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Abstract 

Purpose: The purpose of this study is to present a newly proposed and developed sorting algorithm-

based merging weighted fraction Monte Carlo (SAMWFMC) method for solving the population balance 

equation for the weighted fraction coagulation process in aerosol dynamics with high computational 

accuracy and efficiency.  

Design/methodology/approach: In the new SAMWFMC method, the jump Markov process is 

constructed as the weighted fraction Monte Carlo (WFMC) (Jiang and Chan, 2021) method with a 

fraction function. Both adjustable and constant fraction functions are used to validate the computational 

accuracy and efficiency. A new merging scheme is also proposed to ensure a constant-number and 

constant-volume scheme.  

Findings: The new SAMWFMC method is fully validated by comparing with existing analytical 

solutions for six benchmark test cases. The numerical results obtained from the SAMWFMC method 

with both adjustable and constant fraction functions show excellent agreement with the analytical 

solutions and low stochastic errors. Compared with the WFMC method (Jiang and Chan, 2021), the 

SAMWFMC method can significantly reduce the stochastic error in the total particle number 

concentration without increasing the stochastic errors in high-order moments of the particle size 

distribution (PSD) at only slightly higher computational cost.  

The following publication Wang, F. and Chan, T.L. (2023), "A new sorting algorithm-based merging weighted fraction Monte Carlo method for solving 
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Originality/value: The WFMC method (Jiang and Chan, 2021) has a stringent restriction on the 

fraction functions, making few fraction functions applicable to the WFMC method except for several 

specifically selected adjustable fraction functions, while the stochastic error in the total particle number 

concentration is considerable large. The newly developed SAMWFMC method shows significant 

improvement and advantage in dealing with weighted fraction coagulation process in aerosol dynamics 

and provides an excellent potential to deal with various fraction functions with higher computational 

accuracy and efficiency. 

Keywords: Monte Carlo, Coagulation, Sorting algorithm, Merging scheme, Fraction functions 

Paper type: Research paper 

 

Nomenclature 

C0 total coagulation rate 

Cij coagulation rate of numerical particles, i and j 

i numerical particle label 

j numerical particle label 

Mk kth order moment 

n particle size distribution function 

N0 initial total number concentration 

Pk probability of a particle containing k primary particles 

Q number of MC repetitions 

r random number 

t time 

vi particle volume of the numerical particle, i 

V volume of the computational domain 

wi weight of the numerical particle, i 

 

Greek Letters 

α fraction function 

β coagulation kernel 

σ mean standard deviation 
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τ waiting time 

τc characteristic coagulation time 

Φ coagulation rate 

Ω mean number of coagulation events 

Glossary 

CCK constant coagulation kernel 

CFF constant fraction function 

CPU central processing unit 

DSMC direct simulation Monte Carlo 

EFF exponential fraction function 

GDE general dynamic equation 

GPU graphic processing unit 

HFF hyperbolic fraction function 

HPC high performance cluster 

IED initial exponential distribution 

IMD initial monodispersed distribution 

LCK linear coagulation kernel 

MC Monte Carlo 

MFA mass flow algorithm 

MMC multi-Monte Carlo 

MOM method of moment 

OOP object-oriented programming 

PBE population balance equation 

PSD particle size distribution 

QCK quadratic coagulation kernel 

SAMWFMC sorting algorithm-based merging weighted fraction Monte Carlo 

SCFF stepwise constant fraction function 

SM sectional method 

WFA weighted flow algorithm 

WFMC weighted fraction Monte Carlo 

1. Introduction 

Aerosol dynamics involve a great variety of areas in science and engineering including 

atmospheric aerosols, combustion-generated particles, aerosol reactors, chemical engineering, 



4 
 

nanoparticle synthesis and food processes (Friedlander, 2000). Aerosol dynamic processes including 

nucleation, condensation/evaporation (surface growth), breakage and coagulation generate and remove 

particles from the particle populations, which change the particle size distribution (PSD). The changes 

in the PSD function with time and position are governed by the population balance equation (PBE) (i.e., 

general dynamic equation (GDE)) (Friedlander, 2000). Coagulation is one of the most important aerosol 

dynamic processes, which refers to two particles colliding to form a large one and leads to the decrease 

of the particle number and the increase of the average particle size. As a coagulation event always 

occurs between two particles, it is regarded as the most demanding event for modelling among various 

aerosol dynamic events (Xu et al., 2014; Zhao et al., 2009). The dynamic evolution of PSD due to 

coagulation is described by the so-called Smoluchowski coagulation equation as (Friedlander, 2000): 

∂n(v,t)
∂t

=
1
2
� β(u,v-u,t)n(u,t)n(v-u,t)du

v

0
− n(v,t)� β(u,v,t)n(u,t)du

∞

0
 (1) 

where n(v,t) is the PSD function at time t; n(v,t)dv is the particle number concentration with size range 

between v and v+dv at time t; β(u,v,t) is the collision frequency or coagulation kernel of two particles 

with volume u and v at time t which is a description of the coagulation rate.  

The GDE is a nonlinear partial integro-differential equation of the PSD, whose analytical solution 

only exists in a few special cases (Friedlander, 2000; Liffman, 1992; Kruis et al., 2000; Zhao et al., 

2005b; Ramabhadran et al., 1976; Wang et al., 2020) due to its complex characteristics. These existing 

analytical solutions are of great significance and can be used as a useful benchmark for validating 

different numerical methods. Different numerical approaches aiming at different problems of aerosol 

dynamics are developed to approximate the solution of the GDE for an aerosol system of interest, such 

as the sectional method (SM) (Gelbard et al., 1980; Prakash et al., 2003; Zhang et al., 2020; Wu et al., 

2022), method of moments (MOMs) (Frenklach and Harris, 1987; McGraw, 1997; Yu et al., 2008; Yu 

and Chan, 2015; Chan et al., 2018; Li et al., 2019; Liu et al., 2019c; Shen et al., 2020; Yang et al., 2020; 

Jiang et al., 2021; Shen et al., 2022) and Monte Carlo (MC) method (Gillespie, 1975; Garcia et al., 

1987; Liffman, 1992; Smith and Matsoukas, 1998; Kruis et al., 2000; Lin et al., 2002; Zhao et al., 2009; 

Xu et al., 2014; Kotalczyk and Kruis, 2017; Liu and Chan, 2017; Liu and Chan, 2018a, 2018b; Liu et 
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al., 2019a, 2019b; Liu and Chan, 2020; Liu et al., 2021; Jiang and Chan, 2021; Liu et al., 2022). As the 

discrete nature of the MC method perfectly matches the stochastic properties of particle motion, it can 

be used to closely simulate the behaviour of particles.  

Gillespie (1975) presented a MC algorithm for simulating the stochastic coagulation process in a 

cloud and described the computational procedures in detail, which formed the basis of the later 

development. However, the number of numerical particles used in the MC simulation is restricted to 

only 103-107 (Zhao and Zheng, 2009b) due to the limitation of the computer resources (i.e., central 

processing unit (CPU) speed and computer memory), the computational accuracy is unavoidably 

affected which is inversely proportional to the square root of the total number of numerical particles 

(Liffman, 1992).  

Except for straightforwardly adopting high performance cluster (HPC) or graphic processing unit 

(GPU) (Kotalczyk and Kruis, 2017; Xu et al., 2015; Kruis et al., 2012) to speed up computations, 

improving or developing a better MC algorithm is still an effective measure to reduce the stochastic 

errors and to increase the computational accuracy as well as the computational efficiency. The 

coagulation event leads to a constant decrease in the particle numbers with a further reduction in the 

computational accuracy. In order to address this technical problem, Liffman (1992) developed a direct 

simulation Monte Carlo (DSMC) method, which uses a stepwise constant-number approach to avoid 

the continuous reduction of the particle numbers. Specifically, the number of numerical particles is 

doubled with all surviving particles copied and added to the computational domain for the conservation 

of statistical particle properties when the particle number in the computational domain is dropped by 

half. By comparison, Smith and Matsoukas (1998) introduced a continuous constant-number MC 

method, in which a numerical particle from the computational domain with the same probability is 

randomly selected and copied it to fill the position vacated by coagulation. Lin et al. (2002) proposed 

another constant-number MC method to maintain the particle number constant but continuously change 

the volume of the computational domain. Kruis et al. (2000) proposed and demonstrated a fast DSMC 

method for simulating complex particle systems, in which a doubling procedure is also included when 

the particle number is dropped by half. In fact, it is observed that the particle number concentration at 
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the edge of the PSD is normally very small in nature and its relevant engineering applications (Zhou et 

al., 2020). Although these MC methods can achieve acceptable computational accuracy under this 

situation, some detailed information of real particles may be lost at the edge of the PSD because only 

several numerical particles are used to represent the real particles in this area, which leads to the 

deterioration of the statistical precision (Zhao and Zheng, 2009b). A multi-Monte Carlo (MMC) method 

was proposed for reducing the stochastic errors by introducing the concept of “weighted fictitious 

particles” (Zhao et al., 2005a, 2005b; Zhao et al., 2009). In the MMC method, the number of fictitious 

particles and the volume of the computational domain always keep constant, and each fictitious particle 

is a representative of some real particles. By providing different fictitious particles with different 

weights (Zhao and Zheng, 2009b; Xu et al., 2014; Liu and Chan, 2017; Liu and Chan, 2018a, 2018b; 

Liu et al., 2021), the weights of fictitious particles are unevenly distributed in the particle size spectrum 

(i.e., more fictitious particles at the edge of the PSD and fewer fictitious particles at those areas where 

the particle number concentration is high). Therefore, the statistically reasonable precision in less 

populated areas of the particle size spectrum can be guaranteed while the accuracy in densely populated 

areas is sufficient. Kotalczyk and Kruis (2017) presented a new numerical approach to calculate the 

coagulation rates of weighted particles by non-weighted particles, which an advantage in reducing 

statistical noise was shown. The mass flow algorithm (MFA) developed by Debry et al. (2003) can 

ensure convergence results due to its well found theoretical basis, which can be used as a reference 

solution for benchmarking other numerical methods. By comparison, DeVille et al. (2011) proposed 

the weighted flow algorithm (WFA) for the improvement in the computational efficiency, in which 

particle weighting functions with power laws in particle size were introduced. Zhou et al. (2020) 

reported that the weight function used in the MC method has a beneficial effect on the prediction of the 

PSD. Jiang and Chan (2021) have innovatively introduced fraction functions for particle weight 

functions, and applied it to a newly developed MC method called weighted fraction Monte Carlo 

(WFMC) (Jiang and Chan, 2021, 2022) method. Numerical results showed that the WFMC method can 

reduce the stochastic errors in high-order moments of the PSD by introducing adjustable fraction 

functions. 
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Although the introduction of adjustable fraction functions in the WFMC method are conducive 

to the computational accuracy of high-order moments of the PSD, the stochastic error in the total particle 

number concentration significantly increases which is always much larger than the DSMC and MMC 

methods (Jiang and Chan, 2021). In addition, the WFMC method has a rigid limitation on the fraction 

functions, making few fraction functions applicable to the WFMC method except for those specifically 

selected adjustable fraction functions. For example, if the fraction function is a constant which is not 

equal to 1, a large statistical noise or even error will be shown. This significantly reduces the generality 

of fraction functions and limits the applicability of the WFMC method. To tackle these problems, a new 

sorting algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method is proposed 

and developed in the present study. Three adjustable fraction functions applicable to the WFMC method 

and constant fraction functions are also introduced to check the reliability of the SAMWFMC method. 

A new merging scheme is then proposed and developed to ensure a constant-number and constant-

volume scheme. Six benchmark test cases with existing analytical solutions are used to validate the 

newly developed SAMWFMC method and the resulting stochastic errors are also compared with those 

of the DSMC, MMC and WFMC methods. 

2. Development of the New Sorting Algorithm-based Merging Weighted Fraction Monte Carlo 
(SAMWFMC) Method 

In MC methods for particle coagulation, the construction of a jump Markov process depends on 

the coagulation rate between numerical particles with different particle weights, because the coagulation 

rate determines the time step between two successive coagulation events and the selection of a 

coagulation particle pair. The development of the new SAMWFMC method is presented. 

2.1. Calculation of the coagulation rate 

A numerical particle, i is a representative of a group of real particles with the number equals to 

wi and the volume equals to vi. The real particle number concentration of this group is wi/V, where V is 

the volume of the computational domain. Similarly, wj/V is the real particle number concentration of a 

group represented by the numerical particle, j. Therefore, the number of coagulation events among real 

particles per unit time and volume between ith-group and jth-group of numerical particles can be 
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expressed by (Zhao et al., 2009): 

Φij=βij ×
wi

V
×

wj

V
 (2) 

where Φij is the coagulation rate between a random chosen real particle from the ith-group and a random 

chosen real particle from the jth-group, while βij is the coagulation kernel function of particles i and j. 

Thus, the number of coagulation events of the real particles between the ith-group and jth-group per 

unit time in the computational domain is VΦij.  

In the present study, it is considered that coagulation events occur among a part of or all real 

particles between the ith-group and jth-group, which is characterized by a fraction function, αij (Jiang 

and Chan, 2021, 2022). The mean number of coagulation events within these real particles is given by 

(Jiang and Chan, 2021): 

Ω = αij min (wi,wj) ,αij∈(0,1] (3) 

Therefore, the number of coagulation events of the real particles between the ith-group and jth-

group per unit time in the computational domain can also be formulated by ΩCij (Jiang and Chan, 2021):  

VΦij=ΩCij (4) 

where Cij is the coagulation rate between numerical particles, i and j, which can be written as (Jiang and 

Chan, 2021): 

Cij=
max�wi, wj�

αij

βij

V
=

βij
′

V
 

βij
′ =

max�wi, wj�
αij

βij 

(5) 

where βij
’ is the new coagulation kernel function which is used to construct the jump Markov process.  

2.2. Determination of a time step 

The waiting time between two events (i.e., coagulation) is an exponentially distributed random 

variable as (Gillespie, 1975):  
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P(τ) = C0 exp (-C0τ) (6) 

where C0 is the total coagulation rate which is written as (Gillespie, 1975): 

C0 =�� Cij

N

j=i+1

N-1

i=1

 (7) 

Therefore, the occurrence probability of a coagulation event of numerical particles, Pcoag(Δt) in 

the computational domain with a volume of V and within a time step of Δt is given by (Jiang and Chan, 

2021):  

Pcoag(∆t) = 1- exp (-∆tC0) (8) 

The time step is then determined as (Gillespie, 1975; Garcia et al., 1987):  

∆t = 
ln(1/r1)

C0
 (9) 

where r1 is a random number from the uniform distribution between zero and one.  

2.3. Selection of a coagulation particle pair 

The acceptance-rejection method (Garcia et al., 1987) and the cumulative probability method 

(i.e., the inverse method) (Liffman, 1992) are two commonly used for selecting a coagulation pair at 

random basis. Since the inverse method needs to calculate the coagulation rates of all possible particle 

pairs which is time-consuming (Kruis et al., 2000), the acceptance-rejection method is then adopted in 

the present study. At first, the numerical particles, i and j, are randomly selected, and then they would 

be accepted as a numerical particle pair to conduct a coagulation event if the following condition is 

satisfied as (Garcia et al., 1987; Gillespie, 1975): 

r2 ≤ 
Cij

max
∀k,∀m

Ckm
 (10) 

where r2 is a random number from the uniform distribution in the unit interval. Otherwise, they are 

rejected, and then a new numerical particle pair is entirely selected at random basis to repeat the 

acceptance or rejection procedure until a satisfied numerical particle pair is obtained. It should be noted 
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that the Markov process still can be exactly implemented even though the max
∀k,∀m

Ckm in Equation (10) is 

overestimated (Garcia et al., 1987; Xu et al., 2014).  

2.4. Fraction functions 

In the WFMC method, three types of adjustable fraction functions (i.e., hyperbolic fraction 

function (HFF), exponential fraction function (EFF) and stepwise constant fraction function (SCFF)) 

with a rigid assumption are specially selected (Jiang and Chan, 2021) as presented in Equations (11) to 

(13). It should be noted that all these three types of adjustable fraction functions have a specific range 

from 0.5 to 1 closely related to the volumes of numerical particles i and j, which may lead to a totally 

different value of each numerical particle from others. In addition, all these fraction functions for 

numerical particles with large size discrepancy are strictly restricted to almost 1, which means that a 

numerical particle pair with small size difference undergoes a weighted fraction coagulation event while 

two numerical particles of large size discrepancy do not experience a weighted fraction coagulation. 

From this point of view, all these fraction functions are used to control the coagulation process of a 

numerical particle pair in terms of its volume ratio in the WFMC method. This is the prerequisite of 

adopting the WFMC method (Jiang and Chan, 2021). If this rule is not followed, the WFMC method 

can lead to a very large statistical noise or even error and cannot be used for simulating coagulation 

anymore. This is the reason why only a few fraction functions (i.e., HFF, EFF and SCFF) are applicable 

to the WFMC method. Actually, even though these three types of adjustable fraction functions are used 

in the WFMC method, the stochastic error in the total particle number concentration is still large (Jiang 

and Chan, 2021).  

In the present study, these three types of adjustable fraction functions (HFF, EFF and SCFF) are 

used in the newly proposed and developed SAMWFMC method to validate the computational accuracy 

and efficiency. Meanwhile, constant fraction functions (CFF) in Equation (14) are also introduced to 

extend the generality of the fraction functions and check the applicability of the new SAMWFMC 

method. It should be noted that C in Equation (14) can be an arbitrary number between zero and unity, 

which is consistent with the expression in Equation (3). 
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αij= 
1

1+ min�vi,vj� max�vi,vj��
 (11) 

αij= 1-2-max�vi,vj� min�vi,vj��  (12) 

αij= �
0.5,  max�vi,vj� min�vi,vj�� ≤ 2
1,  max�vi,vj� min�vi,vj�� >2

 (13) 

αij= C (14) 

2.5.  A new merging scheme 

Every time when a numerical particle pair undergoes a weighted fraction coagulation event, there 

is an additional new numerical particle generated in the computational domain, leading to the 

continuous increasing in the number of numerical particles when more coagulation events occur. As a 

result, the computational efficiency will drop. It should be noted that the additional numerical particle 

with the lowest weight after a coagulation event is represented by “New x” as shown in Figure 1. In 

order to keep the number of numerical particles constant in the constant computational domain, Jiang 

and Chan (2021) have recently proposed a probabilistic removal scheme by randomly removing one of 

the coagulated numerical particles (“New i” or “New j” as shown in Figure 1) out of the computational 

domain and then adjusting the weight of the other coagulated numerical particle after the coagulation 

event. However, this probabilistic removal scheme may result in the fluctuation of the total particle 

number concentration. 

 

Figure 1  Schematic diagram of numerical particles undergoing a weighted fraction coagulation. 

In the present study, a new merging scheme is proposed and developed to ensure a constant-

number and constant-volume scheme. If the fraction function is equal to 1 and the weights of two 
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coagulated numerical particles are equal, it is straightforward to distribute the equal volume and weight 

to the two new numerical particles as shown in Figure 2. Otherwise, the schematic diagrams of the 

merging scheme in terms of different volumes and weights of a coagulated numerical particle pair are 

shown in Figures 3 and 4. Instead of removing one coagulated numerical particle out of the 

computational domain in the WFMC method (Jiang and Chan, 2021), the idea of the merging scheme 

in the present study is to add the “New x” in Figure 1 to an existing numerical particle in the 

computational domain.  

 
Figure 2 Schematic diagram of merging weighted fraction when αij= 1 and wi = wj. 

 
(a) wi ≤ wj 

 
(b) wi > wj 

Figure 3 Schematic diagram of merging weighted fraction when vi = vj. 
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(a) wi ≤ wj 

 
(b) wi > wj 

Figure 4 Schematic diagram of merging weighted fraction when vi ≠ vj. 

If the volumes of two coagulated numerical particles are equal, only these two coagulated 

numerical particles are required to be involved in the merging scheme. If the weight of the “Old i” is 

not larger than that of the “Old j” as shown in Figure 3(a), the “Old i” will be replaced by the “New i” 

with the volume equal to (vi + vj), and the “New x” will be added to the “Old j” and the “New j” will 

then be formed. If the weight of the “Old i” is larger than that of the “Old j” as shown in Figure 3(b), 

the “Old j” will be replaced by the “New j” with the volume equals to (vi + vj), and the “New x” will be 

added to the “Old i” and the “New i” will then be formed.  

By comparison, the handling of the “New x” is completely different when the volumes of these 

two numerical particles, vi and vj, are not equal. Under this circumstance, a totally new numerical 

particle, “Old k”, neither “Old i” nor “Old j”, in the computational domain is introduced to implement 

the merging scheme as shown in Figure 4. If the weight of the “Old i” is not larger than that of the “Old 

j” as shown in Figure 4(a), the “Old i” will be replaced by the “New i” with the volume equal to                 

(vi + vj), the “Old j” will be replaced by the “New j” with the same volume vj, and the “New x” will be 

added to the “Old k” and the “New k” will then be formed. But if the weight of the “Old i” is larger than 
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that of the “Old j” as shown in Figure 4(b), the “Old j” will be replaced by the “New j” with the volume 

equals to (vi + vj), and the “Old i” will be replaced by the “New i” with the same volume vi and the 

“New x” will be added to the “Old k” and the “New k” will then be formed. 

Therefore, the choice of the numerical particle, “Old k” becomes of great importance in the 

merging scheme because a randomly chosen “Old k” in the computational domain undoubtedly leads 

to the introduction of large statistical noise. However, if the volume of the “Old k” is close or equal to 

that of the “New x”, the statistical noise of the new merging scheme can significantly reduce. Clearly, 

the most appropriate “Old k” has the same properties as the “New x” or has the nearest properties to the 

“New x”, so the property (i.e., volume) difference between the “New x” and “Old k” is defined as:  

Sx= |vk-vx| (15) 

when Sx is the minimal where the corresponding k is the most appropriate numerical particle for “New 

x” to be merged.  

It should be noted that the volume of the “New k” is treated as the same as the “Old k” after 

merging, while the weight of the “New k” would be adjusted according to the volume/mass conservation 

rule, which will be presented later in Section 2.7. Therefore, the newly proposed merging scheme in the 

present study is completely different from those used in Kotalczyk and Kruis (2017) and Zhao et al. 

(2005a). In order to deal with an additional numerical particle generated by a breakage event, Zhao et 

al. (2005a) adopted a merging measure where the number of numerical particles is kept to be constant 

by directly adding the weights of the additional numerical particle and a randomly selected one with 

the similar volume together. Although the total particle number concentration is conserved exactly, the 

stochastic error in the total particle volume/mass concentration may occur. By comparison, Kotalczyk 

and Kruis (2017) introduced a technique of merging a generated numerical particle due to nucleation, 

breakage or transport to conserve both the total particle number and volume/mass densities, but the 

purpose of each merging treatment is to reduce one numerical particle and vacate a position in the 

computational domain by selecting two existing numerical particles to form a new one. But these two 

existing numerical particles should be specially selected; otherwise a very large stochastic noise or even 

error would be introduced. A low weight merging scheme is then introduced to minimise the stochastic 
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error, in which the most appropriate merging numerical particle pair should be determined by 

comparing all possible numerical particle pairs. If the number of numerical particles used is N, the 

number of comparisons in numerical particle pairs is then N(N-1), which is very computationally 

expensive. Although the time complexity of this merging scheme is reduced to O(logN) which can be 

achieved to accelerate computations by using both parallel computing and graphic processing units 

(GPUs), the whole algorithm and programming are fairly complex. 

Obviously, it is not sensible to compare the properties of all the numerical particles one-by-one 

with that of “New x” because it is highly time-consuming, especially when the number of numerical 

particles is large. But if the properties (i.e., volume and weight) of numerical particles are sorted and 

stored in the computer memory, it is more convenient to find the target “Old k” by adopting the 1-

nearest neighbour (1-NN) algorithm. In Figure 4(a), if the “Old k” is one of the nearest neighbours of 

the “Old i”, it is obvious that the “Old k” has a similar volume with the “New x”. Therefore, the “Old 

k” can be determined by:  

k = � i-1,  Si-1<Si+1
i+1,  Si-1≥Si+1

 (16) 

Similarly, the “Old k” in Figure 4(b) is determined as:  

k = �
j-1,  Sj-1<Sj+1
j+1,  Sj-1≥Sj+1

 (17) 

Therefore, the sorting algorithm-based merging weighted fraction scheme is newly proposed and 

developed for easily and rapidly determining the target “Old k” with the nearest property to the “New 

x” by using 1-NN algorithm. 

2.6. Selection of a sorting algorithm 

As sorting numerical particles is vital to the computational accuracy in the newly developed 

SAMWFMC method, the selection of the most efficient sorting algorithm is essentially required for 

reducing the computational cost. 
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As discussed in the Section 2.5, the number of numerical particles remains constant during the 

numerical simulation by introducing the new merging scheme, so there is no need to implement the 

operation of adding or removing numerical particles anymore. This feature matches well with the data 

structure of array in the computer programming. More importantly, array supports random access, 

which implies that every numerical particle can be directly accessed by its index, which can 

significantly improve computational efficiency especially when the number of numerical particles is 

large. An object-oriented programming (OOP) language, C++ has classes and objects. A class is a type 

of data which includes properties and functions while an object is an instance of a class. In the present 

study, a class of the numerical particle including properties (e.g., identification number (ID), volume 

and weight) is defined. Then each object is created as an instance of the numerical particle class. Finally, 

an array is used to store a collection of objects of the numerical particle class. 

As the prerequisite of implementing the merging scheme is that the numerical particle array 

should be sorted, it is necessary to sort the numerical particle array before the next coagulation event. 

Note that it is unnecessary to sort the initial numerical particle array if the initial PSD is monodispersed; 

otherwise, sorting the initial numerical particle array is required when the initial numerical particle 

system is generated. In the present study, the numerical particles are sorted by their properties (i.e., 

volume and weight), so all numerical particles are in order in terms of their properties. When two 

numerical particles, “Old i” and “Old j” with the same volume coagulate as shown in Figures 2 and 3, 

they are replaced in place by the “New i” and “New j”; otherwise, the “Old i”, “Old j” and “Old k” are 

replaced in place by the “New i”, “New j” and “New k” after coagulation as shown in Figure 4. Other 

numerical particles in the array remain constant, which demonstrate that there are only two or three 

numerical particles required to be sorted, so only an efficient sorting algorithm for the nearly sorted 

numerical particle array is needed. 

There are a great variety of sorting algorithms such as bubble sort, selection sort, insertion sort, 

merge sort, heapsort and quicksort, and their variations (Sedgewick and Wayne, 2011) as there is no 

one sorting method that can deal with every situation (Goel and Kumar, 2018). The performance of a 

sorting algorithm is evaluated by the complexities of time and space in the notation of the standard big 



17 
 

O(n), where n is the size of the input data (Kapur et al., 2012). The average time complexities of the 

bubble, selection and insertion sorts are O(n2) while the average time complexities of the merge sort, 

heapsort and quicksort are O(nlogn). But, if the array is nearly or completely sorted, the time 

complexities of the selection sort, merge sort, heapsort and quicksort remain unchanged, while the time 

complexities of the bubble and insertion sorts become O(n), which implies that bubble and insertion 

sorts have high efficiency for nearly or completely sorted arrays (Cook and Kim, 1980). It is worth 

noting that both bubble and insertion sorts aim at small numbers of elements in the array. It is better to 

choose a suitable sorting algorithm with the time complexity of O(nlogn) when the number of elements 

needed to be sorted is large. In addition, the bubble sort adopts the exchanging method when sorting, 

which is not as efficient as the insertion method by the insertion sort. Therefore, in the newly proposed 

and developed SAMWFMC method, the insertion sort is used to sort the numerical particle array after 

a coagulation event is taken place as the numerical particle array is already in order except for only two 

or three numerical particles. Furthermore, if the initial PSD is not monodispersed, the quicksort is 

adopted to sort the initial numerical particle array after the numerical particle system is generated. 

2.7. Treating a coagulation event 

If two numerical particles undergo a coagulation event, the real particles represented by these 

two numerical particles also experience coagulation, which leads to the change in the properties (i.e., 

volume and weight) of these two numerical particles. If the fraction function, αij in Equation (3) is equal 

to 1 and the weights of “Old i” and “Old j” are the same as shown in Figure 2, all real particles would 

be coagulated. The consequence of this coagulation event is denoted as (Zhao et al., 2009): 

if wi = wj, �
vi

'  = vi+vj, wi
'  = wi 2⁄

vj
'  = vi+vj, wj

'  = wj 2⁄
 (18) 

Otherwise, two or three numerical particles are involved as shown in Figures 3 and 4. The volume/mass 

of the “New x” is (wi-αijwi)vi in Figures 3(a) and 4(a), and (wj-αijwj)vj in Figures 3(b) and 4(b), 

respectively, which is merged with a selected numerical particle based on mass conservation, so the 

consequence of a coagulation event in terms of merging scheme is formulated as: 
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if vi = vj and wi≤ wj, �
vi

'  = vi+vj, wi
'  = αijwi

vj
'  = vj,wj

'= wj − αijwi +�wi − αijwi�
vi

vj
= wi+ wj − 2αijwi 

 (19) 

if vi = vj  and wi>wj, �
vi

'  = vi,wi
'= wi − αijwj+�wj − αijwj�

vj

vi
= wi+ wj − 2αijwj

vj
'=vi+vj, wj

'=αijwj

 (20) 

if vi ≠ vj and wi≤wj,

⎩
⎪
⎨

⎪
⎧ vi

'  =vi+vj, wi
'= αijwi

vj
'  = vj,wj

'= wj − αijwi

vk
' = vk,wk

' = wk+�wi − αijwi�
vi

vk

 (21) 

if vi ≠ v j and wi>wj,

⎩
⎪
⎨

⎪
⎧ vi

'= vi,wi
'  = wi − αijwj

vj
'  =vi+vj, wj

'  = αijwj

vk
'  = vk,wk

'  = wk+�wj−αijwj�
vj

vk

 (22) 

It should be noted that if the fraction function, αij is always equal to 1, the Equations (18) to (22) 

are completely consistent with those of the MMC method (Zhao et al., 2009), which demonstrate that 

the MMC method is only a special case of the newly proposed SAMWFMC method when αij = 1.  

Every time when a coagulation event takes place, the coagulation rate Cij in Equation (5), the 

total coagulation rate, C0 in Equation (7) and max
∀k,∀m

Ckm in Equation (10) should be recalculated since 

there are two or three numerical particles in the array whose volumes and weights are changed in the 

SAMWFMC method. In the present study, the smart bookkeeping technique (Kruis et al., 2000) is used 

to calculate C0 in Equation (7) and max
∀k,∀m

Ckm in Equation (10), which can avoid spending a large amount 

of time for recalculating the coagulation rates, Cij of those uncoagulated numerical particles. More 

specifically, double traversing and counting on each numerical particle from the beginning to the end 

only takes place in the initial calculation of the total coagulation rate, C0 and there is no further double 

traversing and counting anymore during the numerical simulation.  

2.8. Description of the SAMWFMC algorithm 

Figure 5 shows the flowchart of the newly proposed and developed SAMWFFC algorithm for 

particle coagulation. More specifically, the full algorithm is described as follows. 
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Figure 5 Flowchart of the newly proposed and developed SAMWFMC algorithm. 

3. Results and Discussion 

In the present study, two initial particle size distributions (i.e., initial monodispersed distribution 

(IMD) and initial exponential distribution (IED)), three coagulation kernels (i.e., constant coagulation 

kernel (CCK), linear coagulation kernel (LCK) and quadratic coagulation kernel (QCK)) and four 

fraction functions (i.e., hyperbolic fraction function (HFF), exponential fraction function (EFF), 

stepwise constant fraction function (SCFF) and constant fraction function (CFF)) are completely used. 

The newly proposed SAMWFMC method is fully validated by comparing the numerical results of the 

PSD and corresponding different orders of moments with the existing analytical solutions (Liffman, 

1992; Zhao et al., 2005b) to assess the computational accuracy. In addition, a comparison of stochastic 
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errors as well as computational efficiency with the DSMC (Kruis et al., 2000), MMC (Zhao et al., 2009) 

and WFMC (Jiang and Chan, 2021) methods is performed. The general moment of the PSD function 

can be expressed as (Friedlander, 2000): 

Mk=� vkn(v)
∞

0
dv (23) 

where k is the order of the moment. Different order moments normally have their specific physical 

meanings. For example, the zeroth moment, M0 and the first moment, M1 are the total particle number 

and mass (volume) densities, respectively. The mean standard deviations of the Mk are denoted as σMk 

(Xu et al., 2014; Zhao et al., 2009; Zhao and Zheng, 2009a). 

σMk
(t)=

1
Q
��1

t
� �

Mk
MC(i)(t)-Mk

AS(t)
Mk

AS(t)
�

2t

0
dt

Q

i = 1

 (24) 

  
where Q is the number of MC repetitions. The analytical solution is represented by “AS” while MC(i) 

is the numerical results of the i-th MC simulation. In the present study, the number of MC repetitions 

used for all studied cases is 200 for achieving good enough stable mean standard deviations. The initial 

number of numerical particles used in the present study is 2000 (Kruis et al., 2000; Zhao and Zheng, 

2009a, 2009b; Zhao et al., 2009; Kotalczyk and Kruis, 2017; Liu and Chan, 2017; Liu and Chan, 2018a; 

Zhou et al., 2020) for all MC methods, which can achieve highly accurate numerical results.  

3.1.   Case 1: Initial monodispersed distribution and constant coagulation kernel function 

Aerosols composed of particles with all the same size are called monodisperse aerosols. A typical 

case with the initial monodispersed distribution (IMD) and constant coagulation kernel (CCK) function 

is a benchmark for algorithm validation, as the analytical solution of the Smoluchowski equation exists 

(Liffman, 1992). In this case, the initial total particle number concentration, N0 = 106 particles/cm3 

(Kruis et al., 2000) and the coagulation kernel βij is equal to a constant A where A = 10−6 cm3/s (Kruis 

et al., 2000). The characteristic coagulation time is defined as τc = 1/(AN0).  

Figure 6 shows the time evolutions of zeroth-order to third-order moments (i.e., M0, M1, M2 and 

M3) obtained from DSMC, MMC, WFMC and SAMWFMC methods and their corresponding mean 
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standard deviations (i.e., σM0, σM1, σM2 and σM3) for different fraction functions (i.e., HFF, EFF, SCFF 

and CFF) with the IMD and CCK when compared with analytical solutions (Liffman, 1992). In Figure 

6(a), the total particle number concentrations, M0 for all studied MC methods decrease over time and 

show excellent agreement with the analytical solution due to the reduction in the number of real particles 

in each coagulation process. But the mean standard deviations, σM0 vary for different MC methods. It 

can be found that the σM0 obtained from the new SAMWFMC method are always lower than the 

counterparts of WFMC method (Jiang and Chan, 2021), which demonstrates that the SAMWFMC 

method always has higher computational accuracy in predicting M0 than the WFMC method. Especially, 

the σM0 for the WFMC method with the HFF is the largest, even larger than that of the DSMC method, 

and keeps increasing with time, which are also found in Jiang and Chan (2021). It implies that the 

stochastic error in M0 for the WFMC method with the HFF is very large and this method cannot allow 

for indefinitely long numerical simulations of the particle coagulation. It is because more coagulation 

events will occur with time advancing, the stochastic error will be even larger and the computational 

accuracy will be further reduced. By comparison, the σM0 for the SAMWFMC method with the HFF 

still remains at a very low stochastic error level and nearly unchanged with time, which demonstrates 

that the new merging scheme implemented in the proposed SAMWFMC method can effectively reduce 

the stochastic error in M0. More importantly, as the WFMC method is not applicable to a CFF due to 

the limitation of the particle size discrepancy while the applicability of the SAMWFMC method is fully 

assessed for different CFFs (i.e., C = 0.5, 0.6, 0.7, 0.8 and 0.9) in the present study. It is found that 

different constants of the CFF have little effect on the σM0, as all the σM0 obtained from the SAMWFMC 

method with C = 0.5 to 0.9 are very close and lower than that of the MMC method (Zhao et al., 2009). 

As the coagulation process does not change the total volume/mass of numerical particles due to 

volume/mass conservation, the total volume concentrations, M1 for all MC methods remain constant 

during the numerical simulation, therefore leading to no stochastic error in M1 as shown in Figure 6(b).  
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Figure 6 Time evolutions of zeroth-order to third-order moments and mean standard deviations 
obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with 
the IMD and CCK when compared with analytical solutions. 

 

In Figures 6(c) and (d), the time evolutions of higher-order moments (i.e., M2 and M3) obtained 

from different MC methods are also in very good agreement with the analytical solutions. The DSMC 

method has the largest σM2 and σM3 than other MC methods, while the σM2 and σM3 obtained from the 

both WFMC and SAMWFMC methods are lower than those of the MMC method, which demonstrates 

that the introduction of the fraction function in the both WFMC and SAMWFMC methods has a 

significant reduction of stochastic errors in the higher-order moments. When the fraction function (i.e., 

HFF, EFF or SCFF) used in both WFMC and SAMWFMC methods is the same, the σM2 and σM3 for the 

SAMWFMC method are only slightly larger than those of the WMFC method, respectively, which 

implies that the new SAMWFMC method can achieve almost the same computational accuracy as the 

WFMC method. Furthermore, the effect of different CFFs for the SAMWFMC method on the σM2 and 

σM3 is also studied. Results show that with the CFF, the σM2 and σM3 obtained from the SAMWFMC 
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method with C = 0.5 are the lowest, and the σM2 and σM3 gradually increase with increasing C from 0.5 

to 0.9. When C = 0.9, the σM2 and σM3 for the SAMWFMC method are almost equal to those of the 

MMC method.  

Figure 7 shows the probabilities of obtaining a cluster containing k primary particles, Pk obtained 

from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions (i.e., HFF, EFF, 

SCFF and CFF) at t/τc = 50 when compared with the analytical solution (Liffman, 1992), where Pk 

represents the PSD at k = v/v0. Results show that all MC methods follow the analytical solution and 

track the PSD well, but there are varying degrees of fluctuations in the PSD for different MC methods. 

The DSMC method is found to have the narrowest PSD and the MMC method is slightly wider, the 

fluctuation in the PSD for the latter is smaller than the former when the particle size is the same at the 

high-end of the PSD. It can be also found that larger size particles can be obtained in both WFMC and 

SAMWFMC methods than those in the DSMC and MMC methods, so both WFMC and SAMWFMC 

methods with different fraction functions have wider PSDs than the MMC method, which implies that 

the introduction of the fraction function can significantly extend the prediction range of the PSD. When 

the fraction function used in the WFMC and SAMWFMC methods is the same (i.e., HFF, EFF or SCFF), 

the SAMWFMC method has almost the same wide PSDs as the WFMC method, while the PSD obtained 

from the SAMWFMC method with the CFF becomes wider when decreasing C from 0.9 to 0.5. 
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Figure 7 Probabilities of obtaining a cluster containing k primary particles, Pk obtained from 
DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD and 
CCK at t/τc = 50 when compared with analytical solution. 

 

Figure 8 shows the number of numerical particles, NNP at different particle volumes, v/v0 obtained 

from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions (i.e., HFF, EFF, 

SCFF and CFF) at t/τc = 50. The DSMC method has the most numerical particles at v/v0 = 1, but the 

number of numerical particles significantly reduces with the increase of the particle size. Finally, DSMC 

method has the least numerical particles at the high-end of the PSD, which implies that there are few or 

no numerical particles to represent the large real particles. This leads to the narrowest PSD among all 

MC methods, which is also shown in Figure 7, and the largest fluctuations in the high-order moments 

of the PSD (i.e., M2 and M3) are shown in Figures 6(c) and (d). By comparison, the MMC method 

distributes more numerical particles to represent the large real particles and extends the prediction of 

the PSD at the high-end, which reduces the fluctuations of M2 and M3 as shown in Figures 6(c) and (d). 

The number of numerical particles for the WFMC method for different fraction functions (i.e., HFF, 

EFF and SCFF) increases at first and then decreases with the increasing particle sizes, especially for the 

HFF, which is totally inconsistent with the DSMC and MMC methods. This implies that the WFMC 
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method changes the number distribution of the numerical particles, in which more numerical particles 

are used to represent larger real particles, but few numerical particles to represent smaller real particles. 

As a result, the WFMC method reduces the fluctuations in the high-order moments of the PSD (i.e. M2 

and M3) as shown in Figures 6(c) and (d), but results in large fluctuation in the total number 

concentration, M0 as shown in Figure 6(a), which is also found in the original work of Jiang and Chan 

(2021). The reason is that the statistic precision of stochastic approaches is inversely proportional to the 

square root of the numerical particle numbers. The SAMWFMC method for different fraction functions 

(i.e., HFF, EFF and SCFF) has the same trend as the MMC method in the number distribution of 

numerical particles, which decreases with the increase of the particle sizes. Compared with the WFMC 

method, more numerical particles at the low-end of the PSD but slightly less numerical particles at 

larger particle size areas are observed in the SAMWFMC method, therefore reducing the fluctuation in 

M0 with less change in M2 and M3. In addition, it is found that the number distribution of numerical 

particles for the SAMWFMC method with the CFF gradually moves to the high-end of the PSD with 

the decrease of the constant, C from 0.9 to 0.5. It implies that the number of numerical particles with 

small sizes gradually decreases while the number of numerical particles with larger sizes increases, 

therefore resulting in the gradual reduction of the fluctuation in the high-order moments (i.e., M2 and 

M3) of the PSD as shown in Figures 6(c) and (d). It should be noted that the SAMWFMC method for 

the CFF (C = 0.5) has wider PSD and more numerical particles at v/v0 >60 than the WFMC method for 

the HFF, so smaller σM2 and σM3 for the former are shown in Figures 6(c) and (d). Although the PSD 

obtained from the SAMWFMC method for the CFF (C = 0.7) is almost as the same wide as the WFMC 

method for the HFF, the number of numerical particles for the former is less than that of the latter at 

v/v0 > 25, leading to larger σM2 and σM3 for the former as shown in Figures 6(c) and (d). 
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Figure 8 Number of numerical particles, NNP at different particle volumes, v/v0 obtained from 
DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD and 
CCK at t/τc = 50. 
 

3.2.   Case 2: Initial monodispersed distribution and linear coagulation kernel function 

The analytical solution of the Smoluchowski equation with the initial monodispersed distribution 

(IMD) and linear coagulation kernel (LCK) function is well known (Liffman, 1992), which is also used 

to validate the newly proposed SAMWFMC method. The initial total particle number concentration, N0 

= 106 particles/cm3 (Kruis et al., 2000) and the coagulation kernel βij = A(vi+vj) where A = 10−6 cm3/s 

(Kruis et al., 2000), vi and vj are the dimensionless volumes of the two coagulation particles, i and j, 

respectively. The characteristic coagulation time is defined as τc = 1/(AN0). For simplicity, only the HFF 

for both WFMC and SAMWFMC methods and the CFF with C= 0.7 for the SAMWFMC method are 

used.  

Figure 9 shows a very good agreement for zeroth-order to third-order moments (M0, M1, M2 and 

M3) between the analytical solutions (Liffman, 1992) and DSMC, MMC, WFMC and SAMWFMC 

methods for different fraction functions (i.e., HFF and CFF) with the IMD and LCK, and their 

corresponding mean standard deviations are also presented. All MC methods show an excellent 

mass/volume conservation, as the total volume/mass concentrations, M1 for all MC methods remain 
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constant during the numerical simulation, therefore leading to no stochastic error in M1 as shown in 

Figure 9(b). The mean standard deviations of zeroth-order to third-order moments (i.e., M0, M2 and M3) 

obtained from different MC methods have a similar trend with time. The DSMC method has the largest 

σM0, σM2 and σM3 among all MC methods. Although the σM2 and σM3 for the WFMC method are almost 

smaller than those of other MC methods, the WFMC method has larger σM0 than the MMC method but 

has just slightly smaller than the DSMC method. By comparison, the SAMWFMC method has the 

smallest σM0 among all MC methods and can achieve as low σM2 and σM3 as the WFMC method, which 

shows the advantage of the SAMWFMC method in reduction of the stochastic errors for M0, M2 and 

M3, respectively. In addition, the SAMWFMC method for the CFF with C = 0.7 also has smaller σM0, 

σM2 and σM3 than those of the DSMC and MMC methods, which demonstrates the newly proposed 

SAMWFMC method can deal with different fraction functions at very small stochastic error.  

 
Figure 9 Time evolutions of zeroth-order to third-order moments (M0, M1, M2 and M3) and mean 
standard deviations obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 
fraction functions with the IMD and LCK when compared with analytical solutions. 



28 
 

Figure 10 shows that the DSMC method has the narrowest particle size range and a slight wider 

particle size range with smaller fluctuation at the high-end is observed in the MMC method, which 

results in the differences of the σM2 and σM3 as shown in Figures 9(c) and 9(d), respectively. Compared 

with the MMC method, the fraction functions introduced in the WFMC and SAMWFMC methods can 

effectively extend the prediction of the particle size range and then obtain wider particle size ranges, 

which finally reduce the σM2 and σM3. Small differences of σM2 and σM3 between the WFMC and 

SAMWFMC methods are found due to the almost identical width of particle size ranges. 

 

Figure 10 Probabilities of obtaining a cluster containing k primary particles, Pk obtained from 
DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD and 
LCK at t/τc = 2 when compared with analytical solution. 

 

3.3.   Case 3: Initial monodispersed distribution and quadratic coagulation kernel function 

Another benchmark test case with initial monodispersed distribution (IMD) and quadratic 

coagulation kernel (QCK) function is also validated in the present study, the analytical solution of this 

case exists in (Liffman, 1992). The initial total particle number concentration, N0 =106 particles/cm3 

(Kruis et al., 2000) and the coagulation kernel, βij = A(vi×vj), where A = 10−6 cm3/s (Kruis et al., 2000), 

vi and vj are the dimensionless volumes of a coagulation particle pair, i and j, respectively. The 
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characteristic coagulation time is defined as τc = 1/(AN0). It should be noted that if the time is greater 

than τc, the analytical solution of the Smoluchowski equation does not exist (Kruis et al., 2000) in this 

case due to the formation of the supercluster when t = τc (Liffman, 1992). 

 
Figure 11 Time evolutions of zeroth-order to third-order moments and mean standard deviations 
for DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD and 
QCK when compared with analytical solutions. 

Figures 11 and 12 are the time evolutions of zeroth-order to third-order moments and 

corresponding mean standard deviations and PSDs for different MC methods when compared with 

analytical solutions (Liffman, 1992), respectively. An excellent agreement of the first four moments for 

different MC methods and the analytical solutions with the IMD and QCK is observed in Figure 11. As 

the total volume/mass concentrations, M1 for all MC methods remain constant, the resulting σM1 is 

always zero during the numerical simulation as shown in Figure 11(b). The SAMWFMC method has 

the lowest σM0 than other MC methods, while the σM2 and σM3 obtained from the SAMWFMC method 

are very close to those of the WFMC method because of the almost identical width of the PSDs as 
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shown in Figure 12, which are lower than those of the DSMC and MMC methods. This further 

demonstrates the contribution of the fraction functions to the PSD.  

 

Figure 12 Probabilities of obtaining a cluster containing k primary particles, Pk obtained from 
DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD and 
QCK at t/τc= 0.8 when compared with analytical solution. 

 

3.4.   Case 4: Initial exponential distribution and constant coagulation kernel function 

As particles with different sizes are more common than those with the same size in most practical 

cases involved in combustion emission sources and atmospheric aerosols (Friedlander, 2000), the newly 

proposed SAMWFMC method must be validated the computational accuracy with the initial 

polydisperse PSD. In the present study, an exponential function is chosen as the initial polydisperse 

PSD, which is given by (Zhao et al., 2005b): 

np(v,0)= N0 v0⁄ [exp(− v v0⁄ )] (25) 

where N0 is the initial total particle number concentration of real particles with the initial mean particle 

volume of v0. The analytical solution of the Smoluchowski equation with the initial exponential 

distribution (IED) and constant coagulation kernel (CCK) function is provided in (Zhao et al., 2005b). 

In the present study, N0 = 106 particles/cm3 (Zhao et al., 2005b) and v0 = 1 (dimensionless) are used. 



31 
 

The coagulation kernel, βij = A, where A = 10−6 cm3/s. The characteristic coagulation time is defined as 

τc = 1/(AN0). 

 
Figure 13 Time evolutions of zeroth-order to third-order moments and mean standard deviations 
obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with 
the IED and CCK when compared with analytical solutions. 

A very good agreement between the analytical solutions (Zhao et al., 2005b) and the first four 

moments (i.e., M0, M1, M2 and M3) obtained from different MC methods (i.e., DSMC, MMC, WFMC 

and SAMWFMC) for different fraction functions (i.e., HFF and CFF) with the IED and CCK is shown 

in Figure 13. The results of M1 obtained from the four MC methods remain constant and there are no 

changes in σM1 for all MC methods during the numerical simulation as shown in Figure 13(b). The 

SAMWFMC method with the HFF and CFF has the lowest σM0, while the WFMC method has the largest 

σM0 among all MC methods, which is even larger than that of the DSMC method and keeps increasing 

with time. With the HFF, the σM2 and σM3 for the SAMWFMC and WFMC methods are very close to 

each other and have the lowest stochastic errors. It demonstrates that the SAMWFMC method can 
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achieve lower stochastic error in M0 and nearly the equally lowest stochastic errors in M2 and M3, 

respectively when compared with the WFMC method. It also implies that the SAMWFMC method 

surpass the WFMC method in obtaining accurate numerical results. In addition, the SAMWFMC 

method with CFF has lower σM0, σM2 and σM3 than the MMC and DSMC methods, which also 

demonstrates the significant improvement in computational accuracy by the SAMWFMC method.  

Figure 14 shows the dimensionless particle number concentration (PNC) functions at different 

particle volumes, v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions (i.e., HFF and CFF) with the IED and CCK at t/τc = 0, 1, 5 and 20 when compared 

with analytical solutions (Zhao et al., 2005b). In here, t/τc= 0 is the initial particle number concentration 

function. A very good agreement between the analytical solutions and the numerical results obtained 

from different MC methods is observed at different times, t/τc. As coagulation events take place, particle 

sizes become larger with time and the PNC functions gradually moves to the right side, but the PNC 

functions still remain the “self-preserving” form (Friedlander, 2000). It is still shown that the WFMC 

and SAMWFMC methods can obtain particles with larger volumes than the DSMC and MMC methods, 

and also extend the prediction of the particle volumes at the high-end. It also implies that the 

introduction of the fraction functions can significantly reduce the σM2 and σM3 in the MC simulations 

with initial polydispersed distribution. The particle size range obtained from the MMC method are 

slightly wider than that of the DSMC method, which leads to the differences in the stochastic errors of 

the high-order moments in Figures 13(c) and (d). The large particle size regime for the WFMC and 

SAMWFMC methods are almost identical at t/τc = 1, but the difference becomes larger with time. The 

WFMC method can obtain larger particles at the high-end than the SAMWFMC method when t/τc = 20, 

and the volume of particles at the low-end for the WFMC method is also larger than those of all the MC 

methods. It further demonstrates that the WFMC method is developed to obtain more particles with 

large volumes, in which smaller real particles are poorly or even not represented. As a result, the WFMC 

method achieves very low σM3 as shown in Figures 13(d) by the contribution of those large volume 

particles but deteriorates the statistical precision at the low-end. By comparison, although the volume 

of particles obtained from the SAMWFMC method at the high-end is smaller, the small particles at the 
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low-end is still represented, which lead to slightly larger σM3 and even lower σM2, but significantly lower 

σM0 as shown in Figures 13(c), 13(d) and 13(a), respectively. As the volume/mass is always conserved 

during numerical simulation, the σM1 for both WFMC and SAMWFMC methods are equal to zero as 

shown in Figure 13(b).  

 
Figure 14 Dimensionless particle number concentration functions at different particle volumes, 
v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions 
with the IED and CCK at t/τc=0, 1, 5 and 20 when compared with analytical solutions. 
3.5.   Case 5: Initial exponential distribution and linear coagulation kernel function 

There also exists the analytical solution of the Smoluchowski equation with the initial exponential 

distribution (IED) and linear coagulation kernel (LCK) function in (Zhao et al., 2005b). In the present 

study, N0 = 106 particles/cm3 (Zhao et al., 2005b) and v0 = 1 (dimensionless) are used. The coagulation 

kernel, βij = A(vi+vj), where A = 10−6 cm3/s, vi and vj are the dimensionless volumes of the two 

coagulation particles, i and j, respectively. The characteristic coagulation time is defined as τc = 

1/(AN0v0).  

Figure 15 shows the time evolutions of first four moments (i.e., M0, M1, M2 and M3) obtained 

from different MC methods and corresponding mean standard deviations (i.e., σM0, σM1, σM2 and σM3) 
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for different fraction functions (i.e., HFF and CFF) with the IED and LCK when compared with 

analytical solutions (Zhao et al., 2005b). The first four moments for all MC methods have a very good 

agreement with the analytical solutions. The SAMWFMC method with the CFF has the lowest σM0, 

while the σM0 for the DSMC method is the largest. The stochastic error in M0 introduced by the WFMC 

method is still larger than that of the MMC method, but the SAMWFMC method with HFF has lower 

σM0 than the MMC method. The σM2 and σM3 for the SAMWFMC and WFMC methods with different 

fraction functions (i.e., HFF and CFF) are very close to each other but are smaller than those of the 

DSMC and MMC methods. There are no changes in σM1 for all MC methods as shown in Figure 15(b) 

since the volume/mass is always conserved during the numerical simulation. 

 
Figure 15 Time evolutions of zeroth-order to third-order moments and mean standard deviations 
obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with 
the IED and LCK when compared with analytical solutions. 

Figure 16 shows the dimensionless PNC functions at different particle volumes, v/v0 for different 

MC methods for different fraction functions with the IED and LCK at t/τc = 0 and 0.5 when compared 
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with the analytical solution (Zhao et al., 2005b). In here, t/τc = 0 is the initial particle number 

concentration function. The numerical results obtained from DSMC, MMC, WFMC and SAMWFMC 

methods have an excellent agreement with the analytical solution. The DSMC method has narrower 

particle size range than other MC methods while the particle size range for the MMC method is 

obviously wider due to the introduction of the weight numerical particles. Compared with the DSMC 

and MMC methods, the WFMC and SAMWFMC methods have wider particle size ranges due to the 

occurrence of the larger size particles at the high-end, which have been proved to have contribution to 

the high-order moments. 

 
Figure 16 Dimensionless particle number concentration functions at different particle volumes, 
v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions 
with the IED and LCK at t/τc= 0.5 when compared with analytical solution. 

 
3.6.   Case 6: Initial exponential distribution and quadratic coagulation kernel function 

The initial exponential distribution (IED) and quadratic coagulation kernel (QCK) function are 

also used to validate the computational accuracy of the SAMWFMC method when compared with the 

analytical solution (Zhao et al., 2005b). In this case, N0 = 106 particles/cm3 (Zhao et al., 2005b) and v0 

= 1 (dimensionless) are used. The coagulation kernel, βij = A(vi×vj), where A = 10−6 cm3/s, vi and vj are 

the dimensionless volumes of the two coagulation particles, i and j, respectively. The characteristic 
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coagulation time is defined as τc = 1/(AN0v0
2). It is reported that the critical phenomena of gelation may 

be caused by the quadratic coagulation kernel in this case, but the existing analytical solution is still 

useful for the algorithm validation (Zhao et al., 2005b). 

 
Figure 17 Time evolutions of zeroth-order to third-order moments and mean standard deviations 
obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with 
the IED and QCK when compared with analytical solutions. 

Figure 17 shows that the time evolutions of first four moments (i.e., M0, M1, M2 and M3) obtained 

from different MC methods (i.e., DSMC, MMC, WFMC and SAMWFMC) have a very good agreement 

with analytical solutions (Zhao et al., 2005b). The results of M1 and σM1 obtained from all MC methods 

remain constant during the numerical simulation as shown in Figure 17(b). The SAMWFMC method 

has smaller σM0, σM2 and σM3 than other MC methods. A very good agreement of the PNC functions at 

different particle volumes, v/v0 between the analytical solution and numerical results for all MC methods 

is also found at t/τc= 0.3 in Figure 18, but the differences among these MC methods are also clear. The 

particle size ranges obtained from the WFMC and SAMWFMC methods are still found to be wider than 
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those of the DSMC and MMC methods, which leads to lower stochastic errors in the high-order 

moments. This further demonstrates the significant effect of the fraction functions on the computational 

accuracy in the high-order moments.  

 

 
Figure 18 Dimensionless particle number concentration functions at different particle volumes, 
v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions 
with the IED and QCK at t/τc = 0.3 when compared with analytical solution. 

 

3.7. Computational efficiency 

The computational efficiency of the new SAMWFMC method is evaluated by comparing with 

other studied MC methods. The computational time required for the WFMC method with the HFF in 

each case is regarded as the reference time because the WFMC method with the HFF has been fully 

tested for different cases in Jiang and Chan (2021) and also used for studying soot aerosol dynamics in 

Jiang and Chan (2022). Hence, the corresponding normalized computational times of different cases 

required for all MC methods are listed in Table 1.  
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Table 1    Normalized computational times of different cases for all studied MC methods. 

Case DSMC MMC WFMC SAMWFMC SAMWFMC 

1 0.21 0.65 

    CFF 0.5 2.82 
HFF 1 HFF 1.40 CFF 0.6 2.14 
EFF 1.00 EFF 1.44 CFF 0.7 1.83 

SCFF 1.72 SCFF 2.51 CFF 0.8 1.50 
    CFF 0.9 1.39 

2 0.07 0.45 HFF 1 HFF 1.01 CFF 0.7 1.49 
3 0.17 0.55 HFF 1 HFF 1.19 CFF 0.7 1.32 
4 0.22 0.63 HFF 1 HFF 1.39 CFF 0.7 1.83 
5 0.25 0.62 HFF 1 HFF 1.25 CFF 0.7 1.69 
6 0.30 0.64 HFF 1 HFF 1.22 CFF 0.7 1.47 

Results show that the computational times required for the DSMC method are the lowest among 

all MC methods, the reason is that when the DSMC method is used, the number of numerical particles 

gradually reduces with time due to the occurrence of coagulation events, which lowers the 

computational cost. However, the decrease in the number of numerical particles has a significant 

adverse effect on the computational accuracy. The MMC, WFMC and SAMWFMC methods remain 

the number of numerical particles unchanged during the numerical simulation which can improve the 

computational accuracy but it definitely leads to larger consumption of computational times. As the 

introduction of fraction functions to the WFMC and SAMWFMC methods leads to larger Cij in 

Equation 5 and C0 in Equation 7 but has smaller time step, Δt in Equation 9 than those of the MMC 

method, therefore requiring more computational times. When the fraction function (i.e., HFF, EFF or 

SCFF) is the same, the computational times for the SAMWFMC method are slightly longer than those 

of the WFMC method in each case. The reason is that when compared with the WFMC method, the 

central processing units (CPUs) require more computational cost to deal with the operations of sorting 

and merging numerical particles in the SAMWFMC method. The computational cost required by Case 

1 with and without insertion sort is also evaluated. It is worth noting that if the sorting algorithm (i.e., 

insertion sort) is not used, then a very large statistical noise is obtained and the computational accuracy 

is largely reduced. Hence, only the computational efficiency is discussed here. Numerical results show 

that the computational cost for sorting numerical particles is 1.05 times of that without having insertion 

sort. It implies that the insertion sort is highly computational efficient when dealing with nearly sorted 

arrays. Hence, the finding and merging numerical particles require a slightly more computational cost 
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in the SAMWFMC method when compared with the removing operation in the WFMC method. 

However, considering the high computational accuracy in high-order moments and significant reduction 

in the stochastic error in the particle number concentration, the computational cost of the SAMWFMC 

method is highly acceptable. In addition, the computational time for the SAMWFMC method with the 

CFF significantly reduces when the constant C increases from 0.5 to 0.9, the reason is that the Cij in 

Equation 5 and C0 in Equation 7 become smaller while the time step, Δt in Equation 9 becomes larger. 

As the stochastic errors in different moments (i.e., M0, M2 and M3) are very low and the stochastic errors 

in M1 are always zero due to volume/mass conservation for the SAMWFMC method for the CFF with 

C = 0.5 to 0.9, the choice of the constant, C is mainly dependent on the computational cost. 

4. Conclusions 

A new Monte Carlo method based on sorting algorithm is proposed and developed for solving the 

weighted fraction coagulation process in aerosol dynamics. In the new sorting algorithm-based merging 

weighted fraction Monte Carlo (SAMWFMC) method, three types of fraction functions (HFF, EFF and 

SCFF) are used to validate the computational accuracy and efficiency. Constant fraction functions are 

not applicable to the WFMC method but are also introduced to extend the generality of the fraction 

functions and used to evaluate the reliability of the newly developed SAMWFMC method. A new 

merging weighted fraction scheme is also proposed to ensure that the number of numerical particles 

and the volume of computational domain are constant. Six benchmark test cases are used to fully 

validate the SAMWFMC method by comparing with the existing analytical solutions as well as the 

numerical results of the direct simulation Monte Carlo (DSMC), multi-Monte Carlo (MMC) and 

weighted fraction Monte Carlo (WFMC) methods. The main conclusions are drawn as follows: 

1.  The particle number concentration (PNC) function and the zeroth-order to third-order moments (i.e., 

M0, M1, M2 and M3) obtained from the SAMWFMC method show excellent agreement with analytical 

solutions. As M1 for all MC methods remain constant, their corresponding stochastic errors are always 

zero during the numerical simulation. 

2.  The SAMWFMC method has lower stochastic errors in M0, M2 and M3 than the DSMC and MMC 
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methods. Compared with the WFMC method, the SAMWFMC method does not increase the stochastic 

errors in high-order moments (i.e., M2 and M3) but significantly reduces the stochastic error in the total 

particle number concentration, M0, even though the computational cost of the new SAMWFMC method 

is slightly higher than that of the WFMC method. Furthermore, the numerical results obtained from the 

SAMWFMC method with constant fraction functions show excellent agreement with analytical 

solutions with very low stochastic errors in M0, M2 and M3 and no stochastic error in M1. 

3.  The new SAMWFMC method shows a significant advantage in dealing with weighted fraction 

coagulation process in aerosol dynamics. It also demonstrates that the SAMWFMC method provides 

excellent potential to deal with various fraction functions with high computational accuracy and 

efficiency. 
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