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Summary
Background Artificial Intelligence (AI) has been used to automate detection of retinal diseases from retinal images
with great success, in particular for screening for diabetic retinopathy, a major complication of diabetes. Since
persons with diabetes routinely receive retinal imaging to evaluate their diabetic retinopathy status, AI-based retinal
imaging may have potential to be used as an opportunistic comprehensive screening for multiple systemic micro- and
macro-vascular complications of diabetes.

Methods We conducted a qualitative systematic review on published literature using AI on retina images to detect
systemic diabetes complications. We searched three main databases: PubMed, Google Scholar, and Web of Science
(January 1, 2000, to October 1, 2024). Research that used AI to evaluate the associations between retinal images and
diabetes-associated complications, or research involving diabetes patients with retinal imaging and AI systems were
included. Our primary focus was on articles related to AI, retinal images, and diabetes-associated complications. We
evaluated each study for the robustness of the studies by development of the AI algorithm, size and quality of the
training dataset, internal validation and external testing, and the performance. Quality assessments were employed
to ensure the inclusion of high-quality studies, and data extraction was conducted systematically to gather pertinent
information for analysis. This study has been registered on PROSPERO under the registration ID CRD42023493512.

Findings From a total of 337 abstracts, 38 studies were included. These studies covered a range of topics related to
prediction of diabetes from pre-diabetes or non-diabeticindividuals (n = 4), diabetes related systemic risk factors
(n = 10), detection of microvascular complications (n = 8) and detection of macrovascular complications (n = 17).
Most studies (n = 32) utilized color fundus photographs (CFP) as retinal image modality, while others employed
optical coherence tomography (OCT) (n = 6). The performance of the AI systems varied, with an AUC ranging
from 0.676 to 0.971 in prediction or identification of different complications. Study designs included cross-
sectional and cohort studies with sample sizes ranging from 100 to over 100,000 participants. Risk of bias was
evaluated by using the Newcastle–Ottawa Scale and AXIS, with most studies scoring as low to moderate risk.
*Corresponding author. Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore.
E-mail address: gmstansw@nus.edu.sg (G.S. Wei Tan).

qFirst author.

www.thelancet.com Vol 81 March, 2025 1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:gmstansw@nus.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eclinm.2025.103089&domain=pdf
https://doi.org/10.1016/j.eclinm.2025.103089
https://doi.org/10.1016/j.eclinm.2025.103089
https://doi.org/10.1016/j.eclinm.2025.103089
http://www.thelancet.com


Review

2

Interpretation Our review highlights the potential for the use of AI algorithms applied to retina images, particularly
CFP, to screen, predict, or diagnose the various microvascular and macrovascular complications of diabetes.
However, we identified few studies with longitudinal data and a paucity of randomized control trials, reflecting a gap
between the development of AI algorithms and real-world implementation and translational studies.

Funding Dr. Gavin Siew Wei TAN is supported by: 1. DYNAMO: Diabetes studY on Nephropathy And other
Microvascular cOmplications II supported by National Medical Research Council (MOH-001327-03): data collection,
analysis, trial design 2. Prognositc significance of novel multimodal imaging markers for diabetic retinopathy:
towards improving the staging for diabetic retinopathy supported by NMRC Clinician Scientist Award (CSA)–
Investigator (INV) (MOH-001047-00).
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Research in context

Evidence before this study
Before undertaking this study, we conducted a comprehensive
search of PubMed, Web of Science, and Google Scholar from
January 2000 to October 2024 to identify studies evaluating
AI applications in retinal imaging for predicting diabetes-
associated systemic complications. Our inclusion criteria
focused on cross-sectional, retrospective, and prospective
studies that reported performance metrics of machine
learning and deep learning models, such as AUC, sensitivity,
and specificity, with validation experiments. Studies were
assessed for quality and risk of bias using the Newcastle–
Ottawa Scale (NOS) and AXIS tool, revealing a heterogeneous
body of evidence with variable performance and reporting
quality.

Added value of this study
Our study synthesizes and evaluates the performance of AI
models in predicting diabetes-associated complications by
using retinal imaging. Unlike previous reviews, we provide a

structured narrative synthesis of AI model performance,
highlighting gaps in validation and reporting standards in the
context of diabetes-associated complications. By aligning the
included studies with TRIPOD guidelines, this study identifies
key strengths and limitations in the field, offering insights for
improving model transparency and clinical applicability.

Implications of all the available evidence
The available evidence underscores the potential of AI-based
retinal imaging to serve as a non-invasive tool for predicting
systemic complications in diabetic patients, with significant
implications for early intervention and management
strategies. While the lack of high-quality prospective studies
and standardized reporting limits the generalizability of these
findings. Future research should prioritize robust validation in
diverse populations and emphasize adherence to reporting
standards to enhance clinical translation and policy
development.
Introduction
Diabetes mellitus (DM) will affect approximately
600 million people by the year 2040.1 The significant
morbidity and burden of care associated with the sys-
temic complications of DM, will pose a significant
challenge to healthcare systems worldwide.2 Early
detection and intervention to delay the progression of
diabetes and its complications are an important public
health need. Patients with diabetes are susceptible to
systemic complications such as diabetic kidney disease
or nephropathy (DKD), diabetic neuropathy (DN), dia-
betic retinopathy (DR), cardiovascular disease (CVD),
peripheral artery disease (PAD) and lower-extremity
amputations (LEA) etc. Timely screening and manage-
ment for these complications are crucial, yet it is note-
worthy that in the US one in every five diabetes patients
remains unaware of their diagnosis.3 Even for severe
chronic kidney disease (CKD), 2–5 patients are not
aware of the disease.4 Inadequate screening, inaccurate
diagnoses, and low patient awareness pose a significant
burden on our health system. Therefore, it is imperative
to explore cost-effective and practical methods to detect
diabetes-associated complications, especially in less
developed areas. The retina, often referred to as a
“window” to the vascular system, has the potential to
serve as rapid and non-invasive means of assessing the
status of the systemic vasculature.5

Artificial intelligence (AI) technology has achieved
significant advancement in its application in clinical
settings. Numerous AI models, including machine
learning techniques, have been applied in disease
screening, prediction, and identification, with a partic-
ular focus on their performance in analyzing multi-
modal images.6 AI has a potential role to be applied in
the clinical studies aiming to improve the clinical pro-
ductivity and diagnostic accuracy.7 In ophthalmology,
www.thelancet.com Vol 81 March, 2025
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multiple studies have develop and validated the use of
AI algorithms on retina imaging for various applications
including the diagnosis and management of conditions
such as diabetic retinopathy,8 glaucoma,9 age-related
macular degeneration,9 and other retinal diseases.10

For individuals with diabetes, international guide-
lines recommend regular screening for diabetic reti-
nopathy, which is usually performed by telemedicine
based digital fundus photographic screening.11,12 This
presents an opportunity for evaluation of the retinal
images for other diseases.13 Furthermore, patients with
referable DR would often be subject to specialist review
and further examination with OCT, OCTA, and other
imaging modalities. This opens the possibility of uti-
lizing retinal imaging, which these patients already
receive as part of their DR screening to opportunistically
detection of other systemic complications related to DM.
This concept has long been evaluate in multiple
research papers and translation has been limited by
practicality and accuracy of the traditional models based
on manually identified imaging biomarkers such as
retinal vessel caliber and geometry.14–19

The development of AI systems for analysis of retinal
images has brought an opportunity to develop non-
invasive, scalable and cost effective detection of sys-
temic complications of diabetes. Deep learning (DL), a
branch of machine learning (ML) has contributed to the
revolution of AI assisted medical image interpretation.
The DL systems have been applied to diagnosis and
prediction of various systemic diseases, including res-
piratory, cardiovascular, and neurology systems by uti-
lizing multiple type of imaging data.20–22 Research also
demonstrated robust achievement in segmentation,
prediction and identification of the systemic diseases by
using ocular images.23–25 DL has been successfully used
to perform automated identification of DR from retinal
fundus images used for DR screening,8,26,27 and can
improve the efficiency and cost effectiveness of DR
screening programs.28 Therefore, the ubiquity of retinal
imaging in patients with diabetes from DR screening
combined with the ability of DL and AI to improve the
detection of imaging biomarkers for systemic diseases
and build models for diagnosis or prediction of systemic
diseases in patients with diabetes in a rapid, scalable and
cost effective manner, presents a potential paradigm
shift in the screening for diabetic complications.

AI algorithms for DR detection from retina images
are already well published, and a number of algorithms
have regulatory approval and are deployed in clinical use
in many countries. However, AI analysis of retina
imaging data has the added potential to enhance the
accuracy of predicting diabetic complications, including
cardiovascular disease, DKD progression, and neuro-
logical diseases. Retina images can be obtained non-
invasively during routine health examinations, making
it easy to scale and combine with conventional risk
models that rely solely on clinical or laboratory data.29
www.thelancet.com Vol 81 March, 2025
In our review, we have provided a comprehensive
analysis and summary of the current studies on the use
of retinal imaging based AI for detecting systemic
diseases related to diabetes, excluding diabetic retinop-
athy, and discuss the unmet needs and future directions
required to facilitate the translation of these AI based
model into wider clinical use.
Methods
We conducted this systemic review according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) 2020 guidelines. The study
was registered on PROSPERO (registration ID:
CRD42023493512). To explore the existing AI technol-
ogies and their prospective applications in both clinical
practice and research, we searched PubMed®, Web of
Science and Google Scholar from January, 2000 to
October, 2024 for published English papers. The key-
words were based on three main factors of our review:
(1) retina images, (2) diabetes-related, (3) systemic dis-
ease such as cardiovascular disease, nervous system
diseases, endocrine system diseases, metabolic diseases,
liver diseases, hematologic diseases, digestive system
diseases and immune system diseases, (4) artificial in-
telligence. The searching strategy of this study are listed
in Supplementary Table S1. The research involved the
extraction of various components, including the input,
factors, AI model, dataset, validation procedures, and
clinical outcomes (such as age, mortality, Alzheimer’s
disease, etc.), along with an assessment of their
respective performances.

The outcomes of interest included both microvas-
cular complications and macrovascular complications,
as well as other related systemic outcomes such as
cardiovascular events, kidney disease and mortality risk.
We compared AI model performance across studies,
focusing on key performance metrics including AUC,
sensitivity, specificity, and C-statistics. Due to the
heterogeneity, we conducted a narrative synthesis to
summarize and compare the results. Studies were
grouped by the type of diabetes-related complications
predicted. We also examined AI model performance,
highlighting the range of AUCs and other performance
metrics across different studies.

Ethics
This review did not involve direct interactions with
human participants or the use of patient-identifiable
data, therefore, formal ethical approval was not
required. All included studies were publicly available
and had undergone ethical review and approval as part
of their original publication processes.

Selection criteria
Articles were eligible for the criteria below: (1): full text
available; (2) cross-sectional, retrospective, prospective
3
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studies which involved DM (Type 1 and Type 2) patients
were included; (3) performance of algorithms including
ML or DL were reported with metrics such as accuracy,
sensitivity, area under the receiver operating character-
istic curve (AUC) and specificity for binary outcomes or
mean absolute error (MAE) and R square for regression
models; (4) studies should include the validation
experiment. Irrelevant study design, primarily focus on
diabetic retinopathy without systemic complications,
lack of sufficient performance metrics, non-English
language, conference abstracts with insufficient data.

Data extraction
We extracted data from each study, including: Input
data (e.g., retinal imaging modalities), Input variables
(e.g., age, sex, disease status), AI models (e.g., deep
learning, machine learning), datasets and sample sizes,
validation procedures (e.g., internal and external
validation), and clinical outcomes (e.g., mortality,
cardiovascular disease, kidney disease). The quality
assessment was conducted using the Newcastle–Ottawa
Scale (NOS) for cohort studies, and the AXIS tool for
cross-sectional studies to evaluate the quality and risk of
bias of the included articles. Data were collected inde-
pendently by two reviewers using a standardized
extraction form. Discrepancies were resolved by a third
reviewer. No automation tools were used.

TRIPOD evaluation
We assessed the adherence of the 38 included papers to
the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)
guidelines. The TRIPOD statement provides a set of
recommendations designed to ensure transparent
reporting of predictive modeling studies, covering
essential components such as the study participants,
outcome measures, model development, performance
metrics, and validation strategies.

Statistics
The findings from studies were synthesized using a
thematic approach, categorizing studies based on shared
conceptual frameworks, such as DM status, microvas-
cular complications, macrovascular complications and
systemic risk factors. This approach allowed for an
integrated discussion of outcomes across different
studies, providing a broad view of AI-based retinal
imaging applications in diabetes-related complications.

Various performance metrics were extracted from
the included studies to assess the accuracy of AI-based
retinal imaging. These metrics included: 1 AUC/
AUROC (Area Under the Receiver Operating Charac-
teristic Curve): This metric evaluates the ability of the
model to distinguish between classes, with values closer
to 1 indicating stronger predictive performance.
2 F1-score: represents the balance between precision
and recall, indicating the test’s accuracy when both false
positives and false negatives are considered. 3 Kappa
score (k-score): measures the level of agreement
between observed and predicted classifications,
accounting for the possibility of agreement occurring by
chance.4. C-statistic: reflects the model’s ability to
discriminate between positive and negative outcomes,
with higher values indicating better discrimination.

Role of funding
The funding sources did not have any direct involve-
ment in the design, data collection, or analysis of the
study. The specific contributions of the funding sources
are as follows:

1. DYNAMO: Diabetes study on Nephropathy And
other Microvascular complications II (supported by
the National Medical Research Council, MOH-
001327-03): The funding supported the data collec-
tion process, analysis, and trial design for the study.
The funding did not influence the interpretation of
the results or the writing of the manuscript.

2. Prognostic Significance of Novel Multimodal
Imaging Markers for Diabetic Retinopathy: Towards
Improving the Staging for Diabetic Retinopathy:
This funding facilitated the investigation and
development of multimodal imaging markers for
diabetic retinopathy. The funding had no role in the
analysis, interpretation of data, or the writing of this
manuscriptRole of the funding source.

Results
Research selection
The selection process of our study is showed in Fig. 1.
As we focused on systemic complications, we excluded
research targeting primarily on diabetic retinopathy.
From researching the studies available from three main
database, we finally got total 1536 studies, 369 articles
PubMed, 833 from google scholar, 334 from Web of
Science. In the final review, we included 38 full-text
studies in our systematic review. All the included
papers are shown in Table 1. The Quality Assessment of
Newcastle–Ottawa scale (NOS) and Appraisal tool for
Cross-Sectional Studies (AXIS) are shown in Fig. 2.

We evaluated the adherence of the included studies
to the TRIPOD guidelines, with all studies providing
clear and informative titles and abstracts, detailed
descriptions of participants, and clearly defined out-
comes and predictors (Supplemantary Table S2). All
studies reported sample sizes, described their model
development processes, and provided model perfor-
mance metrics, such as AUROC, accuracy, and sensi-
tivity. However, only 4 studies (11%) reported missing
data handling, with the remaining 34 studies (89%)
lacking this information. Internal validation was
reported in 26 studies (68%), while only 12 studies
(32%) conducted external validation. Overall, the
included studies followed most TRIPOD guidelines,
www.thelancet.com Vol 81 March, 2025
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Fig. 1: Study flow diagram.

Review
while reporting missing data is neede for handling and
performing external validation.

Research characteristics
Based on our inclusion criteria, 38 articles were
included and fundamental information had been
showed in Table 1. 6 of these articles utilized OCT as
one of the inputs, while majority of the articles used the
CFP as input. 26 had internal validation, and 122 studies
included external validation. UK Biobank was used by
10 studies, while other studies included datasets origi-
nating from multiple regions including Singapore, In-
dia, US and China. The performance of the AI model
has been summarized in the table, including AUC, ac-
curacy, sensitivity and specificity, k score and F1- score
has also been reported. The studies demonstrated high
methodological quality Of the 38 studies, 21 were clas-
sified as high quality (scoring 8 out of 9 stars), and 17
were categorized as good quality (scoring 7 out of 9
stars). Most cohort studies showed a low risk of bias,
with strong cohort definitions, reliable exposure,
www.thelancet.com Vol 81 March, 2025
outcome assessments and appropriate statistical ad-
justments. In contrast, several cross-sectional studies
showed a moderate risk of bias, primarily due to issues
with missing data, non-responder handling and sample
size justification (Fig. 3).

Prediction of diabetes from pre-diabetes or non-
diabetic individuals
DM patients are more likely to developing systemic
disease, and early detection and treatment of these
conditions and risk systemic factors can potentially slow
down their progression.68 In the context of predicting
and identifying DM patients from the healthy control
group, there were 4 studies with an F1-score reported
from 0.758 to 0.847 and AUC ranging from 0.746 to
0.845.52,58,63,67 Multiple CNN models such like VGG-19,
DiaNet and ResNet were utilized to perform the
analysis.

A previously study utilized the CNNs (convolutional
neural networks) to automatically extract features from
CFP, enabling capture the retinal vasculature change
5
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Author years Input Analyzed variables Study type AI model Dataset, sample size
and country of origin

Validation Clinical outcomes Performance

Nusinovici
et al.30

2024 CFP All-cause mortality,
cardiovascular disease
mortality, cancer
mortality, cardiovascular
disease events

Cohort development
and validation study

Deep-learning
(RetiPhenoAge
marker derived from
CNN)

UK Biobank (34,061
participants), SEED (9429
participants, Singapore),
AREDS (3986
participants, USA)

Internal and external
validation across UK
Biobank, SEED, AREDS
cohorts

Prediction of morbidity
and mortality outcomes,
including cardiovascular
events and cancer
mortality

HR 1.92 for all-cause
mortality, HR 1.97 for
cardiovascular disease
mortality, HR 2.07 for
cancer mortality;
replicated in independent
cohorts

Wei J.31 2024 CFP eGFR, Blood Pressure,
Blood Uric Acid

Cross sectional study Deep learning (ViT),
metadata-image
hybrid

6091 diabetic patients
(ShDMC), 9327 from UK
Biobank, China and UK

5-fold cross-validation
(ShDMC), external test
(UK Biobank)

Hyperuricemia
classification

AUC 0.92 (hybrid model,
ShDMC), AUC 0.89 (UK
Biobank), R2 0.727 (hybrid
model)

Nabrdalik K32 2024 CFP Gender, age, BMI,
diabetes, DM duration,
DR, CKD, HbA1c, UACR,
eGFR, total cholesterol,
LDL, Triglycerides

Observational
Cohortstudy

Deep learning
(ResNet 18, ResWide
50)

229 DM patients, Silesia
Diabetes-Heart Project,
Poland

Training and validation,
testing on unseen image
set

CAN classification
(early vs severe stage)

AUC 0.87 for CAN, AUC
0.94 for severe CAN
(ResNet 18)

White T.33 2024 CFP HbA1c, SBP, DBP, eGFR Prospective,
non-interventional
study

Machine learning 301 participants, Kenya
(validation), UK Biobank
(training)

External validation in
Kenyan population

Cardiovascular risk factors
estimation

AUC 0.765 (hypertension),
AUC 0.762 (diabetes),
comparable to UK Biobank
training performance

Carrillo-Larco34 2024 CFP, text
metadata

Sex, age, comorbidities
and taking insulin

Exploratory study Extra Tree Classifier
and MedCLIP
embeddings

988 images from 563
people from Brazilian
Multilabel
Ophthalmological
Dataset, Brazil

Tested for multiclass
classification

Predicting years living
with diabetes using
retinal images and
metadata

F1 score 57%, highest
precision (64%) for 15+
years of diabetes, overall
accuracy 55–64%

Zhou35 2023 CFP and OCT Systemic diseases
(heart failure, myocardial
infarction) and ocular
diseases (diabetic
retinopathy, glaucoma,
AMD)

Retrospective Study RETFound
(Self-Supervised
Learning, SSL)

UK Biobank (United
Kingdom) and EyePACS
(United States), exact
sample size not explicitly
mentioned, large-scale
multi-country origin

Cross-dataset validation
(trained on EyePACS,
validated on UK Biobank
and other datasets)

Detected multiple
systemic and ocular
diseases from retinal
images, including
Ischemic stroke,
Myocardial infarction,
Heart failure and
Parkinson’s disease

AUC for heart failure:
0.87, myocardial
infarction: 0.86,
glaucoma: 0.90, AMD:
0.88; high generalizability
with good performance
across all diseases

Joo36 2023 CFP Age, Gender, Diabetes,
Hypertension, eGFR
(estimated glomerular
filtration rate)

Cohort study ConvNeXT, Reti-CKD 79,108 adults from
Severance Hospital, Korea

internal validation in the
UK Biobank and external
validation in the Korean
Diabetic Cohort

Chronic kidney disease Prediction: C-statistics,
0.638 in the UK Biobank,
0.703 in the Korean
Diabetic Cohort, AUC:
0.85 for CKD prediction.

Zhu37 2023 CFP, OCT
(Topcon 3D,
1000 Mk2)

Retina age gap, age,
gender, ethnicity,
Townsend index,
smoking status, drinking
status, obesity, physical
activity, history of stroke,
hypertension

population-based
cohort

Xception 131,238 images from
66,500 participants from
UK Biobank study, UK

5-fold cross-validation Mortality, age MAE: 3.55 years, HR for
mortality: 1.02 per year
increase in retinal age gap

Betzler38 2023 CFP eGFR, age, sex, ethnicity,
duration of diabetes,
HbA1c, and systolic blood
pressure

Cohort study ResNet 18 79,511 patients from
SiDRP, Singapore

5-fold cross-validation Diabetic kidney disease Detection AUC:
0.826–0.866 (internal),
0.726–0.828 (external),
hybrid: 0.765

(Table 1 continues on next page)
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Author years Input Analyzed variables Study type AI model Dataset, sample size
and country of origin

Validation Clinical outcomes Performance

(Continued from previous page)

Mellor39 2023 CFP gender, ethnicity, age,
diabetes duration, BMI,
SBP, DBP, cardiovascular,
smoking status, HDL,
eGFR, dyslipidemia,
hypertension, atrial
fibrillation

Prospective cohort
study

ResNet-101 SDRN-NDS 24,012 and
202,843 people with
T1DM and T2DM,
Scottish

20% validation set Incident Cardiovascular
Disease

Prediction T1DM: AUC
0.822, T2DM: AUC 0.711,
C-statistics improvement
marginal (ΔLL = 6.7 for
T1DM, 51.1 for T2DM)

Zekavat40 2022 CFP,
blood-
derived
DNA

Age, Gender, smoke
status

Population based
cohort study

U-Nets &
PheWAS&GWAS

UK Biobank 97,895
images, UK

Both internal and
external validation

Incident mortality,
hypertension, congestive
heart failure, renal failure,
type 2 diabetes, sleep
apnea, anemia,

AUC: 0.99 (vascular
segmentation), HR: 1.83
for mortality with T2DM

Ma41 (short
communication)

2022 CFP sex, age, systolic blood
pressure, total cholesterol,
body mass index, current
smoking status, diabetes

cohort study Inception-ResNet-
V2, ImageNet

798,866 fundus from
BRAVE, Beijing, China

390,947 and 20,571
participants for
development and
internal validate

Ischemic cardiovascular
diseases

Detection ICVD risk ≥5%:
AUC 0.971 (95% CI:
0.967–0.975) internal,
0.859 (95% CI:
0.822–0.895) ICVD risk
≥7.5%: AUC 0.976 (95%
CI: 0.973–0.985) internal,
0.876 (95% CI: 0.816–0.937)

Mordi42 2022 CFP blood sample for
genotyping, genome-
wide association, blood
pressure, glycated
hemoglobin, cholesterol

cohort study VMAPIRE 5152 individuals from
GoDARTS, Scotland

Internal validate MACE (major adverse
cardiovascular event)

Prediction AUC 0.686
(retinal + PRS model),
AUC: 0.663 (retinal only
model), HR: 1.11 for
retinal risk score

Nusinovici43 2022 CFP gender, Age, Albumin,
Creatinine, Glucose,
C-reactive protein,
Lymphocyte, Red cell
distribution width
percent, white blood cell
count, mortality status

RetrospectiveCohort
study

VGG, RetiAGE 46,551 from Korean
Health Screening Study;
56,301 from UK Biobank
Study, Korea and UK

Internal (Korea) and
external (UK) validation

Morbidity related to CVD
and cancer

Prediction AUC: 0.70 (CVD
mortality), HR: 1.67 (all-
cause mortality), HR: 2.42
(CVD mortality)

Hu44 2022 CFP age, gender, ethnicity,
Townsend index,
smoking status, drinking
status, obesity, physical
activity, history of stroke,
hypertension.

cross-sectional study Deep Learning
Model

46,969 participants from
UK Biobank study, UK

Internal validation Parkinson’s disease Predictive AUC = 0.717,
HR: 1.10 per year increase
in retinal age gap

Zhu45 2022 CFP LogMAR, keratometry
and autorefraction, IOP,
age, gender, ethnicity,
education, smoking
status, drinking status,
heath status,
cardiovascular disease,
metabolic syndrome

Prospective cohort
study

Deep Learning
Model using
Xception
architecture

19,200 fundus images of
11,052 participants from
UK Biobank, UK

5-fold cross-validation Arterial stiffness index,
Incident CVD events

AUC: 0.708 (CVD),
HR: 1.03 per year increase
in retinal age gap for CVD
risk

Zhu46 2022 CFP age, gender, ethnicity,
education, smoking
status, drinking status,
Obesity, cardiovascular
disease, diabetes

Prospective cohort
study

Xception 80,169 fundus images
from 46,969 participants
in the UK Biobank cohort,
UK

Internal validation Incident stroke Prediction AUC 0.676,
95% CI: 0.644–0.708,
HR: 2.37 for highest
retinal age gap quintile

(Table 1 continues on next page)
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Author years Input Analyzed variables Study type AI model Dataset, sample size
and country of origin

Validation Clinical outcomes Performance

(Continued from previous page)

Mueller47 2022 CFP age, gender, lowest
ankle-brachial-pressure-
index, history of acute
coronary syndrome

exploratory study AlexNet CNN 92,363 from Department
of Ophthalmology,
University Hospital Bonn,
Germany

Internal validation Peripheral arterial disease Detection AUC 0.890,
Precision: 0.954, Recall:
0.822

Al-Absi48 2022 CFP Age, Gender, Bone
Mineral Density, Body
Fat Composition, Lean
Mass, Area measurements

Prospective cohort
study

DMA model, Retinal
image model, Hybrid
model

1839 retinal images from
all participants, Qatar

5-fold cross validation Cardiovascular Disease Identification: Accuracy:
78.3% (hybrid model),
AUC: Not reported, DXA
accuracy: 77.4%, retinal
accuracy: 75.6%

Khan49 2022 CFP gender, ethnicity, age,
LDL, HDL, smoking status,
cardiac disease, HbA1c,
hypertension, angiotensin
receptor blocker (ARB)
use, angiotensin-
converting enzyme
inhibitor use, and aspirin
use

cross-sectional study DenseNet-201 1277 retinal fundus from
San Francisco Bay Area,
USA

Only split into training
and testing set, internal
validation

Ethnicity, Age, Gender,
ACEi, ARB, LDL, HDL,
Smoking status, HbA1c,
Cardiac disease,
medication-aspirin,
hypertension

Prediction AUC: Ethnicity
0.926, Age 0.902, Gender
0.852, ACEi 0.815, ARB
0.783, LDL0.766,
HDL0.756, Smoking status
0.732, HbA1c 0.708,
Cardiac disease 0.7,
medication-aspirin 0.696
hypertension 0.687

Rudnicka50 2022 CFP gender, ethnicity, age,
LDL, HDL, smoking status,
BMI, cholesterol,
hypertension, BP

Prospective Cohort
study

QUARTZ 88,052 UK Biobank (UKB)
participants and 7411
European Prospective
Investigation into Cancer
(EPIC), UK

Externally validated in
EPIC-Norfolk, and internal
(UKB)

Circulatory mortality,
Incident stroke, incident
myocardial infarction

Prediection C-statistic:
0.749–0.774 (circulatory
mortality), 0.73–0.76
(stroke), 0.68–0.75 (MI)

Barriada51 2022 CFP Coronary Artery Calcium
score

Cohort study VGG16, VGG 19,
ResNet

152 retinal images from
PRECISED study, USA

5-fold cross-validation Cardiovascular disease Prediction Accuracy 0.72,
Recall 0.52, Precision 0.77,
F1 0.62

Yun52 2022 CFP Gender, ethnicity, age,
obese, cardiovascular,
unfavorable lifestyle, HDL,
HbA1c, glucose,
hypertension

Prospective Cohort
study

ResNet-18 62,262 participants from
UK Biobank, UK

12,185 patients for
validation

Type 2 DM Prediction AUC: 0.731
(retinal only), 0.844
(TRFs + deep learning
model)

Rim53 2021 CFP CAC, Age, years, Sex,
Systolic blood pressure,
Diastolic blood pressure,
Fasting glucose, Body-
mass index, Hypertension,
Diabetes, Dyslipidemia,
Current smoke

Prospective cohort RetiCAC 13, 8024 retinal
photographs from five
datasets from South
Korea, Singapore, and the
UK

External validation Coronary Artery Calcium Prediction AUC: 0.742 for
CAC prediction, HR: 1.33
(SEED cohort), HR: 1.28
(UK Biobank)

Cheung54 2021 CFP Retinal-vessel caliber, age,
gender, ethnicity MAMP,
BMI, smoking

Prospective
cross-sectional study

SIVA-human, SIVA-
DLS

70,000 retinal
photographs from 15
datasets: Singapore,
Australia, New Zealand,
Hong Kong, China, UK,
South Korea

External validation 1060
from SEED study

Cardiovascular events,
mortality

ICC: 0.82–0.95 for vessel
calibre measurement,
HR: 1.24 (narrow CRAE,
CVD events)

Zhang23 2021 CFP eGFP, DM status, age, sex,
height, weight, body-
mass index, blood
pressure

Consists of both
cross-sectional and
longitudinal datasets

ResNet 50 115,344 retinal fundus
photographs from CC-FII,
China

External validate in
independent patient
populations

chronic kidney disease
and type 2 diabetes

Identification of CKD: AUC
of 0.930 (95% CI:
0.921–0.940) DM: AUC
0.929 (95% CI: 0.920–
0.937)
Prediction for eGFR:
coefficient of determination
(R2): 0.507

(Table 1 continues on next page)

Review

8
w
w
w
.thelancet.com

V
ol

8
1
M
arch,

20
25

http://www.thelancet.com


Author years Input Analyzed variables Study type AI model Dataset, sample size
and country of origin
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(Continued from previous page)

Zee55 2021 Brain MRI,
CFP

age, gender, education,
hypertension, diabetes,
WMH volume, Log-
transformed WMH
volume, Frontal lobe,
Parietal-occipital lobe,
Basal Ganglia

Community-Based
Cohort

ResNet 50, ARIA 240 subjects from The
Chinese University of
Hong Kong—Risk index
for Subclinical Brain
Lesions in Hong Kong

Cross-validation White matter changes,
cerebral small vessel
disease

Early detection: AUC: 0.76
for WMH detection

Gerrits56 2021 CFP age, sex, blood pressure,
smoking status, glycemic
status, total lipid panel,
sex steroid hormones and
bioimpedance
measurements

prospective and
longitudinal cohort

MobileNet-V2 3000 participants from
Qatar Biobank, Qatar

validated for 2400
pictures

Cardiometabolic risk
factors: such as age, sex,
blood pressure, smoking
status, glycemic status,
total lipid panel, sex
steroid hormones and
bioimpedance
measurements

Prediction: SBP (R2 = 0.40,
MAE = 8.96 mmHg), DBP
(R2 = 0.24,
MAE = 6.84 mmHg),
Hemoglobin A1c (HbA1c)
(R2 = 0.34, MAE = 0.61%)
relative fat mass
(R2 = 0.43, MAE = 5.68
units) testosterone
(R2 = 0.54,
MAE = 3.76 nmol/L) sex
AUC 0.97, Systolic blood
pressure AUC 0.4,
Diastolic blood pressure
AUC 0.24, Hemoglobin
A1c AUC 0.34, Relative fat
mass value AUC 0.43,
Testosterone (nmol/L)
AUC 0.43

Mendoza57 2021 OCT circle
scan and
scan of optic
nerve
head

Age, sex, race, diabetes
diagnosis, hypertension,
cardiovascular disease
(CVD), and axial length

Prospective cohort
study

Deep Learning Model 1772 patients, 52,552
circle B-scans: 730
patients, 111,456 radial
B-scans from Glaucoma
Study and African
Descent and Glaucoma
Evaluation Study
(ADAGES), US

Internal Validation of 5% Age, sex, race, diabetes
diagnosis, hypertension,
cardiovascular disease,
and axial length

MAE: Age 5.1 (4.5, 5.8),
Axial length 0.7 (0.6, 0.9),
AUC sex 0.72 (0.65, 0.79),
race 0.96 (0.92, 0.98),
diabetes diagnosis 0.76
(0.64,0.85), hypertension
0.71 (0.59, 0.81), CVD
diagnosis 0.56 (0.47,
0.65)

Islam58 2021 CFP severity of diabetic
retinopathy

Prospective cohort
study

DiaNet QATAR cohort 246,
control group 246;
EyePACS over 80,000
images, Qatar

5-fold cross-validation Diabetes Detection Accuracy
84.47%, Precision 83.59%,
sensitivity 85.86%. AUC
84.46%, Specificity
83.06%, F1 Score 84.71%

Cervera59 2021 CFP Age, diabetes duration,
Hba1c, BMI, serum
cholesterol, TGL
cholesterol, HDL

Cross-sectional Study Inception v3,
Squeezenet v1.0 and
Densenet

23,784 retinal images
from 1561 participants of
SNDREAMS study, India

5-fold cross-validation Diabetic peripheral
neuropathy

Prediction 0.8013
(validation), 0.7097 (test),
AUC: 0.8673 (DR
subgroup)

Sabanayagam60 2020 CFP CKD stage, age, gender,
ethnicity, diabetes,
hypertension

Population-based,
cross-sectional

retinal image DLA,
RF DLA, hybrid DLA

SEED: develop (5188
patients) and validate
(1297 patients). (External
testing SP2, 3735 patients
BES, 1538 patients),
Singapore

External validation in two
independent datasets in
SP2 Singapore and BES
China

CKD Detection AUC: image
DLA 0.911 (95% CI
0.886–0.936), RF 0.916
(0.891–0.941), hybrid DLA
0.938 (0.917–0.959)
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(Continued from previous page)

Kim61 2020 CFP Hypertension, Diabetes,
and Smoking, Age and
Sex

Cross-sectional study ResNet-152 412,026 retinal fundus
images from Seoul
National University
Bundang Hospital, Korea

2397 internal
validation-set

Prediction of Age
and Sex

Correlation between
predicted and chronologic
age: R2 = 0.92
(0.92–0.93), sex
prediction: above AUC
0.96 underlying vascular
conditions

Zhang62 2020 CFP gender, Age, current
smoker, exercise, salty
taste, PSQI, BMI, basal
metabolism, waist-hip,
body fat ratio, visceral fat
index, chronic disease, BP.
Bilirubin

cross-sectional study Inception-v3,
TensorFlow

625 participants from
Xinxiang, Henan China

Internal validation Hyperglycemia,
hypertension,
dyslipidemia, age, gender,
drinking, salty taste,
smoking, BMI, WHR, HCT,
MCHC,
T-BIL, D-BIL

Prediction AUC
Hyperglycemia 0.880,
hypertension 0.766,
dyslipidemia 0.703, age
0.850, gender 0.704,
drinking 0.948, salty taste
0.809, smoking 0.794,
BMI 0.731, WHR 0.704,
HCT 0.759, MCHC 0.686,
T-BIL 0.764, D-BIL 0.703

Heslinga63 2020 CFP age, gender, T2DM status Observational
prospective
population-based
cohort study

VGG-19 2336 pictures from The
Maastricht Study,
Netherlands

20% for validation set T2DM Detection 0.758
(combining left and right
eye), 0.746 (MTL
approach with random
initialization)

Kang64 2020 CFP Gender, age, dGFR, HbA1c Retrospective cohort
study

VGG-19 25,706 CFP from CGMH,
Taoyuan, Taiwan.

10% validation set Early Renal Function
Impairment

AUC: 0.81 (overall), 0.87
(HbA1c >10%),
Sensitivity: 0.89,
Specificity: 0.61

Vaghefi65 2019 CFP age, gender, HbA1c,
Dyslipidemia,
Hypertension,
Retinopathy level

Cross-sectional study Inceptionv3 neural
network

81,711 participants from
Auckland Diabetic
screening,
New Zealand

20% validation set Smoke status related to
CVD

Detection: Accuracy
88.88%, specificity
93.87%, sensitivity
62.62%. AUC 0.86

Poplin66 2018 CFP age, gender, smoking
status, blood pressure,
body mass index (BMI),
glucose, and cholesterol
levels

Observational study soft attention
(Neural network)

48,101 patients from UK
Biobank and 236,234
patients from EyePACS,
UK and US

External validation
12,026 patients from UK
Biobank and 999 patients
from EyePACS

age, gender, smoking
status, HbA1c, systolic
blood pressure, major
adverse cardiac events

Prediction AUC: 0.97
(gender), 0.71 (smoking
status), 0.70 (MACE
prediction), MAE: 3.26
years (age), 11.23 mmHg
(systolic blood pressure)

Abbasi-
Sureshjani67

2018 CFP Age, gender, diabetic
status, blood sugar level

Retrospective cohort
study

ResNet healthy (5791 images),
type 2 diabetic subjects
(3133 images) from
Maastricht Study,
Netherlands

20% for internal
validation set

T2DM Prediction: k score of
0.458, F1- score of 0.758
better than human
experts (F1 = 0.222)

Table 1: Summary of artificial intelligence screening systemic diseases from retina images.
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Fig. 2: Quality Assessment of Included Studies A: Using the Newcastle–Ottawa Scale for quality assessment, B: Using the Appraisal tool for
Cross-Sectional Studies quality assessment.

Review
directly from images. This study achieved a predictive
performance for diabetes status, with a k score of 0.458
and F1-score of 0.758.67 One publication proposed a
multi-stage fine-tuning approach which combines
image from different datasets to improve the model
performance compared with only one dataset. The AUC
for detecting diabetes from non-diabetic patients can
reach 84.46% from multiple data sets, while the AUC
was 79.01% when utilizing only one dataset.58 Specif-
ically, a multi-target learning approach performed well
with identifying T2DM patients with an AUC = 0.746,
which improved to 0.758 by combining images from
both eyes.63 Moreover, the model’s discriminative per-
formance improved from 0.731 to 0.844, by combining
the deep learning algorithm with the traditional risk
factors model.45 Patient with prediabetes would ideally
be distinguished from non-diabetic patients by utilizing
the fundus pictures, and these at risk group can sub-
sequently be sent for a formal oral glucose tolerance
enabling early identification of prediabetes patients for
primary and secondary prevention.

Estimation DM related systemic risk factors
We reviewed the performance of model predicting sys-
temic risk factors such as hypertension, hyperglycemia,
dyslipidemia and other using retinal fundus photos
www.thelancet.com Vol 81 March, 2025
alone, and found these models performed with an AUC
from 0.24 to 0.97.31,33,39,52,62 Other studies demonstrated
adding traditional risk factors to image only base deep
learning algorithm, could enhance the predictive per-
formance of DL model with AUROC reported up to
0.93.49,52 One study used AI models to analyze the
vascular changes in retina, found that AI based quanti-
fication of lower microvascular density and branching
complexity are associated with higher severity of disease
among the incident cardiometabolic phenotypes
patients.40

Chronological age is a risk factor for frailty and
mortality in older population including among di-
abetics.69 With their continuous studies of prediction of
age by using deep learning model, Zhu et al.37 showed
their model conducted robust correlation between
retinal age and chronological age (0.81), suggesting that
retina age can service as a biomarker of aging. They also
established that the predictive model for stroke using
retinal age determined from the same DL model, ach-
ieved higher AUC compared with an established risk
factor-based model (AUC = 0.676).46 The model is used
in another study in DM patients, which proved that
patients with DM had higher retinal age gap compared
to persons without diabetes. Other algorithms focusing
on prediction of chronological age, performed less
11
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Fig. 3: AI models for DM related complications.
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effectively in individuals with DM or hypertension,
demonstrating systemic vascular disease like DM, leads
multiple changes in the retina vessels and contributes to
an altered relationships between age and retinal vascular
features.61

Detection of microvascular complications
The retina is the only physiological “window” in
humans that provides noninvasive visualization of the
microvasculature. Evaluating retina vessels using
fundus, OCT and OCTA has the potential to provide a
non-invasive and economical means for evaluating the
microvascular status of the kidney and brain.70–72

Chronic kidney disease (CKD) is a significant
contributor to disease-related mortality, particularly
among individuals with diabetes.73 Published AI Models
performed well in the evaluation of CKD with a good
performance in detection of disease with an AUC from
0.87 to 0.91123,38,60,64; while for predicting the develop-
ment of CKD and detection of early kidney impairment
reported AUC ranged from 0.864 to 0.87.23,36

Reti-CKD score, a noninvasive risk assessment tool
has been designed to identify CKD risk in individuals
with preserved kidney function. In the study, the Reti-
CKD demonstrated superior prediction performance
for CKD incidence with a higher C-statistic of 0.703
compared to the eGFR-based method, indicating its
effectiveness as a predictive tool over traditional blood
tests.36 Deep learning algorithms with high accuracy of
CKD detection (AUC = 0.911) from CFP provides a
potentially non-invasive tool for rapid screening of CKD
in community-based populations without the availability
of laboratory infrastructure.60 The algorithm was able to
detect CKD in DM patients, with an AUC of 0.886 in a
hybrid model, which combined regression model and
image-only model.38 To increase portability, smart-
phones have been employed to capture fundus images
and combining these images with various clinical met-
adata, including age, gender, BMI, and blood pressure
with a deep-learning approaches for the identification of
CKD and T2DM was able to achieve an AUC of 0.898.23

For detection of early renal function impairment, an AI
model reported an AUC of 0.87, particularly for the
group with HbA1c levels above 10%, compared with
AUC of 0.81 in overall population in their study.64

Small vessel disease (SVD) in the brain has been
linked with dementia, stroke, depression, diabetic pe-
ripheral neuropathy and Parkinson’s disease
(PD).44,55,59,72 When utilizing retina images for early
detection of SVD, AI models exhibited high perfor-
mance with a sensitivity of 89.7% and accuracy of
93.3%. The automatic retinal image analysis model not
only detects the presence of early white matter hyper-
intensities (WMH), but also analyzing the localization of
www.thelancet.com Vol 81 March, 2025
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WMH for all 6 brain regions by measuringthe
retinal images, enabling diagnose and prediction of
neurodegenerative dysfunctions.55 Furthermore, in a
longitudinal study, a DL model was performed to pre-
dict the retinal age and risk of 5-year PD. The predictive
value of retinal-age-based model is comparable with the
risk-factor-based model for PD, indicating a novel
biomarker for identifying high risk of having the PD
(predictive AUC = 0.708 and 0.717).44

Peripheral neuropathy is another important micro-
vascular complication of DM and can result in disability
due to foot ulceration and the potential necessity for
amputation.74 An AI model designed to detect diabetic
peripheral neuropathy from retina images presence of
DR reached an AUC of 0.867. The model demonstrated
superior detection performance in individuals with DR,
compared to those without, indicating that DR patients
may have greater risk of developing peripheral neurop-
athy compared to individuals with mild or no DR.59

Detection of macrovascular complications
Cardiovascular diseases (CVD) is a major cause of mor-
tality worldwide, with 60% of deaths globally over the past
30 years accounted for by CVD.75 Most of the studies
identified aimed to detect or the predict the future risk of
CVD or its risk factors.30,32,33,35,39–42,45,48,50,51,53,54,56,57,65 For
incident CVD, the AUC for prediction was reported to be
as high as 0.991, with an AUC of 0.686 for major adverse
cardiovascular events (MACE) and C-statistics between
0.75 and 0.77.39,40,42,50 A previously published neural
network not only predicted several cardiovascular risk
related variables from CFP, but also the onset of MACE
within 5 years. Despite limited numbers of MACE, the
system achieved AUC of 0.7, which is comparable to
AUC of 0.72 for the European SCORE risk calculator.
The results of the algorithm are consistent in 2 separate
validation sets.66 A hybrid model which combined retina
images with dual-energy X-ray absorptiometry (DXA),
reached up to higher classification accuracy of 78.3%,
compared with retina-image or DXA alone.48 By adding
retinal vasculometry (RV) to Framingham risk scores
(FRS), the C-statistics was higher compared with a
simpler model based on age, RV, smoking status and
medical history algrithms.50 The include models per-
formed well in evaluating risk factors of CVD: age (MAE
up to 2.78 ys), gender (AUC up to 0.97) and smoking
status (accuracy achieved 88.88%) etc.56,57,65 For detecting
calculated ischemic CVD risk ≥5%, the algorithm ach-
ieved an AUC of 0.971 in internal validation and 0.859 in
external validation.41 Furthermore, in a DL model, each 1-
year retinal age gap was associated with increased of a 3%
increase in risk of incident CVD, alongside an arterial
stiffness index with a β coefficient of 0.002. Their
research suggested retinal age gap a potential biomarker
to detect future CVD.45 Meanwhile, by measuring retinal
vesselcalibre, a DL model showed better prediction per-
formance for CVD risk factors than human modle
www.thelancet.com Vol 81 March, 2025
(p < 0.01). Retinal vessel calibre washigh correlated with
CVD risk factors, such as age, gender, BMI, MABP,
smoking and DM status. Narrower CRAE ((hazard ratio)
per s.d. (95% CI) 1.12 (1.02–1.24)) decrease were inde-
pendently correlated with CVD incidence in SEED study.
Their study further motivated DL systems for prediction
of CVD on basis of retinal vessels features.54

Diabetes stands as a leading risk factor for devel-
oping peripheral artery disease (PAD), DM patients with
PAD experience significant higher mortality rates.76 We
identified only one study examining PAD with retinal
imaging and the AI model utilizing multiple instance
learning with a high spatial resolution, achieved an AUC
of 0.89 for detection of early stage of PAD. The model
distinguished PAD patients from controls by identifying
alterations around the temporal arcade and optic disc.47
Discussion
Our review includes a total of 38 articles using AI
models and retinal imaging for the identification or
prediction of systemic diseases in persons with DM
(Fig. 3). These studies utilized a range of retinal images,
with most of them analyzing CFP, while 5 of them
employed OCT for retinal examination. Most of these
studies27 included a validation set in their research with
6 of them performing external validations. Majority of
the models in this review demonstrate high perfor-
mance of predicting disease over AUC 0.8, C-statistics
and accuracy 0.75. The high performance of algorithms
identified in our study suggest that AI-driven retinal
imaging has the potential to make clinically significant
impact on detection of DM-related complications. Early
opportunistic detection of other systemic DM compli-
cations with retinal imaging during DR screening can
enable early intervention and secondary prevention
which may significantly reduce long term healthcare
costs.

Previously one systemic factor-related research uti-
lizing AI system, demonstrating prediction of risk fac-
tors and cardiovascular disease with reasonable results.66

Most of the research utilized only single imaging mo-
dality (CFP or OCT) for analyze, while multi-model
photos of the retina such as combined with OCTA
may enhance the performance of the prediction capa-
bilities.77 Age is associated with progression of diseases,
combined with retinal age and chronological age, the
system may get a higher AUC in prediction of systemic
disease. The retina can provide valuable information
about age through images analysis, especially for DM
patients. Zhu et al.37,46 introduced a novel biomarker, the
retinal age gap, as a method for prediction.

Our review includes research on micro- and macro-
vascular complications. With all the convenient non-
invasive picture screening, AI models can analyze both
whole images as well as specific segment areas of
retina.78 The retinal is a neurovascular organ and can
13
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reflect the damage diabetes has on both neuronal and
vascular tissue. This is demonstrated by the accuracy of
detection of peripheral neuropathy with model identi-
fied in the literature.47 Analyzing subtle changes such as
vessel caliber change from the retina, the AI can detect
pre-clinical disease from retinal imaging. Research
showed model’s performance distinguished the disease
with higher accuracy under DM status.79 Thus, showed
specific change in retina with DM, and remind research
would not neglect these DM influence on the results
during analyzing.

The articles we’ve included in this review are pri-
marily focused on a single disease. However, it’s
possible in the future these AI systems can be further
developed to detect and distinguish between various
diseases through additional training and validation
processes, or can be used in combination with each al-
gorithm providing a separate output for further action.
The potential for expanding disease detection through
medical AI is an exciting prospect. However, recent
systematic reviews have revealed a high false-positive
rate with single fundus analysis in current screening
programs. To address this, multi-model image-based
analysis should be considered. A recent study suggests
that future programs should incorporate combined an-
alyses, such as OCT and OCTA, along with external
photos, and provide more specialized training to
enhance the accuracy of the models.80

The application of AI algorithms in diabetic reti-
nopathy (DR) screening holds immense potential to
revolutionize care delivery, particularly in low to middle-
income countries and rural populations with limited
access to healthcare. By leveraging AI-driven retinal
imaging for early detection of DR, healthcare providers
can implement cost-effective and scalable screening
programs that overcome geographical and resource
barriers. Portable retinal imaging devices equipped with
AI algorithms can be deployed in community health
centers, enabling timely identification of DR in under-
served populations. Moreover, AI-driven screening
programs can facilitate the triage of patients, directing
limited healthcare resources to those at highest risk,
thus optimizing care delivery in resource-constrained
settings. Through this approach, AI algorithms not
only enhance the efficiency and accessibility of DR
screening but also empower healthcare systems to pro-
actively address the burden of diabetic eye disease,
ultimately improving patient outcomes and reducing the
risk of vision loss in vulnerable populations.

Traditional examinations for systemic complications
of DM, such as coronary artery calcium scans (CAC),
blood tests, and glomerular filtration rate assessments,
are often invasive and expensive, making them relatively
inaccessible to the global diabetic population. AI-driven
early and non-invasive detection of these systemic
complication using retinal images has emerged as a
promising approach to reduce the morbidity and
mortality of DM, and thereby reducing the societal
burden of the disease.63,81

Research results demonstrate that artificial intelli-
gence, even in the absence of clinical manifestations, can
accurately detect and predict the development of future
diseases. Therefore, the translation of these AI driven
retinal imaging algorithms into large-scale screening
programs for less developed areas, has the potential to
transform care in DM globally. In our review, majority of
research related to DM has demonstrated relatively high
predictive accuracy, with most studies achieving a pre-
diction ability exceeding AUC 0.8. With high predictive
capability of AI models, these can be tuned with a pref-
erence for sensitivity and used as a primary screening
modality, identifying only those with high risk for future
evaluation. This can reduce the risk and costs of confir-
matory test such as CT scans used for assessing CAC
scores which have radiation exposure, high capital outlay
and limited screening capacity, or laboratory blood test
which may not be easily available in rural or remote areas
of lower to middle income countries. Predictive perfor-
mance achieved high with AUC 0.742 (95% CI
0.732–0.753) in our study, highlights the potential for
deep learning as an alternative means to predict disease
instead of utilizing the CAC.53

In recent years, researchers have conducted signifi-
cant advancements in AI studies. These models not only
reduce the need for human resources in image identi-
fication but also offer a significant opportunity to alle-
viate the economic burden on our healthcare system.
Even in less developed areas, with AI systems, diseases
at a very early stage could be detected with potable
device. AI systems have the potential to minimize the
need for secondary screenings, and enhance opportu-
nities for earlydetection of systemic diseases (Fig. 4).

While the algorithms reported in this review per-
formed well on research dataset, there is often a gap
with real-world performance, where the patient popu-
lation, image quality and prevalence of disease will be
more variable, therefore external validation is crucial.83,84

We noted the lack of external validation among the
models included in our study, only 6 of them performed
the external validation. Models trained only in internal
dataset demonstrated higher performance compared to
those trained externally, suggesting a potential risk of
overfittings and training bias. These discrepancies may
hinder our understanding of the models’ applicability.
There were no randomized clinical trials identified in
our review evaluating the performance of these algo-
rithms. Future research should prioritize training
models using external datasets from multiple in-
stitutions or diverse ethnic backgrounds, and validate
these algorithms with real world external dataset. Con-
ducting RCTs will also be necessary to elucidate the true
clinical effectiveness of Al algorithms in clinical care.

Our results demonstrate that while retinal image
offers valuable insights into systemic problems, the
www.thelancet.com Vol 81 March, 2025
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Fig. 4: Comparison of AI screening and traditional screening for diabetes-associated complications.82 $300,000 per 1000 people: estimated cost
for comprehensive systemic complication screening for all DM patients. $60,000 per 1000 people estimated cost of using AI-based retinal
imaging to screen for systemic complications in high-risk patients. DR screening: diabetic retinopathy screening, DM screening: general DM
screening for complications related to systemic factors (the dollar sign refers to US dollar).
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predictive power of these models is significantly
improved when combined with other phenotypes,
including age, sex and traditional risk factors like blood
pressure and HbA1c. This multi-modal approach allows
for more accurate risk stratification and highlights the
importance of integrating both retinal and clinical data
in prediction models.

AI-based oculomics, particularly by using retinal
imaging, has emerged as a promising tool for diag-
nosing systemic diseases, with AUCs in non-diabetic
populations typically ranging from 0.70 to 0.95.85 How-
ever, the advantage in diabetic populations is clear, as
microvascular pathology, which is more easily visualized
in retinal images, offers better prediction of systemic
complications compared to other populations. Further
exploration of AI integration with clinical and genetic
data will help refine predictive models and improve risk
stratification in both diabetic and non-diabetic
cohorts86,87

Our review encompasses research on systemic
diseases related to DM utilizing AI systems with retina
images. This review highlights the promising potential
of AI systems in analyzing diseases based on retina
characteristics. It offers valuable insights for current
studies and contributes to the growing body of knowl-
edge in this field. There are still limitations of our re-
view, these limitations, in turn, prompt considerations
for future research.: 1) We primarily focused on
www.thelancet.com Vol 81 March, 2025
complications related to DM, which led to the exclusion
of numerous valuable articles in the broader field of AI
research, and those specifically focused on DR. The
realm of DR has seen extensive research dedicated to AI
models for screening, risk assessment, management,
and prognostication, yielding promising outcomes.
Indeed, there’s a spectrum of systems showing prom-
ising performances in ongoing research within this
domain. Systems like EyeArt, sponsored by Google,
models developed by the Singapore National Eye Center,
and algorithms like Bosch DR have all displayed
encouraging results in their respective studies. These
diverse initiatives signify the breadth of innovation and
collaboration aimed at advancing medical AI for disease
detection. The success of AI in DR detection is further
underscored by the growing body of evidence from
clinical studies and real-world implementation. Ran-
domized clinical trials have validated the performance of
AI algorithms, confirming their non-inferiority or even
superiority to human doctors in diagnosing DR. Real-
world studies have also demonstrated the feasibility
and effectiveness of AI-driven DR screening programs,
showcasing their potential to streamline workflows,
improve resource allocation, and enhance patient
care.88–93 Furthermore, the utilization of multimodal
retina images such as OCTA has also showed an
appealing diagnostic performance in assessing DR.94

2) In our effort to analyze the latest trends, we include
15
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data from short communications and meeting reports,
which may not provide the same level of detail as full
research articles. 3) The majority of the articles we have
included are cross-sectional or retrospective studies. It is
essential for future research to conduct long-term and
prospective studies to gain a more comprehensive
understanding of the application of AI in predicting and
identifying systemic diseases through retina images.
Longitudinal studies and RCTs can provide insights into
how these AI models perform over time and their
effectiveness in real-world clinical settings. 5) While
most of the studies analyzed data from retina photos,
there is an increasing interest in studies utilizing OCT
and OCTA, or multimodal imaging models. These
technologies can provide more detailed information
from different layers of the retina, offering a deeper
understanding of the structural and vascular changes
associated with systemic diseases. While OCT imaging
offers high-resolution, cross-sectional retinal images,
the equipment required can be costly and less portable
compared to other modalities like fundus photography.
However, the emergence of portable and home-
monitored OCT devices holds promise for improving
diagnostic efficacy and reducing both human and
economic costs.95,96

The application of AI on retinal imaging has
demonstrated advantages in predicting and identifying
the systemic complications of diabetes. While some of
the initial algorithms demonstrated limited efficacy,
more recent publications have continued to show
increasing promise in their clinical potential. However,
given the qualitative nature of the current evidence,
further quantitative research should be conducted, with
a particular focus on more in-depth analysis and broader
real-world implications. Further development may have
the potential to enable AI and retinal imaging to
contribution to a paradigm shift in screening for the
systemic complications of diabetes.
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