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Abstract: Flow past one or multiple bluff bodies is almost ubiquitous in nature and industrial
applications, and its rich underlying physics has made it one of the most typical problems in fluid
mechanics and related disciplines. The search for ways to control such problems has attracted
extensive attention from both the scientific and engineering fields, as this could potentially bring
about benefits such as reduced drag, mitigated noise, suppressed vibration, and enhanced heat
transfer. Flow control can be generally categorized into passive and active approaches, depending on
whether there is an external energy input to the flow system. Active control is further divided into
open-loop approaches and closed-loop approaches, depending on whether the controller depends on
feedback signals extracted from the flow system. Unlike in many other applications of passive flow
control and open-loop active flow control, theoretically advantageous closed-loop controls are quite
rare in this area, due to the complicated features of flow systems. In this article, we review the recent
progress in and future perspectives of flow past a single or multiple bluff bodies using model-free
closed-loop control so as to outline the state-of-the-art research, determine the physical rationale, and
point to some future research directions in this field.

Keywords: active flow control; flow past a bluff body; machine learning

1. Background

Flow past a single or multiple bluff bodies is among the most typical flow types of fluid
mechanics and is almost ubiquitous in nature and engineering applications [1,2]. In general,
bluff bodies produce a stronger separated flow, have a broader wake with low pressure
and complicated vortical structures, and have higher drag compared with streamlined
bodies. Extensive studies have been carried out, using theoretical, computational, and
experimental approaches to explore the very rich physics of such flows, including flow
transition, flow instability, flow separation, and diverse vortical structures, as well as to
provide engineering solutions [1-4]. Taking the flow past a finite-length circular cylinder
with one free end and one fixed end as an example, as shown in Figure 1, very complicated
flow features can be observed, such as the horseshoe vortex that appears in proximity
to the fixed end, tip vortices, shear layers, an alternately shedding Kdrmdn vortex street,
and time-mean vortices [5,6]. These flow features exert complicated forces on the bluff
body, which play a crucial role in engineering applications. For instance, in the case of an
underwater vehicle, reducing hydrodynamic drag not only saves energy but also improves
cruising speed and range [7,8].

In addition to these pure flow systems, flow past a bluff body is also accompanied
by flow-induced vibrations [9-12], flow-induced noise [13-15], heat transfer [16-18], etc.,
making the problem more complicated and challenging. For example, vortex-induced
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vibration (VIV) is one of the most typical flow-induced vibrations that occurs when asym-
metrical vortex pairs shed from a bluff body that is immersed in a uniform flow and is
elastically mounted [9,11]. For different combinations of vibration amplitude and wave-
length, the phase diagram (Figure 2) shows diverse wake patterns, where vortex shedding
and structural motion are synchronized; these are categorized as the “mS + nP” mode. In
this mode, during one vibration cycle, m single vortices and n vortex pairs are shed from
the vibrating body and convect downstream [9]. In many engineering scenarios, VIV and
other flow-induced vibrations are often unwanted, as they can induce mechanical fatigue
or even structural damage [12,19]. Conversely, the mechanical energy that is generated can
also be harnessed and exploited as green energy.

The noise generation and radiation accompanied by flow past a bluff body are also
a key issue [13,15,20]. As reviewed and summarized by [13], fluctuations at the wall,
viscous shear stresses at the wall, and turbulent velocity fluctuations are identified as
the apparent sources of boundary-layer noise, which are closely related to the near wake.
Figure 3 demonstrates the far-field dilatation of flow past a circular cylinder at Re = 3900
and Ma = 0.4, as well as the near-field wake [20]. It is straightforward to note that
sound pressure waves are closely related to vortex shedding. In laminar cases, noise is
primarily generated by vortex formation and shedding, where a negative pressure pulse
is produced on one side of the cylinder surface from which a vortex is shed, while a
positive pressure pulse is produced on the opposite side [21]. In turbulent cases, the
mechanism becomes more complex, involving the effects of turbulent fluctuations [15,20].
The generation and propagation of noise play a significant role in the field of aeronautics,
where environmental noise is a key factor influencing passengers’ experience [15]. Flow-
induced noise is particularly important for underwater vehicles, as it reduces the signal-to-
noise ratio of communication and navigation devices that primarily rely on sound, thereby
increasing the likelihood of detection.

Tip vortex structures

Free end

Cylinder

Kéarmén vortex
formation
Shed Karman
vortices

Shear layer

Boundary layer
separation on cylinder

Figure 1. Schematics of flow features past a circular cylinder with one free end and the other end
mounted on the wall. This figure is reproduced from the work of Sumner [5], with permission.
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Figure 2. Map of vortex synchronization patterns of vortex-induced lateral (cross-flow) vibrations of
a circular cylinder in a uniform stream. This figure is reproduced from the work of Williamson and
Roshko [9], with permission.
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Figure 3. Instantaneous snapshots of flow past a circular cylinder in the turbulent regime: (a) far-field
dilatation field, and (b) near-field wake and dilatation field. This figure is reproduced from the work
of Li et al. [20], with permission.

Controlling flow past a bluff body can provide many benefits, such as drag reduc-
tion, noise mitigation, and vibration suppression [22,23]. Control strategies can generally
be categorized into two main types: passive approaches and active approaches [3,12,22,24].
In recent years, as technologies such as micro-electro-mechanical systems (MEMS) have
been developed [25], many advanced actuators have been invented [26], including blow-
ing/suction jets, synthetic jets, sweeping jets, pulse jets, plasma actuators, and rotating
rods. A properly chosen actuator can yield significant control effects. For example, Dong
et al. [27] used the windward-suction-leeward-blowing (WSLB) actuator and successfully
eliminated the Kdrman vortex street. The pulse jet modulated by Abdolahipour et al. [28]
can use both high and low frequencies [29], which can then control flow past an airfoil in
a highly deflected flap and at high angles of attack [30], as well as controlling the vortex
shedding [31]. Mirzaei et al. [32] also proved that the plasma actuator is efficient in control-
ling the vortex shedding. However, even with well-designed and manufactured actuators,
it is often challenging to exert the precise amount of forcing needed to mediate the flow
dynamics and achieve optimal performance [26].



Actuators 2024, 13, 488

40f19

Closed-loop flow control exerts a certain amount of energy on the flow system in a
self-adaptive manner, according to the feedback signals sampled from the dynamically
varying flow system and the adopted controller [33]. In scenarios where the flow system is
linear, weakly linear, or moderately linear, a linear control design can usually be utilized
[33,34], such as optimal control methods including the linear—quadratic regulator (LOR)
and linear—quadratic-Gaussian (LQG) method. Researchers have also developed methods
that rely on a model reduction in the flow systems [35,36], such as flow control methods
based on proper orthogonal decomposition (POD), dynamic mode decomposition (DMD),
resolvent analysis, etc. In contrast, there are also model-free methods of designing the
controller that are independent of the mathematical modeling of the flow system, instead
relying on methods such as parameter tuning or optimization or data-driven dynamic
optimization. In the engineering field, flow systems always share nonlinear and high-
dimensional features; for example, a turbulent flow and separation flow. Therefore, even
though there are many successful examples of closed-loop flow control, designed using
rigorous mathematical models, there is still an urgent demand for a general solution for
closed-loop control that is effective, efficient, and robust, representing an ongoing research
challenge [23,33].

It is thus worth reviewing previous studies in which researchers apply model-free
closed-loop control strategies to address specific problems related to flow past a bluff
body, especially the key elements involved therein, such as the control method, the control
objective, the sensors, and the actuators. It would be interesting to lead readers to further
consider what can one expect from closed-loop AFC, such as an excellent control perfor-
mance or physical insights. It is also necessary to mention that, with the rapid development
of machine learning, two quite promising ideas and effective tools, such as genetic pro-
gramming (GP) and reinforcement learning (RL), were provided to guide the closed-loop
AFC in a data-driven and model-free manner. These have attracted extensive attention in
the field of fluid mechanics, especially from researchers working on flow control [37-40].
Reviewing the research cases and emerging trends can help to identify existing problems
in this specific field and future perspectives. In the remaining sections of this manuscript,
we categorize the current model-free closed-loop control into four types, i.e., model-free
PID control, GP-based control, RL-guided control, and cluster-based control. In Table 1,
some examples of model-free and closed-loop control strategies are summarized, including
their methods, objectives, and the sensors and actuators they utilize.

Table 1. An overview of the methods and typical applications of closed-loop control of flow past a
bluff body.

Method Objective Sensor Actuation Reference
Stabilize wake Transverse velocity Synthetic jets Park et al. [41]
Reduce vortex s.trength Veloc1.ty and vibration Piezoelectric ceramic Zhang et al. [42]
and suppress vibration displacement actuators
Mitigate lift fluctuations Lift Self-rotation Lu et al. [43]
Reduce noise Lift Self-rotation Du and Sun [44]
. Spanwise-averaged . L
PID control Stabilize wake velocity Blowing/suction jets Yun and Lee [45]
Suppress vibration Transverse velocity WSLB jets Wang et al. [46]
Vibration

Mediate vibration

Suppress vibration
Suppress vibration
Suppress vibration

displacement/velocity
Vibration velocity
Lift
Vibration displacement

Self-rotation

Damping force
Self-rotation
Control force

Vicente-Ludlam et al. [47]

Song et al. [48]
Hasheminejad et al. [49]
Rabiee and Esmaeili [50]
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Table 1. Cont.

Method Objective

Sensor

Actuation

Reference

Mitigate separation

GP-based control

Skin friction

Active vortex generator

Debien et al. [51]

Reduce drag Wall pressure Pulsed jets Lietal. [52]
Stabilize wake and velocity Self-rotation Raibaudo et al. [53]
reduce drag
Stabilize wake and Velocity Self-rotation Raibaudo and

reduce drag

Martinuzzi [54]

Suppress vibration Vibration displacement Blowing/suction jets Ren et al. [55]
Reduce drag Velocity Blowing/suction jets Castellanos et al. [56]
Reduce drag Velocity array Blowing/suction jets Rabault et al. [57]
Reduce drag Velocity array Blowing/suction jets Ren et al. [58]
Reduce drag Velocity array Blowing/suction jets Paris et al. [59]

Suppress vortex . . S .
shedding Velocity array Blowing/suction jets Li and Zhang [60]
Reduce drag Velocity array Blowing/suction jets Varela et al. [61]
Mitigate lift Velocity array Self-rotation Zhao et al. [62]
Reduce drag Wall pressure Blowing/suction jets Wang et al. [63]
Mitigate lift Velocity array Self-rotation Ren et al. [64]
Reduce drag Wall-pressure Blowing/suction jets Chen et al. [65]
RL-guided control Achieve ;}e]:ﬁ%dynamm Velocity array WSLB jets Ren et al. [66]
Reduce drag Force Rotary rod Fan et al. [67]
Reduce drag Force Rotary rod Wang et al. [68]
Suppress vibration Velocity array Blowing/suction jets Zheng et al. [69]
Suppress vibration Velocity array Self-rotation Ren [70]
Reduce vibration Velocity array Blowing/suction jets Chen et al. [71]
Suppress vibration Sensorymotor cues Self-rotation Ren et al. [72]
Enhance vibration Velocity array Blowing/suction jets Mei et al. [73]
Enhance heat transfer Sensorymotor cues Blowing/suction jets Ren et al. [74]
I Vibration displacement . Lo
Suppress vibration and velocity Blowing/suction jets Zheng et al. [75]
Reduce drag Velocity Blowing/suction jets Castellanos et al. [56]
. Reduce power .
Cluster-based control Control flow separation Force consumption Nair et al. [76]
Reduce drag Velocity field Self-rotation Wang et al. [77]

2. Model-Free PID Control

In classical control theory, controllers are typically designed based on linear assump-
tions. The AFC also follows this principle [34]. PID control is perhaps the most classical
control approach and is extensively utilized in engineering fields. In the closed-loop AFC of
flow systems, the interpretation of PID control differs slightly from that in classical control
theory. In our view, PID control is primarily considered a model-free approach. By tuning
the control parameters, certain control performance can be achieved.

The PID control has been proven to be effective and efficient in controlling flow past a
bluff body. For example, Park et al. [41] applied a proportional control strategy to stabilize
the Kdrmdn vortex street at Reynolds numbers lower than 100, where a pair of synthetic jets
is deployed near the separation point, and the transverse velocity at a selected downstream
position is used to provide feedback signals. With this relatively simple strategy, vortex
shedding is completely suppressed at Re = 60. Zhang et al. [42] performed an experimental
study of PID control for the vortex shedding and vibration of an elastically supported
square cylinder in the turbulent flow regime. They investigated different feedback signals,
including turbulent velocity, structural vibration displacement, and combinations thereof,
showing that feedback from both flow and structural vibrations can remarkably reduce
vortex strength as well as vibration amplitude. Lu et al. [43] applied proportional control
to suppress the transverse lift of a circular cylinder at low Reynolds numbers, where
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the rotational velocity of the cylinder is proportional to the instantaneous lift coefficient
exerted on the cylinder. It was found that the control performance is closely related to
the proportional control parameters, and the optimal control parameters vary with the
Reynolds number. Using the same method but different flow conditions and a different
control objective, Du and Sun [44] applied proportional control to reduce noise in a circular
cylinder at Re = 1000, showing that the noise generated by the cylinder can be reduced
by 10 dB due to the suppression of vortex shedding. Figure 4 shows the instantaneous
vortical structures with and without control. Based on Curle’s acoustic analogy [78], the
noise generated by the solid wall is primarily attributed to force fluctuations. Thus, the
objectives of lift suppression and noise reduction would lead to similar physical attributes.
Yun and Lee [45] applied proportional control to turbulent flow over a circular cylinder
with a similar blowing/suction jet configuration to that in Ref. [41], while the feedback
transverse velocity was averaged along the spanwise direction.

[ =032D 1,=092D

(b)

W,/ D=2239 W ID=219 - 0.04

. 0.02
C.=0945 C.=0324 o

l.=048D I, =0.66D

1,/ D=2589
. =0837

U,/ D=251.0

C.=0443

Figure 4. Instantaneous vortical structures of flow past a circular cylinder at Re = 1000:
(a) uncontrolled case, and (b) a case with proportional control. This figure is reproduced from
the work of Du and Sun [44], with permission.

Controlling the VIV using the PID controller is of great interest. Wang et al. [46]
carried out a systematic parametric study on the effects of proportional and PI control,
where two groups of WSLB actuators are used to mediate the flow dynamics near the
cylinder, and a transverse velocity feedback signal in the near wake is utilized. Within
certain control parameter ranges, VIV can be effectively suppressed. Vicente-Ludlam et al.
[47] studied rotary control to manage the VIV of a circular cylinder in an experimental
environment within a Reynolds number range of 1500 to 10,000. The rotation rate was
made proportional to either the cylinder’s vibration displacement or its vibration velocity,
similar to the concepts of proportional control and proportional-derivative control. Both
control laws resulted in reduced or enhanced oscillations. A recent study by Song et al. [48]
applied PID control to suppress VIV with two degrees of freedom and demonstrated that
PI or PID control can significantly reduce the vibration range in both the streamwise and
transverse directions by 68.4% to 97.1%.

In PID control, determining the control variables is usually a difficult task, especially
when the flow system involves turbulence or fluid-structure interaction (FSI), or when
the controller has multiple inputs and/or multiple outputs (MIMO). In the field of control
theory, there are also problems when the system to be controlled is regarded as a black box
whose transfer function cannot be directly obtained. Feasible solutions include adaptive
control methods, fuzzy control, sliding mode control, and others. Researchers working
on closed-loop AFC have also used this idea. For example, Hasheminejad et al. [49]
applied fuzzy proportional control for the VIV of a circular cylinder under laminar flow
conditions. Three different proportional controllers were studied, all of which outperformed
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the representative open-loop control with the prescribed rotational oscillations. Rabiee and
Esmaeili [50] further applied fuzzy PID control to control the flow-induced vibrations of two
circular cylinders in tandem configuration with the aid of a fuzzy logic system. A schematic
diagram of the coupling framework of the controller and the numerical environment is
demonstrated in Figure 5, where the desired control force is determined using the feedback
signals from vibration displacement.

Because the flow system is nonlinear in nature, while PID control theory is developed
based on linear approximations, the effectiveness and robustness of PID control may
be limited to flow systems with weak nonlinearity, primarily in the laminar regime. In
turbulent conditions, special treatments must be implemented, such as using the spanwise-
averaged sensing signal Yun and Lee [45]. Due to the gap between linear control theory and
nonlinear flow systems, PID control must be systematically studied before being applied in
practical scenarios.

Control System (MATLAB/SIMULINK)

Fuzzy
de Interference
@ System 1 Y y
1 2 Mechanical Model (FLUENT/UDF)
KleDlKIl _____I____ T 0
- f—Lu—] 5.5D [ Ly |
e
Yq1 1 PID Faq u, =0,0u,/dy =0
Controller 1 Upstream Cyl. Downstream Cyl.
Y1I w=Xyu, =¥, u,=Xu,=X,

Fuzzy

Interference
System 2

Kp| Kp| K;

L JIJ auy/ax=0JIi

u, = 0,0u,/dy =0

I
I
I
I x
M | % k21N du,/dx=0
|
I
I
I

Vg2 200 Fas

PID
Y, [

Controller 2
Figure 5. Schematics of the coupling framework between the fuzzy PID controllers and the CFD

model. This figure is reproduced from the work of Rabiee and Esmaeili [50], with permission.

3. Genetic Programming-Based Control

Compared to the aforementioned PID control, control methods that are independent
of prior knowledge of the flow system are attractive, as they can provide a general solution
for closed-loop flow control, especially when addressing the challenging task of modeling
complicated flows and determining appropriate parameters to adjust control performance.
Among these model-free methods, machine learning has attracted increasing attention
from the flow control community. Most machine learning approaches share data-driven
features, making their application in problems in fluid mechanics feasible due to the large
amount of data available from experiments and numerical simulations. The applications of
machine learning in fluid mechanics were reviewed previously [39,79-81].

In this section, GP-based control is reviewed. GP stems from the genetic algorithm
(GA), which is usually used to optimize one or multiple values. In GP, symbolic expressions
are involved in the evolution process, with the aid of the locator/identifier separation
protocol (LISP) language. Because these symbolic expressions can naturally function as
explicit control laws, GP can be used to generate and select the optimal control law, similarly
to the way in which optimal parameters are determined by the GA. Both GP and GA share
an evolutionary algorithm. Here, a group of individuals participate in the natural selection,
and only a few individuals are selected to generate the next generation through crossover,
replication, mutation, etc. Figure 6 shows the mutation of an individual and the crossover
between two individuals Gautier et al. [82].
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Figure 6. An example of mutation of an individual (left subfigure) and an example of crossover be-
tween two individuals (right subfigure). This figure is reproduced from the work of Gautier et al. [82],
with permission.

Gautier et al. [82] were perhaps the first to apply GP to closed-loop AFC, where the
backward-facing step is controlled by blowing/suction jets deployed near the step corner.
Using a similar method and idea as those of Gautier et al. [82], Debien et al. [51] conducted
a closed-loop control of flow over a sharp edge ramp, targeting separation mitigation
and early re-attachment. Active vortex generators were used to mediate the flow, and
downstream skin-friction sensors provided feedback information. Comparisons with the
open-loop control experiments show that the open-loop system utilizes the lock-on effect,
while the GP-based control accelerates shear layer growth with a lower energy. Li et al. [52]
carried out a closed-loop control of flow past the blunt-edged Ahmed car model based
on linear GP. Multiple pulsed jets at all trailing edges were utilized as actuators, which
were also combined with a deflection surface to exploit the Coanda effect. A group of wall
pressure sensors deployed at the rear side was then used to provide feedback signals. In an
unsupervised manner, the linear GP-based control achieved an approximately 22% drag
reduction rate.

Raibaudo et al. [53] performed experiments in which linear GP was utilized to sta-
bilize the wake of a fluidic pinball and reduce drag. The velocities from three hot-wire
sensors were used to provide feedback signals and the constant rotational velocities of three
cylinders were used to mediate the flow dynamics. The results show that the GP-based
strategies reveal unanticipated solutions or parameter relationships. To account for the
effects of unsteady actuation, Raibaudo and Martinuzzi [54] conducted further experimen-
tal studies in which each cylinder of the fluidic pinball was controlled independently and
could vary periodically. The results indicate that the GP-based control was more efficient
than traditional methods at optimizing within a large parametric space and was also more
robust than open-loop control. Ren et al. [55] used the GP to actively control the VIV of a
circular cylinder under lock-in conditions. Figure 7 shows the schematics of the GP-based
control, where the upper module represents the dynamic FSI system and the lower module
represents the GP agent. The converged control law suppresses the VIV amplitude by
94.2% and achieved a 21.4% better overall performance than the best proportional control
at a Reynolds number of Re = 100. In robustness tests across a Reynolds number range
of 100 to 400, the GP-based control law remains highly effective, while the proportional
control, which is suitable for Re = 100, fails the test.
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Figure 7. Framework of the GP-based control for vortex induced vibration control in the numer-
ical environment based on the LBM. This figure is reproduced from the work of Ren et al. [55],

with permission.

In a numerical environment, the evolutionary algorithm typically utilizes hundreds or
thousands of individuals until the control performance converges. Therefore, it is crucial to
employ a computationally efficient simulation tool. For example, in the aforementioned
study by Ren et al. [55], a lattice Boltzmann solver accelerated on a graphics processing
unit device [83,84] is used, allowing for a single case initialized with a fully developed flow
field to be completed in 20 min or less.

In an experimental environment, an individual trial can usually be completed within
just a few minutes, which is more advantageous than the numerical approach. The hard-
ware costs in terms of real-time signal recording and a fast actuation response, as well
as the uncertainties during the experimental study, are other crucial issues that need to
be addressed.

4. Reinforcement Learning-Guided Control

RL is an important branch of machine learning. In RL, an agent interacts with a
dynamic environment, perceives the environment’s state, and learns actions through trial
and error in order to gain a high reward [85]. RL is usually combined with deep neural
networks for decision-making and performance evaluation, and is then referred to as DRL.
RL is applied to environment-interactive tasks such as the game of Go [86], where the
RL agent learns from scratch rather than relying on the human knowledge that AlphaGo
adopts [87]. RL has also been applied to train a simplified glider model to exploit upward
plumes in sunny weather to soar higher [88]. Verma et al. [89] applied RL to train a fish to
swim efficiently. These successes have inspired researchers in the field of fluid mechanics
to tackle the closed-loop AFC problem. Thorough reviews of the use of RL in AFC can be
found in the previous literature [79-81,90,91].

Unlike conventional approaches to constructing a controller, which rely heavily on
prior knowledge of the system, the RL agent does not have any prior knowledge of fluid
dynamics, and is thus regarded as a model-free approach. Diverse RL algorithms and their
associated framework can be applied to AFC [92]. Herein, we use the popular proximal
policy optimization (PPO) [93] as an example. In the interactive framework, effective control
strategies are learned through interactions between the RL agent and the flow-related
environment. Initially, the RL agent interacts with the environment using randomized
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actions. Through trial and error, it learns how to exert a specific action when the system is
in a particular state. Simultaneously, it learns how to predict the long-term reward based on
this state information. The state of the environment can be represented by velocity probes,
wall normal and/or shear stresses, sensory-motor cues in flow-induced vibration problems,
etc. The model’s actions can include adjustable jet velocity, rotary motion, and body force.
During the training, the reward is evaluated and fed back to the RL agent, providing a
baseline for the agent to learn how to assess control performance and encouraging it to
achieve a greater reward. Figure 8 shows the schematics of RL-guided AFC for enhancing
thermal convection from an elastically mounted circular cylinder, which involves the basic
interactive relationship between the RL agent and the flow environment [74]. In this setup,
the agent receives the state of the flow system, determines the action, and judges whether
the current action earns a good reward. The control strategy is updated after sampling a
state—action-reward chain within one episode.

RL agent ) ([ Environment

Policy network State (), ¥, Y 3

®

Action (Uy.,)

>

Reward (Nu)

\\ J

Figure 8. Schematics of RL-guided AFC for enhancing the thermal convection of a circular cylinder
undergoing VIV. This figure is reproduced from the work of [74].

Before being applied to AFC, RL is utilized to maneuver the motion of a gliding bird
to achieve higher altitudes by taking advantage of rising plumes in sunny weather [88], as
well as to guide fish-swimming to exploit wake vortices and save energy [89]. In the more
straightforward applications of RL in AFC, Rabault et al. [57] were perhaps the first to apply
RL to obtain a closed-loop AFC strategy for drag reduction in a circular cylinder confined
to a channel. In this pioneering work, two synthetic jet actuators were deployed at the top
and bottom stagnation points of the cylinder and operated in a one-blowing-one-suction
mode. A group of sensors was placed both around the cylinder and in the wake. The final
converged strategy achieves an approximately 8% drag reduction rate at a fixed Reynolds
number of 100. Ren et al. [58] extended intelligent flow control in laminar situations to
weakly turbulent conditions where the Reynolds number was 1000, and the baseline flow
exhibited many chaotic features. With a similar control setup to that of Rabault et al. [57], an
approximately 30% drag reduction rate was achieved, along with mitigated lift fluctuations.
Moreover, through a sensitivity analysis, it was noted that only a subset of the 151 velocity
sensors play key roles in the converged control strategy. This finding provides a simple yet
promising solution for reducing the number of sensors and optimizing the sensor layout.
Paris et al. [59] applied RL to reduce the drag of a cylinder under laminar conditions while
focusing on the efficiency and robustness of the identified control strategy, and proposed an
improved RL algorithm to optimize the sensor layout. The obtained control strategy was
shown to be robust within a Reynolds number range of [100, 216] and to measurement noise.
Li and Zhang [60] applied RL to suppress vortex shedding from a wall-confined cylinder
by embedding the physical information of the flow into the RL-based control. Global
linear stability and sensitivity analyses based on the time-mean flow and steady flow were
conducted across a range of blockage ratios and Reynolds numbers, which were then used
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to design RL-based control policies that can outperform the gradient-based optimization
method. Varela et al. [61] explored the use of an intelligent AFC of a circular cylinder
over a wide range of Reynolds numbers and identified different control strategies using
DRL as the Reynolds number increased. For Re < 1000, the control strategy was mainly
based on classical opposition control relative to wake oscillation. For Re = 2000, the agent
applied a high-frequency actuation that energized the boundary layers and the separation
zone, further modulating flow separation and reducing drag in a manner similar to that
of the drag crisis. Zhao et al. [62] used DRL-guided AFC to mitigate the lift fluctuations
in a circular cylinder placed in the wake of an upstream, equal-size cylinder in a tandem
configuration. Through an analysis of the flow structures, it was revealed that the learned
policy accelerates the shear layer development in the rear cylinder, subsequently adjusting
its interaction with the wake of the front cylinder. Wang et al. [63] proposed a self-learning
algorithm for reducing drag and mitigating lift fluctuations in a cylinder based on DRL. By
transforming the sensor signals into dynamic features that can predict future flow states,
the performance of RL-guided control can be significantly improved. Ren et al. [64] carried
out intelligent controls aiming to mitigate the fluctuations in a single circular cylinder and
a wake-interfered circular cylinder, respectively. With six feedback velocity signals placed
near the wake, a lift mitigation rate of larger than 90% was achieved for both scenarios.
In addition to the velocity sensors, many researchers used this method to study feedback;
Chen et al. [65] used wall pressure, monitored at the surface of a circular cylinder, and
achieved both drag reduction and lift mitigation for Re € [100,400].

The RL can also be used to realize unconventional AFC objectives. Ren et al. [66]
proposed the concept of hydrodynamic stealth and provided an RL-based solution. In
this concept, five pairs of WSLB jets are used to eliminate the velocity deficit, while a
velocity rake consisting of 33 velocity sensors placed in the near wake provides feedback
signals. Figure 9 shows the learning process, which consists of 1000 episodes. As the
learning proceeds, the wake signature gradually vanishes. Ultimately, the wake signature
disappears, and the downstream velocity profile at a distance of two diameters from the
cylinder becomes almost identical to the clean stream in front of the cylinder.
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Figure 9. Training process of the reinforcement learning guided closed-loop control to achieve
hydrodynamic stealth. Four subplots denote the instantaneous wake patterns and measured ve-
locity profiles at four selected stages. This figure is reproduced from the work of Ren et al. [66],
with permission.

The applications of RL-based AFC in complicated environments, such as turbulent
flows, have attracted considerable attention. Fan et al. [67] demonstrated the effectiveness of
RL in bluff body control through experiments, aiming to maximize power gain efficiency by
adjusting the rotational speed of two small cylinders located parallel to and downstream of
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the main cylinder. By properly defining rewards and designing noise reduction techniques,
the RL agent discovered a control strategy that is comparable to the optimal strategy found
through systematically planned control experiments. Wang et al. [68] considered the canonical
flow past a circular cylinder, whose wake is controlled by two small rotating cylinders. The
trained DRL agent, developed from inexpensive simulations at low Reynolds numbers, is
transferred to cases at Reynolds numbers of up to 1.4 x 10°, leading to successful control
strategies that are feasible for high-Re conditions.

In the aforementioned work [66], the hydrodynamic stealth in the VIV scenario is
also tested, which clearly shows that the VIV is almost fully suppressed alongside an
almost vanished wake signature. It is thus quite natural to apply the RL-guided AFC
to control classical flow-induced vibration problems. Zheng et al. [69] applied RL to
control the VIV of a circular cylinder and made comparisons with an active learning
approach, where a Gaussian process regression surrogate model is used to predict the
VIV amplitude, combined with a Bayesian optimization algorithm for specified control
actions. The RL agent was found to be able to suppress the VIV by 82.7%, outperforming
the active learning approach, which reduced the VIV amplitude by only 28.3%. Ren [70]
studied VIV control using feedback signals consisting of an array of velocity sensors. The
final VIV suppression rate was 89%, achieving a slightly better control performance than
that shown in Ref. Zheng et al. [69] while using far fewer sensors. Chen et al. [71] used
DRL-based AFC to mitigate the VIV of a square cylinder, reducing the vibration amplitude
by 86%, 79%, and 96% for three jet positions deployed at the front, middle, and back sides
of the square cylinder, respectively. Using a state space that consists solely of sensory—
motor cues, Ren et al. [72] employed DRL-guided AFC for VIV control, highlighting the
interpretability of the exploration path. It was found that different state spaces yield
different trajectories, as illustrated in Figure 10. Furthermore, by analyzing the phase
diagram recorded during training, three distinct stages were identified, which can be
interpreted from physical perspectives.
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Figure 10. Trajectories of the (a) mean drag, (b) root-mean-square (RMS) of the vortex force, and
(c) absolute value of the transverse displacement against the AFC forcing strength during training.
Four training processes with different combinations of sensory-motor cues are shown in the four
columns. The scattered points are colored according to the episode number. This figure is reproduced
from the work of Ren et al. [72], with permission.
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In contrast, increasing the VIV amplitude is sometimes advantageous; for example,
Mei et al. [73] applied RL-guided jet control to enhance the energy-harnessing efficiency of
a circular cylinder undergoing VIV. The jets on the cylinder were found to destabilize the
vortex shedding and enhance the VIV, leading to a net energy output increase of 357.63%.
Ren et al. [74] applied RL to enhance the heat transfer from a circular cylinder undergoing
VIV. Unlike the typically adopted state space, which consists of high-dimensional state
representations using velocity feedback signals, this study utilizes the sensory—motor cues
of the cylinder, specifically the cross-flow displacement, velocity, and acceleration. The
learned strategy ultimately achieved a remarkable improvement in the heat transfer rate
of 76.7%.

A reliable flow environment is the basis of successful RL-guided AFC, whether numer-
ical or experimental. The low efficiency of data acquisition and data sampling has attracted
a lot of attention. Until now, most applications using numerical simulations were based on
the finite element method [57] combined with the Python TensorForce package. Developing
the DRL framework with open-source software [94] or commercial software [95] is also
quite constructive for the community. Other approaches, such as LBM [58,66,72] or its
variants [74], coupled with the Python TensorFlow library, also provide powerful solutions
for RL-guided AFC due to the high-fidelity features of the LBM and its superior parallel
efficiency with GPU devices. More recent studies [96,97] provide even more effective
and efficient numerical tools for flow past a bluff body and are capable of simulating the
flow field, structural vibrations, and acoustic field simultaneously. This is believed to
provide more solutions, enabling efficient data acquisition to be achieved using numerical
approaches. Rabault and Kuhnle [98] further proposed an accelerating method utilizing
multiple environments to learn in a distributed configuration. Because the environments
can be simulated in a parallel manner, the learning efficiency can be greatly improved.
Other approaches, such as expert demonstrations that rely on a simplified mathemati-
cal modeling of the system and model optimization [75], also provide very promising
directions to explore.

Comparisons of RL-based control with other existing approaches have also attracted
attention. Pino et al. [99] performed a comparison of GP-based control, RL-guided control,
and global optimization methods, including Bayesian optimization and Lipshitz optimiza-
tion, along with an in-depth analysis. The difference in exploration versus exploitation,
as well as in model capacity and required complexity, were comprehensively illustrated.
Furthermore, the authors point out that the hybridization of these methods for flow control
is a promising field. In the study of Castellanos et al. [56], both the DRL and the linear GP
were applied to control the laminar flow past a circular cylinder, with a few velocity sensors
providing feedback. Straightforward comparisons were provided using this well-designed
setup, which implied that DRL is more robust with respect to its initial conditions and
observation noise while linear GP is more efficient, requiring less sensor data.

Finally, with the emergence of the successful applications of RL-guided AFC in com-
plicated flow systems and the elucidation of more rationales for these successes, it is
anticipated that RL-guided control will become a general and reliable solution for the
closed-loop control of flow past a bluff body and beyond.

5. Cluster-Based Control

Based on the methods from statistical mathematics, as well as a physical understand-
ing of the flow system, other data-driven approaches are emerging, with one of the most
representative being cluster-based control. Cluster-based control stems from cluster analy-
sis, where the feature space is partitioned into groups sharing similar attributes (clusters),
which correspond to coarse-grained characteristic phases in a low-dimensional (typically
two-dimensional or three-dimensional) feature space [76,100]. The system dynamics are
then represented as linear and probabilistic Markov chains, and transitions between clusters
are considered transitions between flow states [76,100]. Active control is then established
on the low-dimensional representations of the flow system in a model-free and relatively
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low-cost manner. The framework of cluster-based AFC for flow past a post-stall airfoil is
shown in Figure 11.

Nair et al. [76] proposed a cluster-based control strategy for the feedback control of
post-stall separated flows past an NACA 0012 airfoil in the turbulent regime, utilizing
a limited number of force sensor measurements to reduce power consumption during
aerodynamic flight. Wang et al. [77] presented a cluster-based control strategy for model-
free feedback drag reduction with multiple actuators and full-state feedback, which was
demonstrated in the case of flow past a fluidic pinball using three flow regimes: symmetric
periodic, asymmetric periodic, and chaotic vortex shedding. The net drag reductions for
these cases amounted to 33.06%, 24.15%, and 12.23%, respectively, highlighting the distinct
advantages of robust control under varying flow conditions.
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Figure 11. Overview of the cluster-based control framework. This figure is reproduced from the
work of Nair et al. [76], with permission.

6. Future Prospects and Challenges

In this article, we reviewed progress in the use of model-free closed-loop control for
flow past a bluff body. From the presented applications, closed-loop control is shown to be
quite promising in effectively and efficiently managing flow past a bluff body. Although
it has attracted attention from multiple disciplines, challenges in closed-loop active flow
control also exist, such as the following:

¢ In numerical approaches, the problem of low-efficiency data acquisition and sam-
pling still needs to be addressed. This area of research is quite promising given the
rapid development of computational algorithms and hardware. For experimental
approaches, due to the uncertainty in perturbed flows and measurement devices, the
need for reliable data acquisition still needs to be addressed. Regarding these efforts,
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it is quite promising to see the increase in the applications of closed-loop control in
realistic scenarios.

The effectiveness of the control performance is always the first priority. With the aid
of advanced control methods, such as machine learning-based approaches, further
improving effectiveness in tasks such as flow past a circular cylinder in the laminar
regime is no longer challenging. However, in complicated situations involving turbu-
lent flow, multiphysics fields, chemical reactions, etc., more efforts are essential. In
our view, machine learning, especially reinforcement learning, is the most promising
approach to provide a general solution to these complicated problems.

Efficiency is a significant requirement due to the demands in the practical engineering
field. Net energy savings are essential when viewing the system as a whole. For
instance, it is usually not a good choice to reduce the drag of an object at the cost of
increased energy consumption.

Robustness is a special and vital topic. For the AFC, robustness involves the control
responses when certain levels of perturbations are applied or when the system condi-
tions are altered. In our view, to achieve better robustness, the process through which
the final control strategy is derived should involve sufficient randomness and/or take
into account a wide range of realistic perturbations.

For data-driven, machine learning-based approaches, the interpretability of the evo-
lution or learning path, as well as the physical rationale behind the final converged
strategy, can be significant obstacles. Elucidating both issues requires knowledge of
statistical mathematics, stability analyses, sensitivity analyses, resolvent analyses, etc.
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