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Embodied artificial intelligence in
ophthalmology

Check for updates
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Peranut Chotcomwongse4, Mingguang He1,5,6 & Danli Shi1,5

Embodied artificial intelligence (EAI) integrates perception, memory, reasoning and action through
physical interaction, enablingmultimodal dynamic learning and real-time feedback. In ophthalmology,
EAI supports data-driven decision-making, improving the precision and personalization of diagnosis,
surgery, and treatment. It also holds transformative potential in medical education and scientific
research by simulating clinical scenarios and accelerating discovery. This perspective highlights EAI’s
unique potential while addressing current challenges in data, interpretation, and ethics, and outlines
future directions for its clinical integration.

Artificial intelligence (AI) has advanced rapidly and is increasingly applied
in healthcare. Traditional AI systems typically rely on data-driven algo-
rithms that operate within fixed computational environments. Although
they have achieved notable success in tasks such as image recognition and
risk prediction, their inability to physically interact with the environment
limits their effectiveness in dynamic clinical settings.

Embodied AI (EAI) represents a new paradigm by integrating AI into
physical entities, such as robots, enabling perception, learning and dyna-
mically interaction with their environments1. Its theoretical foundation
originated in late-1980s and coalesced into the Embodiment Hypothesis,
which emphasizes the core role of physical interaction in cognition2. Unlike
conventional AI models that rely on static datasets, EAI uses real-time
multimodal inputs for context-aware adaptation, enabling it to navigate
changing environments and solve complex real-world problems3. Recent
breakthroughs in large language models (LLMs), vision-language models
(VLMs), and reinforcement learning (RL) further advanced the develop-
ment of next-generation EAI systems, equipping them with “intelligent
brain” particularly valuable for clinical applications requiring personaliza-
tion and responsiveness4,5.

In healthcare, EAI offers promising applications. It can support disease
diagnosis, monitor recovery, and personalize patient care, especially
improving accessibility and efficiency in remote or underserved regions6. In
ophthalmology, EAI holds unique potential due to the field’s demand for
micron-level surgical precision, extensivemultimodal imaging data, and the
widespread use of portable imaging devices. With real-time perception and
adaptive capabilities, EAI can assist in tasks such as multi-modal image-

based diagnosis, surgical planning, intraoperative guidance, and indivi-
dualized treatment optimization. Summarizing the core technologies, cur-
rent development, and existing challenges in ophthalmology is therefore
essential to inform future research and clinical implementation.

This paper provides an introductory guide to EAI in ophthalmology.
Section I outlines the concept and fundamental components of EAI,
including perception, reasoning, action andmemory. Section II explores its
potential applications across clinical care, education, and research. Section
III discusses existing challenges and future directions in this field. By
emphasizing the “intelligent brain” aspect of EAI, we aim to provide valu-
able insights for clinicians and vision researchers engaging with this
emerging technology.

Introduction to EAI
Characteristics and advantages of EAI
EAI addresses traditional AI challenges by endowing virtual agents with the
ability to perceive,move, speak, and interact in simulated environments and
ultimately in the real world. These agents, initially trained in virtual settings,
can seamlessly transfer their learned behaviors to physical robotic systems.

Unlike traditional ophthalmic AI, which depends on large-scale, static
datasets such as images, videos, or text curated from the internet, EAI
emphasizes real-time, embodied interaction with the environment, closely
mirroring human experiential learning. Traditional internet-based AI sys-
tems often struggle to generalize across dynamic clinical contexts due to
their heavy reliance on the quality anddiversity of pre-existing training data.
While EAI systems may still utilize internet connectivity for updates or
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remote computations, their distinguishing strength lies in continuous
interaction with the environment.

In anEAI framework,multimodal sensors integratedwithin intelligent
agents gather real-time sensory data, including visual, tactile, and auditory
signals7–9. Through a closed-loop perception-action cycle, EAI systems
integrate real-time observations with historical knowledge to determine
appropriate action strategies, such as providing diagnostic assistance,
recommending further examinations, or adjusting treatment plans. Fol-
lowing each action, the system evaluates the outcome, compares it with
expected results, and refines future behavior. This iterative loop of sensing,
acting, and learning allows EAI to progressively capture individual patient
characteristics and disease progression, supporting more precise and per-
sonalized medical interventions.

The transformative potential of EAI lies in its capacity to enable real-
time, adaptive ophthalmic care assistants. By tailoring responses to indivi-
dual examination results, EAI can offer immediate clinical support, perso-
nalized treatment guidance, and dynamic patient management. A
comparative summary of traditional AI and EAI-based technologies is
presented in Table 1.

Advancements in EAI
EAI builds on advances across multiple disciplines, including intelligent
algorithms, sensory perception, decision-making, and robotic control10. The
development of EAI systems is inherently interdisciplinary, integrating
insights from neuroscience, psychology, robotics, machine learning, LLMs,
and related technologies. These systems continually evolve to enhance key
capabilities such as perception, language understanding, reasoning, plan-
ning, navigation, and motor execution. At the center of EAI lie four fun-
damental processes: perception, memory, reasoning, and action (Fig. 1).

Perception: enhancing multimodal sensing in medicine
Advanced perception technologies are crucial for EAI systems to recognize
and integrate diverse sensory inputs, such as visual, auditory, tactile, and
even olfactory, from complex environments11.

Convolutional neural networks (CNNs) and transformer-based
architectures demonstrated superior performance in detecting subtle dis-
ease features inmedical images, outperforming traditional image processing
techniques12,13. In ophthalmology, the integration of multimodal data fur-
ther improvesdiagnostic accuracy14–16.Additionally, generativeAI facilitates
data augmentation, enhancing model performance in underrepresented or
rare disease categories. Emerging foundation models and representation
learning offer data-efficient improvements across a range of diagnostic

tasks17–19.Meanwhile, advancements in3Dperception technologies enhance
spatial awareness and enable accurate interpretation of volumetric data
from first-person perspectives20.

Beyond visual input, haptic and auditory perception are increasingly
vital, particularly in surgical settings. EAI systems equipped with these
capabilities can deliver real-time tactile or verbal feedback to surgeons,
enabling robotic systems to adapt dynamically during intricate ocular
procedures and minimize the risk of tissue damage21. Visual navigation,
critical for autonomous systems, combines visual, tactile, and linguistic
information tomap surroundings, recognize obstacles, and respond to voice
commands22. These capabilities are essential for tasks such as indoor navi-
gation and medical procedures.

Memory: facilitating continuous learning and context retention
Memory is essential for EAI systems to operate effectively in dynamic
clinical environments. Unlike static AI models, EAI systems maintain both
short-term and long-term memory to support continual learning and
context-aware decision-making23.

Short-term memory captures recent interactions and transient envir-
onmental changes, enabling respond rapidly to evolving scenarios. In
ophthalmology, this is critical during procedures such as intraoperative
monitoring, where real-time adaptation is essential24.

Long-term memory stores accumulated knowledge from multiple
clinical encounters andhuman feedback, allowingEAI systems to generalize
from past experiences, refine clinical reasoning, and improve treatment
strategies over time25. Integrating long-termmemory supports the continual
adaptation of diagnostic models to evolving patient populations or rare
disease presentations in the target scenario.

The combination of short- and long-term memory provides a foun-
dation for lifelong learning, enabling continuous updates to the model’s
knowledge base without the need for complete retraining.

Reasoning: empowering clinical decision-making
Reasoning is fundamental to the ability of EAI systems to operate in com-
plex and uncertain medical environments. To ensure safe and explainable
decision-making, EAI systems should use advanced techniques (Table 2) to
generate transparent, context-aware responses with real-time multimodal
data process, including imaging, clinical text, and patient feedback.

LLMs and VLMs play a pivotal role in multimodal reasoning, natural
language and visual inputs translation into clinically meaningful actions26.
Techniques such as chain-of-thought (CoT) prompting enhance logical
reasoning by guiding models through step-by-step inferences27, while self-

Table 1 | Comparison between traditional ophthalmic techniques and Embodied Artificial Intelligence (EAI) ophthalmic
techniques

Traditional ophthalmic techniques EAI-enhanced ophthalmic techniques

Data Source Passive recording (manual examination, input by
ophthalmologists)

Active multimodal sensing (intraoperative OCT, eye tracking, etc.)

Information Integration Unimodal or limited multimodal (e.g., OCT and CFP) Multimodal fusion (eye tracking, biomechanics, etc)

Feedback Mechanism Doctor explains results, patient passively receives Device dynamically adjusts exams, interactive with users

Learning Mechanism One-way learning, requires large scale datasets for
retraining

Closed-loop perception-action reinforcement learning

Decision Timeliness Retrospective analysis (minutes) Real-time feedback (milliseconds)

Decision Capability Relies on subjective judgment (affected by fatigue/
experience)

Instant data acquisition and feedback

Adaptability Limited adaptability to novel or rare diseases. Requires extensive training and sensor integration for practical deployment.

Cost Relatively low for standard techniques (e.g., slit-lamp
examination).

Relatively high, but it can reduce human workload in long-term use through
automation.

Clinical application Standardized screening and diagnosis (e.g., DR grading,
OCT analysis)

Personalized treatment assistance (e.g., retinal injections, robotic obstacle
avoidance)

Pros and Cons Well-established, cost-effective, but limited real-time
adaptability.

Enables real-time, data-driven decision-making, but requires high computational
resources and advanced integration.

https://doi.org/10.1038/s41746-025-01754-4 Perspective

npj Digital Medicine |           (2025) 8:351 2

www.nature.com/npjdigitalmed


consistency methods further improve decision reliability by selecting the
most coherent output from multiple reasoning paths28.

Graph neural networks support causal modeling between clinical
variables, facilitating personalized diagnostics and treatment planning29. RL,
particularly when integrated with deep learning, enables EAI systems to
optimize clinical strategies through trial-and-error interactions30. To reduce
dependence on hand-crafted rewards and improve stability, human-in-the-
loop feedback aligns system behavior with expert knowledge and patient-
specific contexts31. These advancements enable continuous refinement of
EAI systems’ reasoning capabilities32–34.

Spatial reasoning is essential for surgical planning and autonomous
navigation. Recent developments in LLM-based spatial reasoning have
reduced navigation errors and supported dynamic, sequential decision-
making35,36.High-level taskplanning tools, suchasProgPrompt andSocratic
Planner, enable systems to decompose clinical objectives into executable
subtasks anddynamically adjust plans basedon environmental feedback37,38.
Frameworks like ISR-LLM further enhance performance in uncertain set-
tings by employing iterative self-evaluation and real-time adaptation39.

Action: closing the perception-decision loop
Action modules convert the outputs of perception and reasoning into
precise, context-aware physical operations, enabling EAI systems to interact
with physical or virtual environment.

Low-level actions are typically direct responses to sensory inputs or
external instructions and are governed by control policy representations,
which encode robotic behavior. An effective control policy balances
expressive capacity required for executing complex tasks with computa-
tional efficiency and adaptability40. By precisely regulating joint positions,
robotic systems can follow predefined motion trajectories with high accu-
racy. Force-feedback mechanisms further enhance safety and precision by
enabling real-time adjustments during physical interactions, maintaining
stable contact with delicate tissues in surgical settings41. These low-level
actions often execute deterministic tasks, such as instrument manipulation

or gaze tracking in ophthalmic devices. Vision-language-action models
extend this capability by integrating sensory perception withmotor control,
facilitating real-time intraoperative adjustments in response to dynamic
changes42.

High-level actions integrate outputs from memory and reasoning
modules, often leveraging LLMs, RL, or hybrid strategies. Advanced plan-
ners such as EmbodiedGPT and LLM-Planner synthesize environmental
and clinician inputs to generate adaptive, context-aware action sequences43.
These approaches reduce dependence on exhaustive pretraining and
improve flexibility, especially in high-stakes applications such as retinal
repair and intraocular laser surgery42,44.

Application of EAI in Ophthalmology
Emerging AI technologies have already been applied in the diagnosis and
treatment of ophthalmic diseases45–47. With the rise of EAI, its potential
applications in ophthalmology are drawing attention, including disease
screening and diagnosis, surgical assistance, support for the visually
impaired, medical education, and clinical research (Fig. 2).

EAI in clinical applications
Diagnosis and screeningof eyediseases. The global aging population
has led to a rising prevalence of vision-threatening conditions such as
diabetic retinopathy, glaucoma, age-related macular degeneration, and
cataracts48. Early detection through population-based screening is critical
to preserving vision and improving long-term outcomes.

Recent applications of deep learning algorithms in eye disease
screening have achieved high accuracy49. However, large-scale imple-
mentation remains limited by the need for skilled personnel and the asso-
ciated costs50,51. EAI holds promise for autonomous screening, minimizing
human intervention. For example, EAI systems can automatically acquire
OCT images and interpret them using integrated AI algorithms52, facil-
itating scalable, rapid, and cost-effective screening50. Low-cost, portable
devices are also emerging, such as the lightweight fundus camera for self-
examination53, and the TRDS system, which combines a deep learning
model with a handheld infrared eccentric photorefraction device to deliver
refraction measurements comparable to tabletop autorefractors under
varied lighting condition54. These tools are especially valuable in under-
served regions, including rural, mountainous, high-altitude, and conflict-
affected areas, where routine screening is logistically challenging.

In addition, EAI can generate automated referral recommendations in
primary care and non-ophthalmic settings55,56. For instance, the RobOCT-
Net system integrates AI and robotics to detect referable posterior segment
pathologies in emergency departments with 95% sensitivity and 76%
specificity56. Similarly, the IOMIDS platform combines an AI chatbot with
multimodal learning to support self-diagnosis and triage based on user
history and imaging data57. These systems show promise for at-home
monitoring and broader community-level screening.

Future EAI systems are expected to incorporate LLMs to facilitate
natural, human-like interactions, improving user trust and accessibility58–64.
LLM-powered chatbots could allow patients to query symptoms before or
after appointments, serving as cognitive engines to improve EAI’s cap-
abilities in environmental understanding, decision-making, and multi-
modal information integration60–63.

Assistant in ophthalmic surgery. Various surgical robots have been
utilized to assist in ophthalmic procedures, including vitreoretinal sur-
gery, cataract surgery, corneal transplantation, and strabismus surgery45.
Robotic assistance can improve surgical precision by mitigating the
effects of physiological hand tremor65. However, current surgical robots
usually require operator control or supervision, and lack the ability to
make autonomous decisions66.

By integrating surgical robotswith real-time intraoperativemonitoring
techniques, such asOCT, fundusphotography, and surgical video, alongside
AI technologies likemultimodal largemodels, EAI can enhance the ability to
perceive and interpret the surgical environment in real time. For instance,

Fig. 1 | The core process of embodied artificial intelligence (EAI). EAI interact
with environments through physical embodiment, integrating perception, memory,
reasoning, and action to achieve autonomous learning and adaptive decision-
making. The graphic was made with assets from Freepik.com.
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Nespolo et al. developed a surgical navigation platform based on YOLACT
++, capable of detecting, classifying, and segmenting instruments and
tissues, achieving high-speed processing (38.77–87.44 FPS) and high pre-
cision (AUPR up to 0.972)67. Another study used a region-based CNN to
analyze video frames in real time, locating the pupil, identifying the surgical
phase, and providing real-time feedback during cataract surgery68. This
system achieved area under the receiver operating characteristic curve
values of 0.996 for capsulorhexis, 0.972 for phacoemulsification, 0.997 for
cortex removal, and 0.880 for idle phase recognition. Although these studies
donot fully represent EAI systems, they provide crucial references for future
EAI development. EAI can leverage similar CNN structures to enhance the
environmental understanding and use real-time instance segmentation
models for support surgical decision-making.

EAI has the potential to further improve the accuracy and safety of
ophthalmic robotic surgery. Intelligent robotic systems can assist in per-
forming delicate ophthalmic procedures like subretinal injections69–71.
Furthermore, AI-based video analysis systems can monitor the movement,
position and depth of surgical instruments,minimizing accidental collisions
with ocular tissues and improving surgical safety72. For example, Wu et al.
introduced an autonomous robotic system for subretinal injection that
incorporates intraocular OCT with deep learning-based motion prediction
to enable precise needle control even under dynamic retinal conditions73. In
terms of autonomy, Kim et al. proposed an imitation learning-based navi-
gation system that learned expert tool trajectories on the retinal surface,
achieving sub-millimeter accuracy and maintained robustness under
varying lighting conditions and instrument interference74. More recently,

Table 2 | Summary definitions of technical terms

Abbreviation Full term Definition

CNN Convolutional neural network A deep learning architecture specialized in processing grid-like data (e.g., images) via convolutional layers for feature
extraction.

LLM large language model A type of AI model trained on vast text corpora to generate, comprehend, and manipulate human-like language.

VLM Vision-language model A multimodal AI system that jointly processes visual and textual data for tasks like image captioning or visual questions
and answers.

RL Reinforcement learning A machine learning paradigm where agents learn optimal actions through trial-and-error interactions with an
environment, guided by rewards.

CoT Chain-of-thought A reasoning framework that prompts LLMs todecomposeproblems into intermediate steps, enhancing logical inference.

GNN Graph neural network A neural network designed to operate on graph-structured data, capturing dependencies via message passing
between nodes.

ISR-LLM Iterative Self-Refined LLM An LLM variant that iteratively refines its outputs through self-evaluation or external feedback loops.

Fig. 2 | Applications of embodied artificial intel-
ligence (EAI) in ophthalmology. EAI-driven sys-
tems in ophthalmology encompass three domains:
clinical application, medical education, research.
The graphic was made with assets from
Iconfinder.com.
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RL and imitation learning agents trained on intraoperative imaging data
have enabled robots to autonomously perform tasks during the incision
phase of cataract surgery. By incorporating surgeon’s actions and pre-
ferences into the training process, thesemodels enable the robotic system to
adapt to individual surgical techniques and personalize procedural
execution75. These findings collectively represent important steps toward
greater autonomy and deeper integration of EAI in ophthalmic surgery.

Embodied navigation for the visually impaired. It is predicted that 61
million people will be blind and 474 million will experience moderate or
severe visual impairment by 205048. Navigation for the visually impaired
has been a longstanding challenge. Assistive tools such as guide dogs,
canes, smartphones, and wearable devices can help blind individuals
avoid obstacles, recognize objects, and navigate both indoor and outdoor
environments76. However, the limited availability and lifespan of guide
dogs are insufficient to meet global mobility needs. Traditional assistive
devices also fall short, as they lack adaptability and the ability to learn
from users or changing environments.

Various intelligent technologies can be integrated into EAI to enhance
current navigation tools for the visually impaired. For instance, intelligent
robots and special canes are anticipated to providemore effective navigation
assistance77,78. LLMs can support EAI in complex environmental perception
and provide decision, improving environmental understanding, path
planning, and dynamic adjustment22. EAI can also interact with the users
through tactile feedback, pressure sensing, or voice recognition systems. For
example, cane-based force perception systems enable bidirectional inter-
action, allowing robotic guides to lead users by moving forward or turning,
while users can adjust the robot’s walking speed with push or pull gestures.
Compared to conventional assistive technologies, EAI-based solutions
provide greater intelligence, personalization, and adaptability by con-
tinuously learning from user feedback and behavior. These systems can
respond in real time to dynamic and unpredictable environments, enhan-
cing navigation safety and improving overall user experience byminimizing
the need for manual adjustments or external technical support.

Beyond navigation, EAI can assist visually impaired individuals with
daily activities suchas cooking, eating, anddressing, thereby enhancing their
independence79. It can also monitor the environment and track user
movements to prevent falls80. Additionally, EAI can support the manage-
ment of chronic eye diseases by enabling home-based visual acuity mon-
itoring and assisting with reminders and administration of eye drops. By
integrating intelligent health chatbots81, EAI is expected to engage in more
natural, human-like communicate with visually impaired users, helping to
alleviate their negative emotions and promote mental well-being.

EAI in medical education
For patients, intelligent agents have been employed inmedical consultations
and nursing education82. However, traditional internet-based AI interac-
tions rely solely on text or voice, lacking the nuances of body language and
emotional expression. EAI enables the development of intelligent agents
within immersive 3D simulators, enhancing environmental perception and
conveying emotions through facial expressions, voice modulations, and
other channels. These embodied agents can provide more engaging and
human-like interactive, potentially improving patients’ participation in
disease management. In addition to interactive support, EAI can assist
patients in self-monitoring disease activity, providing valuable data for
follow-up and clinical decision-making. For instance, Notal Vision Home
OCT (NVHO) enables patients with neovascular age-related macular
degeneration to perform daily retinal imaging at home. The acquired scans
are analyzed by AI-based software to detect and quantify macular edema,
achieving over 94% concordance with expert human grading83. Addition-
ally, a robot-mounted OCT scanner has been developed to image free-
standing individuals from a safe distance without the need for operator
intervention or head stabilization. Although current resolution remains
limited, this approach shows potential for future at-homemonitoring of eye
diseases52.

Medical students can interact with EAI that simulates ophthalmic
patients, improving their skills in history-taking, physical examination, and
clinical communication while increasing their learning engagement84.
Besides, EAI can also be applied to ophthalmic surgical training. Deep-
Surgery, an AI-based video analysis platform85, provides real-time super-
vision during cataract surgery and demonstrated expert-level evaluation
performance (kappa 0.58–0.77). When integrated with robotic systems, it
can futher assist novice ophthalmologists by guiding surgical steps and
alerting them to incorrect operations, facilitating the acquisition of stan-
dardized and efficient cataract surgical techniques.

EAI in medical research
EAI holds potential to transform research in ophthalmology by enabling
automation and large-scale data analysis. Traditional research processes are
often slow and resource-intensive, requiring repetitive tasks such as dosage
testing, patient monitoring, andmanually data collection. EAI can improve
efficiently by automating these tasks, delivering precise outcomes, and
accelerating the development of new treatments and drugs. High-
throughput screening powered by EAI allows simultaneous testing of
multiple variables, further enhancing research productivity. Additionally,
somebiological experiments that require skilled operators can be performed
remotely through robotic arms, expanding the capabilities of research
laboratories86.

Although no EAI systems specifically designed for ophthalmic drug
developmenthavebeen reported todate, recent advances inotherfieldshave
demonstrated transferable frameworks and inspiring potential. A-Lab, an
autonomous platform for novel material synthesis, automates sample
transfer with robotic arms, generates initial synthesis recipes using a natural
language processing model, and employs active learning for a closed-loop
optimizationmechanism87.Within 17 days, it achieved a 71% success rate in
synthesizing 41 novel materials, significantly accelerating the materials
discovery process. Similarly, in protein engineering and organic synthesis,
the SAMPLEplatform integrates intelligent agents, protein design, and fully
automated robotic experimentation to enable autonomous protein
engineering88. It successfully accelerated the discovery of thermostable
enzymes by iteratively refining its understanding of sequence-function
relationships. These interdisciplinary explorations not only validate the
effectiveness of EAI in automating scientific research but also offer valuable
insights for potential applications in ophthalmology, particularly in drug
screening, disease modeling, and therapeutic optimization.

Challenges and future directions
The development of EAI in ophthalmology faces several challenges. At the
data and algorithm level, there are difficulties in acquiring large-scale, real-
world interactive datasets and ensuring data representativeness. In terms of
system capabilities, EAI struggles with understanding complex environ-
ments and integrating specialized ophthalmic medical knowledge. Fur-
thermore, existing evaluationmetrics are inadequate for assessing real-time,
interactive AI systems. Lastly, ethical concerns, including privacy, informed
consent, accountability, AI bias, and health equity, remain significant.

Training EAI algorithms typically requires the collection and proces-
sing of large amounts of interaction data from real-world environments,
which is often costly and resource-intensive. Moreover, it remains chal-
lenging for collected datasets to comprehensively capture the complexity
and variability of real-world scenarios. While database sharing may help
alleviate the data shortage, it raises ethical concerns, particularly regarding
privacy protection. Interaction with virtual simulation environments offers
a promising approach to accelerate EAI development89. However, it is
essential to recognize that real-world environments are oftenmore complex
and unpredictable than their simulated counterparts.

Currently, EAI faces several critical challenges which limit its clinical
utility. One major challenge is its insufficient ability to interpret complex
and dynamic environments, which may lead to delays in decision-making
and task execution90. Furthermore, addressing these challenges in oph-
thalmology requires a profound understanding of specialized medical

https://doi.org/10.1038/s41746-025-01754-4 Perspective

npj Digital Medicine |           (2025) 8:351 5

www.nature.com/npjdigitalmed


knowledge61. Future research should prioritize the development of adaptive
and scalable embodied agent architectures to improve generalization cap-
abilities. In addition, expanding the medical knowledge base within EAI is
essential to ensure its accuracy, safety, and reliability in ophthalmic practice.

Research on EAI in ophthalmology remains in its early stages. Most
studies primarily evaluate the performance of AI-based medical devices in
clinical applications with traditional performancemetrics, such as accuracy
and sensitivity. However, given that EAI systems involve real-time inter-
action with the environment, their assessment requires more comprehen-
sive and multidimensional protocols. Future research should consider
adapting existing evaluation benchmarks for ophthalmic LLMs and robotic
systems while incorporating the unique characteristics of EAI91–93.
Expanding assessments beyond static data to include interactive scenarios
will significantly facilitate the establishment of a standardized and holistic
evaluation framework for ophthalmic EAI94.

AI bias and fairness are critical concerns in the application of EAI in
healthcare. A lack of diversity in training data, such as in gender, age,
ethnicity, or geographic distribution, may lead to degraded performance in
certain populations, potentially exacerbating existing health disparities95,96.
To promote fair and inclusive healthcare, it is imperative to adopt bias
mitigation strategies and develop data governance frameworks that
emphasize diversity and transparency. Furthermore, healthcare profes-
sionals must remain vigilant against automation bias and be prepared to
critically evaluate and override AI-generated outputs when necessary.

Ethical and regulatory challenges in EAI are becoming increasingly
prominent. Compared to traditional AI systems, EAI require more extensive
evaluation and stricter regulation oversight. For example, the use of surgical
robots in ophthalmic procedures introduces additional risks related to robot
malfunctions97.WhenEAI is involved indiseasediagnosis, treatmentdecision-
making, or medical education, it is crucial that its outputs remain objective,
clinically relevant, and demonstrate humanistic care. To solve these issues,
autonomous smart devices intended for clinical use shouldobtain appropriate
regulatory approval, such as FDA or CE certification, with regulatory stan-
dards tailored to their classification98,99. FDA employs the “Levels of Autono-
mousSurgicalRobots” (LASR)classificationsystem,whichcategorizes robotic
autonomy from Level 1 (robot-assisted) to Level 5 (fully autonomous)100.
Computer scientists and healthcare professionals need to collaborate to refine
classification criteria and ensure the safe and effective integration of EAI into
clinical practice. In addition to technical oversight, robust governancemodels
must be established to define accountability for clinical outcomes. In cases of
errors or adverse events occur involving EAI systems, it remains unclear
whether responsibility lieswith developers, healthcare providers, or deploying
institutions. Therefore, clear legal and ethical accountability frameworks are
urgently needed. Furthermore, developers should incorporate explainability
and human-in-the-loop mechanisms into EAI systems to enhance transpar-
ency, reliability and trust in clinical environments.

Lastly, privacy protection and informed consent present additional
complexities in EAI systems101,102. These systems often require real-time
collection and processing of continuous multimodal data, including facial
images, physiological parameters, and environmental information. How-
ever, the traditional model of “specific and explicit” consent is insufficient
for the highly dynamic data environments associated with EAI systems.
Therefore, a tiered consent framework should be established, distinguishing
between physiologic data that requires strict authorization and environ-
mental interaction metadata that can be broadly authorized. Moreover,
adopting a dynamic consent process which allows patients to modify or
withdraw their consent at any time would better respect patient
autonomy103. Ensuring that patients make informed decisions based on a
clear understanding of the EAI system’s functions, related risks, and their
rights is an important step toward achieving ethical and responsible AI
development.

Conclusion
Unlike traditional Internet-based AI, EAI is characterized by real-time,
context-specific interactions. EAI integrates multidisciplinary approaches

and leverage its physical embodiment to interact with the environment
through real-time perception, reasoning, and action, enabling self-learning
and autonomous decision-making. Although still in its early stages, EAI
holds significant promise in ophthalmology, with potential applications
spanning rapid multimodal screening, precise surgical navigation, assis-
tance for visually impaired individuals, personalizedmedical education, and
efficient medical research. However, the implementation of EAI still faces
challenges related to data acquisition, system architecture, and clinical
integration. Future developments should focus on enhancing adaptability
and decision-making, while also ensuring safe and responsible deployment
through regulatory and ethical frameworks.
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