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Emergent facilitation by random constraints in a facilitated random walk model of glass
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The physics of glass has been a significant topic of interest for decades. Dynamical facilitation is widely
believed to be an important characteristic of glassy dynamics, but the precise mechanism is still under debate. We
propose a lattice model of glass called the facilitated random walk (FRW). Each particle performs a continuous
time random walk in the presence of its own random local kinetic constraints. The particles do not interact
energetically. Instead, they interact kinetically with a hopping rate resampling rule under which motions of
a particle can randomly perturb the local kinetic constraints of other particles. This dynamic interaction is
reversible, following a rate restoration rule. A step-by-step reversal of the particle motions exactly restores the
previous constraints, modeling randomness quenched in the configuration space of glass. The model exhibits
stretched exponential relaxation and dynamical heterogeneity typical of glasses. Despite the lack of an explicit
facilitation rule, the FRW shows facilitation behaviors closely analogous to those of the kinetically constrained
models (KCM). The FRW is a coarse-grained version of the distinguishable particle lattice model (DPLM) and
this exemplifies that compatible defect and atomistic models can complement each other in the study of glass.
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I. INTRODUCTION

The understanding of the dominant modes of relaxation
dynamics in glassy materials has been actively debated for
decades [1–7]. Molecular dynamics (MD) simulations are
instrumental in their studies as they provide complete in-
formation on the atomistic details of motions [8,9]. Besides
more realistic all-atom simulations, simplified coarse-grained
models are widely believed to capture essential properties
of glass. Nevertheless, due to the extremely slow dynamics
of glass, long-time relaxation dynamics in MD simulations
at deep supercooling relevant to experimental conditions are
still computationally inaccessible, despite the availability of
equilibrium samples using advanced swap algorithms. The
dominant relaxation dynamics of glass can be hidden behind
vibrational and other liquid-like collective motions which di-
minish at deeper supercooling.

Lattice models play pivotal roles in many branches of sta-
tistical physics [10,11]. Many phenomena can be qualitatively
reproduced and certain characteristic quantities, such as scal-
ing exponents, are in agreement with values from off-lattice
simulations and experiments. Many lattice models for glass
are successful in reproducing key features such as kinetic ar-
rest and dynamical heterogeneity [12,13]. There are however
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great challenges to justify assumptions in most of these mod-
els. In addition, many glassy features may not be readily
reproduced.

The n-spin facilitated model proposed by Fredrickson and
Andersen (FA) [14,15] is one of the first kinetically con-
strained models (KCM) [12]. It is a coarse-grained defect
model of glass. An up-spin represents a defect in the form of
a local region with low particle density. The flipping of a spin
can only be facilitated by the presence of at least n neighbor-
ing up-spins. The dynamical facilitation picture pioneered by
the FA and related models [14–18] has been recently gaining
further support [19,20].

There have been proposals of new lattice models or variants
attempting to better capture the essence of glass [21–25].
In particular, the distinguishable particle lattice model
(DPLM) [21] of glass is defined by particle pair interac-
tions and void-induced dynamics. The DPLM is an atomistic
model in which each particle represents an atom or a
rigidly bounded group of atoms. Voids correspond to miss-
ing particles [26–28]. They are simplified representations
of quasivoids found in glassy colloidal liquids [27] as
motivated by glassy bead-spring polymer simulations [29]
and have also been suggested previously as free-volume
holes in polymer experiments [26]. The physical rele-
vance of quasivoids to glass in general, however, is yet
to be studied. The DPLM demonstrates emergent facil-
itation behaviors and has reproduced an extraordinarily
wide range of kinetic and thermodynamic characteristics of
glass [21,30–39].
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In this paper, we propose a facilitated random walk (FRW)
model of glass. It is a coarse-grained and energetically trivial-
ized version of the DPLM. It is a defect model with particles
corresponding to voids in glass [26–28]. The FRW may open
up a new class of KCM with random constraints, which can
be more readily justifiable than the usual deterministic kinetic
constraint rules [12]. We will explain emergent facilitation be-
haviors in which dynamics are dominated by coupled particle
groups with a group size depending on the constraint density.
The facilitated dynamics in such mobile groups are analogous
to the facilitation rule in the FA model.

The FRW model is a generalization of simpler random
walk models which will first be summarized. Additional rules
specific to FRW will be explained in the next section. Only
one-dimensional (1D) systems will be discussed but general-
ization to higher dimensions is straightforward.

Continuous-time random walk (CTRW). Consider N par-
ticles on a 1D lattice with L sites under periodic boundary
conditions. No exclusion rule is imposed so that any site i
can contain ni = 0, 1, 2, . . . particles. The particle density is
ρ = N/L, which can be varied from 0 to ∞.

For simple CTRW with no kinetic constraint, every particle
can hop to a given nearest neighboring (NN) site with a rate
w0. With two hopping pathways to the two NN sites in 1D, the
combined hopping rate of a particle to an arbitrary NN site is
thus 2w0.

CTRW with quenched constraints. We now impose a dis-
tinct set of local kinetic constraints for each particle by
randomly blocking some of the hopping pathways. Specifi-
cally, particle k hops from site i to an NN site j with a rate
wi jk , given by wi jk = w0 with an unblocking probability q
and wi jk = 0 otherwise. We put wi jk = w jik in order to fol-
low detailed balance. Otherwise, each wi jk is an independent
and quenched random variable sampled at the beginning of a
simulation. For q = 1, simple CTRW is restored. For q < 1,
every particle is locally trapped within a finite well of its
own. With no exclusion principle nor energetic interaction,
particle motions are independent of each other and are trivially
solvable. Randomness in the constraints is quenched in the
real space, i.e., the random constraints follow a time-invariant
function of position for each particle and do not evolve when
particle configuration changes. This type of disorder is more
akin to that for spin glass [40] and is, however, not appropriate
for glass.

The rest of the paper is organized as follows. In Sec. II,
we generalize the simple models above to the FRW model.
Section III explains its exact equilibrium statistics and the
kinetic Monte Carlo simulation algorithm used. In Sec. IV,
we demonstrate standard glassy behaviors of FRW including
stretched exponential relaxations. Section V explains intu-
itively the emergent facilitation mechanism and the resulting
ergodic property. We then conclude in Sec. VI with further
discussions.

II. MODEL

The FRW model is a coarse-grained defect model of
glass, similar to the FA model [14]. Each site represents a
mesoscopic region with, for example, dozens of particles. A
particle in FRW physically represents a defect in the form

FIG. 1. A schematic showing an example of system evolution in
FRW for a lattice of L = 8 sites (gray squares) with N = 5 particles
(colored circles). An arrow (black, gray, or open), occurring with an
unblocking probability q = 0.5, indicates that the particle is able to
hop at rate w0 in the indicated direction. During the period shown,
the red particle is trapped, while the blue and purple particles move
independently of other particles. Starting from the initial configura-
tion (a), the hop of the yellow particle has led to a rate resampling
of the right-hopping rate of the green particle (b). In (c), the reversed
hop of the yellow particle has restored the previous hopping rates of
itself (open arrows) and of the green particle. In (b), (c), possible hops
indicated by gray arrows must be present due to detailed balance.

of a void [27]. Atoms or molecular units in the glass are not
explicitly simulated. All results are averaged over at least two
simulations.

Specifically, the model in 1D is constructed based on
CTRW with random constraints in the absence of particle
exclusion. Similar to the descriptions in Sec. I, we consider a
lattice size L, lattice constant a = 1, total number of particles
N , density ρ = N/L, and occupancy ni = 0, 1, 2, . . . at site i.
As before, the random constraints are such that the hopping
rate wi jk (t ) of particle k from site i to an NN site j depends
on the unblocking probability q and follows

wi jk (t ) =
{
w0 probability q
0 otherwise , (1)

with w0 = 1 and they obey the detailed balance condition

wi jk (t ) = w jik (t ). (2)

For the FRW model, we emphasize, however, that the hopping
rate wi jk (t ) is not quenched but can be reversibly resampled,
i.e., resampled or restored, repeatedly throughout a simula-
tion. The rules for this time dependence are the defining
characteristics of FRW and are defined as follows:

(1) Rate resampling. If particle k hops from site i to j, we
will resample the hopping rate wi jl (t ) = w jil (t ) across bond
i j for all other particles l �= k using Eq. (1).

(2) Rate restoration. After particle k has hopped from site
i to j, if it performs a reversed hop from j to i, we will restore
the previous values of wi jl (t ) = w jil (t ) across bond i j for all
particles l �= k.

Figure 1 shows an example of particle configuration and
evolution.

The resampling rule introduces a form of dynamical inter-
actions in the absence of any energetic interaction. It turns
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the FRW into a correlated-particle model and enables rich
dynamical behaviors. Physically, it models the mechanism
that the motion of particle k, representing a defect, perturbs
the local packing of the glass atoms. This alters the energeti-
cally favorable local hopping pathways of every other defect l .
However, the effect is felt only when l arrives at the perturbed
sites.

On the other hand, the rate restoration rule implements
randomness quenched in the configuration space but not in
the real space. It physically represents that when defect k
reverses its previous hop, the local atomic packing of the glass
is reversed so that the previous local energetically favorable
pathways of every other defect l are restored.

In general, the restoration rule can be applied to any ar-
bitrarily long sequence of hops. If the hops are reversed step
by step in the reversed order, the rates will be step by step
restored. Nevertheless, in a large system, groups of particles
that are well separated at all times should not affect each
other. More precisely, the restoration rule applies to a whole
correlated sequence of hops. It does not require reversing any
other uncorrelated hop at a distance which has no impact on
the rates of hops in the sequence.

The present model does not involve any temperature
explicitly. Nevertheless, the effects of temperature can be
introduced via the unblocking probability q and the particle
density ρ. One expects that as temperature decreases, both q
and ρ decrease.

III. EQUILIBRIUM STATES
AND SIMULATION ALGORITHM

The FRW is a kinetic model with trivial energetics. The
detailed balance condition [Eq. (2)] implies that all accessible
states have identical occurrence probability in an equilibrium
ensemble, implying the same system energy at all states. Fur-
thermore, the model is ergodic in the large system size limit,
as will be explained in Sec. V. As a result, the equilibrium
states of FRW are trivial and can be described exactly as
follows. At equilibrium, all particle arrangements are possible
and are equally likely. To initialize an equilibrium system, we
simply need to put each particle randomly and independently
on the lattice.

We perform FRW simulations using a rejection-free Monte
Carlo algorithm. During a simulation, we continuously keep
track of all unblocked hopping directions with rate w0 of all
particles. At every time step, we randomly choose one of
these hops with a uniform probability. To choose efficiently,
we search a binary tree which dynamically represents all
available hops. Then, the hop is performed and the simulation
time advances by (Mw0)−1 where M is the instantaneous
value of the total number of unblocked hopping directions of
all particles.

A potentially challenging part of the algorithm is related
to the hopping rate restoration rule, which recalls previous
rates after an arbitrarily long hopping sequence is step by
step reversed. To enable such restoration, one could employ
a memory-intensive algorithm that involves saving the history
of all previous states and hopping rates into the computer
memory. However, this method requires a nontrivial data

structure design and a prohibitively large amount of memory
for long runs.

To solve this rate restoration problem, we have developed a
reversible pseudo-random, number-based algorithm so that all
required rates are calculated from random number sequences.
The random number generators thus encode and effectively
store all possible rates. Only the current system state needs to
be directly stored in the computer memory.

The idea of the rate restoration algorithm is as follows. The
FRW system state is primarily characterized by the positions
ik of every particle k. For bookkeeping purposes, we introduce
fictitious internal states �k and �i j of particle k and bond
i j. These internal states are represented by 64-bit random
numbers so that no two states will be accidentally equal in
practical simulations. A hop involves updating �k and �i j

essentially to the next numbers in the pseudo-random number
sequences. At a reversed hop, previous states are obtained by
updating to the previous numbers in the sequences, which
are readily calculable because we adopt reversible genera-
tors. The hopping rate wi jk (t ) is defined as a function of the
instantaneous states �k and �i j so that previous rates can
be readily restored once the previous states �k and �i j are
restored. Using this memory-less algorithm, we are able to run
the simulation for a long time without any memory concerns
while maintaining exactly the rate restoration property. This
algorithm is explained in detail in Appendixes A and B. The
main simulation codes based on these algorithms are available
at [41].

We have extensively tested the reliability of our soft-
ware implementation. In particular, we have checked that
the known equilibrium states are arrived at and maintained
throughout the kinetic Monte Carlo simulations. Furthermore,
a highly nontrivial test is the quantitative verification of an
exact mobility threshold for two-particle systems, as will be
reported elsewhere.

IV. GLASSY CHARACTERISTICS

We now explain the FRW simulation results, demonstrat-
ing typical glassy characteristics.

Dynamical facilitation. Position-time graphs in Fig. 2 il-
lustrate particle motions in equilibrium FRW systems for an
unblocking probability q = 0.5 under different particle den-
sity ρ. In Fig. 2(a), with a low density ρ = 0.05, particles are
mostly isolated and they are all permanently trapped within
small regions. Coupled pairs of particles have movements
confined to slightly wider traps. We will explain in Sec. V
that such permanent trapping is only a finite size effect.

In Fig. 2(b), where the density is doubled to ρ = 0.1, a
mobile group, usually consisting of three particles, traverses
over much of the system and can indeed travel unboundedly at
long time. As the mobile group moves, it picks up, drops off,
or exchanges particles while keeping at least three particles at
all times. When not part of the mobile group, particles are
generally trapped at their respective locations. Importantly,
the drastically higher mobility observed when particles are
coupled together demonstrates an emergent facilitation phe-
nomenon which will be intuitively explained in Sec. V.

Figure 2(c) corresponding to an even higher density
ρ = 0.15 shows more abundant mobile groups. Each group
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FIG. 2. Position-time graphs of particles for lattice size L = 400,
unblocking probability q = 0.5, and density ρ = 0.05 (a), 0.1 (b),
and 0.15 (c). Mobile groups in (b) and (c) each consist of three
particles most of the time. The lack of any mobile group in (a) is
only a finite size effect.

also contains at least three particles. Group sizes fluctuate
due to the close proximity to many other mobile or trapped
particles.

The dominant size of mobile groups in FRW decreases
with the unblocking probability q. To show this, we have
selected values of q where the typical mobile group sizes are
two, three, and four, as plotted in Figs. 3(a)–3(c), respectively.
A different ρ is used in each case to give only one or two

FIG. 3. Position-time graphs of particles for lattice size L = 200,
unblocking probability q = 0.7 (a), 0.5 (b), and 0.35 (c). To reveal
relatively isolated mobile groups, we take density ρ = 0.03 (a), 0.1
(b), and 0.2 (c). Each mobile group usually consists of two, three,
and four particles in (a), (b), and (c), respectively.

mobile groups for clarity. This dependence is explained in
Sec. V.

Plateaus in mean square displacement. We calculate the
particle mean square displacement (MSD) defined as

MSD = 〈|xk (t ) − xk (0)|2〉, (3)

where xk (t ) denotes the position of particle k at time t . Fig-
ure 4 shows the MSD against time for different q and ρ = 0.8.
At long time, the slopes of the lines in the log-log plot are
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FIG. 4. Particle MSD against time t in log-log scales for various
unblocking probability q and density ρ = 0.8.

close to unity, indicating the diffusive regime. Subdiffusive
plateaus, characteristic of glass, appear at intermediate time
at low q. They indicate temporary trapping of particles either
isolated or in small immobile groups as described above. At
long time, most momentarily trapped particles have been re-
peatedly picked up and displaced by the larger mobile groups,
resulting at the diffusive regime. We observe that plateaus are
more pronounced at small q. This reveals stronger particle
trapping and more glassy at small q. More extensive results
also show that a smaller ρ also increases the glassiness. MSD
for ρ = 0.2 showing qualitatively similar features is presented
in Appendix C.

Self-intermediate scattering function. We have measured
the self-intermediate scattering function (SISF) defined as

Fs(k, t ) = 〈eik·(xk (t )−xk (0))〉, (4)

for k = (2π/λ) with λ = 10 [21]. Results are shown in
Fig. 5(a) for different q and ρ = 0.8. As expected of
glassy systems, our data is well approximated by the
Kohlrausch-Williams-Watts (KWW) stretched exponential
function A exp[−(t/τ )β], where A � 1, τ is the structural
relaxation time and β is the stretching exponent. Figure 5(b)
displays a log-log plot of − log(Fs) against t . The approxi-
mately linear regions at large t demonstrate the applicability
of the KWW form. As plotted in Fig. 6, we observe that β de-
creases from 0.86 to 0.37 as q decreases from 0.8 to 0.3. Small
values of β in general indicate slowed dynamics expected of
glass. Results on SISF and β at ρ = 0.2 nevertheless exhibit
more complicated properties and are reported in Appendix C.

Note that because the FRW is a defect model, SISF and
β calculated here may not be directly compared to MD mea-
surements, which are typically particle based. In contrast, this
difference does not apply to the MSD. This is because, under
defect-induced motions, particle MSD only differs from de-
fect MSD by a constant factor which equals the ratio between
particle and defect populations [35].

Diffusion coefficient. We measure the MSD for various un-
blocking probability q and density ρ, and calculate the particle
diffusion coefficient as

D = 1

2d
lim

t→∞
MSD

t
. (5)

FIG. 5. (a) Self-intermediate scattering function Fs against time
t (symbols) in linear-log scales for various unblocking probability
q and density ρ = 0.8. (b) Same data as in (a) plotted as − log(Fs )
versus t in log-log scales. (a), (b) Data is fitted to the Kohlrausch-
Williams-Watts (KWW) stretched exponential function for Fs < 0.9
(lines). Data for q = 0.2 is not fitted as system is only slightly
relaxed.

We use the data regime where the slope in the log-log plot
of MSD versus time is larger than 0.96, which we deem
sufficiently close to 1. Figure 7(a) shows D against q in a semi-
log plot with different ρ. As q is expected to increase with
temperature, we also plot D against 1/q as shown in Fig. 7(b).
The near linear relation resembles an Arrhenius dependence
of D on q, noting that q can be related to temperature as
mentioned above.

V. FACILITATION MECHANISM AND ERGODICITY

Isolated particles are often trapped as shown in Fig. 2(a),
for example. The maximum distance an isolated particle can
travel from its initial position in either direction is bounded
and follows a discrete exponential distribution with a mean

strap = 1

1 − q
− 1. (6)

Including the initial site and noting the two possible directions
of travel, the average trap size Wtrap of an isolated particle is

Wtrap = 2

1 − q
− 1, (7)
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FIG. 6. Stretching exponent β against q from KWW fits of the
SISF in Fig. 5(a).

which is finite for any q < 1.
Therefore, isolated particles are either completely immo-

bile or can only repetitively move within the trap. These
motions are responsible for an initial rise in the MSD when
they start to explore their traps. However, trap boundaries
begin to limit their motions at longer time. This causes par-
ticles to hop repetitively within the trap, resulting in the MSD

FIG. 7. (a) Diffusion coefficient D against unblocking probabil-
ity q (a) and 1/q (b) in semi-log scales for various density ρ.

plateaus as shown in Fig. 4 for small q, corresponding to
narrow traps.

In contrast, particles that are close to each other form
mobile groups. For example, a mobile group consisting of two
particles emerges at q = 0.7 as shown in Fig. 3(a). At this
value of q, all isolated particles are trapped, while coupled
pairs are mostly mobile. The higher mobility of pairs com-
pared to isolated particles clearly demonstrates facilitation
in FRW.

The facilitation mechanism can be intuitively understood
as follows. Assume that particle k is bounded at time t1 by a
barrier bond i j at an average distance strap, i.e., wi jk (t1) = 0.
The rate is quenched only until it is resampled by having
the barrier broken. This is done by having another particle
l hop across the bond i j at time t2 > t1, which triggers a
resampling with an unblocking probability q. If this results at
wi jk (t2) = w0, the barrier is lifted and particle k is untrapped.
Conversely, particle k can also untrap particle l . In general, if
the individual traps of particles k and l overlap spatially, the
pair may be able to continuously untrap each other, resulting
at a mobile pair as observed in Fig. 3(a).

As q decreases, particle pairs become trapped permanently
due to the more abundant constraints as observed in Fig. 3(b),
although the trap size of a pair is in general wider than that
of a single particle. Nevertheless, adding a third particle en-
hances untrapping and hence facilitation, resulting in mobile
triplets. Mobile triplets thus dominate motions as observed in
Fig. 3(b). Similarly, as seen in Fig. 3(c), at an even smaller q,
even triplets are immobile but there are mobile groups each of
four coupled particles.

For any unblocking probability q, our results support that
there is a dominant mobile group size of m∗-coupled parti-
cles. Smaller groups are immobile while larger groups are
less abundant and play a lesser role in the dynamics. As q
decreases so that constraints are more numerous, m∗ increases
because stronger facilitation with more frequent rate resam-
pling is needed for mobility. There is an associated sequence
of mobility transitions as larger and larger groups become
immobile. A quantitative study of these mobility transitions
will be reported elsewhere.

Mobile groups, once existing in a FRW system, survive
permanently. They may merge and split as observed in Figs. 2
and 3, but do not vanish completely. This is because if such
a system could turn into a trapped state, a trapped state can
also evolve into a mobile one by the time-reversal symmetry
guaranteed by the detailed balance conditions. This contra-
dicts the assumption of a trapped state and hence cannot
happen.

Ergodicity of large FRW systems is assumed when de-
riving equilibrium statistics in Sec. III and this will now be
justified self-consistently. We have explained in Sec. III that
particles are randomly distributed with uniform probability at
equilibrium, assuming ergodicity. Due to the random distribu-
tion, for any q > 0 and ρ > 0, a few sites with m∗ particles
must exist initially in a sufficiently large system, where m∗
is the dominant mobile group size. These groups are mostly
mobile and thus some of them must be able to traverse over the
whole lattice at long time, untrapping, exchanging with, and
displacing all particles repeatedly. This justifies the ergodicity
assumption.
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VI. DISCUSSIONS

Emergent facilitation. Neither the facilitation process nor
the dominant mobile group size in FRW is imposed directly
by any rule in the model definition. The motions of particle l
can facilitate the motions of particle k by lifting constraints as
explained in Sec. V. However, it can equally likely inhibit the
motions by installing new constraints. Importantly, as all hops
are reversible, inhibitions are only temporary and particles
can wait until new constraints are reversed before advancing
again. They impose no new permanent confinements and thus
only a minor slowdown. In contrast, facilitation successively
opens up newer configurations, resulting at mobility. There-
fore, facilitation is the emergent predominant impact of rate
resampling, rather than inhibition.

The FRW model is energetically trivial, like most
KCM [12]. However, we are not claiming that energetic
interactions are unimportant in glass. Kinetic constraints,
i.e., wi jk = 0, occurring with probability 1 − q according to
Eq. (1) model energetically unfavorable particle hops. The
FRW assumes that once all barriers with wi jk = 0 are iden-
tified, the constrained dynamics along the energy valleys
can essentially be considered, as a first approximation, a flat
potential energy landscape (PEL). This is sufficient for repro-
ducing kinetic slowdown in glass. However, thermodynamic
quantities such as heat capacity cannot be studied in the cur-
rent energetically trivial form of the FRW model, a situation
similar to that of typical KCMs [42,43].

Relation to the DPLM. The DPLM is a particle model
of glass with void-induced dynamics [21]. Atoms are ex-
plicitly simulated, while voids are modeled effectively by
empty sites. Interesting physics of glass can be reproduced
at low temperatures and low densities of voids [30–39]. It can
thus be conceptually simpler and computationally faster if we
simulate only the voids explicitly in an effective medium of
particles. This has motivated us to define the FRW as a defect
model in which particles correspond to voids in the DPLM
while atoms are not simulated explicitly. In the DPLM with
energetic particle pair interactions, the motion of a void alters
the local particle pairings and hence the PEL experienced
by other voids. This is modeled in the FRW by the hopping
rate resampling rule. On the other hand, the rate restoration
rule in the FRW models the recovery of the system energy in
the DPLM when particle configurations are reversed. These
mechanisms in the DPLM have been motivated in turn by
string interaction and repetition phenomena observed in our
MD simulations [29].

As a coarse-grained version of the DPLM, the FRW can
be simulated much more efficiently. In particular, it can be
simulated very efficiently in 1D, which is not naturally pos-
sible for the DPLM because void-induced motions do not
swap particles in 1D. Dynamics demonstrated by the FRW
in general are qualitatively similar to those of the DPLM. In
particular, the FRW exhibits a diffusion coefficient power law
relating the diffusion coefficient D and the particle density
ρ, fully consistent with that in the DPLM, which will be
explained elsewhere.

The DPLM has been tested extensively against many
glassy phenomena [30–39]. The FRW may inherit many of
these properties. Nevertheless, the present FRW does not

incorporate any particle interaction energy, which dominates
the thermodynamics of the DPLM. As a kinetic model, we
expect that the FRW should be able to reproduce equilibrium
dynamical properties already demonstrated by the DPLM,
such as surface-enhanced mobility in glassy films [39]. In
addition, structural relaxation spectra [44,45] can also be stud-
ied.

It is straightforward to attain a thermodynamic variant of
the FRW by a generalization to include an internal energy
field dependent on the bond states. This will be studied in
the future. Then, it is promising to study many other glassy
phenomena, especially those exhibited by the DPLM, in-
cluding Kavacs paradox [30] and effect [32], a wide range
of kinetic fragility [31], large heat capacity overshoot in
fragile glass [33], characteristic heat capacity of two-level sys-
tems at very low temperature [34], Kauzmann paradox [36],
and fragile-to-strong transition [38]. Nevertheless, due to
simplifications in the FRW, certain features such as diffusion-
coefficient power laws upon partial swap of particles, a
phenomenon demonstrated in both MD and DPLM simula-
tions [35], may not be reproduced because individual particles
rather than defects must be explicitly considered.

Another advantage of the highly simplified FRW is the
possibility of an analytic description. We have reported a local
random configuration tree theory of glass which has been
tested on the DPLM [46,47]. The theory in fact has been
motivated by analyzing the FRW. Essential assumptions in the
theory such as a tree topology of the configuration space and a
bimodal distribution of hopping rates are exact in the FRW by
construction, while they hold approximately for the DPLM. In
addition, stringlike motions are assumed to strongly perturb
the local energy landscape, resulting in a resampling of the
rates of all other strings in a local region. The best fit to DPLM
simulation data in 2D is obtained at a width

√
V = √

12 � 3.5
of these local regions [46]. This means that within a 3.5 × 3.5
local region on a 2D DPLM lattice, voids fully facilitate each
others’ motions by being able to perturb each others’ hopping
rates. Using this as well as another parameter concerning
energy fluctuations and after an analysis of the evolution of the
system configuration in the local region, the particle diffusion
coefficient in the DPLM can be reasonably fitted over a wide
temperature range [46]. We thus suggest that a site in the FRW
roughly corresponds to a region of 3.5 atoms wide. We will
apply the theory to describe the FRW quantitatively in the
future for further testing and improvement of the theory.

Relation to other lattice models of glass. The FRW and
hence also the DPLM most closely resemble the FA model. In
the n-spin facilitation variant of the FA model, one assumes
a facilitation rule that n neighboring spins must be present
before they are allowed to flip [14]. The facilitation behavior
as well as the parameter n are directly imposed. They are
analogous to the emergent property that m∗ particles in the
FRW must be near to each other to form a mobile group,
i.e., n ∼ m∗. The FA model may thus be considered as a
simplified analog of the FRW, taking key emergent facilitation
behaviors in the FRW directly as defining rules. Furthermore,
the facilitation behaviors in the FRW emerge from the more
fundamental hopping rate resampling and restoration rules.
These directly imposed FRW rules are in turn analogous to
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emergent behaviors in the DPLM coming from the even more
fundamental particle-dependent pair interactions [21]. From
the perspective of the parameters, while n in the FA model
is directly chosen, its counterpart m∗ in FRW is an emergent
value depending on the unblocking probability q. In addition,
while q in FRW is directly chosen, its counterpart in the
DPLM can be estimated as an emergent value depending on
the temperature [46]. Therefore, by comparing the FA model,
the FRW, and the DPLM, we can better understand intuitively
how rules in the FA model may emerge naturally from more
fundamental and natural physical considerations.

Furthermore, most KCM including the FA model are en-
ergetically trivial models. We believe that the relation among
the FA model, the FRW, and the DPLM explained above has
a strong implication for the study of KCM in general. Given
a KCM, it should be interesting to search for a compatible
energetic analog so the origin and the thermodynamic conse-
quence of the specific kinetic rules in the KCM can be better
understood.

The many interesting lattice models of
glass [12,14,21,22,24,25] should not only be applied
to illustrate one or two facets of glassy properties but
ideally should be compatible with most, if not all, of
the nonvibrational properties of glass. Further tests of an
individual model against a diverse range of glassy phenomena
are urgently needed.

In conclusion, we have proposed the FRW as a simple
KCM with random constraints. It shows emergent facilitation
behaviors on the motions of neighboring particles. Dynamics
is then dominated by mobile groups of size dependent on the
assumed constraint density, analogous to facilitation rules in
the seminal FA model of glass. The FRW is a defect model and
is a coarsened version of the atomistic DPLM. We believe that
the study of compatible models at different coarse-graining
levels allows an improved understanding of their applicability
and limitations for the study of glass.
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APPENDIX A: SYSTEM HISTORY ENCODED
IN FICTITIOUS STATES

The instantaneous state of a FRW system is specified by
the set {ik} of positions of all particles k. Nevertheless, due
to the quenched randomness, a system simulated up to time
t can only be fully characterized by its complete history, i.e.,
full sets of positions {ik (t )} and hopping rates {wi jk (t )} for
the whole duration from time 0 to t . Only then can hopping
rate restoration be possible. While a direct software imple-
mentation is possible, the data structures and the data retrieval
algorithms are complex. The memory consumption is also
huge.

Instead, we take the system history into account easily by
effectively encoding it into expanded instantaneous system
states. In this section, we introduce the general mathematical
requirements involved. In the next section, our particular im-
plementation will be explained. To simplify the notation, we
omit writing the t dependence of the variables explicitly in the
following.

For any particle k, we introduce a fictitious particle inter-
nal state �k . The bond between any NN sites i and j also
admits a fictitious internal state �i j following �i j = � ji. The
expanded instantaneous state of the system is thus specified
by the sets {ik}, {�k}, and {�i j}. The hopping rate wi jk is
deterministically calculated from

wi jk = w(�k,�i j ), (A1)

where the function w must be chosen to provide the required
statistics followed by wi jk .

After a hop of particle k from site i to site j, states are
updated according to

� ′
k = F (ξi j, �k,�i j )

�′
i j = G(ξi j, �k,�i j ), (A2)

where

ξi j =
{

1 for site j on the right of site i,
−1 otherwise. (A3)

The functions F and G must satisfy two conditions. First, to
satisfy detailed balance, the new states must satisfy

w(�k,�i j ) = w(� ′
k,�

′
i j ). (A4)

Second, a reversed hop of particle k from j to i at the new
states � ′

k and �′
i j must restore the original states,

�k = F (ξ ji, �
′
k,�

′
i j )

�i j = G(ξ ji, �
′
k,�

′
i j ). (A5)

Then, Eq. (A1) implies the restoration of also the previous
rate wi jk . More generally, it is easy to see that a previous hop-
ping rate can be restored even after an arbitrary sequence of
related hops has occurred and reversed by applying Eqs. (A2)
and (A5) recursively. Unrelated hops occurring at a distance,
which do not affect these local states under consideration,
naturally play no role in the reversal.

As rate restoration is possible by straightforward calcula-
tions based on the instantaneous system state, memorization
of previous rates and the system history is not required. The
dynamics of FRW with the expanded states are thus reduced to
simple Markovian processes for which standard kinetic Monte
Carlo approaches apply.

APPENDIX B: RATE RESTORATION BY REVERSIBLE
RANDOM NUMBERS

We now explain our particular implementation of the ex-
panded FRW states and their dynamics. To enable an exact
restoration of hopping rates, we adopt integer rather than
float-point mathematics. As pseudo-random rates with con-
trollable statistics are required, we take note of the approach
of congruential random number generators and consider only
integers 0, 1, . . . ,M − 1 following modulo-M arithmetics,
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i.e., i ≡ (i mod M). A natural choice is M = 232, leading
to a 32-bit unsigned integer data type intrinsically available in
most computers. This M is also sufficiently large to enable
excellent pseudo-random number properties.

Our algorithm requires nontrivial matrix inversions,
implying that the states �k and �i j cannot be simple integers.
Instead, the next simplest choice is two-component matrices,
i.e.,

�k =
(

ψ
(1)
k

ψ
(2)
k

)
, �i j k =

(
φ

(1)
i jk

φ
(2)
i jk

)
, (B1)

where the elements ψ
(1)
k , ψ

(2)
k , φ

(1)
i jk , and φ

(2)
i jk are 32-bit

unsigned integers. Each �k or �i j k is thus a 64-bit state.
Equation (A2), concerning a hop of particle k from site i to

site j, is implemented as

� ′
k = [

U ξi j
(
�T

k �i j
)]T

�k

�′
i j = U −ξi j

(
�T

k �i j
)
�i j, (B2)

where the superscript T denotes transpose. A simple choice of
U (n) we have taken is

U (n) =
(

n + 1 n
1 1

)
, (B3)

with an inverse

U −1(n) =
(

1 −n
−1 n + 1

)
. (B4)

Modulo-M unsigned integer arithmetic is assumed in
Eqs. (B2)–(B4) so that −1 ≡ M − 1. The equations con-
stitute congruential random number generators so that the
elements ψ

(1)
k , ψ

(2)
k , φ

(1)
i jk , and φ

(2)
i jk generated by iterating

Eq. (B2) in FRW simulations follow a uniform distribution in
0, 1, . . . ,M − 1. This uniform distribution is readily verified
in our simulations.

Equation (B2) implicitly defines our choices of the func-
tions F and G. For any hop, the states �k and �i j are updated
via U (n) and U −1(n) or U −1(n) and U (n), respectively, so that
the product �T

k �i j is invariant after a hop, i.e.,

� ′T
k �′

i j = �T
k �i j . (B5)

Similarly, forward and backward hops involve U (n) and
U −1(n) with the same n which cancel out each other upon
multiplication. Hence, state reversal, i.e., Eq. (A5), is properly
followed.

We define the rate function w in Eq. (A1) as

w(�k,�i j ) = w0 f
(
�T

k �i j
)
, (B6)

where

f (n) = θ (q − S(n)/M), (B7)

FIG. 8. Particle MSD against time t in log-log scales for various
unblocking probability q and density ρ = 0.2.

with θ being the Heaviside step function and S(n) to be
explained below. As �T

k �i j is invariant during the hop [see
Eq. (B5)], the detailed balance condition (A4) is satisfied.

FIG. 9. (a) Self-intermediate scattering function Fs against time
t (symbols) in linear-log scales for various unblocking probability q
and density ρ = 0.2. (b) Same data as in (a) plotted as − log(Fs )
versus t in log-log scales. (a), (b) Data for the second relaxation
step is fitted to the Kohlrausch-Williams-Watts (KWW) stretched
exponential function (dashed lines).
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The function S(n) can be the identity function, but we take
a bitwise rotation operation by 16 bits to enhance random-
ization. Then, analogous to congruential generators, �T

k �i j

and hence S(�T
k �i j ), are also uniform random numbers in

0, 1, . . . ,M − 1 so that S(�T
k �i j )/M is a uniform random

number in [0, 1). Therefore, S(�T
k �i j ) > q occur with a prob-

ability q, implying that wi jk follows the required statistics
according to Eqs. (A1), (B6), and (B7).

APPENDIX C: RELAXATION DYNAMICS AT LOW
PARTICLE DENSITY

The MSD is investigated at a particle density of ρ = 0.2
and results are plotted against time t in Fig. 8. Similar to the
case of ρ = 0.8 in Fig. 4, a plateau characteristic of glassy
dynamics emerges at small unblocking probability q.

We have also investigated the SISF, Fs, at ρ = 0.2. Fig-
ures 9(a) and 9(b) plot Fs and − log(Fs), respectively. Results
show a two-step relaxation process at q < 1, in contrast to a
simple exponential relaxation at q = 1. As q decreases, the
second step of the decay becomes more dominant and fits
reasonably well to the KWW stretched exponential function
A exp[−(t/τ )β], where A � 1, τ is the structural relaxation
time and β is the stretching exponent. Results are qualitatively

FIG. 10. Stretching exponent β against q from KWW fits of the
SISF in Fig. 9.

quite similar to those for ρ = 0.8 in Fig. 6. Differences are
more noticeable when plotting β against q for ρ = 0.2 in
Fig. 10, showing a nonmonotonic dependence on q. This is
in contrast to the monotonic decrease of β as q decreases for
ρ = 0.8 in Fig. 6. Nevertheless, a plateau, signifying glassy
slowdown, emerges as q decreases in both cases.
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