializing
the learning rate at 0.1 and gradually lowering it to zero over
100 epochs. Stochastic Gradient Descent (SGD) is utilized as
the optimizer with a momentum of 0.9.

In the first stage of the spiking MLP network, we use
the original patch partitioning approach with a patch size of
4, while employing the SPE module for downsampling in
subsequent stages. Three variants of the spiking MLP net-
work are developed, specifically spiking MLP-SPE-T/S/B. The
respective architectures are: spiking MLP-SPE-T: C1 = 78,
number of layers in each stage = {2; 8; 14; 2}; spiking MLP-
SPE-S: C1 = 96, number of layers in each stage = {2; 8; 14;
2}; spiking MLP-SPE-B: C1 = 108, number of layers in each
stage = {2; 10; 24; 2}.

The expansion ratio of the channel FC layer is set to α = 3.
To study the influence of the SPE module, we also train an
MLP-S model with the original patch partition approach while
other parts of the network remaining the same. The simulation
step of SNN is set to T = 4, where T denotes the simulation
step. To better compare with other SNNs with larger time
steps, we use time inheritance training (TIT) [17] and obtain
the T = 6 result for MLP-SPE-T, where we initialize the
network with the pre-trained MLP-SPE-T (T = 4) model and
fine-tune for 50 epochs with T = 6 using a cosine learning
rate decaying from 0.1 to 0.

Our model is compared to other state-of-the-art SNNs,
including those using direct training and Artificial Neural
Network (ANN)-to-SNN conversion methods. The results are
presented in Table I, where we report the top-1 accuracy along
with the number of model parameters and simulation steps.

It can be observed that ANN-SNN conversion methods can
indeed achieve high accuracy, but they require exceedingly
lengthy simulation steps. Hybrid training methods manage to
reduce the simulation steps but remain considerably longer
than methods using direct training. Among directly trained
methods, and considering similar network capacity, MLP-SPE-
T significantly outperforms STBP-tdBN ResNet-34 by 2.67%,
all the while requiring fewer simulation time steps. Post-TIT,
the model achieves an accuracy of 69.09% with T = 6,
exceeding ResNet-34-large, VGG-16 and the DARTs-based
SpikeDHS models by 2.04%, 0.09%, 1.13% respectively,
while maintaining a model capacity more than 3, 5.5 and 2.3
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TABLE I: Results on ImageNet-1K (T denotes simulation length)

Method Architecture Model Size T Accuracy[%]

ANN-SNN [67] ResNet-34 22M 768 71.6
ANN-SNN [68] VGG-16 138M 2500 69.96
S-ResNet [69] ResNet-50 26M 350 73.77

Hybrid training [48] ResNet-34 22M 250 61.48
Hybrid training [70] VGG-16 138M 250 65.19

Tandem Learning [71] AlexNet 62M 10 50.22
STBP-tdBN [45] ResNet-34 22M 6 63.72

TET [17] ResNet-34 22M 6 64.79
STBP-tdBN [45] ResNet-34-large 86M 6 67.05
Diet-SNN [30] VGG-16 138M 5 69.00
SpikeDHS [18] SpikeDHS-CLA-large 58M 6 67.96

Spiking MLP (our model) MLP-SPE-T 25M 4 66.39
Spiking MLP (our model) MLP-SPE-T 25M 6 69.09
Spiking MLP (our model) MLP-S 34M 4 63.25
Spiking MLP (our model) MLP-SPE-S 38M 4 68.84
Spiking MLP (our model) MLP-SPE-B 66M 6 71.64

SpikFormer (SNN) [72] Spikformer-8-512 30M 4 73.38
SparseMLP (ANN) [36] sMLPNet-T 24M - 81.9

times smaller. These results underscore the superior efficiency
of our architecture.

The enhancement observed in MLP-SPE-S over MLP-
S confirms that the SPE module can substantially improve
network performance. This result attests to the efficacy of
amalgamating global receptive fields with local feature extrac-
tion. However, it is important to note that our method is more
accurately compared with the STBP-tdBN method since both
use the same conventional temporal averaged loss function.
The Temporal Error Transport (TET) method, which employs a
temporal moment-wise loss function, has been demonstrated to
outperform the temporal averaged method [17]. Note that the
work of [31] has applied temporal self-recurrent non-spiking
neurons in MLP architecture, achieving an accuracy similar
to transformer-based models on ImageNet-1K. However, due
to the use of floating-point valued neurons, the model has no
significant advantage in terms of energy cost compared with
other ANNs. The SparseMLP [36] in the ANN domain and
SpikFormer [72] using attention mechanism have significant
higher accuracy compared with our model under similar pa-
rameter number. However, the sparse spiking activation of our
architecture renders much lower energy cost, as demonstrated
in Table VI.

B. Results on CIFAR

Both the CIFAR10 and CIFAR100 datasets consist of 50K
training images and 10K testing images, each of size 32× 32
pixels. For data augmentation, we implement random resized
cropping and random horizontal flipping, in line with other
studies. We follow a pre-training and fine-tuning paradigm,
akin to other transformer and MLP works [2], [5].

The pre-training phase employs the spiking MLP-SPE-T
network trained on the ImageNet-1K dataset. We then reset
the final classification output layer of the network and fine-
tune it on the resized 224 × 224 CIFAR10/100 dataset. The
fine-tuning phase uses a cosine decay learning rate strategy,
starting from an initial value of 0.1 and gradually reducing to

zero over 100 epochs. The optimizer we utilize is SGD with
a momentum of 0.9.

Our results are benchmarked against other state-of-the-art
SNNs, as depicted in Table II. Despite a larger network size,
our model sets new records on both datasets, outperforming
existing SNNs significantly. While comparing our results with
directly trained SNNs might seem somewhat disproportionate,
the outcomes convincingly illustrate the efficacy of the spiking
MLP network as a pre-trained model applicable to other
datasets. Note that our model also outperforms [26], a light
weight SNN specifically optimized for balanced accuracy and
energy cost, under much smaller timestep.

C. Results on CIFAR10-DVS

Neuromorphic datasets generally possess higher noise levels
in comparison to static datasets, which heightens the risk of
overfitting in well-optimized SNNs. Among all mainstream
neuromorphic datasets, CIFAR10-DVS is recognized as one of
the most challenging, presenting approximately 900 training
samples for each label. Recent literature suggests an incli-
nation towards complex architectures to handle this dataset
effectively, albeit this strategy carries an inherent risk of
overfitting without correspondingly enhancing the model’s
accuracy. Therefore, a pressing need exists for novel method-
ologies that can reduce the influence of noise and tackle the
difficulties inherent in working with CIFAR10-DVS.

Similar to the CIFAR10/100 datasets, we employ the spiking
MLP-SPE-T network, pre-trained on the ImageNet-1K dataset,
as the pre-trained model for the CIFAR10-DVS dataset. We
reset the final classification output layer of the network, and
subsequently fine-tune it on the resized 224× 224 CIFAR10-
DVS dataset. Our fine-tuning strategy employs a cosine decay
learning rate, starting with an initial value of 0.1 and pro-
gressively reducing to zero over 100 epochs. SGD, with a
momentum of 0.9, is used as the optimizer.

We compare our results with those achieved by other state-
of-the-art SNNs, as shown in Table III. Our experiments
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TABLE II: Results on CIFAR (T denotes simulation length)

Dataset Method Architecture T Accuracy[%]

CIFAR10

TerMapping [73] VGG 2800 93.75
AugMapping [73] VGG 300 93.90

S-ResNet [69] ResNet-110 350 93.02
Diet-SNN [30] ResNet-20 10 92.54
BRP-SNN [74] CNN 20 57.08

Tandem Learning [71] CifarNet 8 90.98
SAC [75] ResNet-18 6 93.74

STBP-tdBN [45] ResNet-19 6 93.16
STBP-tdBN [45] ResNet-19 4 92.92

TET [17] ResNet-19 4 94.44± 0.08
AutoSNN [26] AutoSNN 8 93.15
SpikeDHS [18] SpikeDHS-CLA 6 95.35

Spiking MLP (our model) MLP-SPE-T 4 96.08

CIFAR100

S-ResNet [69] ResNet-110 350 70.62
Diet-SNN [30] ResNet-20 5 64.07

STBP-tdBN [45] ResNet-19 6 71.12± 0.57
STBP-tdBN [45] ResNet-19 4 70.86± 0.22

TET [17] ResNet-19 6 74.72± 0.28
TET [17] ResNet-19 4 74.47± 0.15

SpikeDHS [18] SpikeDHS-CLA 6 76.15
Spiking MLP (our model) MLP-SPE-T 4 80.57

indicate that the spiking MLP-SPE-T outperforms the spiking
ResNet-19 and even exceeds the performance of SNNs trained
using Dspike.

D. Ablation Study

1) Normalization Methods: We conduct additional exper-
iments focused on replacing the BN operation within the
MLP-Block by other normalization methods including the
original LN [56] in the MLP-Mixer and two recent temporal
normalization methods specifically proposed for SNNs, i.e.,
tdBN [45] and TEBN [76]. These experiments are conducted
on the ImageNet-1k dataset, maintaining consistency with
the hyperparameters used in the ImageNet experiments. The
results of these experiments are presented in Table IV. Our
findings indicate that BN suggests more beneficial for accu-
racy improvement compared to other normalization methods.
Additionally, employing BN allows the parameters of the latter
to integrate with the linear projection weights during inference,
aligning with the MFI principle.

2) Skip Connection: We further study the influence of dif-
ferent configurations of skip connections on the performance
of the network. As shown in Figure 4, we distinguish different
skip connections, i.e patch block to token block (PT), patch
block to channel block (PC), token block to channel block
(TC) and channel block to the next token block (CT), with
corresponding indices and colors. The skip connection from
the patch block to the first token block is set as default. To
shorten the simulation time, we set the initial channel number
to 60 and directly train networks of different skip connection
configurations from scratch on the CIFAR10 dataset for 100
epochs. The results are collected in Table V. Networks without
skip connections from the initial patch block to sequential
token and channel blocks perform much worse than the others.
This could be due to long range skip connections alleviating
the gradient vanish problem of deep SNNs during training.

Our spiking MLP-mixer adopts the optimal skip connection
configuration of (PT, PC, TC).
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Fig. 4: Potential skip connections for the spiking MLP-Mixer.

E. Network Spiking Rate and Computational Cost

SNNs are recognized for their superior energy efficiency
compared to dense-computing ANNs, a quality that primarily
stems from the inherent event-driven and sparse computing
characteristics of SNNs. Additionally, the MFI principle fa-
cilitates an entirely addition-based operation for SNNs, thus
further diminishing their potential energy usage in contrast
to ANNs that necessitate real-valued matrix multiplications.
In this section, we assess the spiking rate and computation
cost of the spiking MLP-SPE-T model, contrasting it with the
spiking ResNet-34.

Figure 5 portrays the average spiking rate of each spik-
ing MLP-Mixer on the ImageNet-1K test set. Our model
demonstrates diverse sparse activity across different layers,
yielding an average network spiking rate of 0.14. Following
the methodologies established by [15], [30], we compute the
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TABLE III: Comparison on CIFAR10-DVS (T denotes simulation length)

Method Architecture T Accuracy[%]

Tandem Learning [71] CNN 10 65.59
STBP-tdBN [45] ResNet-19 10 67.80

TET [17] VGG 10 83.17
Dspike [15] ResNet-18 10 75.40

Spiking MLP (our model) MLP-SPE-T 10 81.12
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Fig. 5: Mean network spiking rate of MLP-SPE-T on the ImagNet-1K test set. We distinguish each stage with different colors.

TABLE IV: Comparisons of different normalization methods on ImageNet-
1K (T denotes simulation length)

Architecture Normalization Model Size T Accuracy[%]

MLP-SPE-T Batch Norm 25M 4 66.39
MLP-SPE-T Layer Norm 25M 4 65.94
MLP-SPE-T TEBN 25M 4 62.33
MLP-SPE-T tdBN 25M 4 60.25

TABLE V: Network performance under different skip connection configura-
tions on CIFAR10

PT(1) PC(2) TC(3) CT(4) Accuracy[%]

✓ ✓ 80.53
✓ ✓ ✓ 81.35
✓ ✓ ✓ ✓ 79.46

✓ ✓ 10.53
✓ 10.00

number of addition operations in the SNN using the formula
sTA, where s represents the average spiking rate (the total
count of spikes divided by the total feature map size), T
indicates the simulation time step, and A signifies the number
of additions.

The findings are presented in Table VI. The least amount
of multiplication arises from the input layer, which receives
floating-value images. To estimate the network’s energy con-
sumption, we refer to the study by [49] on the 45nm CMOS
technology, a method also employed by previous works [15],
[30]. According to this estimate, a single addition operation in
an SNN costs 0.9pJ, whereas a multiply-accumulate (MAC)
operation in ANNs consumes 4.6pJ. Notwithstanding their
comparable model capacities, our network’s computation cost
is nearly half of that of the spiking ResNet-34. The SparseMLP
[36] in the ANN domain and the SpikFormer [72], which

employs a spike-based attention mechanism, achieve signifi-
cantly higher accuracy but consume over ten times the energy
compared to our model.

TABLE VI: The computation and estimated energy cost

Model #Param. Accuracy[%] #Add. #Mult. Energy

SparseMLP (ANN) 24M 81.9 2.50G 2.50G 13.75 mJ
SpikFormer 30M 73.38 11.09G - 11.58 mJ

Spiking ResNet-34 22M 63.72 1.85G 118M 2.21 mJ
Spiking MLP-SPE-T 25M 66.39 1.18G 12M 1.12 mJ

F. Visualization

Lastly, we provide a visualization of weights from token
blocks across various stages of the spiking MLP-SPE-T after
training on ImageNet-1K. These weights are depicted in Figure
6. Interestingly, the weights in the early stages appear to
concentrate on local areas, while those in the later stages
progressively sample more global areas. Without an inductive
bias, the SNN naturally learns to form hierarchically arranged
receptive fields. Further, the receptive fields of spiking neurons
in the initial stages resemble the ’off-center on-surround’
receptive fields of cortex cells [77], characterized by a central
inhibitory area encircled by an excitatory area. This ’M’
shaped weight kernel is universally observed in the network’s
early stages. It would be intriguing to determine whether
similar phenomena occur in ANNs.

V. CONCLUSION

This work presented the construction of MLP architectures
utilizing spiking neurons, adhering to the MFI principle.
The spiking MLP-Mixer, within our framework, employed
batch normalization instead of layer normalization in both the
token and channel block to ensure compatibility with MFI.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , MONTH YEAR 10

(a) Stage 1 (b) Stage 2 (c) Stage 3 （d）Weights selected from stage 2

Fig. 6: Axial sampling weights from token blocks across different stages after training on ImageNet-1K. Figures (a-c) show randomly selected token weights
plotted in a H ×H or W ×W 2D matrix. 1, 2, and 4 weight matrices from stage 1, 2, and 3 are displayed, respectively. The diagonal distribution of values
in the early stages indicates local sampling. Figure (d) represents weights of several neurons from the same token block in stage 2. For the sake of simplicity,
we only plot a few neurons here, however, it should be noted that this ’M’ shaped weight kernel is a universal finding in the network’s early stages.

Furthermore, the network’s local feature learning capability
was augmented with a spiking patch encoding layer, which
notably enhanced the network’s performance.

Leveraging these foundational building blocks, we investi-
gated an optimal skip connection configuration and developed
a proficient multi-stage spiking MLP network. This network
combined global receptive field and local feature extraction.
With comparable model capacity, our networks markedly sur-
passed state-of-the-art, mainstream deep spiking convolutional
networks on the ImageNet-1K dataset. This is evident in terms
of balancing accuracy, model capacity, and computation cost,
thus demonstrating the efficacy of this alternative architecture
for deep SNNs.

Our work underscores the importance of integrating global
and local learning for optimal SNN architecture design. In-
terestingly, the trained receptive fields of our network bear a
striking resemblance to those of cells in the cortex. Future
comparative analysis with ANNs could potentially yield in-
sightful results. In terms of accuracy, however, our SNN-based
MLPs are still suboptimal compared with MLP architectures
in the ANN domain. Considering this is an initial effort
in adapting SNNs to MLP frameworks, future research into
more effective structures and spike-based mechanisms, such as
adaptive thresholds, is likely to enhance network performance.
Furthermore, recent works of SNNs integrated with attention
mechanisms have been applied to challenging language tasks
[78], [79]. With the ever growing demand on computational
efficient architectures for these tasks, the proposed spike-based
MLP structure could be integrated as a light weight module
in the encoder network.
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Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp.
1419–1428. [Online]. Available: https://proceedings.neurips.cc/paper/
2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html

[62] F. Zenke and S. Ganguli, “Superspike: Supervised learning in
multilayer spiking neural networks,” Neural Comput., vol. 30, no. 6,
2018. [Online]. Available: https://doi.org/10.1162/neco a 01086

[63] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017. [Online]. Available: https://doi.org/10.1145/3065386

[64] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[65] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: An event-
stream dataset for object classification,” Frontiers in Neuroscience,
vol. 11, 2017. [Online]. Available: https://www.frontiersin.org/journals/
neuroscience/articles/10.3389/fnins.2017.00309

[66] W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen,
L. Huang, H. Zhou, G. Li, and Y. Tian, “Spikingjelly: An
open-source machine learning infrastructure platform for spike-based
intelligence,” CoRR, vol. abs/2310.16620, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2310.16620

[67] Y. Hu, H. Tang, and G. Pan, “Spiking deep residual networks,” IEEE
Transactions on Neural Networks and Learning Systems, 2018.

[68] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: VGG and residual architectures,” CoRR, vol.
abs/1802.02627, 2018. [Online]. Available: http://arxiv.org/abs/1802.
02627

[69] Y. Hu, H. Tang, and G. Pan, “Spiking deep residual networks,”
IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 8, pp.
5200–5205, 2023. [Online]. Available: https://doi.org/10.1109/TNNLS.
2021.3119238

[70] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy,
“Enabling spike-based backpropagation for training deep neural
network architectures,” Frontiers in Neuroscience, vol. 14, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:80628412

[71] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, and K. C. Tan,
“A tandem learning rule for effective training and rapid inference
of deep spiking neural networks,” IEEE Trans. Neural Networks
Learn. Syst., vol. 34, no. 1, pp. 446–460, 2023. [Online]. Available:
https://doi.org/10.1109/TNNLS.2021.3095724

[72] Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan,
“Spikformer: When spiking neural network meets transformer,” in
The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
[Online]. Available: https://openreview.net/pdf?id=frE4fUwz h

https://doi.org/10.1007/978-3-030-58607-2_23
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1609/aaai.v35i12.17320
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://doi.org/10.1038/s42256-018-0015-y
https://openreview.net/forum?id=B1xSperKvH
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/JPROC.2021.3067593
https://www.science.org/doi/abs/10.1126/science.1254642
https://doi.org/10.1109/JPROC.2014.2304638
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.01201
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.01201
https://proceedings.neurips.cc/paper/2021/hash/4e0928de075538c593fbdabb0c5ef2c3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4e0928de075538c593fbdabb0c5ef2c3-Abstract.html
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/CVPR52688.2022.00848
https://proceedings.neurips.cc/paper/2018/hash/c203d8a151612acf12457e4d67635a95-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c203d8a151612acf12457e4d67635a95-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1145/3065386
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00309
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00309
https://doi.org/10.48550/arXiv.2310.16620
http://arxiv.org/abs/1802.02627
http://arxiv.org/abs/1802.02627
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.1109/TNNLS.2021.3119238
https://api.semanticscholar.org/CorpusID:80628412
https://doi.org/10.1109/TNNLS.2021.3095724
https://openreview.net/pdf?id=frE4fUwz_h


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , MONTH YEAR 13

[73] Q. Yu, C. Ma, S. Song, G. Zhang, J. Dang, and K. C. Tan,
“Constructing accurate and efficient deep spiking neural networks
with double-threshold and augmented schemes,” IEEE Trans. Neural
Networks Learn. Syst., vol. 33, no. 4, pp. 1714–1726, 2022. [Online].
Available: https://doi.org/10.1109/TNNLS.2020.3043415

[74] T. Zhang, S. Jia, X. Cheng, and B. Xu, “Tuning convolutional
spiking neural network with biologically plausible reward propagation,”
IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp.
7621–7631, 2022. [Online]. Available: https://doi.org/10.1109/TNNLS.
2021.3085966

[75] J. Liu, Y. Hu, G. Li, J. Pei, and L. Deng, “Spike attention coding for
spiking neural networks,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–7, 2023.

[76] C. Duan, J. Ding, S. Chen, Z. Yu, and T. Huang, “Temporal effective
batch normalization in spiking neural networks,” in Advances in
Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New

Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds.,
2022. [Online]. Available: http://papers.nips.cc/paper files/paper/2022/
hash/de2ad3ed44ee4e675b3be42aa0b615d0-Abstract-Conference.html

[77] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex,”
The Journal of Physiology, vol. 160, 1962. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17055992

[78] R. Zhu, Q. Zhao, and J. K. Eshraghian, “Spikegpt: Generative
pre-trained language model with spiking neural networks,” CoRR, vol.
abs/2302.13939, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2302.13939

[79] M. Bal and A. Sengupta, “Spikingbert: Distilling BERT to train
spiking language models using implicit differentiation,” CoRR, vol.
abs/2308.10873, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2308.10873

https://doi.org/10.1109/TNNLS.2020.3043415
https://doi.org/10.1109/TNNLS.2021.3085966
https://doi.org/10.1109/TNNLS.2021.3085966
http://papers.nips.cc/paper_files/paper/2022/hash/de2ad3ed44ee4e675b3be42aa0b615d0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/de2ad3ed44ee4e675b3be42aa0b615d0-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:17055992
https://doi.org/10.48550/arXiv.2302.13939
https://doi.org/10.48550/arXiv.2302.13939
https://doi.org/10.48550/arXiv.2308.10873
https://doi.org/10.48550/arXiv.2308.10873

	Introduction
	Related Work
	Multi-Layer Perceptrons in Deep Learning
	Spiking Neural Networks in Deep Learning
	Discussion

	Proposed Approach
	Network Architecture
	Spiking MLP-Mixer
	Spiking Token Block
	Spiking Channel Block

	LIF Spiking Neuron

	Experiments
	Results on ImageNet-1K
	Results on CIFAR
	Results on CIFAR10-DVS
	Ablation Study
	Normalization Methods
	Skip Connection

	Network Spiking Rate and Computational Cost
	Visualization

	Conclusion
	References



