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From Tools to Agents: Meta-Analytic Insights into Human Acceptance of AI 

 

Abstract 

As artificial intelligence (AI) becomes more autonomous and socially present, it is 

critical to understand how people accept AI not just as a technological tool, but also as an agent 

capable of (semi-)autonomous decision-making and interaction. With a meta-analysis of 287 

effect sizes representing over 119,000 individuals, this research examines the factors driving 

human acceptance of AI. Through a dual-perspectives framework, AI as a tool versus an agent, 

the authors identify key AI characteristics, including capability, role, expertise scope, and 

anthropomorphism, that significantly influence acceptance. These engineerable AI 

characteristics, along with contextual and individual factors, form an AI-task-user framework 

that explains AI acceptance across different use scenarios and user groups. These findings 

contribute to the discourse on AI acceptance and human-AI interactions: revealing a small, 

decreasing reluctance to accept AI and, more importantly, directing future research to empirical 

testing and theory building of AI acceptance from an agentic perspective. This research also 

provides actionable user-centered design roadmap for practitioners to develop and communicate 

AI features that align with human expectations and enhance positive responses, especially at a 

time when agentic AI is rapidly becoming a technological and societal reality. 

 

Keywords: Artificial Intelligence, AI Acceptance, Agentic AI, Human-AI Interaction, User-

Centered Design, Technology Acceptance, Algorithm Aversion, Meta-Analysis 
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As artificial intelligence (AI) systems become more capable, interactive, and 

autonomous, they are no longer confined to the functions of mechanistic tools. Increasingly, they 

act as agentic entities that exhibit autonomy, initiate actions, and interact socially with humans. 

With the advent of generative AI and large language models, “agentic AI” capable of 

sophisticated reasoning and iterative learning for problem solving and task completion has 

become the next frontier of AI (Pounds 2024). This development is evidently reflected in the 

arms race among leading tech companies to build ecosystem and infrastructure for AI agents, 

such as OpenAI Operator, Google Agentspace, and NVIDIA Agentic AI Blueprints. 

These emerging agentic capabilities of AI mark a shift not only in what AI can do but 

also in how people perceive, receive, and interact with it. To fully realize the benefits of AI and 

ensure its effective adoption in human society, it is essential to understand how people accept AI. 

However, traditional models of technology acceptance and innovation adoption, as well as prior 

literature summarizing AI acceptance, have paid limited attention to the growing salience of 

agentic aspects of AI (e.g., Venkatesh and Davis 2000; Mehta et al. 2022; Kelly, Kaye, and 

Oviedo-Trespalacios 2023; Zehnle, Hildebrand, and Valenzuela, forthcoming). As AI becomes 

more autonomous and socially present, it necessitates an integrative understanding of AI 

acceptance to addresses this theoretical and empirical gap. 

This research incorporates two meta-perspectives of human-AI interaction – AI as a tool 

versus an agent, to foster a comprehensive understanding of AI acceptance. Naturally, 

acceptance depends on various factors, including the features of AI, the context of its use, and 

the characteristics of individual user. Understanding these nuances is critical for designing and 

communicating AI in a way that people welcome. What is especially relevant and actionable are 

these “engineerable” AI characteristics – AI system features that can be tailored to enhance user 
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acceptance. Therefore, this research aims to identify these engineerable AI characteristics and 

understand their effects on human acceptance from the dual perspectives. 

Existing literature explores various AI characteristics that drive positive attitudes and 

behaviors toward AI. Such drivers as output performance and interpretability align with 

established theories in innovation and technology adoption such as the Technology Acceptance 

Model, which have been instrumental in understanding how individuals perceive and adopt AI as 

a new technological tool (Kelly et al. 2023). However, AI differs from other technological tools, 

exhibiting agency and acting autonomously without direct human interventions. These agentic 

qualities alter how people perceive these technologies (Vanneste and Puranam 2024). As a result, 

traditional adoption models may be insufficient, calling for alternative theories like the Social 

Response Theory in the “Computers Are Social Actor” paradigm (Nass and Moon 2000). These 

theories introduce different factors that significantly shape AI acceptance, such as 

anthropomorphism and human control.  

In this research, we conduct a systematic literature review and a quantitative synthesis of 

effect sizes from existing empirical studies. Drawing on theories from multiple disciplines, we 

propose a framework that integrates key drivers of AI acceptance from both perspectives. 

Specifically, we examine a set of engineerable AI characteristics, including capability, 

transparency, reliability, anthropomorphism, expertise scope, human involvement, role, and cost. 

Based on the empirical findings of 287 effect sizes from 136 studies in 61 publications, we 

investigate what AI characteristics drive acceptance, when each driver has a greater impact, and 

which meta-perspective dominates in explaining human acceptance of AI. We adopt an 

overarching User-Centered Design (UCD) framework to structure and interpret the relationships 

among focal engineerable AI features and other relevant factors in an actionable way. To support 
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further exploration, we also develop an interactive meta-analysis web tool (accessible at 

https://ai-meta-analysis.shinyapps.io/web-tool/) that enables readers to examine subgroup effects 

and interaction patterns that suit their research interests or AI design needs.  

This dual-perspective approach and design-relevant focus differentiates our study from 

existing meta-analyses that limit to one perspective of AI (as tools or agents) or remain equivocal 

about the dichotomy. As summarized in Table 1, our work systematically examines AI 

acceptance through the combined (and to some degree contradicting) lens of tool and agent 

perception with an emphasis on engineerable AI features that can be modified to influence 

human acceptance of AI. 

Our research makes several key contributions to the AI acceptance literature. First, we 

provide a systematic, theory-driven synthesis of engineerable AI characteristics that influence 

human acceptance. By integrating theories from both technological innovation and social agent 

paradigms, we develop a dual-perspective framework that explain AI acceptance as tools and 

agents. Also, grounded in system usage literature and user-centered design, we enrich the 

framework by including relevant user and task factors. Additionally, the systematic synthesis of 

effect sizes across extensive studies concludes an overall negative response toward the use of AI, 

contributing to the ongoing debate of AI aversion versus appreciation and underscoring the need 

for further research to address barriers to AI acceptance. Most importantly, by highlighting the 

systematic differences and the necessity of examining people’s acceptance of AI as an 

(semi-)autonomous agent beyond a mechanistic tool, we provide a foundation for future research 

on AI acceptance and, more broadly, human-AI interaction in the coming era of “agentic AI”.

https://ai-meta-analysis.shinyapps.io/web-tool/
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Table 1: Comparison of Relevant Recent Meta-Analytical Literature 

 
Author 

(Year) 

Research Objective Meta-

Perspective 

(Tool vs. Agent) 

Theory Key Variables 

of Interests 

Measures of 

Human 

Responses 

Field Number of 

Effect Sizes 

Kurt et al. 

(2022) 

Investigate the factors 

driving technology 

acceptance of chatbots 

in different service 

contexts 

 

Tool • UTAUT 

• TAM 

Interaction and 

relation types, 

and chatbot 

properties 

Attitude, 

intention, 

adoption, 

and satisfaction 

Human-

computer 

interaction 

87 effect 

sizes from 18 

articles 

Mehta et 

al. (2022) 

Examine the possible 

reasons for inconsistent 

findings in artificial 

intelligence 

adoption literature 

 

Tool • UTAUT2 

• TRA 

Expectancy, 

value, 

perception, and 

social pressure 

Attitude, 

intention, actual 

use, satisfaction, 

and loyalty 

Marketing 167 effect 

sizes from 69 

articles 

Huang 

and Wang 

(2023) 

Understand the relative 

effects of AI versus 

humans on persuasion 

outcomes under 

different circumstances 

 

Agent • CASA Roles of AI 

communicator, 

communication 

direction, and 

cultural context 

Perception, 

attitude, 

intention, and 

behavior 

Communic

ation 

127 effect 

sizes from 

121 studies 

reported in 

89 articles 

Qin et al. 

(forthcom

ing) 

Introduce the 

Capability-

Personalization 

Framework to reconcile 

contradictory findings 

on AI aversion versus AI 

appreciation 

 

Non-specified • Capability-

Personalization 

Framework 

Perceived 

capability of AI 

and perceived 

necessity for 

personalization 

Preference for 

AI versus 

humans 

Psychology 442 effect 

sizes from 

163 studies 

reported in 

83 articles 

Zehnle et 

al. 

(forthcom

ing) 

Explain variations in 

consumer responses to 

AI across different AI 

labels, markets, 

methods, and time 

Non-specified • Self-

determination 

• Social presence 

• Optimal 

distinctiveness 

AI labels, 

temporal and 

contextual 

factors 

Cognitive, 

affective, and 

behavioral 

response 

Marketing 440 effect 

sizes from 

172 studies 

reported in 

72 articles 
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Gelbrich 

et al. 

(forthcom

ing) 

Examine when 

customers view 

automated agents (AA) 

as equivalent substitutes 

for human agents 

 

Agent • Automated 

social presence 

AA types and 

features, task-

related 

intelligence, and 

context 

Perception, 

appraisal, 

intention, and 

behavior 

 

Marketing 943 effect 

sizes from 

327 studies 

reported in 

148 articles 

This 

study 

Identify engineerable AI 

features driving AI 

acceptance from a tool-

versus-agent dual 

perspective 

Tool and agent • TAM 

• DOI 

• CASA 

• UCD 

Engineerable AI 

features, UCD-

related task and 

user factors 

Attitudinal and 

behavioral 

acceptance 

Marketing 287 effect 

sizes from 

136 studies 

reported in 

61 articles 

Notes: CASA = Computers Are Social Actors, UTAUT = Unified Theory of Acceptance and Use of Technology, TAM = Technology 

Acceptance Model, TRA = Theory of Reasoned Action, DOI = Diffusion of Technology, UCD = User-Centered Design Framework.
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Our findings also offer actionable insights for managers and policymakers. When 

practitioners better understand which engineerable AI characteristics best enhance people’s 

acceptance, they are able to: (1) design AI systems that users are more likely to accept, (2) 

communicate AI systems in ways that reduce psychological and behavioral barriers, and (3) 

develop interventions to promote (or restrain) AI adoption in different contexts. These insights 

are crucial for implementing effective acceptance-enhancing strategies that encourage 

consumers, professionals, companies, and governments to adopt and benefit from AI 

technologies. 

 

Theoretical Background 

Definitions of AI – a Tool or an Agent 

AI is one of the most advanced and influential technologies ever created. Its complexity 

and versatility have led to diverse definitions of AI. The father of AI, John McCarthy (1955), 

broadly defines it as “intelligent machines”; Russell and Norvig, in their canonical book (2009), 

describe AI as “agents that receive percepts from the environment and perform actions”. These 

definitions reflect a key divide: Some emphasize AI’s function as problem-solving machines, 

while others focus on AI’s capability as intelligent agents. This divergence has shaped two 

schools of thought – AI as a tool and AI as an agent. The formers argue that AI should and 

would remain a tool. From an instrumentalist standpoint, the current trajectory of AI 

development focuses on creating tools that assist humans rather than autonomous systems with 

consciousness (Brynjolfsson and McAfee 2014). Yet, AI’s evolution brings the concept of 

“agency” to the forefront (Wooldridge and Jennings 1995). AI systems increasingly resemble 

rational agents that interact with, learn from, and adapt to their environment, and even 
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demonstrate the potential of developing human-like mental and moral faculties (Anderson and 

Anderson 2007; Strachan et al. 2024). The agentic perspective has started to dominate the 

contemporary discourses on human-AI interaction, AI ethics, and the philosophy of intelligence 

and consciousness (Floridi and Cowls 2019; Bickmore and Picard 2005).  

In this research, we define AI systems, based on the description in the EU AI Act (2023), 

as human-designed software (and possibly also hardware) that perceive their environment 

through data acquisition, interpret the collected data, reason on the knowledge derived from data, 

and decide the best action(s) to take to achieve a given goal in the physical or digital world. This 

broad definition encompasses algorithms that make forecasts based on extant data, chatbots that 

respond to users’ queries, and tools that augment human decision-making, among others. 

Historical Overview of General-Purpose Technologies and Their Acceptance 

For a transformative technology like AI, capable of reshaping industries and driving 

exponential productivity growth, it is often referred to as “General-Purpose Technology”, or 

GPT (Bresnahan and Trajtenberg 1995). Throughout industrial revolutions, technological 

advancements have unleashed the power of fundamental physical and mathematical laws – 

thermodynamics, electromagnetism, binary logic, and quantum mechanics – to revolutionize 

how we harness, transport, and utilize energy and information. Table 2 outlines widely 

acknowledged GPTs and their impacts on human society. 

For any GTP to achieve widespread societal impact, it must be broadly accepted. 

Scholars have examined the adoption and diffusion of these technologies, noting both 

commonalities and differences (Agrawal, Gans, and Goldfarb 2023). Prior to AI, GPTs gained 

traction based on efficiency, reliability, and cost-effectiveness to enhance human productivity 

(Moser and Nicholas 2004). Although people had to learn to operate them, their outputs 
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remained predictable and fully governed by human control. AI started similarly, but its 

advancement outgrows mechanistic tools and sets it apart from other GPTs like steam engines 

and computers (Moravec 1998). This marks a shift from passive systems with transparent 

mechanisms to active decision-making entities whose high-level autonomy and black-box nature 

challenge conventional oversight. This transformation introduces new acceptance and diffusion 

dynamics beyond straightforward productivity gains.  

Table 2: Historical Overview of General-Purpose Technologies 

Technology Timeframe Description Impact 

Steam 

engine 

1st Industrial 

Revolution 

(18th and early 

19th centuries) 

 

A mechanical instrument 

for amplifying human 

labor. 

Efficient energy conversion 

for production and 

transportation 

Electricity 2nd Industrial 

Revolution  

(late 19th and 

early 20th 

centuries) 

A utility that powers tools 

and systems 

 

 

Increased energy efficiency 

and stability for lighting, 

machines, communication 

Internal 

combustion 

engine 

A mechanical instrument 

for extending human 

mobility and labor 

 

Compact and portable energy 

conversion for production and 

transportation 

Electronics 

(including 

computers) 

3rd Industrial 

Revolution 

(mid-to-late 

20th century 

A programmable tool for 

various tasks operated 

under user control  

Increased efficiency in 

processing and organizing 

information for computation 

and automation 

Internet An infrastructure 

facilitating user-to-user 

and user-to-information 

interactions 

 

Instant connectivity for 

information dissemination, 

communication, digitalization  

Artificial 

intelligence 

4th Industrial 

Revolution  

(21st century) 

Start with: an intelligent 

machine that makes 

predictions, inferences, 

and decisions 

 

Evolve to: a (semi-) 

autonomous entity capable 

of learning, reasoning, and 

interacting 

Enhanced automation of 

cognitive tasks with 

minimized needs for human 

involvement 
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Hence, the tool-versus-agent dichotomy of AI matters beyond the arena of academics; it 

carries important implications for applications. Particularly for marketing, this perception as a 

tool or an agent not only affects how individuals interact with an AI system itself but also shapes 

how they respond to various AI-powered marketing deliverables. Understanding this helps 

companies design and promote AI-driven products and services that align with user expectations. 

For example, Sedlakova and Trachsel (2023) examine how this perception changes interactions 

between patients and AI therapists, ethical concerns, and design priorities. In creative fields, AI-

assisted art is perceived differently depending on whether AI is seen as a tool or an agent (Dunn 

2020). Recent research shows that when people see AI as an agent, they experience greater 

betrayal aversion and hold AI to higher standards of trust (Vanneste and Puranam 2024). 

Put simply, humans inherently treat tools and agents differently; it is natural that the AI 

acceptance factors vary based on this distinction. Drawing from various theories explaining AI 

acceptance and human-AI interactions, whose basic premises follow that users perceive and 

interact with AI as a tool or as an agent, we examine the key factors, particularly engineerable AI 

characteristics, that shape AI acceptance. 

 

AI Acceptance Drivers in a Unified Framework 

AI Acceptance  

The focal outcome measure, AI acceptance, is a composite construct consisting of a 

spectrum of positive responses toward AI as a substitute for human counterparts in certain tasks. 

It reflects the receptiveness, willingness, or decision to use AI systems. This construct includes 

both attitudinal and behavioral dimensions, following conventions in meta-analyses (Schamp et 

al. 2023; Ceylan, Diehl, and Wood 2024). Building on prior research (Fishbein and Ajzen 1975), 
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we define attitudinal AI acceptance as an individual’s favorable affective and cognitive 

responses toward an AI system or the perceived outcomes of using AI. This includes positive 

beliefs and perceptions regarding the capabilities or reliability of AI, as well as the extent to 

which users feel comfortable about relying on AI instead of humans to achieve a certain goal. 

According to the Theory of Planned Behavior (Ajzen 1991), a positive attitude toward AI serves 

as a precursor to the behavioral intentions and actual behaviors of using AI, which we refer to as 

behavioral AI acceptance, involving the decision to use AI and the action of initial usage. 

The construct of AI acceptance is closely related to two concepts – AI adoption and AI 

appreciation, yet with nuances. First, behavioral AI acceptance emphasizes the choice to use AI 

and the behavior of initial adoption before full integration into daily activities and task routines. 

Second, while some literature (e.g., Qin et al., forthcoming, Logg, Minson, and Moore 2019) 

defines the preference toward AI over humans as “AI appreciation”, we consider “AI 

acceptance” a more precise term: Semantically, appreciation highlights valuing or admiration, 

whereas acceptance focuses on the de facto decision and willingness to use AI; theoretically, 

acceptance situates our research into the broader scheme of technology acceptance literature.  

Accept AI as a Tool 

 When considering AI as a tool, people base their acceptance on its practical utility, 

similar to how they evaluate other technological tools designed to assist in performing tasks and 

achieving objectives. This perspective emphasizes cost-benefit analysis (Beach and Mitchell 

1978), weighing the benefit of using AI (e.g., accuracy and efficiency) against associated costs 

(e.g., infrastructure investment, risks). Several established theories align with this perspective, 

most notably the Technology Acceptance Model (TAM) and Diffusion of Innovation (DOI) 

theory. TAM posits that perceived usefulness and perceived ease of use drives technology 
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acceptance (Venkatesh and Bala 2008; Venkatesh and Davis 2000). Researchers have applied 

TAM to explain AI acceptance and explored external antecedents that enhance these two 

perceptions, thereby increasing AI acceptance (Gursoy et al. 2019), across different contexts, 

such as healthcare (Panagoulias, Virvou, and Tsihrintzis 2024), arts (Gao et al. 2024), and legal 

services (Xu, Wang, and Lin 2022). Across the literature, key drivers of AI acceptance include 

output quality, task compatibility, and demonstrability. DOI theory outlines five key innovation 

characteristics that influence individuals’ decisions to accept or reject an innovation: relative 

advantage, compatibility, complexity, trialability, and observability (Rogers 1962). In the context 

of AI, its acceptance increases when it demonstrates a clear relative advantage over human 

alternatives, aligns with users’ needs and prior experiences, is straightforward to understand and 

use, requires minimal effort or cost to try out, and has observable benefits. DOI theory has been 

applied to AI acceptance in various settings, including corporate environment (Xu et al. 2024), 

education (Uzumcu and Acilmis 2023), and customer service (Syvänen and Valentini 2024).  

Accept AI as an Agent   

When perceiving AI as an agent, people assess its acceptability based on its ability to 

think, plan, and act, much like how they would evaluate human agents (Gray, Gray, and Wegner 

2007). Unlike the tool perspective, this agent perspective highlights people’s perception of and 

attention to AI’s agentic aspects, such as intentionality and autonomy (Waytz, Heafner, and 

Epley 2014). AI agents are evaluated through a more complex assessment of trust, control, and 

ethical implications (Vanneste and Puranam 2024), necessitating understanding human-AI 

interactions through the lens of AI as an agentic entity capable of certain degrees of social 

interaction and autonomous decision-making. 
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The “Computers Are Social Actors” (CASA) paradigm posits that humans display social 

responses to computers (Nass and Moon 2000). The underpinning theory is that human-computer 

interactions are shaped by mindless behaviors triggered by social cues (Langer 1992), where 

people apply social rules, norms, and expectations as if they would in human-human interactions. 

This social response theory and CASA paradigm have been applied to emerging AI technologies 

such as chatbots, robots, and virtual agents (Heyselaar 2023; Xu, Chen, and Huang 2022). 

According to CASA, AI features such as natural language communication, interactivity, and 

anthropomorphized interfaces serve as social cues, inducing humans to perceive AI as agents and 

respond socially.  

Conceptual Framework  

While human acceptance of AI is inherently shaped by the engineerable AI 

characteristics, it is also largely influenced by the interplay between the AI system itself, the 

nature of the task it performs, and the characteristics of the human user. To develop a more 

holistic understanding, we draw upon the system usage framework developed by Burton-Jones 

and colleagues (Burton-Jones and Straub 2006; Burton-Jones and Gallivan 2007). Tailored to the 

AI domain, the framework conceptualizes AI system usage, including the initial decision to use 

and subsequent adoption, as an activity involving three elements: (1) a user, the individual 

employing AI for a task, (2) a task, the function or goal-directed activity AI performs, and (3) an 

AI system, the technological artifact with features designed to support task execution. These 

elements align with the main dimensions of the User-Centered Design (UCD) framework, which 

guides the design and development of interactive systems for meeting user needs (ISO 1999; 

Salinas, Cueva, and Paz 2020). The framework, as well, emphasizes the importance of specifying 

the user and organizational requirements (user characteristics) and understanding and specifying 
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the context of use (task characteristics) when producing design solutions (AI characteristics). As 

such, we develop a unified framework (Figure 1), outlining the key drivers of AI acceptance 

examined in this meta-analytic study, together with methodological controls. 

Figure 1: Conceptual Framework. 

 

AI Characteristics  

Tool Perspective  

 From the tool perspective, we identify the following AI characteristic variables that align 

with the key constructs and antecedental factors in innovation and technology adoption. 

 Input transparency. It is the extent to which users understand the data an AI system 

processes to make decisions. A key advantage of AI over humans is its ability to analyze vast 

amounts of input data (Davenport and Ronanki 2018). The transparency of what data an AI 

system utilizes to generate its outputs clarifies its relative advantages over human equivalents. 

Also, input transparency helps users to ensure that AI’s decisions are based on inputs consistent 
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with their objectives, values, and experiences, enhancing perceived compatibility as per DOI. 

Additionally, input transparency mitigates concerns about data privacy associated with using AI. 

The knowledge of the data an AI system collects and uses makes users feel more secure about 

the AI’s operations, fostering greater trust and acceptance (Open Data Institute 2024).  

 Process transparency. It refers to the clarity and interpretability of how AI systems 

function and generate outputs (e.g., recommendations, forecasts, and operations). Yet, AI often 

operates as a “black box” because the complexity of the underlying algorithms typically results 

in low interpretability (Lipton 2018). Lacking transparency undermines trust, driving the demand 

for explainable AI as a solution (von Eschenbach 2021; Rai 2020). A clearer understanding of 

how an AI tool works can reduce perceived complexity and uncertainty, which in turn enhances 

perceived ease of use and trust, consequently increasing acceptance (Vössing et al. 2022; Liu 

2021). Therefore, increasing process transparency is likely to drive higher acceptance of AI. 

Reliability. This refers to the extent to which the consistency of AI system’s 

performance, validity, and other performance measurables can be anticipated (Zhou et al. 2023). 

Or in statistical terms, reliability indicate low error margins of outcomes. Intuitively, reliability 

enhances acceptance for two reasons. First, AI systems of high reliability signal consistent 

performance, rendering it less uncertain and more controllable from users’ standpoint (Rahwan 

et al. 2019). Second, higher reliability makes it easier to understand AI’s strengths and 

weaknesses, analyze cost and benefit, and decide whether to use the tool. However, narrow error 

margins can imply systematic errors. Research on algorithm aversion suggests that people are 

averse to AI because algorithms err systematically while humans randomly, falsely believing that 

human judgments allow for near-perfect outcomes (Dietvorst, Simmons, and Massey 2015). 

Thus, we find the impact of reliability on AI acceptance uncertain.  
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Agent Perspective 

 From the perspective of AI being accepted as a social entity and an agent, we identify 

additional AI characteristics that influence acceptance, distinct from the tool perspective. 

 Anthropomorphism. Anthropomorphizing AI with human-like traits such as humanoid 

interface, gendered voice, or personality is a widely used strategy to trigger social responses 

toward AI. It is one of the most studied characteristics in the CASA paradigm (e.g., Belanche et 

al. 2021; Xu et al. 2022; Wang 2017). When humans interact with AI socially, they are 

influenced by interpersonal psychology principles, such as the similarity-attraction theory 

(Berscheid and Hatfield 1969). The more AI resembles humans, the more likely it is perceived 

positively (Glikson and Woolley 2020). Existing literature suggests that anthropomorphism can 

foster a sense of social presence and competency, thereby increasing users’ trust and positive 

evaluations of AI (Waytz, Heafner, and Epley 2014; Zhang, Pentina, and Fan 2021), as well as 

its acceptance (Kim, Chen, and Zhang 2016; Stroessner and Benitez 2019). However, 

anthropomorphism may backfire. While perfect implementations of human-mimicking AI can 

elicit favorable social responses, the real-world ersatz versions might not, because a lack of 

verisimilitude increases the salience of “nonhumanness” (Reeves and Nass 1996; Nass and Moon 

2000). This nonhumanness can evoke psychological discomforts, as explained by the “uncanny 

valley” effect (Mori 1970; Ho and MacDorman 2010). Therefore, it is not straightforward to 

hypothesize whether anthropomorphism increases or decreases AI acceptance. 

 Role: advisory versus performative. When AI partakes in human activities as a social 

entity, we need to consider its role, a feature rarely ascribed to a tool. AI agents typically fulfill 

two types of roles: advisory and performative (Nissen and Segupta 2006; Jussupow, Benbasat, 

and Heinzl 2020). It differentiates whether humans or AI dominate outcomes and executions of a 



 18 

system. A performative AI system independently carries out tasks by collecting data, making, 

and executing decisions while an advisory AI system merely provides recommendations or 

facilitates users. With the salience of AI agency, people pay attention to decision-making 

authority and control. A performative AI may largely reduce a user’s sense of autonomy (André 

et al., 2018), evoking unease of losing control to the AI system (Legaspi, He, and Toyoizumi 

2019). Moreover, people view a performative AI as to supplant them, thus threatening their 

feelings of competence and self-worth (Granulo, Fuchs, and Puntoni 2019). Conversely, an 

advisory AI is more likely to be viewed as complementary, enhancing rather than replacing 

human decision-making (Palmeira and Spassova 2015). Taken together, a performative (vs. 

advisory) role negatively influences AI acceptance. 

Dual Perspectives 

Certain AI characteristics are relevant both when AI is seen as an agentic entity and when 

as an inanimate tool. They may have convergent or divergent effects on AI acceptance; 

investigating these factors from a different angle provides a fuller picture of AI acceptance. 

Capability. It is a key trait influencing AI acceptance both as tools and agents, though 

with some nuances. People use AI to achieve task performance superior or comparable to human 

counterparts but with less effort. With this motivation, AI acceptance is contingent on whether it 

can help users reach their goals with greater accuracy and efficiency (in short, AI capability). 

From the perspective of AI as a tool, capability is an essential determinant of perceived 

usefulness and relative advantage, both of which drive acceptance, as suggested by TAM and 

DOI. When AI is seen as an agent, its high capability signals greater expertise, effectiveness, and 

reliability in assisting decision-making or performing tasks autonomously; and high capability 

builds trust and confidence (McAllister 1995), which in turn makes people more likely to accept 
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AI as an agent (Glikson and Woolley 2020). Previous literature has shown that when AI is 

presented as having higher accuracy or when AI is equipped with better ability than humans in 

certain tasks (e.g., financial market analysis, guesstimation questions), people are more likely to 

use AI (Castelo, Bos, Lehmann 2019; Longoni and Cian 2022; Qin et al., forthcoming). Thus, 

both perspectives unequivocally point to the positive effect of capability on AI acceptance. 

Expertise Scope: specialist versus generalist. Some AI systems are designed for 

specific domains (e.g., financial consultation or disease diagnosis), while others function as 

generalists capable of handling diverse tasks like ChatGPTs. We refer to this distinction as AI’s 

expertise scope: general-purpose AI (generalist) versus domain-specific AI (specialist). As a 

tool, general-purpose AI has higher versatility, adaptability, and pervasiveness across various 

tasks. According to TAM, users value usefulness and ease of use (Venkatesh and Bala 2008); AI 

capable of addressing a wide range of needs without requiring learning and handling multiple 

systems is naturally seen as more useful and easier to use. Also, AI that serves as general-

purpose technology tends to be pervasive due to versatile functions (McAfee 2024). The 

ubiquitous presence normalizes its utilization, which increases the subjective norms of accepting 

this tool (Venkatesh and Davis 2000). Therefore, we expect that people are more likely to accept 

a general-purpose (vs. domain-specific) AI tool. From the agent perspective as opposed to the 

tool perspective, we expect a preference reversal. When turning to an agent, people expect deep 

expertise in the domains where they seek advice or delegate tasks. This is analogous to people 

seeking specialist professionals in a particular area (Zambrana and Zapatero 2021). For instance, 

an endocrinologist doctor or a divorce lawyer is typically perceived as more competent in the 

subject matters than a general practitioner or generalist lawyer. Likewise, a generalist AI may be 

seen as lacking the depth of knowledge required for highly complex or critical tasks compared to 
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a specialist AI that is fine-tuned for a specific purpose. As task complexity increases, depth 

prevails over breadth and people favor specialization (Anderson 2012). Therefore, we expect 

higher acceptance of specialist AI over generalist AI agents. 

 Cost. We consider the influence of utilization cost – both direct financial expenses to hire 

AI tools and resource trade-offs (e.g., electricity costs and staffing needs). According to the DOI 

model, trialability – the ability to experiment with a technology at minimal cost – enhances 

acceptance. In neoclassical economics, people favor free tools as cost imposes negative utility, 

consequently reducing perceived benefits and lowering acceptance. Thus, from the tool 

perspective, we expect a straightforward negative relationship between cost and AI acceptance. 

We anticipate a reversal in the effect of cost when AI is viewed as a social agent rather than an 

inanimate tool, as additional psychological and social factors beyond utility shape acceptance. 

First, according to equity theory (Adams 1965), people prefer fairness and reciprocity in social 

interactions, meaning that free services from an agent may disrupt the perceived balance of 

exchange. In this context, cost helps establish an explicit contract between users and AI. Second, 

people tend to devalue free labor, associating unpaid work with low commitment, expertise, and 

professionalism (Rezvani and Hedges 2012; Rix 2020). Money priming often enhances the 

perceptions of competence (Gasiorowska et al. 2016; Zaleskiewicz, Gasiorowska, and Vohs 

2017); and people are willing to pay more for tasks involving expertise (Nasr Bechwati 2011; 

Godek and Murray 2008; Hertzum 2014), as they equate higher costs with higher skill and 

performance. When AI acts as an agent offering advice or performing tasks, people may 

similarly associate higher costs with greater reliability and competence. Thus, we expect a 

positive effect of cost on AI acceptance as an agent. 
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Human involvement. Human involvement refers to the extent to which users participate 

or oversee the processes of an AI system, from providing input data to manually adjusting its 

operation. AI systems vary in their degree of required human interaction – some require only a 

single command to initiate the process while others involve back-and-forth input and feedback 

loops throughout the process of solving focal tasks. We expect the level of human involvement 

to influence AI acceptance. For AI tools, users typically seek efficiency, automation, and 

reduced effort (Davenport and Kirby 2015; Onnasch et al. 2014; Paschen, Pitt, and Kietzmann 

2020). From this perspective, greater human involvement, such as manual oversight or 

interaction, adds complexity and diminishes the advantages of AI. Imagine a vacuum robot 

requiring manual configuration for cleaning schedule and map versus one operating 

automatically via camera detection, which one would you prefer? The need for human 

intervention makes AI less effective as tools that provide automation and save human efforts. 

Therefore, higher human involvement decreases the perceived ease of use and effectiveness, key 

determinants in AI acceptance (Gursoy et al. 2019). As a result, higher human involvement is 

likely to lower AI acceptance. On the other hand, we expect human involvement to have a 

divergent effect on AI acceptance as agents. This divergence arises because involvement with an 

AI agent denotes interactivity. When users engage in back-and-forth inputs and feedback loops, 

the interaction mirrors human turn-taking conversations, which has been shown to positively 

influence the perception and acceptance of AI (Zhao et al. 2025; Banks 2019; Murray, Rhymer, 

and Sirmon 2021). Also, when people attend to the agentic aspects of AI, autonomy, and control 

become salient concerns. High interactivity and engagement help users maintain an internal 

locus of control, fostering positive feelings about the agent (Shneiderman and Plaisant 2010). 

High human involvement may also lead users to attribute to AI human mental faculties, traits 
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often considered lacking in AI (Bigman and Gray 2018, Gray et al. 2007). Previous research 

shows that involvement in an AI’s learning phase enhances users’ feeling of control, perceived 

understanding, and personalization (Sieger et al. 2022). These perceptions often increase AI 

acceptance (André et al. 2018; Laitinen and Sahlgren 2021; Liu and Tao 2022). Thus, high 

human involvement, while leading to reduced automation from the tool perspective, implies 

interactivity from the agent perspective, leading to opposite effects on AI acceptance. 

Task Characteristics 

 Context: professional versus consumer. AI is ubiquitously employed in both consumer 

and professional domains. Consumers use AI to select products, navigate routes, control smart 

devices, and interact with virtual assistants, among other things. Professionals use AI to automate 

administrative tasks, assist in medical diagnoses, make judicial decisions, enhance financial 

forecasting, and so on. These differing applications lead to context-dependent variations in AI 

acceptance. First, the consequence bearer of decision differs between the two contexts. 

Consumers generally make self-impacting decisions, whereas professionals make decisions 

affecting others. Research indicates that people employ different decision-making strategies 

when choosing for themselves versus for others (Ritov and Baron 1990). Second, while 

consumer decisions often do not require demonstratable, rigorous explanations, professional 

decisions demand clear justifications, as professionals are held accountable for these outcomes. 

In social and organizational contexts, the justifiability and interpretability of AI-assisted 

decisions become crucial (Brkan 2019). Finally, professional decisions often have more 

consequential ramifications than consumer decisions. In high-stakes scenarios, people demand 

greater accuracy, transparency, and certainty (Yeomans et al. 2019; Tversky and Kahneman 
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1974). Given these distinctions, we expect that the task context in which AI is used significantly 

impacts its acceptance and the effects of its various drivers. 

 Moral relevance. Moral reasoning is often seen as a core human mental faculty, raising 

skepticism about AI’ capacity to understand human ethics and make moral judgments (Searle 

1980; Wallach and Allen 2009). First, decisions requiring moral judgments are inherently 

complex and often present dilemmas, where determining right or wrong is not necessarily a 

matter of utility calculation. Second, morality is rooted in collective intentionality, cultural 

learning, and shared norms, which distinguish us from other species (Dawkins 1978). Research 

shows that people perceive machines as lacking emotional and empathetic capabilities (Haslam 

et al. 2008), the qualifications essential for moral judgments (Cameron, Payne, and Doris 2013; 

de Waal 2006). Consequently, moral reasoning is perceived as an exclusively human domain 

(Lee 2018). Dietvorst and Bartels (2022) further show that people object to AI making morally 

relevant trade-offs because AI is believed to follow consequentialist decision-making, which is 

often criticized by those in favor of deontological morality based on universal ethical principles. 

Given these concerns, we expect AI acceptance in moral domains to be significantly lower. 

 Privacy. As with other information technology, privacy concerns play a critical role in 

consumers’ assessment of AI applications. We consider the extent to which a focal task involves 

the handling of sensitive personal information (Malhotra, Kim, and Agarwal 2004). Research 

suggests that privacy concerns can lead to negative reactions towards algorithms (Araujo et al. 

2020) and voice-based digital assistants (Vimalkumar et al. 2021). Using an AI system often 

requires personal data input, yet when and how this information is stored, processed, or shared 

remain opaque to end users. Such uncertainty may trigger reluctance to disclose information to 

the system (Acquisti, Brandimarte, and Loewenstein 2015), ultimately reducing the likelihood of 
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accepting an AI system. Thus, we expect lower AI acceptance in tasks involving sensitive 

personal information, as people experience more concerns about privacy and data security. 

 Societal externality. Beyond personal privacy and moral considerations, societal 

externality is another critical factor that influences AI acceptance. We define societal externality 

as the potential for widespread impact, and especially unfavorable consequences for others 

beyond the decision-makers or AI users themselves. When a task carries high societal stakes, 

people tend to be more conservative and exhibit status quo bias (Samuelson and Zeckhauser 

1988). In AI-involved tasks that potentially impose societal externality, we expect lower 

acceptance of AI (i.e., novel solutions) and favor human counterparts (i.e., conventional 

practices). Previous research suggests that, in high-stake tasks, people show lower trust in 

automation and a stronger preference for human oversight (Cummings 2004; Burton et al. 2020). 

This is particularly pronounced when AI is applied to tasks that, if poorly implemented and 

misused, could lead to social injustices, economic instability, or threats to democratic integrity 

(Eubanks 2018; Pasquale 2016; Ferguson 2017). 

User Characteristics 

Individual differences significantly shape AI acceptance, as users bring varying 

experiences, attitudes, and cognitive biases to their interactions with AI. We consider three 

demographic factors – gender, age, region – as they have been shown to systematically influence 

technology acceptance and adoption. Gender differences in AI acceptance often stem from 

variations in risk perception, trust, and technology-related self-efficacy. Studies demonstrate that 

men and women show systematic differences in trust and willingness to adopt AI-based 

technologies (Chalutz Ben-Gal 2023). Age also plays a role, with younger individuals being 

more receptive to emerging technologies (Czaja et al. 2006; Charness and Boot 2009). We also 
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expect regional differences as they reflect broader cultural attitudes, social norms, regulatory 

policies, and AI development levels. Additionally, we consider whether users are university 

students because we expect that, as digital natives, they tend to be more adaptable to AI, whereas 

non-student populations may be more resistant due to established work practices and 

professional norms (Selwyn 2007; Vanneste and Puranam 2024). These four user characteristics 

are also in line with common practices in meta-analysis literature for analyzing demographic 

variables of study samples, such as gender, age, and region, as well as whether the studies are 

conducted among university students (e.g., Khamitov, Wang, and Thomson 2019; Ceylan, Diehl, 

and Wood 2024; Schamp et al. 2023; Cadario and Chandon 2020).  

Methodological Controls 

We include several study characteristics as methodological controls. First, we examine 

whether the task to be delegated to or assisted by an AI (or a human equivalent) is incentivized. 

Incentive-compatible experiments encourage respondents to put in more effort for optimal 

performance by offering extra rewards for completing the questionnaire. Existing literature 

suggests that both economic incentives (e.g., financial rewards for accuracy) and social 

incentives (e.g., reputation, social norms) can reduce reluctance to use algorithmic aids in 

various tasks (e.g., Alexander, Blinder, and Zak 2018; Önkal et al. 2009). Therefore, we 

anticipate that AI acceptance will be higher in incentivized tasks. In terms of experimental 

designs and settings, we differentiate between within and between designs. We expect a 

systematic difference between experiments where both AI and human options are presented to 

participants (within-subjects design) and those where either AI or human option is presented 

(between-subjects design). Typically, effect sizes from within-subjects studies are expected to be 

larger (Borenstein et al. 2009). We also distinguish between hypothetical and real-world 
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scenarios of AI usage. Finally, we consider the recency of publication. It is expected that as AI 

becomes increasingly indispensable in daily life, people grow more accustomed to it; naturally, 

AI acceptance tends to increase over time. 

 

Methodology 

Data Collection 

Literature Search 

We adopted two strategies to collect the primary articles for our meta-analysis. Detailed 

information regarding our search strategy is included in Web Appendix A. First, we conducted a 

comprehensive literature search in the database EBSCO Business Source Complete, which 

includes major business journals and those in related disciplines such as human-computer 

interaction, psychology, sociology, etc. To capture articles studying human acceptance of AI, we 

used four groups of search terms (with an “OR” logic within each group and an “AND” logic 

between groups): (1) “algorithm,” “artificial intelligence,” “AI,” “machine learning,”; (2) 

“response,” “acceptance,” “aversion,” “appreciation,” “preference,” “adoption,” “usage”; (3) 

“consumer,” “customer,” “user,” “human,” “people”; (4) “experiment,” “survey,” “empirical”. 

Second, we checked the forward and backward references of three systematical reviews on 

“algorithm aversion” (Burton, Stein, and Jensen 2020; Jussupow, Benbasat, and Heinzl 2020; 

Mahmud et al. 2022). Lastly, we conducted ad-hoc searches to identify recent articles not 

covered in the previous two search strategies. Our search yielded an initial set of 2,488 articles. 

Inclusion Criteria 

We screened the articles in the initial set and included those studies that met the following 

criteria: (1) experimental or quasi-experimental studies that compare human acceptance of AI 
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versus human agents; (2) the dependent variables measure either the respondents’ attitudinal or 

behavioral responses of acceptance; (3) published in high-quality peer-reviewed outlets1 that are 

within the first two quartiles of its corresponding discipline based on the impact factor2; (4) 

containing enough information that enables us to calculate common effect sizes. Our final 

samples consist of 61 articles with 287 effect sizes extracted from 136 studies. The final set of 

articles, studies, and effect sizes included in our meta-analysis are reported in Web Appendix B. 

 Coding Scheme 

Two coders first coded a small subsample (54 effect sizes) of the collected articles 

independently. We then compared the coding results between the two coders. All the 

disagreements were resolved after discussions. After that, one coder continued coding the 

remaining articles based on a mutually agreed coding scheme iterated through the preliminary 

coding. We coded each study on the following variables: AI characteristics, task characteristics, 

user characteristics, and methodological control variables. We also extracted effect sizes or 

statistics that could allow us to calculate effect sizes. Table 3 summarizes the coding scheme. 

Full details and examples for each coding variables are included in Web Appendix C.  

Meta-Analytical Strategy 

Measure of Effect Size 

We use the standardized mean difference Cohen’s 𝑑 as the measure of effect sizes 

(Cohen 2013). It is calculated as the mean difference between the outcome measures of the 

control and treatment groups divided by the pooled standard deviation. In our study, human 

 
1 Following the different norms of publication in different fields, we only included academic 

journals in the social sciences fields, but we included conference proceedings in the fields of 

computer science and computer engineering (including human-computer interaction). 
2 To avoid confusion, we use the highest quartile classification if a particular journal/conference 

belongs to more than one discipline. 
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Table 3: Summary of Coding Scheme for the Variables Used in the Meta-Analysis 

Variable Name Summary of Coding Descriptions No. of 

Obs/ 

Meana 

AI Characteristics 

Capability 1 = AI is perceived as more capable than humans in the task 

0 = Not specified or not more capable 

21 

266 

Input Transparency 1 = Input variables used by the AI are available to users 

0 = Not available 

76 

211 

Process 

Transparency 

1 = The AI’s working process is available to users 

0 = Not available 

7 

280 

Reliability 1 = AI outcomes are reliable/low error 

0 = Not reliable/high error 

78 

209 

Anthropomorphism 1 = AI mimics human looks or uses human-like language 

0 = Command-based and/or non-human-like 

18 

269 

Expertise Scope  1 = Generalist; AI handles general tasks (e.g., ChatGPT) 

0 = Specialist; AI handles specific tasks (e.g., medical, finance) 

37 

250 

Human Involvement 1 = High user involvement during service 

0 = Low involvement 

44 

243 

Role 1 = Performative; AI executes actions with little or no human 

intervention 

0 = Advisory; AI gives non-binding advice 

153 

 

 134 

Cost 1 = Using the AI incurs explicit costs (e.g., money, points) 

0 = No explicit cost 

8 

279 

Task Characteristics 

Use Context  1 = Professional; used in professional settings (e.g., courts) 

0 = Consumer; for general consumer use 

117 

170 

Moral Relevance 1 = Task involves ethical/moral decisions (e.g., court, hiring) 

0 = Not relevant (e.g., financial investment, matchmaking) 

76 

211 

Privacy 1 = Task involves sensitive personal data (e.g., medical) 

0 = No sensitive data 

44 

243 

Societal Externality 1 = AI outcome affects others beyond the user 

0 = Outcome affects only the user 

33 

254 

User Characteristics 

Female Continuous, percentage of participants self-identified as female 49.52 

Age Continuous, the average age of participants in the study 36.23 

Region 1 = Study conducted in an English-speaking country 

0 = Otherwise 

217 

70 

Student 1 = Sample primarily consists of students 

0 = Not primarily students 

51 

236 

Methodological Controls 

Behavioral 1 = Dependent variable is behavioral 

0 = Attitudinal 

160 

127 

Design 1 = Within-subjects design 

0 = Between-subjects design 

107 

180 
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Scenario 1 = Real-world setting 

0 = Hypothetical scenario 

7 

280 

Incentive 1 = Participants received additional incentives beyond those 

compensated for their participation 

0 = No extra incentive 

72 

 

215 

Recency Continuous, the reverse-coded number of years elapsed since 

publication. 

17.92 

a Mean values for continuous variables and number of observations for binary variables. 

 

equivalents in the experiments, from which effect sizes are extracted, are set as the baseline 

control. The effect size is calculated as 𝑑 = (𝑀𝑒𝑎𝑛𝐴𝐼 − 𝑀𝑒𝑎𝑛𝐻𝑢𝑚𝑎𝑛)/𝑆𝑡𝑑𝑝𝑜𝑜𝑙𝑒𝑑, and 

𝑆𝑡𝑑𝑝𝑜𝑜𝑙𝑒𝑑 = √(𝑆𝑡𝑑𝐴𝐼
2 + 𝑆𝑡𝑑𝐻𝑢𝑚𝑎𝑛

2 )/2. Coding in this way, a positive effect is a positive 

response toward AI compared to a human equivalent, which indicates an attitudinal or behavioral 

acceptance of AI. In contrast, a negative effect indicates rejection of AI, or in a scholarly trendier 

term, AI aversion (Schmitt 2019). Given that we have different types of reported outcome 

measures, we convert all other forms of reported statistics (e.g., t tests, F ratios, and odds ratios) 

into Cohen’s 𝑑 following standard formulas (Borenstein et al. 2009). As all effect sizes included 

in this meta-analytical dataset are from experimental or quasi-experimental studies, there are no 

concerns of partial correlations resulted from the effect sizes with regression coefficients. Web 

Appendix B reports the included effect sizes. To assess the underlying heterogeneity of the effect 

sizes in our dataset, we both compute the Higgins’s 𝐼2 index (Higgins and Thompson 2002) and 

conduct Cochran’s Q-test (Cochran 1954). An 𝐼2 value above 75% and a rejection of the null 

hypothesis in the Q-test indicate a considerable level of heterogeneity. 

Hierarchical Linear Model Specification 

We start with the examination of the overall response of humans to AI with the average 

meta-analytical effect, or the intercept-only model. In meta-analysis where effect sizes are nested 

in experiments that are nested within a given paper, data generally possesses a multilevel 

structure. This hierarchical composition of the data renders conventional regression approaches 
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such as ordinary least squares errors prone (Krasnikov and Jayachandran 2008). To account for 

the nested structure of our data, we use a three-level hierarchical linear model (HLM) to regress 

the dependent effect sizes (Assink and Wibbelink 2016; Konstantopoulos 2011). As an extension 

of conventional two-level HLM, a three-level model adds a cluster effect on the original two 

levels (i.e., participants at level 1 and studies at level 2), capturing both within-study (level 2) 

and between-study (level 3) heterogeneity (Cheung 2014). The model specification is as below: 

𝐸𝑆𝑖𝑗 = 𝛽0 + 𝑢(2)𝑖𝑗 + 𝑢(3)𝑗 + 𝑒𝑖𝑗. (1) 

For an effect size 𝐸𝑆𝑖𝑗, 𝛽0 is the meta-analytic effect size estimated across all studies; 𝑢(2)𝑖𝑗 and 

𝑢(3)𝑗 denote the level 2 and level 3 heterogeneity, respectively. And the variance of 𝑒𝑖𝑗 is the 

known sampling variance in the i-th effect size in the j-th study.  

Next, we consider the effect of each engineerable AI factor. To do so, we first estimate 

one univariate meta-regression for each predictor 𝑥. These univariate analyses are to provide 

benchmark values to compare with the estimates obtained in the full multivariate model. As all 

our AI-related predictors are binary (e.g., anthropomorphism: 0 for absent or 1 for present), the 

univariate model in estimates the coefficients 𝛽 corresponding to the effect of present-level of 

the binary predictor, as opposed to absent-level, without any covariate.  

With univariate analysis, we are able to compare the influence of each AI characteristic 

on human acceptance; but multivariate models generally improve estimation with better 

statistical properties as well as reduce the risk of bias such that a significant result in univariate 

analyses may not hold using the multivariate model (Jackson, Riley, and White 2011). Therefore, 

we estimate a full model with all AI-characteristic factors, contextual, population, and 

methodological control variables. The parameter estimates for these factors are denoted as 𝛽𝑘 . 
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𝐸𝑆𝑖𝑗 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑘,𝑖𝑗

𝐾

𝑘=1

+ 𝑢(2)𝑖𝑗 + 𝑢(3)𝑗 + 𝑒𝑖𝑗 . (2) 

We estimate all mixed-effects, three-level, meta-analytic models using maximum likelihood with 

rma and rma.mv functions in “metafor” R package provided by Viechtbauer (2010). 

 

Results 

AI Acceptance versus Rejection 

The meta-analysis includes 136 studies from 61 published manuscripts, which provide 

287 total effect sizes based on 119,358 individual participants. The aggregated empirical 

evidence shows a notable distribution of the documented effects, differing with respect to their 

directions and magnitudes. The effect sizes range from −2.040 to 1.530 while the majority of 

observations are between −0.425 (the first quantile) and 0.260 (the third quantile). The sizable 𝐼2 

heterogeneity score (93.3%) indicates a high level of heterogeneity, suggesting that the 

variability of the effect sizes is caused by true heterogeneity rather than sampling errors. 

Consistently, Cochran’s Q-test for heterogeneity is significant (Q = 4260.25, p < 0.0001). 

The intercept-only three-level model yields a significantly negative main effect, −0.150, 

with a 95% confidence interval of  [−0.220, −0.080]. It indicates that people generally respond 

more negatively to AI compared to its human equivalent. When we divide the outcome measure 

into attitudinal acceptance (No. of effect sizes = 127) and behavioral acceptance (No. of effect 

sizes = 160), we observe comparable negative effects: 𝑑 =  −0.122, 𝐶𝐼95% = [−0.212, −0.032] 

for attitudinal measures and 𝑑 = −0.174, 𝐶𝐼95% = [−0.275, −0.074] for behavioral measures. 

There is no statistically significant difference between attitudinal and behavioral acceptance (𝑡 =

0.334, 𝑝 = 0.738). Thus, it is appropriate to combine the two outcomes in subsequent univariate 
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and multivariate analyses to maintain higher statistical power. We also compared the main effect 

with the estimate obtained from a standard two-level hierarchical linear model. It yields a same 

significant negative effect with a slightly smaller magnitude (𝑑 = −0.126, 𝐶𝐼95% =

[−0.186, −0.065]) and weaker model fit in terms of log likelihood (𝜒2 = 7.748, 𝑝 = 0.005). 

Hence, for the remaining analyses, we adhere to the three-level model. 

Influence of AI Characteristics 

We use three-level hierarchical models to regress people’s acceptance of AI on (1) each 

individual AI characteristic, (2) all AI characteristics combined, and (3) the full set of AI-task-

user variables with methodological controls. These follow the same operation as moderator 

analysis in other meta-analyses. Summary statistics and bivariate correlations for the included 

moderators are detailed in Web Appendix D. Table 4 presents the estimation results. The 

univariate and multivariate analyses align in terms of the directions of AI characteristics’ effects, 

with some differences in magnitude and statistical significance. Since univariate analyses are 

prone to biased estimators and confounds due to omitting other relevant variables (Jackson, 

Riley, and White 2011), we interpret the full multivariate model results as empirical evidence.  

The findings show that people are significantly more likely to accept AI when it is 

perceived as highly capable (𝛽 = 0.475, 𝑝 < 0.001). For transparency, input transparency 

increases acceptance (𝛽 = 0.143, 𝑝 = 0.062), whereas process transparency has no discernible 

effect (𝛽 = −0.255, 𝑝 = 0.165). Regarding the expertise scope of an AI system, people prefer a 

general-purpose AI over a domain-specific one (𝛽 = 0.278, 𝑝 = 0.007). Acceptance is lower for 

an AI system when it is playing a performative as opposed to an advisory role (𝛽 = −0.335, 𝑝 <

0.001). Interestingly, compared to free AI, people are more likely to use AI when there is a 

monetary cost (𝛽 = 0.368, 𝑝 = 0.044). Anthropomorphism (𝛽 = −0.376, 𝑝 = 0.009) shows a 
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negative effect on AI acceptance. Finally, reliability does not impact the acceptance of an AI 

system (𝛽 = −0.078, 𝑝 = 0.283); and there is no difference whether or not users are involved or 

interacting with AI during decision-making processes (𝛽 = 0.048, 𝑝 = 0.596).  

  Regarding the task, user, and methodological control variables: First, people are less 

likely to accept AI in tasks involving moral judgment and reasoning (𝛽 = −0.204, 𝑝 = 0.021) 

and tasks imposing personal privacy concerns (𝛽 = −0.228, 𝑝 = 0.018). There is no significant 

difference in tasks with or without societal externality (𝛽 = −0.061, 𝑝 = 0.592). Also, while 

there are no systematic differences in AI acceptance across different ages and genders, people 

from English-speaking countries (i.e., US, Canada, UK) demonstrate a slightly higher acceptance 

of AI (𝛽 = 0.191, 𝑝 = 0.012). When AI acceptance is measured in actual behaviors rather than 

attitudes, it is significantly lower (𝛽 = −0.266, 𝑝 < 0.001). People’s acceptance of AI increases 

when they are incentivized for better performance or accuracy (𝛽 = 0.360, 𝑝 < 0.001). Lastly, 

AI acceptance shows a significant upward trend over time (𝛽 = 0.020, 𝑝 = 0.027).  

Robustness Checks 

We perform several robustness checks to ensure the stability and reliability of our meta-

analysis results. First, we check for multicollinearity. All variance inflation factors (VIF) are 

below 3, with a mean VIF of 1.647, ruling out concerns about multicollinearity among the 

variables (see details in Web Appendix E). Next, we re-run the analysis using a different effect 

size measure, weighted Hedge’s 𝑔, which corrects for small-sample biases (Hedges and Olkin 

1985). The estimation results show consistent effects in both direction and significance as in 

analyses using Cohen’s 𝑑. We also conduct a series of sensitivity tests on the moderators’ effects 

by testing different model specifications: three-level HLM adding task factors, user factors, and 

methodological controls consecutively. Particularly, we examine the influence of variables with 
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low variations (i.e., process transparency and cost) by removing them one by one and altogether 

from the model. Then, to assess the sensitivity of our estimates to individual effect sizes, 

particularly for moderators with low representation, we conducted a Leave-One-Out (LOO) 

influence analysis (Viechtbauer 2010). Finally, we conducted a robustness check using Least 

Absolute Deviation (LAD) estimator to assess robustness of the findings against outliers 

following the approach reported in Edeling and Fischer (2016). The models and estimation 

details for robustness checks can be found in Web Appendix F. All alternative models yield 

similar directional patterns for the moderators’ effects, except for the variable of cost. The 

instability of the estimation of cost effect is also indicated in the LOO analysis, where a few 

observations drive the coefficient of this variable.  

Besides, we assess the concerns for publication bias. We start with calculating the fail-

safe N, which estimates the number of unpublished null effect sizes needed to render the 

observed effects insignificant at the level of 𝛼 = 0.05 (Rosenthal 1979). Then, we investigate the 

asymmetry in the funnel plot with Egger’s test (Egger et al. 1997). For any asymmetry, we use 

the trim-and-fill method to test how the pooled effect size would alter once accounting for 

unpublished results (Duval and Tweedie 2000). Additionally, we use the p-curve to detect 

questionable research practices in included studies such as selective reporting and p-hacking 

(Simonsohn, Nelson, and Simmons 2013). These analyses suggest minimal publication bias. The 

detailed publication bias analyses are reported in Web Appendix G.  

In brief, the series of robustness checks confirm the overall stability of our model and 

results. 
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Table 4: Results of Univariate and Multivariate Analysis for AI Characteristics 

    Univariate Model for Each 

AI Characteristic 

Multivariate Model with AI 

Characteristics Only  

(df = 9) 

Multivariate Model 

Including All Variables  

(df = 22) 

  Variable Estimate Std Error p-val Estimate Std Error p-val Estimate Std Error p-val 

AI 

Characte

ristics 

Capability 0.260 0.123 0.035 0.306 0.124 0.014 0.475 0.125 <0.001 

Input Transparency 0.151 0.079 0.056 0.223 0.080 0.005 0.143 0.077 0.062 

Process Transparency -0.199 0.197 0.311 -0.358 0.194 0.065 -0.255 0.184 0.165 

Reliability  0.052 0.075 0.488 -0.041 0.078 0.601 -0.078 0.073 0.283 

Anthropomorphism -0.150 0.137 0.274 -0.278 0.150 0.064 -0.376 0.144 0.009 

Expertise (Generalist) 0.060 0.104 0.567 0.188 0.114 0.098 0.278 0.103 0.007 

Human Involvement -0.087 0.097 0.370 -0.040 0.096 0.679 0.048 0.091 0.596 

Role (Performative) -0.171 0.070 0.015 -0.216 0.067 0.001 -0.335 0.063 <0.001 

Cost 0.279 0.193 0.148 0.502 0.192 0.009 0.368 0.183 0.044 

Task and 

User 

Characte

ristics 

Professional 
  

    0.033 0.070 0.639 

Moral Relevance 
   

   -0.204 0.088 0.021 

Privacy       -0.228 0.097 0.018 

Societal Externality       -0.061 0.114 0.592 

Female 
   

   0.000 0.003 0.864 

Age 
   

   -0.007 0.006 0.202 

Region 
   

   0.191 0.077 0.012 

Student 
   

   0.019 0.103 0.852 

Methodo

logical 

Controls 

Behavioral 
   

   -0.266 0.071 <0.001 

Design 
   

   0.009 0.075 0.904 

Scenario 
   

   -0.036 0.191 0.852 

Incentive 
   

   0.360 0.101 <0.001 

Recency 
   

   0.020 0.009 0.027  
Intercept 

   
-0.103 0.059 0.080 -0.154 0.339 0.649 

AIC         445.005 419.553 

Log Likelihood       -210.503 -184.776 
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Developing and Marketing AI: Roadmap of User-Centric Design 

Recent decades have witnessed the transformation of AI exemplified by awkward 

machine translation into large language models foreshadowing the “Sparks of Artificial General 

Intelligence” (Bubeck et al. 2023). AI as a general-purpose technology can only benefit humans 

ubiquitously if we are willing to accept it and subsequently adopt it in various situations. 

However, given the overall “aversion” toward AI, businesses cannot assume that people would 

readily embrace their AI-powered products. Thus, a user-oriented design approach is needed.  

Our meta-analysis integrates relevant AI, task, and user characteristics, with an emphasis 

on engineerable AI features – those modifiable by practitioners to enhance acceptance. To 

provide actionable recommendations for designing, developing, and promoting AI, we group the 

examined factors and develop a roadmap within the User-Centered Design (UCD) framework. 

Figure 2: AI, Task, and User Characteristics in a User-Centered Design Roadmap 

 

The UCD starts with understanding the context that AI is used for, which is largely 

shaped by task characteristics examined in our meta-analysis. First, as with other products and 

services, companies need to consider the difference between business-to-consumer and business-

to-business contexts of use. While the absolute level of AI acceptance does not significantly 

differ between professional and consumer tasks, a split-sample analysis (i.e., taking three-way 
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interactions between this task variable and each AI variable) reveals systematic differences in 

how users in these contexts evaluate AI features. We report the detailed estimation results in 

Web Appendix H; here, we highlight the main patterns: In consumer contexts, acceptance of AI 

is more malleable in response to the engineerable AI features, including capability, input 

transparency, anthropomorphism, role, and cost of AI; one exception is generalist AI, which 

exhibits a more pronounced positive effect among professionals. These findings underscore the 

importance of context-aware AI design and marketing strategies. When balancing trade-offs in 

design priorities and budget allocation, practitioners should tailor AI features and invest 

resources in those with the greatest influence in each context. In critical domains that concern 

policymakers, users are more likely to reject AI for tasks that intrude upon morality and personal 

privacy compared to those imposing broader societal risks. Practitioners, rather than attempting 

to persuade individuals to adopt AI, may find greater success by securing endorsements from 

decision-makers responsible for societal-level decisions. Once AI usage becomes a social norm 

across various contexts, individual acceptance may follow, even in morally sensitive and 

privacy-related applications. 

Next, UCD requires the consideration of user heterogeneous needs, which are influenced 

by user characteristics. In the meta-analysis, we examine the effect of basic demographic and 

geographic factors; due to data limitations, we are unable to explore the impact of behavioristic 

and psychographic factors in greater depth. A key insight for practitioners is that female users are 

not inherently more averse to AI technology, contrary to conventional wisdom and some prior 

literature (e.g., Tang et al. 2025; Stein et al. 2024). Consequently, such marketing practices as 

algorithmic ad bidding that underprioritize or overlook potential female users for AI-driven 
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products and services are not recommended. Instead, inclusive approaches that recognize diverse 

user segments should be emphasized to maximize AI acceptance. 

  The core of our meta-analysis is the engineerable AI features, which directly guide design 

solutions (i.e., attributes of AI artifacts). To enhance the interpretability of our findings, we 

translate them into Common Language Effect Size (CLES)3, introduced by McGraw and Wong 

(1992). This metric denotes the probability that a score randomly sampled from one distribution 

(i.e., AI condition) will be larger than a randomly sampled score from another distribution (i.e., 

baseline comparison). Accordingly, we provide the following recommendations. First, while 

anthropomorphizing AI has gained popularity, our findings suggest that companies should 

prioritize enhancing AI’s inherent capabilities over human-like interfaces. Improving AI 

capability and clearly communicating its advantages over human counterparts increases 

acceptance by 13.15%, making it the most effective strategy for fostering acceptance. Also, 

transparency regarding data collection and usage in AI-enabled products and services enhances 

acceptance by 4.03%, whereas understanding how AI processes data to generate outcomes does 

not significantly impact people’s attitudes and behaviors toward AI. For policymakers seeking to 

facilitate the safe, ethical, and widespread use of AI technologies, they should prioritize 

guidelines that mandate AI developers to disclose the sources and types of data their systems use. 

While process transparency is important, it matters to a lesser extent. Stringent regulations on 

transparency of how AI’s underlying algorithms work may thwart the development of capable 

yet incomprehensive AI systems. Policymakers need to balance the trade-off between 

transparency and capability when regulating and promoting the effective use of AI. Then, we 

 
3 It is calculated as  𝐶𝐿𝐸𝑆 = Φ (

d

√2
), where Φ is the cumulative distribution function of the 

standard normal distribution and d is the Cohen’s d. 



 39 

recommend that firms introduce AI products to the market with advisory functionalities rather 

than performative capabilities, as advisory AI is 9.36% more likely to be accepted. The 

widespread adoption of ChatGPT exemplifies this principle, not only due to its high capability 

but also because it primarily serves as an information and advice provider rather than an 

autonomous task performer. This ensures that humans retain decision-making authority over AI-

generated outputs. Additionally, the success of GPT echoes another recommendation for practice 

revealed in our findings: developing general-purpose AI instead of domain-specific AI. Users are 

7.79% more likely to accept AI with broad, generalist expertise than one specialized in a narrow 

domain. Lastly, businesses need to evaluate designs against requirements and iteratively improve 

AI products or services before market deployment. 

 

Theoretical Implications and Future Research 

Our meta-analysis reveals a small yet robust negative response toward AI compared to its 

human alternatives. This finding contributes to the scholarly debate surrounding AI “aversion 

versus appreciation.” (e.g., Dietvorst et al. 2015; Longoni et al. 2019; Granulo et al. 2019; Logg 

et al. 2019). Our findings support the aversion view overall but also show that acceptance of AI 

has increased over time. More importantly, the heterogeneity revealed in our analysis indicates 

that people’s acceptance depends on various factors: AI, user, and task. 

A core theoretical contribution of this meta-analysis is the dual-perspective framework 

distinguishing acceptance of AI as a tool versus as an agent. The tool perspective overarches 

ground theories such as TAM and DOI, from which literature examines how various AI 

characteristics influence perceived utilities, ease of use, or barriers to adoption. The agent 

perspective investigates AI acceptance shaped by features like anthropomorphism, autonomy, 
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and role – the traits people evaluate in social entities. Our study highlights the importance of 

viewing AI as an agent, showing how agentic qualities alter user perceptions in ways not 

captured by traditional models. This is particularly relevant as AI development is advancing 

toward agentic AI, with systems increasingly designed to reason, decide, and interact with users 

autonomously. These two perspectives propose distinct mechanisms driving AI acceptance and 

help explain inconsistencies in prior research. For future research, a direct examination of how 

perceiving AI as a tool or as an agent shapes acceptance would provide further theoretical insight 

and empirical support. Also, as AI technology continues advancing, the discourse on the social 

and ethical dimensions of AI grows more prevalent. We expect the weight of accepting AI as an 

agent to increase accordingly. Future research might investigate more factors and mechanisms 

under the umbrella of AI-as-an-agent perspective.  

Another major contribution of our study is the focus on engineerable AI features. They 

are the external antecedents to constructs that prevail in AI acceptance literature, such as 

perceived usefulness, ease of use, and trustworthiness. Beyond identifying a broad set of 

features, we differentiate closely related constructs: input transparency (awareness of data 

sources) versus process transparency (understanding of AI’s decision-making logics), and 

capability (AI’s performance level or accuracy) versus reliability (the consistency of its 

outcomes). These AI characteristics, along with user and task factors, are integrated into a 

theoretically grounded AI-task-user framework that captures key drivers of AI acceptance. 

Our findings show that AI acceptance varies by task context. We observe strong rejection 

of AI in moral and privacy-related contexts, consistent with prior literature and received wisdom 

(e.g., Dietvorst and Bartels 2022; Bigman and Gray 2018). We find systematic differences in 

how AI characteristics drive acceptance in professional and consumer settings. The split sample 
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analysis shows that most engineerable AI characteristics believed to influence people’s 

acceptance are only effective for consumers. We speculate that this difference is due to the type 

of data involved in using AI in consumer versus professional contexts and the former is more 

personally sensitive and relevant. While it is not feasible to include all subgroup analyses that 

differentiate the effects of AI characters across diverse tasks and users or to examine between-

factor interaction, our interactive meta-analysis web tool enables readers to explore further.  

The examined AI characteristics in the meta-analysis are limited to variables that are 

extractable from the literature. This limitation leaves several speculated engineerable AI 

characteristics unexamined like personalization. Two variables, process transparency and cost, 

are affected by limited variations. Future research may continue delving into these factors. The 

user dimension remains relatively under-examined in our research due to the constraints of data. 

Future studies should further consider individual heterogeneity, including factors such as prior 

AI experience, social influence, education level, and cognitive biases.  

As research on AI acceptance accelerates across diverse disciplines, keeping an up-to-

date empirical knowledge base is increasingly challenging. Meta-analyses on this topic are 

valuable but may quickly become outdated. To address this, our web tool enables researchers to 

input new effect sizes and update analyses, supporting a living, dynamic meta-analysis that 

facilitates ongoing knowledge consolidation (Cadario and Chandon 2020; Martin et al. 2023). 

Above all, we encourage researchers and practitioners to consider the key drivers of AI 

acceptance through the lenses of both perspectives – AI as a tool and as an agent. We hope that 

future research builds upon these insights, explores new avenues, and constantly updates our 

knowledge on this important topic as AI advances. We believe that it is critical for practitioners 
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to stay up to date about the evolving landscape of relevant AI features and to strategically design 

and communicate those features to enhance acceptance and foster positive responses.   
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