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Amultimodal visual–language foundation
model for computational ophthalmology
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Early detection of eye diseases is vital for preventing vision loss. Existing ophthalmic artificial
intelligencemodels focus on singlemodalities, overlookingmulti-view information and strugglingwith
rare diseases due to long-tail distributions. We propose EyeCLIP, a multimodal visual-language
foundationmodel trained on 2.77million ophthalmology images from11modalities with partial clinical
text. Our novel pretraining strategy combines self-supervised reconstruction, multimodal image
contrastive learning, and image-text contrastive learning to capture shared representations across
modalities. EyeCLIP demonstrates robust performance across 14 benchmark datasets, excelling in
disease classification, visual question answering, and cross-modal retrieval. It also exhibits strong
few-shot and zero-shot capabilities, enabling accurate predictions in real-world, long-tail scenarios.
EyeCLIP offers significant potential for detecting both ocular and systemic diseases, and bridging
gaps in real-world clinical applications.

Ophthalmic diseases such as glaucoma, macular degeneration, and diabetic
retinopathy pose a significant threat to global vision health, often leading to
vision impairment or even blindness1. However, access to timely diagnosis
and treatment remains a critical challenge due to insufficient medical
resources, especially in underserved regions and developing countries2,3.
This inequitable distribution of resources makes early detection and inter-
vention for eye diseases particularly challenging, further exacerbating the
burden of these diseases.

Computational ophthalmology has emerged as a promising solution,
drawing from the concept of “computational pathology.“4,5 This data-driven
approach leverages artificial intelligence (AI) and multimodal data to
automate image analysis, enhance diagnostic accuracy, and reduce specia-
lists’ workloads6–8. Recently, the field has shifted from performing specific
tasks to developing foundation models9–14. After pretraining on a large
quantity of labeled or unlabeled data, the model can be easily adapted to
downstream tasks in a data-saving manner, reducing the cost and time of

data preparation and improving the models’ generalization capability.
RETFound was the first proposed foundation model in ophthalmology
using self-supervised reconstruction learning10, but it was trained on sepa-
rate image modalities (color fundus photography [CFP] and optical
coherence tomography [OCT]). VisionFM15 integrates multimodal infor-
mation through a shared embedding; however, its image encoders remain
modality-specific, and a universal model capable of encoding all modalities
has yet to be explored. Previously, we proposed EyeFound, which learns a
shared representation of multimodal ophthalmic imaging16. Nevertheless,
existing foundation models still lack modality-modality consistency and
image-language alignment—features we consider essential for real-world
applications.

In clinical practice, multiple examinations are optimal for examining
different eye pathologies, such as CFP, OCT, fundus fluorescein angio-
graphy (FFA), and fundus autofluorescence (FAF)17. Each examination
provides unique and complementary information about the structure and
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function of the eye. Previous studies have demonstrated the complementary
capabilities of different modalities in enhancing AI models for disease
classification and segmentation18–21. Therefore, effectively utilizing multi-
modal data is crucial for obtaining multi-view information, and ensuring
consistency across modalities can serve as an important cue for self-
supervised learning. Additionally, ophthalmic reports and diagnoses from
expert interpretations offer rich textual context, which should be helpful for
learning long-tailed representations with hierarchical concepts commonly
encountered in the medical domain11,22. By integrating clinical text, AI
models can better simulate the cognitive processes of human experts,
enabling them to handle complex, real-world clinical problems in an ever-
changing environment.

In this work, we propose EyeCLIP, an ophthalmic visual-language
foundational model designed to harness real-world multi-source, multi-
modal data. EyeCLIP was pre-trained on a dataset comprising 2,777,593
multimodal ophthalmic images and 11,180 reports from 128,554 patients
using self-supervised learning and multimodality alignment. Specifically,
the training combined self-supervised reconstruction, multimodal image
contrastive, and image-text contrastive learning. Subsequently, we validated
EyeCLIP on 14 multi-country datasets to assess its performance in zero-
shot, few-shot, and supervised settings across different tasks, including
multimodal ocular disease diagnosis and systemic disease prediction, visual
question answering (VQA), and cross-modal retrieval. EyeCLIP can effec-
tively learn a shared representation ofmultiple examinations, enabling zero-
shot disease diagnosis and improved language understanding by fully uti-
lizing a large amount of unlabeled, multi-examination, and labeled data in
the real world. We believe our approach not only represents a significant
advancement in ophthalmic foundation models but also offers insights for
training foundational models with incomplete multimodal medical data
accumulated in clinical practice across other medical domains.

Results
EyeCLIP development using multi-center multimodal datasets
The EyeCLIP systemwas trained using 2,777,593 multimodal images and
11,180 reports from 128,554 patients across diverse regions and hospitals
in China to learn ophthalmic vision-language features comprehensively.
The data details can be found in Fig. 1 and theMethods section. Following
training, EyeCLIP can be directly applied to applications involving clas-
sification and cross-modal retrieval without further training. Also, it can
befinetuned in a data-savingmanner for downstreamapplications such as
ocular disease diagnosis, systemic disease prediction, and interactive
VQA. Figure 1 shows the study design. The characteristics of the 14
downstream datasets can be found in Supplementary Table 1.
Figure 2a presents EyeCLIP’s overall superior performance across dif-
ferent downstream tasks compared with the general-domain CLIP23,
medical domain BioMedCLIP24, PubMedCLIP25, and the ophthalmology
domain RETFound10.

EyeCLIP excels in zero-shot, partial and full-data training ocular
disease classification
Zero-shot transfer capability enables a single pretrained foundation model
to be applied directly to downstream tasks. EyeCLIP could be a strong
baseline for conventional supervised learning, especially when training
labels are scarce. We evaluated EyeCLIP’s zero-shot classification perfor-
mance without task-specific training on nine public ophthalmic datasets.
UsingCFPas the inputmodality, EyeCLIP significantly outperformedother
models in diagnosing ophthalmic diseases (all P < 0.001), with AUCs ran-
ging from 0.681 to 0.757 for DR, 0.721 and 0.684 for glaucoma, as well as
0.660 and0.688 formulti-disease diagnosis. ForOCT,EyeCLIPachieved the
highest AUROC scores of 0.800 for OCTID26 and 0.776 for OCTDL27,
higher than the other models (all P < 0.001). Quantitative results are pre-
sented in Fig. 2b and Supplementary Table 2.

Next,we evaluated the few-shotperformanceofEyeCLIPon thosenine
ocular disease datasets, using limited training samples of 1, 2, 4, 6, and 16,
respectively. The results indicated that EyeCLIP could generalize with

limited data, demonstrating the ability to diagnose various ophthalmic
diseases data-efficiently, outperforming other models (all P < 0.01). Quan-
titative results of AUROC and AUPR are provided in Fig. 3 and Supple-
mentary Table 3.

Specifically, rare diseases are known for lacking sufficient data due
to low incidence rates, and they are a common challenge for medical AI,
and should be most beneficial with data-efficient training. Therefore, we
further evaluated its performance for few-shot classification using a
subset of the Retina Image Bank selected by ophthalmologists, with the
number of images for each class exceeding 16. The subset included 17
rare diseases: acute posterior multifocal placoid pigment epitheliopathy,
birdshot retinochoroidopathy, central areolar choroidal dystrophy,
choroidal melanoma, choroidal osteoma, cone dystrophy, congenital
hypertrophy of the retinal pigment epithelium, familial exudative
vitreoretinopathy, macular telangiectasia, optic disc pit, optic nerve
hypoplasia, pseudoxanthoma elasticum, retinitis pigmentosa, retino-
blastoma, retinopathy of prematurity, serpiginous choroiditis, Stargardt
disease. EyeCLIP beat other models in classifying rare diseases in all
settings. The results are presented in Fig. 4c and Supplementary Table 4.
Diseases with more distinct clinical features, such as choroidal melanoma
and retinitis pigmentosa, were more readily identified across imaging
modalities.

Lastly, we tested EyeCLIP using the full-data supervised training
paradigm on 11 public datasets containing unimodal and multimodal
images, with a train, validation and test split ratio of 55:15:30%. Detailed
results are provided in Fig. 4a and Supplementary Table 5.

For single-modality tasks, EyeCLIP outperformed competing models
except for three datasets when it was on par with the 2nd best model
RETFound. In DR classification, EyeCLIP significantly surpassed
RETFound in IDRiD dataset [with AUROC 0.835 vs 0.826, P = 0.013],
which is a small dataset, but on parwithRETFound onmuch larger datasets
APTOS2019 and MESSIDOR2 (P > 0.05), suggesting EyeCLIP surpasses
RETFound in a matter of data efficiency, requiring less data than
RETFound. For glaucoma and multi-disease classification, EyeCLIP con-
sistently outperformed othermodels. ForOCT images, EyeCLIPwas on par
with RETFound on OCTID dataset (P > 0.05), but significantly better on
OCTDL dataset (AUROC 0.993 vs. 0.982, P < 0.001), which is a more
imbalanced dataset with long-tailed classes. Even though RETFound spe-
cifically trained separate weights that are optimal for CFP and OCT, Eye-
CLIP is generally better and no worse than it, even with a single general
encoder.

For multimodality tasks, EyeCLIP outperformed all comparison
models. On the AngioReport (APTOS202328) dataset with two modalities,
EyeCLIPoutperformed thenext bestmodel, BioMedCLIP,with anAUROC
of 0.721 versus 0.705, P < 0.001. Moreover, EyeCLIP performed the best on
the challenging Retina Image Bank29 dataset with 14 modalities and 84
conditions, including rare diseases, withAUROCof 0.561 versus the 2nd best
0.545, P < 0.001.

We also conducted an ablation study on fully supervised training to
investigate the contributions of image-text contrastive learning, image-
image contrastive learning, and image self-reconstruction learning. Results
can be found in Supplementary Table 6 and Supplementary Fig. 2. The
pretraining and downstream settings in the ablation experiments remained
consistent with the original EyeCLIP model. The results indicate that
removing any of these components leads to a decline in performance on
downstream tasks, demonstrating the necessity and effectiveness of the
EyeCLIPdesign.Among them, themodelwithout image self-reconstruction
learning experienced the most significant performance drop. For instance,
on the multimodal dataset Retina Image Bank, the AUROC decreased by
14.2 percentagepoints,while on theAngioReport dataset, it droppedby14.6
percentage points. This suggests that image self-reconstruction learning
plays a crucial role in maintaining robust feature representations, particu-
larly in scenarioswithdiversemodalities,where reconstructing input images
helps preserve structural and semantic consistency across different imaging
techniques.
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Fig. 1 | Study diagram. a Using an extensive multimodal database across nine
provinces in China, we matched the multi-examination images from the same
patient, and cleaned the medical reports using a keyword mapping dictionary
containing medical terminology to generate hierarchical keyword text labels.
b EyeCLIP was pretrained using self-supervised reconstruction, multi-examination
contrastive learning, and hierarchical text-image contrastive learning to leverage
real-world multi-examination clinical data fully. c Downstream multi-country

datasets for EyeCLIP validation, including zero-shot, few-shot, and supervised
finetuning scenarios.dRadar plot outlines the performance of EyeCLIP and baseline
models across various downstream tasks. EyeCLIP significantly outperforms the
baseline models across diverse tasks, including zero-shot classification, multimodal
retrieval, visual question answering (VQA), and supervised systemic disease
prediction.
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EyeCLIP enhances systemic disease prediction
Systemic diseases such as stroke and myocardial infarction (MI) pose
significant threats to older adults, often leading to sudden death. The
eyes, rich in blood vessels that can be directly visualized, have been
referred to as “the window to the body’s health.“30,31 Therefore, predicting
the incidence of systemic diseases is a crucial technique for early
screening and prevention. However, compared to the general population,
the incidence of these events is relatively low, resulting in limited positive
training data. Consequently, data-efficient training methods are highly
valued in this context. We evaluated EyeCLIP’s performance in pre-
dicting systemic diseases based on ophthalmic images using the UK
Biobank32. Our experiment included predictions for stroke, dementia,
Parkinson’s disease (PD), and MI. We first assessed the few-shot per-
formance of EyeCLIP using limited training samples of 1, 2, 4, 8, and 16,
respectively. EyeCLIP consistently outperformed other models, demon-
strating superior data efficiency in predicting systemic diseases. For full-
data supervised training, EyeCLIP ranked first, achieving AUROC scores
of 0.641, 0.536, 0.580, and 0.596, and AUPR scores of 0.627, 0.572, 0.616,
and 0.582, respectively (all P < 0.05). Detailed results are provided in
Fig. 4b and Supplementary Tables 7-8.

EyeCLIP achieves zero-shot cross-modal retrieval
By learning an aligned latent space for multimodal embeddings, Eye-
CLIP enabled zero-shot cross-modal retrieval. This included retrieving

text entries based on image queries (image-to-text, i2t), retrieving
images based on text queries (text-to-image, t2i), and retrieving images
based on image queries (image-to-image, i2i). This function is useful
for biomedical applications such as identifying cases for research
cohorts, assisting with rare disease presentations, and creating edu-
cational resources. We evaluated EyeCLIP on two external multimodal
image-caption datasets, AngioReport and Retina Image Bank, which
cover a diverse range of ophthalmology concepts. To specifically
investigate the performance on rare diseases, we manually selected a
subset from Retina Image Bank containing only rare diseases. Fol-
lowing previous studies11,33, we used Recall@K as the metric for cross-
modal retrieval.

On AngioReport, EyeCLIP achievedmean recall of 44.1%, 40.7%, and
44.3% for text-to-image, image-to-image, and image-to-text retrieval,
respectively, outperforming BioMedCLIP’s 40.5%, 32.9%, and 40.1%
(P < 0.01 for all tasks). On Retina Image Bank, EyeCLIP achieved a mean
recall of 50.2%, 43.3%, and 50.9%, outperforming BioMedCLIP’s 45.8%,
35.8%, and 45.3% (P < 0.01 for all tasks). Supplementary Table 9 provides
details on the model’s performance. Examples of the retrieved results are
presented in Fig. 5; EyeCLIP effectively retrieved similar contents using text
or images as queries. It could retrieve relevant images based on text
descriptions, pair images with the same pathological condition or from the
same patient, and find the most correlated description with the image
inputs.

Fig. 2 | Zero-shot performance on downstream ocular diseases datasets.
a AUROC. b AUPR. Error bars represent 95% confidence intervals, and the centers
correspond to computed values of eachmetric. EyeCLIP achieved significantly better
zero-shot performance than other models for both AUROC and AUPR. AUROC =
area under the receiver operator characteristic curve, AUPR = area under the
precision-recall curve. EyeCLIP outperforms the second-best model FLAIR, a

pretrained vision-language model for universal retinal fundus image understanding.
Notably, FLAIR was pretrained on public datasets, with its performance evaluated
through internal validation. In contrast, EyeCLIP, which was not trained on these
public datasets, demonstrated its performance through external validation, high-
lighting its strong generalizability.
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EyeCLIP demonstrates few-shot generalization on VQA
Vision-language foundation models have great potential for generalization
in ophthalmic VQA. We combined the image encoder from each model
with a text encoder using a large language model (LLM), specifically
Llama2-7b, to perform VQA. We conducted the few-shot VQA on the
OphthalVQA34 dataset. OphthalVQA is an open-set VQA dataset, with the
training set comprising 7,778 images across six modalities and VQA pairs

covering 40 diseases, including rare conditions. The test set includes 60
images across the same six modalities, representing 60 ophthalmic condi-
tions and 600 QA pairs. As detailed in Supplementary Table 10, EyeCLIP
demonstrated superior alignment with the LLM, despite the image and
language modules being fine-tuned on a limited amount of VQA data.
EyeCLIP rankedfirst in termsof exactmatching score andF1 score across all
settings with support numbers of 1, 2, 4, and 8

Fig. 3 | Few-shot classification experiments.We investigated the label efficiency of
different pretrained models in a few-shot setting, varying the number of training
labels per class (nc = 1, 2, 4, 8, 16) in the APTOS2019 (a), MESSIDOR2 (b), IDRID
(c), GLAUCOMA FUNDUS (d), PAPILA (e), JSIEC (f), RETINA (g), OCTDL (h),
and OCTID (i) dataset. For each nc, we sampled five different sets of training
examples and trained a weakly supervised model. Boxes indicate quartile values, and

whiskers extend to data points within 1.5× the interquartile range. EyeCLIP achieves
significantly better performance (in terms of the mean AUROC of five runs) than
other encoders for different sizes of training sets and across all datasets. AUROC =
area under the receiver operator characteristic curve. AUPR results can be found in
Supplementary Fig. 1.
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Fig. 4 | Performance of EyeCLIP across ocular, systemic, and rare disease
prediction tasks. a Supervised full-data finetuning on ocular disease tasks. EyeCLIP
is on par with the 2nd best model RETFound on APTOS2019, MESSIDOR2, OCTID
(P > 0.05), and surpasses all models on the other eight datasets. b Supervised full-
data finetuning on systemic disease prediction. EyeCLIP surpasses all other models.

(P < 0.05). c Few-shot finetuning on rare disease classification. EyeCLIP surpasses all
other models. (P < 0.05). Boxes indicate quartile values, and whiskers extend to data
points within 1.5× the interquartile range. Detailed statistics can be found in Sup-
plementary Tables 4-5. AUROC = area under the receiver operator characteristic
curve, AUPR area under the precision-recall curve.
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Fig. 5 | Zero-shot multimodal retrieval performance. aModel comparison on two
datasets with image-text pairs, AngioReport and Retina Image Bank. Similarity in
the embedding space was computed between the query image and all text samples in
the database. The top-Kmost similar texts were retrieved.We report Recall@K for K
∈ {1, 5, 10} and the mean recall, which averages over K. We compared different

models in text-to-image (1st column), image-to-image (2nd column) and image-to-
text (3rd column). EyeCLIP outperforms other baselines on all retrieval tasks. Error
bars indicate 95% confidence intervals. b Schematic illustrates zero-shot cross-
modal retrieval. c, d Examples of images in the top one retrieved result from the
Retina Image Bank. More examples can be found in Supplementary Fig. 3.
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EyeCLIP reveals disease-relevant regions via patch-level simi-
larity visualization
To investigate which image regions the model attends to under different
disease conditions, we performed a patch-wise similarity analysis using
EyeCLIP. Given a disease-specific textual prompt (e.g., “Color fundus
photography, diabetic retinopathy”), we calculated the cosine similarity
between the normalized text embedding and each visual patch token
obtained from the image encoder. The resulting similarity maps were
visualized as heatmaps overlaid on the original fundus images. As illustrated
in Supplementary Fig. 4, themodel consistently highlights clinically relevant
regions, such as the cherry-red spot and retinal edema in central retinal
artery occlusion, enlarged optic disc cup in glaucoma, abnormal hyper-/
hypo-fluorescence on FFA in wet age-related macular degeneration and
choroidal melanoma, hyperreflective bands in retinal detachment, hyper-
reflective bumps in drusen, corneal ulcers, and abnormal conjunctival fea-
tures in conjunctivitis. These results suggest that the model is capable of
semantically aligning textual disease descriptions with spatially meaningful
features in retinal images.

Discussion
In this study, we developed EyeCLIP, a visual-language foundation model
for multimodal ophthalmic image analysis, utilizing a large dataset of
2,777,593 ophthalmic images spanning 11 modalities, along with corre-
sponding hierarchical language data. Our novel training strategy fully
leverages real-world data nature, characterized by multi-examination and
large amounts of unlabeled and labeled data. This approach achieved a
shared representation across multiple examinations and modalities. Eye-
CLIP significantly enhances the analysis of ophthalmic and systemic dis-
eases, demonstrating state-of-the-art efficiency and generalizability in zero-
shot, few-shot, and full-data finetuning downstream tasks.

One primary advantage of EyeCLIP lies in its alignment of multiple
examinations, which is demonstrated in the image-image retrieval task and
multimodal image classification tasks. In contrast, conventional foundation
models often focus on specific types of examination, which limits their
effectiveness for real-world applications. Given the complexity of real-world
clinical settings, where patients present with various conditions and
undergomultiple tests, amodel capable of accurately identifying diverse eye
conditions with different image modalities is highly desirable. Our ablation
study further highlights the necessityof EyeCLIP’s hybrid approach.Models
relying solely on contrastive learning (e.g., CLIP, BioMedCLIP, Pub-
MedCLIP, and FLAIR) without image self-reconstruction learning suffer
significant performance drops. This suggests that image self-reconstruction
learning is crucial for maintaining robust feature representations, particu-
larly when handling diverse modalities, as it helps preserve structural and
semantic consistency across different imaging techniques.Conversely, using
only self-reconstruction without contrastive learning (e.g., RetFound) also
leads to performance degradation, indicating that contrastive learning is
essential for aligning cross-modal features and enhancing themodel’s ability
to leverage complementary information. Compared to VisionFM, which
adoptsmodality-specific encoderswith a shared embedding space, EyeCLIP
employs a unified encoder to process various ophthalmic modalities. This
design offers better scalability and reduces the burden of training and
deployingmultiple encoders,making itmorepractical for real-world clinical
deployment. While modality-specific designs like RETFound and
VisionFM may capture finer modality-specific details, they add archi-
tectural complexity and limit adaptability when new or low-resource
modalities are introduced. EyeCLIP’s single-encoder framework promotes
flexible modality alignment and streamlines integration into multi-exam
clinical workflows.

EyeCLIP was developed using 11 imaging modalities collected from
diverse populations, making it uniquely powerful for diagnosing vision-
threatening diseases, particularly in multimodal, multi-disease diagnostics
with label imbalance and rare diseases. Notably, the challenging Retina
Image Bank underscores its potential formanaging rare eye conditions with
diverse examination. This capability likely arises from its cross-modal

representation learning during pretraining, enabling the capture of com-
plementary patterns across various imaging modalities. However, to
establish explicit causal links between these multimodal interactions and
model performance, future studies incorporating specialized interpretability
frameworks are needed35.

Another major strength of EyeCLIP is its easy integration into the
visual-language framework. While previous foundation models primarily
focused on extracting meaningful patterns from rich image data, EyeCLIP
utilized textual descriptions created by medical professionals to distill
hierarchical context information. By employing text-image contrastive
learning, EyeCLIP maximized the use of all available labeled ophthalmic
data, learning semantically rich features that align visual patterns with
clinical concepts. This alignment offers zero-shot capabilities, significantly
reducing the need for extensive annotation of training data. When inte-
grated with LLM, its few-shot VQA capability presents a unique opportu-
nity to automate interpretative tasks in clinical settings withminimalmodel
adjustments and training data. Highlighting the possibility of integrating
EyeCLIP into the existing ophthalmic chat systems to perform multitask
VQA8,36–38. EyeCLIP’s ability to operate with minimal training data and
adapt to new tasksmakes it a valuable tool for expanding the reachof quality
ophthalmic care widely.

Ophthalmic images are increasingly used to indicate systemic diseases
due to their accessibility39–42. This is where the foundation model could be
well appreciated due to the scarcity of event data compared with a healthy
population. Notably, EyeCLIP significantly improved systemic disease
prediction, surpassingpreviousmedical domain foundationmodels, such as
BioMedCLIP and the ophthalmology domain model RETFound, in events
including stroke, dementia, PD, and MI. This improvement is likely
attributed to the shared representation of different examination data. For
example, angiography provides better visualization of retinal blood vessels
and lesions, and these features could be jointly learned by the model. After
furtheroptimization, EyeCLIP canbe a powerful tool for early detection and
monitoring of systemic diseases, enhancing patient care beyond ophthal-
mology. Future studies could further improve predictive performance by
integrating ocular biomarkers with multimodal systemic health data,
including electronic health records.

This study offers insights for other medical domains dealing with
incomplete or unaligned data. In real-world clinical practice, it is com-
mon for datasets to containmultimodal information, such as images and
text, that are not fully aligned across every sample. In this work, we
address this challenge by employing a strategy that combines self-
supervised learning throughmasked-image reconstruction within single
modalities and contrastive learning across aligned multimodal data
when available. This approach maximizes the utility of diverse clinical
data accumulated in practice, offering a potential framework for
developing medical foundation models in other fields where incomplete
multimodal data is prevalent.

Our studyhas several limitations. Firstly, EyeCLIP’s performance relies
on the quality and diversity of the training data. For example, while it shows
robust diagnostic capabilities in cross-population CFP classification, a
performance discrepancy exists across ethnic groups, with higher AUC in
East Asian cohorts (JSIEC 0.977; Glaucoma Fundus 0.913), likely due to the
Chinese-dominated training data. To address this bias and enhance gen-
eralizability, future work should incorporate more balanced and ethnically
diverse datasets, covering underrepresented populations. Moreover, stra-
tegies such as demographic-aware sampling, domain adaptation, and cross-
domain contrastive learningwill be explored tomitigate population-specific
biases and improve themodel’s fairness and reliability across diverse clinical
settings. Secondly, manymodalities in our dataset, such as FFA, ICGA, and
OCT, are inherently 3D, capturing essential dynamic lesion changes and
volumetric information43,44. However, in this version, we utilized only 2D
slices. Future work incorporating the full 3D information may further
enhance the model’s performance and capability. Thirdly, while EyeCLIP
requires nomore than 8GB for single-image inference and is deployable on
common edge GPUs (with detailed comparisons of inference time and
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training resource requirements provided in Supplementary Table 11), real-
time clinical use may benefit from model distillation and quantization to
further reduce computational demands45. Additionally, ensuring inter-
pretability and transparency is crucial for gaining the trust of healthcare
providers and patients, ensuring successful implementation in clinical
practice.

In conclusion, we developed EyeCLIP, a visual-language foundation
model characterized by shared multimodal representations capable of
performing a wide range of downstream tasks. The novel training strategy
aligns well with real-world data characteristics, potentially informing the
development of foundation models in general medicine. EyeCLIP’s out-
standing performance and broad applicability to ocular and systemic dis-
eases position it as a promising tool to enhance the accuracy, efficiency, and
accessibility of AI in ophthalmic clinical practice and research.

Methods
Ethics statement
This study was conducted in accordance with the Declaration of Helsinki
and received approval from the Hong Kong Polytechnic University’s
institutional review board (HSEARS20240202004). The Institutional
Review Board waived informed consent due to the retrospective analysis of
anonymized ophthalmic images and public datasets.

Data curation and preprocessing for pretraining
We collected a vast amount of unlabeled ophthalmic images from 227
hospitals acrossChina, totaling 2,777,593 images from128,554 participants.
The gender distribution was balanced (68,531 female, 59,994 males, and 29
unknown). The participants had a mean age of 50.4 years (SD: 23.3, range:
1–98), representing a broad demographic. All participants were of Chinese
ethnicity. These images covered a variety of ocular conditions and com-
prised 11 different image modalities, including CFP, FFA, indocyanine
green angiography (ICGA), and OCT, among others. Not all patients
underwent imaging for all 11 modalities, leading to missing modalities for
some individuals. The percentage of images per modality and class dis-
tribution can be found in Fig. 1a, “Multimodal dataset characteristic.”

To ensure the quality of the data, we excluded low-quality images from
CFP, FFA, and ICGA by extracting and analyzing the vascular
structures40,46. Specifically, images with detachable vascular ratios less than
0.04 for CFP and less than 0.01 for FFA and ICGA were removed. Images
fromothermodalitieswere sampled (50 imagespermodality) andmanually
reviewed as of sufficient quality. Additionally, since they were captured in
clinical settings and optimized for patient distribution, no specific quality
control methodwas applied. The language training data were sourced from
11,180 angiography reports of 11,180 participants. Since the reports contain
custom templates and are generally lengthy, we developed a custom dic-
tionary by integrating medical expert knowledge using keyword-based
regular expressions to extract essential medical concepts from the report
texts. The dictionary includes tree-structured keywords [e.g., “Diabetic
retinopathy (DR) → Non-proliferative DR (NPDR) → Mild NPDR”],
where parentnodes representbroader concepts and child nodes correspond
tomore specific terms. Themedical reports were therefore converted into a
set of keywords covering various aspects such as ophthalmic diseases,
anatomical structures, and diagnostic indicators8,36. This process provided
crucial semantic information for subsequent image-text alignment and
pretraining. Before model development, all data, including images and
ophthalmic reports, were de-identified. Additional information about the
pretraining dataset is summarized in Fig. 1.

To facilitate multimodal alignment, we matched ophthalmic images
from different examinations to obtain image pairs from the same patient,
enabling the model to learn features across different imaging modalities
more effectively.

Data curation and preprocessing for downstream validation
Supplementary Table 1 summarizes the details of datasets used for down-
stream validation. We included 14 datasets, covering ocular disease

diagnosis (single-modality classification, multimodality classification, and
VQA) and systemic disease prediction.

Ophthalmic single-modality classification datasets. We compiled
9 publicly available single-modality ophthalmic disease classification
datasets from diverse ethnicities and regions, comprising 7 CFP and 2
OCT datasets. The CFP datasets included IDRiD (India, 516 images)47,
APTOS2019 (India, 3662 images), and MESSIDOR2 (France, 1744
images) for DR diagnosis; PAPILA (Spain, 488 images)48 and Glau-
coma Fundus (South Korea, 1544 images)49 for glaucoma diagnosis; as
well as JSIEC50 and Retina for the classification of multiple ophthalmic
diseases. The OCT datasets included OCTID (India, 572 images)26 and
OCTDL (Russia, 2064 images)27, both containing multiple disease
labels.

Ophthalmic multimodality classification datasets. We also collected
two multimodality, multi-label datasets: the AngioReport28 dataset and the
Retina Image Bank29. The AngioReport dataset comprises approximately
50,000 angiographic images collected from routine clinics in Thailand,
encompassing FFA and ICGAmodalities and covering 142 retinal diseases.
We selected a test subset of 10,520 images to validate ourmodel. The Retina
Image Bank, sourced from the United States, is a large open-access repo-
sitory of retinal images containing 14 modalities and 84 ophthalmic dis-
eases. We obtained images and their corresponding findings from the
website and created a custom dictionary to standardize different disease
expressions using keyword matching and regular expressions. The stan-
dardized labels incorporate hierarchical structures, such as “DR, mild DR”
for mild diabetic retinopathy. We excluded non-standard retinal exam-
ination images, including schematic cartoons, histology, and pathology
images. To increase efficiency, we focused on images uploaded between
2019 and 2023 and removed instances with fewer than 50 occurrences. This
process yielded a final dataset of 3293 images.

Ophthalmic VQA Dataset. OphthalVQA(test)34 is a dataset of ocular
multimodal images from China, including CFP, OCT, FFA, slit-lamp,
scanning laser ophthalmoscopy (SLO), and ocular ultrasound images. Ten
images representing distinct diagnoses were selected for each modality,
resulting in a test set of 60 images and 600 free-form question-answer (QA)
pairs generated by ophthalmologists. These images reflect typical disease
manifestations commonly used for clinical diagnosis. This dataset serves as
the testing dataset for the VQA downstream task.

To facilitate few-shot VQA experiments, we manually curated a
training dataset, OphthalVQA(train), aligned with the OphthalVQA for-
mat. This training dataset comprises five modalities—CFP, FFA, OCT,
B-scan ultrasound, and slit lamp—encompassing 54 diseases or conditions.
It includes 7778 open-ended QA pairs, with each disease or condition
represented by 7 to 16 images. Each image is paired with 6 to 13 questions
covering imaging modalities, laterality, diagnosis, image descriptions, and
lesion-specific inquiries. Supplementary Table 1 provides detailed char-
acteristics of the dataset.

Systemic chronic disease dataset. UK Biobank32 is a population-based
prospective cohort from the United Kingdom, recruiting approximately
500,000 participants aged 40 to 69 between 2006 and 2010. Among these
participants, 82,885 underwent CFP examinations, generating a dataset of
171,500 retinal images. To define outcomes, we used algorithm-based
classifications (Category 42) developed by the UK Biobank outcome adju-
dication group.These algorithms integrate coded information frombaseline
assessments and linked datasets, providing replicable outcome definitions
formajor systemic diseases, including stroke, dementia, Parkinson’s disease
(PD), and myocardial infarction (MI). This method eliminates the need to
manually select diagnostic and procedural codes, ensuring reliable and
reproducible outcome definitions. To minimize potential biases from var-
iations in individual visits, we included only the retinal images of the right
eye from a single visit per patient.

Model Design and Training Details
All experiments were conducted in Python 3.10. For visual-language pre-
training, we employed CLIP23 as our base framework, which is a pretrained
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model that leverages contrastive learning using natural image-text pairs.
This model processes image and text inputs independently through an
image encoder and a text encoder, generating distinctive vector repre-
sentations for eachmodality. Subsequently, these vectors areprojected into a
unified multimodal embedding space, facilitating direct comparisons
between textual and visual elements.

We extended the traditional CLIP architecture by adding an image
decoder to the CLIP image encoder, following Masked Autoencoders
(MAE)51. This addition enables the model to perform masked image
reconstruction, which is pivotal for self-supervised feature representation
learning. Specifically, besides the original image-text contrastive loss
Limg�text , we modified the loss function of CLIP by adding an image
reconstruction loss Lrecon, and an image-image contrastive loss Limg�img .

Limg�text is used to align the image and corresponding text descrip-
tions, which is defined as:

Limg�text ¼ � 1
N

XN

i¼1

log
exp sim f xi

� �
; g ti
� �� �

=τ
� �

PN
j¼1 exp sim f xi

� �
; g tj
� �� �

=τ
� � ð1Þ

where f(x) and g(t) are the encoded image and text representations, sim
denotes the similarity measure, typically cosine similarity, and τ is a tem-
perature parameter. τ controls the sharpness of the similarity distribution in
contrastive learning. A lower τ enhances discrimination but may cause
training instability, while a higher τ smooths the distribution but weakens
hard negative differentiation. Empirical tuning determined τ = 0.07 as
optimal for stable and effective alignment.

Similarly, Limg�img aligns the features between different modalities of
images, which is defined as:

Limg�img ¼ � 1
N

XN

i¼1

log
exp sim f xi

� �
; f xj
� �� �

=τ
� �

PN
k¼1 exp sim f xi

� �
; f xk
� �� �

=τ
� � ð2Þ

To align different imagemodalities, we employ a shared vision encoder
that processes all modalities under a unified contrastive learning objective,
encouraging the model to learn modality-invariant embeddings without
explicit fusion layers. Alignment is reinforced through contrastive learning,
where positive pairs consist of different modality representations of the
same underlying content, while negative pairs come fromdifferent samples.
This approach avoids modality-specific encoders or handcrafted fusion
mechanisms, and instead allows the model to implicitly align modalities
through feature-level supervision.

Lrecon is the loss for reconstructingmasked images, which is defined as:

Lrecon ¼ 1
N

XN

i¼1

jbxi � xij22 ð3Þ

Where bx and x are the reconstructed and original images, respectively.
The final loss function for training ourmodel is the combination of the

three losses:

L ¼ λimg�textLimg�text þ λimg�imgLimg�img þ λreconLrecon ð4Þ

Among them, λimg�text and λimg�img are set to 0.75, and λrecon is set to 1,
based on hyperparameter tuning experiments.

In EyeCLIP, all images share the same encoder, ensuring consistent
feature extraction across different modalities. This innovative combination
of CLIP and MAE distinguishes our approach from traditional CLIP
models, enhancing its capability by utilizing a large amount of
unlabeled data.

During the training phase of EyeCLIP, we cropped the images to field-
of-view and resized them to 224 × 224, and applied data augmentation,
including randomresized cropping, color jitter, andhorizontalflipping.The
EyeCLIP was trained with a base learning rate of 0.001 for the first

2000 steps, with a 2-epoch warm-up, followed by cosine decay to zero
throughout the training process. A batch size of 200 was used, and training
was conductedononeNVIDIATeslaV100 (32GB)GPUfor approximately
four weeks. At the end of the training, the model with the lowest loss on the
validation set was selected for testing.

Details of the Comparison Models
PubMedCLIP is a CLIP model specifically finetuned for the medical
domain25. Trained on the Radiology Objects in COntext (ROCO) dataset52,
it encompasses over 80,000 samples from various medical imaging mod-
alities like ultrasound, X-rays, computed tomography, magnetic resonance
imaging, and various body regions. The texts used for training were the
relatively short captions associated with the images in the ROCO dataset.
Experimental outcomes showcased that leveraging PubMedCLIP as a pre-
trained visual encoder led to a potential performance boost of up to 3% for
existing MedVQA models.

BioMedCLIP is a multimodal biomedical foundation model pre-
trained using 15 million scientific image-text pairs extracted from 4.4 mil-
lion articles in PubMed Central24. It incorporates a domain-specific lan-
guage model (PubMedBERT)53, utilizes larger vision transformers, and
integrates other domain-specific optimizations. Compared to general-
domain CLIP and previous biomedical vision-language models such as
PubMedCLIP, BioMedCLIP demonstrates superior performance across
various downstream tasks, including cross-modal retrieval, zero-shot image
classification, and VQA.

RETFound is trained on a vast dataset comprising 1.6 million unla-
beled retinal images through self-supervised reconstruction10. It leveraged
twoophthalmicmodalities, CFPandOCT, to train separateweights for each
modality. RETFound surpassed other comparative models, including those
pretrainedon ImageNet, in diagnosing sight-threatening eye conditions and
predicting systemic disorders.

FLAIR54 It is a pretrained vision-languagemodel (ResNet50-based) for
universal retinal fundus image understanding. It was trained using 37 open-
access, mostly categorical fundus imaging datasets from various sources,
with up to 97 different target conditions and 284, 660 images. It uses a
textual expert’s knowledge to describe the fine-grained features of the
pathologies aswell as the hierarchies anddependencies between them. It has
been extensively validated to outperform more generalist, larger-scale
image-language models such as CLIP or BiomedCLIP.

Downstream Validation Details
Zero-shot Classification. For zero-shot transfer, we followed the method in
theCLIP experiment. Each classwas associatedwith a text prompt consisting
of the modality and class name (for example, ‘color fundus, diabetic retino-
pathy’). We computed the ℓ2-normalized embedding using the text encoder
and image encoder fromEyeCLIP for the prompt and image. For each image,
we computed the ℓ2-normalized embedding and then computed cosine-
similarity scores between the image and each text embedding, and the pre-
dicted class was consequently the class with the highest similarity score.

Few-shot Classification. For few-shot classification, we varied the
number of labeled examples per class for finetuning EyeCLIP (known as
‘shot’) from n = 1, 2, 4, 8, 16, and tested the model on the test set similar to
full-data finetune classification.

Full-data Fine-tune Classification. We used each image encoder to
extract a low-dimensional feature embedding from each image and
added a multilayer perceptron to map the image feature representation
to logits, which were interpreted as class probabilities after softmax
normalization. During finetuning, the encoder was frozen for the first
five epochs and unfrozen afterward. A total of 50 epochs was trained for
each model. For single-label classification tasks, we used a batch size of
16. The first ten epochs implemented a learning rate warm-up from 0 to
5 × 10−4, followed by a cosine annealing schedule reducing the learning
rate from 5 × 10−4 to 1 × 10−6 over the remaining 40 epochs. Addition-
ally, we adopted label smoothing cross-entropy loss with a smoothing
factor of 0.1 to prevent the model from becoming overly confident in
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dominant classes. For multi-label classification tasks in AngioReport
and Retina Image Bank, we used a batch size of 4, trained for 30 epochs,
and set the learning rate to 0.01. After each epoch, we evaluated the
model on the validation set, saving the model weights with the highest
AUROC for internal and external assessments.

Cross-Modal Retrieval. For cross-modal retrieval, we used the same
method as zero-shot classification above to retrieve the top-K images that
were closest in the aligned latent space to a specific text query (text-to-image
retrieval). Image-to-text and image-to-image retrieval were performed
analogously. To evaluate retrieval, we used Recall@K, which measures the
percentage of correct results included in these top-K retrieved samples. We
chose K ∈ (1, 5, 10) and reported mean recall by averaging the scores over
the three Recall@K values.

Visual Question Answering. For visual question answering, we used
the image encoder fromEyeCLIP to extract image features, whichwere then
concatenated with text features (questions). The combined feature was fed
into the language model Vicuna (Llama 2-7b)55 for language generation,
performing VQA.

To enhance multi-disease alignment, we employed the OpthalVQA
(train) dataset for few-shot finetuning. Support examples per modality and
disease were set to 1, 2, 4, and 8. For each scenario, five independent trials
were performed with different random seeds to ensure robustness and
reduce the influence of random variations in training set selection. We
utilized the Low-RankAdaptation (LoRA)56method for efficientfinetuning,
running for three epochswith an initial learning rate 2e-5. Cosine annealing
was applied to adjust the learning rate dynamically. The model’s perfor-
mancewas evaluated on theOpthalVQA(test) dataset using the checkpoint
from the final epoch.

Evaluation Metrics
We employed the AUROC andAUPRmetrics to assess the performance of
classification tasks. Thesemetrics gauge the classification effectiveness based
on the receiver operating characteristics and precision-recall curves. When
dealing with binary classification tasks, such as ocular disease diagnosis, we
computed AUROC and AUPR in a binary context. For multi-class classi-
fication tasks such as five-stage DR and multi-class disease diagnosis, we
calculated AUROC and AUPR individually for each disease class and then
averaged them (macro) to derive the overall AUROC and AUPR scores.

Regarding VQA tasks, we utilized various classification-based metrics
to evaluate performance, including the exact match score, F1 score, preci-
sion, recall, and language-basedmetricmetrics such asBLEU57 and sentence
similarity.

For retrieval tasks, we used the metric Recall@K, which is the pro-
portion of the data correctly retrieved among the top-K retrieved samples.

Statistical Analysis
We employed descriptive statistical methods to analyze demographic data,
including age and gender. Two-sided t-tests were used to compare the
AUROC and AUPR of EyeCLIP with those of other models (CLIP, Bio-
MedCLIP, PubMedCLIP, RETFound, or FLAIR), selecting the most com-
petitive model in each task based on mean performance to determine
statistical significance.Toenhance the robustness of the results,we conducted
multiple trials usingfivedifferent randomseeds in the classification andVQA
tasks. The final results were reported as themean of these five trials, with the
95% confidence interval (CI) calculated using 1.96 × standard error.

Data availability
We do not have permission to redistribute the datasets used for developing
EyeCLIP, the data may be available under constrained access from the cor-
responding author upon reasonable request. Downstream datasets can be
accessed via the links: IDRID (https://ieee-dataport.org/open-access/indian-
diabetic-retinopathy-image-dataset-idrid),MESSIDOR2 (https://www.adcis.
net/en/third-party/messidor2/), APTOS-2019 (https://www.kaggle.com/c/
aptos2019-blindness-detection/overview), PAPILA (https://figshare.com/
articles/dataset/PAPILA/14798004/1), Glaucoma Fundus (https://doi.org/

10.7910/DVN/1YRRAC), JSIEC (https://zenodo.org/record/3477553),
Retina (https://www.kaggle.com/datasets/jr2ngb/cataractdataset), OCTID
(https://borealisdata.ca/dataverse/OCTID), OCTDL (https://ieee-dataport.
org/documents/octdl-optical-coherence-tomography-dataset-image-based-
deep-learning-methods), AngioReport (https://tianchi.aliyun.com/dataset/
170128), Retina Image Bank (https://imagebank.asrs.org/), OphthalVQA
(https://figshare.com/s/3e8ad50db900e82d3b47).

Code availability
Code available at https://github.com/Michi-3000/EyeCLIP.
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