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Abstract
The paper introduces an innovative approach called Zernike-based CMM Surface Metrology
(ZCSM) to enhance the accuracy of measuring large optical surfaces using coordinate
measuring machines (CMMs). Traditional methods like laser interferometry and deflectometry,
while precise, face limitations such as restricted dynamic range and sensitivity to specific
surface properties. CMMs offer a promising alternative but are susceptible to systematic errors,
particularly due to probe deflection when scanning, which can introduce geometric errors not
present on the test surface. ZCSM addresses this challenge by fitting the surface form using
Zernike polynomials, decomposing form errors into wavefront aberrations. A notable feature of
the ZCSM method is the dual-parameter error compensation, which iteratively removes errors
by correcting wavefront aberrations and verifying surface profiles until within the tolerance
range. The feasibility of ZCSM was validated by measuring an astronomical mirror using a
ZEISS XENOS CMM. The results showed that ZCSM’s accuracy is comparable to
interferometry, underscoring its potential as a viable alternative for precision metrology. The
research indicates that ZCSM significantly improves the measurement accuracy of CMMs for
large optical surfaces. Future research could focus on refining the method to eliminate
higher-order residual aberrations and angular offsets, further enhancing its precision and
applicability.

Keywords: surface metrology, Zernike polynomials, coordinate measuring machine,
geometric errors, optical surface
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1. Introduction

The demand for high-performance, miniaturized, and multi-
functional optical systems has led to the use of complex sur-
faces to achieve specific performance and functionality, espe-
cially in astronomical equipment. These surfaces offer design-
ers greater flexibility to correct aberrations and create compact
designs with wider fields of view and lower f -numbers [1–3].
However, measuring these complex surfaces, especially those
with steep slopes, poses significant challenges due to the need
for high dynamic range in surface metrology.

Traditional methods like wavefront measurement interfer-
ometry (WMI) [4–6] have limitations in dynamic range, cost,
and flexibility, often requiring computer-generated holograms
(CGHs) for steep surfaces. CGHs can introduce additional
errors and costs [7, 8], and defects in their manufacturing can
lead to erroneous diffraction patterns, affecting measurement
reliability.

Recent advancements in surface metrology aim to achieve
higher accuracy, increased dynamic range, and the ability
to measure complex surfaces without compensation optics
like CGHs. These advancements can be categorized into sub-
aperture stitching, structured light scanning, and precision
coordinate profilometry.

• Sub-aperture stitching or multi-sensor systems
measurement [9–12]: this involves measuring smaller
sections (sub-apertures) of a large surface and stitching
them together or combining different types of metrology
sensors (e.g., optical, laser and tactile). These methods
enhance dynamic range and versatility but require effi-
cient algorithms to accurately align data [13] from different
sub-apertures or sensors.

• Structured light scanning: techniques such as deflectometry
[14] and confocal microscopy [15] offer non-contact sur-
face testing methods [16] that do not require CGHs.
Confocal microscopy provides high-resolution measure-
ments by focusing light to a very small spot on the surface,
while deflectometry based on triangulation principles meas-
ures surface profile with sub-nanometer precision in syn-
chrotron mirror metrology applications [17]. These meth-
ods are particularly useful for measuring reflective surfaces
but require rigorous calibration to ensure accurate meas-
urements, especially for low-order aberrations. However,
they still face challenges with line-of-sight issues and slope-
ambiguity, and less feasible for complex surfaces.

• Precision coordinate profilometry: coordinate measurement
machines (CMMs) [18–21] and stylus profilometers are
used for high-precision geometric dimensioning and tol-
erance measurements, achieving micron-level accuracy.
Stylus profilometers [22–25] are widely used to meas-
ure surface roughness and texture but have limited move-
ment range, making them less suitable for large sur-
face measurements [22]. Therefore, Yang and Peng have
developed a stitching method to extend the measurement
coverage for measuring large aperture mirrors [23].

CMMs are suitable for large surfaces due to their flexib-
ility and high dynamic range. In 2005 [26], Li and Gu
demonstrated the capability of CMMs for measuring com-
plex surfaces with micron-level accuracy. CMMs have been
widely researched and applied in various fields, including
optical surface measurement [21], large surface on-machine
measurement [25] and swing arm profile measurement [27].

Tactile CMMs operate by physically probing points on a
surface and recording their position relative to a reference
coordinate system, are therefore susceptible to systematic
errors in the measurement process. Accurate alignment is cru-
cial for reliable measurements, as any probe arm flexure will
introduce systematic geometric errors. Especially for large
complex surfaces, those with gentle curves (large radii), even
small deflections can lead to significant errors. Astronomical
mirrors, which often have large radii of curvature, are particu-
larly susceptible to these structural drifts. Therefore, the man-
ufacturing accuracy of the large spaceborne mirror is often
limited by measurement errors [28]. Therefore, methods are
needed to offset systematic errors and improve the measure-
ment accuracy of CMMs for large and complex surfaces.

Various methods have been proposed to mitigate misalign-
ment errors in CMM measurements, including feature-based
alignment and mathematical methods based on deviations
analysis.

Feature-based alignment utilizes geometric feature [29] or
fiducial-aided markers [30] as reference points for alignment.
Thesemethods are effective for parts with unique features such
as holes and edges, but may not be suitable for featureless or
finely detailed optical surfaces. Additionally, placing artificial
fiducials on optical surfaces can be challenging and may intro-
duce additional errors or damage the surface.

Mathematical methods are based on analyzing the deviation
from a [26] using specifically defined parameters (e.g. radius
of curvature or distance), reducing reliance on invariant fea-
tures or fiducial aids. Although these methods are widely used,
they require sophisticated algorithms and are computationally
intensive.

Zernike polynomials [31] are widely used in optical surface
metrology to decompose the surface form error into a series
of wavefront aberrations. They provide a systematic approach
to identifying and eliminating false aberrations. Errors due
to misalignment typically introduce low-order aberrations in
the Zernike polynomials. However, the effectiveness of the
error correction depends on the accuracy of the Zernike fit
and the ability to identify the relevant aberrations. Therefore,
effective compensation strategy is important to ensure the geo-
metric errors that not actually present on the test surface are
eliminated.

Currently, WMIs, such as laser interferometers [5–8], are
often used in complex surface precision metrology research
to provide higher accuracy. However, these methods are con-
strained by their limited dynamic range and sensitivity to
certain surface properties. Furthermore, a high-cost CGH is
required to ensure a self-collimating light path. CMMs, espe-
cially ultra-precision models like the ZEISS XENOS, are
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emerging as powerful tools for precision metrology, offering
sub-micron accuracy, high point density, and a wider dynamic
range. However, existing studies, such as that of Wang et al,
using a CMM with probe radius compensation [21], did not
fully addressed the systematic measurement error caused by
the probe deflection under tactile scanning, which can signi-
ficantly affect the measurement accuracy.

The paper proposes a novel approach called Zernike-based
CMMSurface Metrology (ZCSM) to address these challenges
of measuring large optical surfaces. This method leverages
Zernike polynomials to fit the surface form error and decom-
pose the geometric error through wavefront aberrations. A key
component of the ZCSM is the dual-parameter error compens-
ation (DEC) model, which iteratively compensates for erro-
neous geometric errors that are not actually present on the
test surface. This combination counteracts systematic errors
caused by probe deflection when scanning large, gently curved
surfaces. The ZCSM framework consists of several key steps:
data acquisition, outlier removal and high frequency noise
filtering, Zernike fitting, wavefront aberration correction and
reconstructed profile verification.

The effectiveness of the ZCSM method is demonstrated
through experiments conducted on an astronomical mirror
using an ultra-precision CMM. The results are compared with
those obtained using a commercial WMI, showcasing the
potential of ZCSM as a reliable alterative for precision met-
rology of large optical surface measurements.

The paper is structured as follows: Chapter 2 introduces
the framework of ZCSM. Chapter 3 details the data acquisi-
tion process. Chapter 4 describes the outlier elimination and
Gaussian filtering used in the study. Chapter 5 introduces sur-
face fitting using Zernike polynomials. Chapter 6 elaborates
on the DEC Compensation Model. The experiments and res-
ults are discussed in chapter 7. Finally, chapter 8 provides the
conclusion.

2. Framework of ZCSM

The ZCSM is introduced to address the challenges of meas-
uring large mirrors, particularly the geometric uncertain-
ties introduced by probe deflection when tactile scanning is
performed using a CMM. The framework of ZCSM, illus-
trated in figure 1, is a comprehensive approach designed to
enhance the accuracy of measuring large and complex sur-
faces, such as astronomicalmirrors. It integrates advanced data
acquisition and pre-processing techniques, Zernike fitting and
DEC compensation strategies to ensure precise surface form
measurements.

The data acquisition process starts with measurement path
generation. This process determines the measuring pattern
for the CMM to ensure complete surface coverage, config-
ures measurement parameters for the specific surface being
measured, and automatically establishes measurement paths
to streamline the process and increase efficiency.

To ensure the reliability of the data, the acquired data points
are fitted to a best fit sphere (BFS) by the least square method,
thus establishing a baseline for outlier elimination. AGaussian

Figure 1. Framework of the ZCSM for measuring complex surface.

filter is applied to remove high frequency noise. The filtered
data were processed into a uniformly distributed grid array for
further comparison.

Zernike polynomials are used to fit the processed data, to
effectively decompose the form error of optical surface into
wavefront aberration. DEC is used to relate surface profile
errors with wavefront aberrations to iteratively eliminate sys-
tematic geometric errors, including wavefront aberrations cor-
rection, surface error verification (i.e. decenter error (dR) ana-
lysis). Wavefront aberrations correction based on comparison
of Zernike coefficients with WMI measurements to identify
and subtract spurious geometric errors.

DR verification is to identify deflection-induced errors by
comparing the surface radius of the BFS with the measured
aspheric wavefront. Iterative verification involves repeatedly
updating the surface radius and calculating the dR until the
remaining different between the wavefront aberration and the
geometric error is within the desired tolerance.

Finally, the surface was reconstructed using the corrected
data and then compared with the measurements from theWMI
to verify accuracy. Final results include error maps and quant-
itative values of the measured surface, which are exported for
further analysis or reporting.

2.1. Aspheric surface

Aspheric surfaces are commonly used in optics to design
lenses and mirrors that deviate from simple spherical shapes.
The profile of an aspheric surface can be mathematically
described by the following equation involving a conic part and
a power series [31–33] :

z(x,y) =
c
(
x2 + y2

)
1+

√
1− (1+ k)(x2 + y2)c2

+
n∑

i=2

A2i.
(
x2 + y2

)i
(1)
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where z is the sagitta, which is the height of the surface per-
pendicular to the Z-axis; c is the curvature of the base sphere,
defined as c = 1/R, where R is the radius of curvature; k is
the conic constant, which determines the shape of the conic
section; A2i is the aspheric coefficients, corresponds to a term
in the power series that adjusts the surface profile to achieve
the desired aspheric shape.

2.2. BFS

BFS is an important concept in the analysis and fitting of
aspheric surfaces. It provides a baseline reference that approx-
imates the overall shape of the aspheric surface, making it
easier to analyze and manipulate surface quantities.

BFS provides a simple, linear reference that helps to sim-
plify the nonlinearities inherent in aspheric fitting. By approx-
imating the surface with a sphere, it becomes easier to handle
mathematically. During data processing, BFS can be used as a
baseline for filter out noise from themeasured data. Deviations
from the BFS can be analyzed to understand the true shape
of the asphere. For surface evaluation, BFS provides a quick
and intuitive way to evaluate aspheres by providing a reference
radius of curvature.

The algorithm for findingBFS involvesminimizing the sum
of the squared differences between the distances from the data
points on the aspheric surface to the center of the sphere and
the radius R. The mathematical expression can be expressed
as follows:

min
a,b,c,R

N∑
i=1

(√
(xi− a)2 +(yi− b)2 +(zi− c)2 −R

)2

(2)

where R is the radius of the BFS; (xi, yi, zi) are the coordinate
of the data points on the aspheric surface; (a, b, c) represent
the center of the BFS in the machine coordinate system.

To solve this minimization problem, various optimization
techniques can be used, among which the least squares fitting
is one of the most common used methods.

3. Data acquisition

Tactile precision CMMs are an effective tool for obtaining
accurate surface data, especially for large and complex sur-
faces like astronomical mirrors. The measurement process of
CMMs involves several steps: part alignment, measurement
path planning and data sampling. Proper alignment of parts is
crucial to minimizing systematic errors. The surface must be
correctly positioned relative to the CMM’s coordinate system
to ensure accurate measurements. This step involves aligning
the part so that its features are properly positioned relative to
the machine’s axes. For large, gently curved surfaces, a cir-
cular measurement path is often used. As shown in figure 2,
the surface is divided into several concentric circles with dif-
ferent radii to ensure uniform data collection. This systematic
approach helps to fully cover the entire surface.

The sampling process consists of measuring data points
along a circular path radially along the test surface. After com-
pleting themeasurement of one cross section, the CMMmoves

Figure 2. Concentric circular measurement pattern.

along the X-axis to the next section. This ensures that uniform
data collection across the entire surface.

When scanning complex surfaces, especially those with
gentle curves and large radii, it is crucial to minimize any
potentials errors introduced by the scan head such as probe
arm flexure. Astronomical mirrors are particularly sensitive to
structural drifts due to their large radius of curvature. Even a
small deflection of the probe can lead to significant systematic
errors that can seriously affect the measurement accuracy.

4. Outlier elimination and Gaussian filtering

Data filtering and pre-processing is critical to ensure that the
data collected by a CMM accurately represents the surface
geometry without interference from measurement noise and
high frequency data, and to prepare the data for comparison
with the WMI. Here’s an outline of the steps involved:

(1) Outlier elimination: erroneous data points caused bymeas-
urement errors that can affect the accuracy of surface
fitting [27, 28, 34]. Outliers are first removed so that they
will not influence the filtering step. This is done by fitting
the data to BFS. Statistical thresholds are used to exclude
anomalies. For data points from the single point probing
sampling method, the errors are more random and usu-
ally follow aGaussian distribution, with a 2-sigma applied,
meaning that data points that are two standard deviations
from beyond the fitted mean are considered outliers. From
our experiment, continuous scans will introduce more sys-
tematic errors or correlated noise, which may not follow a
perfect Gaussian distribution. A wider threshold, is used
to avoid removing valid data points that may be part of the
actual surface features. The threshold value depends on the
data acquisition method. In this study, a sigma of 10 was
used.

(2) Gaussian filtering: CMM scanning captures both low-
frequency form errors and high-frequency details of the
surface. To smooth high frequency noise (small-scale
roughness), while preserving low-frequency form error
(large-scale shape deviations). Gaussian filters are applied
by convolving the data with a Gaussian kernel.
The Gaussian kernel G (x, y) is given by:

G(x,y) =
1

2πδ2
e−

x2+y2

2δ2 (3)
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where σ is the standard deviation, controls the length of
the Gaussian filter curve.
The standard deviation determines the amount of smooth-
ing. A larger σ results in a smoother effect, while a smaller
σ preserves more high-frequency details. The filter length
(i.e. standard deviation) should be chosen to be consistent
with the spatial characteristics of the form error to ensure
effective smoothing of high-frequency details.

(3) Data processing: the filtered points are processed for fur-
ther analysis. Boundary integrity and uniform data distri-
bution are critical for data comparison. Boundary effects
that can skew the analysis due to insufficient neighborhood
data at the edges. A linear extrapolation padding is used to
add data points based on the trends of nearby points. To
facilitate comparisons across different measurement sys-
tems, a smaller aperture size was used in order to match
the largest common diameter of different measurements
(e.g. a circle with a radius of 77 mm) to focus on the com-
mon surface data, and reduce the impact of edge artifacts.
To reduce the influence of the different data distributions
between measurement systems, the data were interpolated
into a regular 2000 × 2000 grid format. This also avoids
errors due to sparse or uneven data distribution, thus facil-
itating more accurate and reliable analysis.

These steps are essential to making CMM data less sus-
ceptible to surface roughness and anomalies during surface
evaluation. By effectively reducing the influence of bound-
ary effects and differently distributed data between systems,
the comparison results are more reliable and consistent. This
integrated approach enhances the accuracy of surface analysis
and comparison, especially for large complex surfaces like
astronomical mirrors.

5. Surface fitting using Zernike polynomials

5.1. Zernike polynomials

Zernike polynomials are mathematical functions used to rep-
resent wavefront aberrations over a circular domain. They are
particularly useful in optics to decompose surface form errors
into a series of aberrations. In the ZCSM method, these poly-
nomials help to identify and compensate for misalignment
errors such as probe deflection, which can introduce low-order
aberrations in the Zernike fit.

Zernike polynomials for a circular aperture are expressed
as products of normalization factors, radial polynomials, and
azimuthal (angular) functions [31, 32, 35],

Zmn (ρ,θ) =


√2(n+ 1)Rmn (ρ)cos(mθ) , m⩾ 0
√2(n+ 1)Rmn (ρ)sin(mθ) , m< 0

√(n+ 1)R0
n (ρ) , m= 0

(4)

where n is the degree of the radial polynomials; m is the azi-
muthal frequency describing the repetition of the angular func-
tion. Both n and m are non-negative integers satisfying n –
m ⩾ 0 and n − m is even.

The radial polynomial Rmn (ρ) is defined as:

Rmn (ρ) =

n−m
2∑

k=0

(−1)k (n− k)!

k!
(
n+m
2 − k

)
!
(
n−m
2 − k

)
!
ρn−2k. (5)

5.2. Wavefront fitting

The wavefront fitting process aims to eliminate geometric
errors and accurately describe the surface profile of a test mir-
ror measured by the CMM. This involves several steps:

(1) Baseline preparation: the sampling points are fitted using
the least squares method to obtain a BFS that approximates
the surface. This BFS is processed into the same regular
grid format as the gridded CMM dataset.

(2) Wavefront deviation calculation: the wavefront deviations
from the BFS are calculated by subtracting the ‘BFS grid-
ded dataset’ from the ‘CMM gridded dataset’. This repres-
ents the original wavefront of the CMM data.

∆W= ZCMM −ZBFS (6)

where ∆W is the wavefront deviation, ZCMM is the CMM
gridded dataset, ZBFS is the BFS gridded dataset.

(3) Zernike polynomial fitting:
The sampling points (x, y, z) in Cartesian coordinates from
CMM can be converted to polar coordinates (ρ, θ, z) and
normalized by:

ρ =
√
(x2 + y2)/r (7)

θ = tan−1 (y/x) (8)

where r is the radius of the circular aperture.
The wavefront deviations are fitted using Zernike polyno-
mials to describe optical aberrations,

∆W(ρ,θ) =
N∑
n=0

anZ
m
n (ρ,θ) (9)

where an are the Zernike coefficients, Zmn are the Zernike
polynomials, and N is the total number of Zernike polyno-
mials in the expansion.

The ZCSM method fits the surface data to Zernike polyno-
mials and identifies form errors that are not actually present
on the test surface through wavefront aberrations comparison.
This method can quickly and effectively eliminate system-
atic geometric errors, making CMM measurements of com-
plex surfaces more accurate and reliable.

6. DEC compensation model

The DEC model is an advanced iterative approach designed
to improve the accuracy of aspheric surface measurements
by compensating for geometric errors. Error compensation is
performed by systematically correlating the wavefront aberra-
tionswith the geometrical errors (radius of curvature) to ensure
the true surface profile is retrieved.

5
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Figure 3. Schematic diagram of decenter error.

6.1. Surface profile error analysis

During the manufacturing process, a spherical surface is often
used as a starting point for creating an aspherical surface
because its radius of curvature very close to the radius of
curvature of the intended aspherical surface. This minimizes
material removal and enhances efficiency. The BFS is used to
approximate the aspheric surface and the geometrical error is
determined by measuring the difference between the BFS and
the aspheric surface.

The dR is introduced to evaluate the measurement accuracy
based on the analysis of curvature radius as shown in figure 3.
This quantifies the deviation of the asphere from the ideal pos-
ition of the BFS. This metric evaluates measurement accuracy
by comparing the BFS spherical vertex (centered on the spher-
ical focus, O1) and the compensated aspheric wavefront point
(centered at the defocus point, O2).

The dRcan be described as follow:

dR=

(
R2 −

√
R2
2 − r2

)
−
(
R1 −

√
R2
1 − r2

)
(10)

where R1 is the radius of the fitted BFS, R2 is the radius of
measured aspheric wavefront and r is the aperture radius.

As shown in figure 3, the surface profile error is evalu-
ated by assuming that the radius of the aspheric surface (com-
pensated aspherical wavefront) and its fitted spherical surface
(BFS) should be very close or equal. Geometric errors may
result in radius deviations, which in turn lead to vertex shift
and decenter offsets.

6.2. Wavefront error analysis

Zernike polynomials are used to decompose the surface form
error into a series of wavefront aberrations, which helps to
identify systematic geometric errors. The wavefront can be
expressed as:

W(ρ,θ)measured = a0Z0 (ρ,θ)+ a1Z1 (ρ,θ)

+ a2Z2 (ρ,θ)+ a3Z3 (ρ,θ)+ . . . , (11)

where a0, a1, a2, and a3 represent the coefficients of the
piston, x-tilt, y-tilt, and defocus terms of the Zernike series,
respectively.

Systematic geometric errors are detected by comparing
Zernike coefficients of the WMI and subtracted by setting the
low-order Zernike coefficients (piston, x-tilt, y-tilt, and defo-
cus) to zero. The remaining aberrations after correction are
then used to reconstruct the surface and determine whether
further correction is needed.

6.3. Iterative error elimination

The DECmodel employs an iterative process to refine the BFS
curvature radius and wavefront aberrations. This involves cor-
rectingwavefront aberration of themeasured surface, updating
the BFS curvature radius based on corrected data, and calcu-
lating the dR to assess the accuracy of the correction.

The process continues until the value of dR is minimized,
a predetermined threshold or maximum number of iterations
is reached. After convergence, the DEC model provides the
optimal radius value and the true surface form error for the
aspheric surface, thereby eliminating the systematic geometric
error.

The DEC model is crucial for high precision metrology
applications, such as measuring high-performance mirrors in
astronomical equipment. By systematically eliminating sys-
tematic geometric errors, the true surface profile of the asphere
is restored.

In short, the DEC model is a comprehensive approach that
combines surface profile error analysis, wavefront error ana-
lysis, and iterative error elimination to achieve high accuracy
in aspheric surface measurement.

7. Experimental and results

The experiments conducted at the Shanghai Institute of
Technical Physics of the Chinese Academy of Sciences aimed
to evaluate the effectiveness of the ZCSM method in improv-
ing the measurement accuracy of large and complex optical
surfaces.

The test sample is the astronomical mirror from the
FengYun series of Chinese meteorological satellites, it is a
weak aspherical mirror with a diameter of 190.8 mm and a
radius of curvature of 1429.5 mm as shown in figure 4.

Two primary instruments were used: the XENOS CMM
from Carl Zeiss and the PhaseCam 6000 interferometer from
4D Technology. The Zeiss CMM is known for high precision.
Its measuring range is 900 mm× 1500 mm× 700 mm and its
measuring accuracy of 0.3 µm, as shown in figure 5(a). The
PhaseCam 6000 interferometer is a WMI with high measure-
ment accuracy of 2% of the wavelength (632.8 nm), serving as
a reference for comparison. The system layout is as shown in
figure 5(b).

The measurements were conducted in a temperature-
controlled room at 20 ± 0.2 ◦C and the CMM sampled data
points along concentric circular paths as shown figure 2, mov-
ing along the X-axis for comprehensive coverage of the test
surface. Outliers and high frequency data were filtered out, and
BFS fitting was performed using the least square method on
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Figure 4. Test sample—astronomical mirror.

Figure 5. (a) Testing mirror with Zeiss XENOS CMM. (b) System layout of PhaseCam interferometer.
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Figure 6. Comparison of Zernike coefficients in the measuring of
an astronomical mirror surface.

the data as a reference surface. The fitting parameters in the
equation (2) are:

r = 1430.012 060 355 824 mm
a = −0.089 539 004 573 845 24 mm
b = 1.053 287 791 741 585 mm
c = 1430.014 827 918 3775 mm

ZCSM is used to eliminate systematic measurement errors.
A 36-term Zernike polynomial was used to decompose the sur-
face form errors into wavefront aberrations. The DECmodel is
designed to iteratively correct wavefront aberrations and verify
reconstructed surface profiles.

The coefficients of Zernike fit from both WMI and CMM
measurements were compared in figure 6. The WMI data
exhibited fewer geometric aberrations. The presence of spuri-
ous low-order aberrations, such as piston, tilt and defocus in
CMM data, which are absent in the WMI results. This indic-
ates that misalignment (e.g. probe arm flexure) are introducing
geometric errors in the CMM data that are not actually present
on the test surface.

The observed discrepancies in astigmatism measurements
between the CMM and WMI in figure 6 can be attrib-
uted to the method-specific systematic errors and geometric
misalignment.

Method-specific systematic errors: CMMs are susceptible
to mechanical instabilities and can introduce structural drifts
like astigmatism during prolonged measurements. WMIs are
highly sensitive to environmental noise. Air turbulence, tem-
perature fluctuations and vibrations can distort the interfero-
gram, introduce high-frequency noise that alias into low-order
terms, resulting in incorrect astigmatism.

Geometric misalignment: improper mirror positioning dur-
ing setup (e.g.Misalignment of test mirrors) can introduce arti-
ficial astigmatism. Any angular or positional offsets between
WMI and CMM setups can distort the measurement results,
causing discrepancies between the two systems.

Figure 7. Original measurement results of a test surface obtained
with (a) Zeiss XENOS CMM (b) PhaseCam 6000 interferometry.

A combination of method-specific errors and geo-
metric misalignment lead to divergent astigmatism val-
ues between the two methods. CMM errors (mechan-
ical drift) and WMI error (environmental noise, ali-
asing) propagate differently into astigmatism calculations.
Geometric misalignment can exacerbate discrepancies by
introducing systematic offsets that are unique to each
setting.

According to the quantitative results, CMM (Baseline)
measurements yielded a root mean square (RMS) of 90.5 nm
and a peak to valley (PV) of 415.7 nm, while WMI measure-
ments showed an RMS of 86.4 nm and a PV of 412.7 nm.
The CMM showed higher error value, indicating susceptibil-
ity to systematic geometric error. From qualitative observa-
tions in figure 7, the error map indicated the presence of ‘chat-
ter’ in the CMM data, suggesting mechanical instability or
contamination (e.g. dust on the stylus) during the scanning
process.
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Figure 8. Measurement results obtained with (a) CMM-measured
ZCSM method (b) WMI interferometry.

An obvious angular offset in the error maps between CMM
andWMI measurements suggested discrepancies in the meas-
urement setup, and that the test surface was oriented differ-
ently during each measurement.

In figure 8, the CMM with the ZCSM method yielded
improved results: an RMS of 88.8 nm and a PV of 410.8 nm.
The WMI measurements showed an RMS is 82.6 nm and
a PV is 372.3 nm, which showed that the ZCSM method
improves the accuracy of CMM measurement and reduces
the systematic measurement error, aligning more closely with
WMI measurements.

In figure 9, the comparison of Zernike coefficients revealed
that the ZCSM method improves the CMM result, how-
ever residual aberrations remained, which indicates that fur-
ther refinements are needed to eliminate higher-order back-
ground aberrations (e.g. astigmatism) and address angular off-
set issues.

Overall, the experiments demonstrated that the ZCSM
method enhances the accuracy of CMM measurements for
large complex optical surfaces, though further work is needed
to address remaining challenges.

Figure 9. Comparison of Zernike coefficients in the testing of an
astronomical mirror surface with CMM, CMM-measured ZCSM
method and WMI.

8. Conclusion

The conclusion of the paper highlights the successful devel-
opment and evaluation of the ZCSM method, which aims
to improve CMM measurement accuracy of large complex
optical surfaces.

The ZCSM method leverages Zernike polynomials to
effectively solve the systematic geometric errors in CMM
contact measurements. These errors often arise from probe
deflection or misalignment during high-speed scanning. In this
study, a PhaseCam 6000 interferometer was used as a high-
precision reference to provide a benchmark for evaluating the
accuracy of the ZCSMmethod. Themethod includes a Zernike
fitting process to decompose the systematic geometric errors in
CMM measurement by comparing Zernike coefficients of the
WMI results. Systematic measurement errors are eliminated
by subtracting relevant low-order aberrations in the Zernike
polynomials.

The introduction of the DEC method is an important com-
ponent of the ZCSM framework. It systematically corrects sys-
tematic geometric errors through iterative wavefront aberra-
tion correction and surface profile error evaluation. The lin-
ear BFS algorithm is essential to simplify aspheric surface fit-
ting. It can evaluate surface profile errors based on the radius
of curvature and dR, making the process more efficient and
simpler.

Experimental results using an astronomical mirror with the
1429.5 mm-radius show that the accuracy of the ZCSM is
comparable to that of the WMI method. The proposed method
offers a wider dynamic range and greater flexibility in surface
measurements, making it a viable alternative to conventional
methods. The close alignment of the PV profile errors further
supports the potential of the ZCSM approach for precision
metrology of large optical surface in situations where inter-
ferometry is impractical.

Future research should focus on enhancing the applicab-
ility and accuracy of ZCSM by developing advanced feature
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extraction and data alignment techniques to address angular
offsets problem. Furthermore, improving the process for elim-
inating high-order background aberrations like coma or spher-
ical aberration is essential to improve the accuracy of astigmat-
ism measurement. Comparative studies benchmarking ZCSM
against WMI with CGH measurements, especially for large
free-form and aspheric surfaces, can help identify the unique
advantages and limitations of each method.
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