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ABSTRACT
We present a new approach for investigating the Markovian to non-Markovian transition in quantum aggregates strongly coupled to a
vibrational bath through the analysis of linear absorption spectra. Utilizing hierarchical algebraic equations in the frequency domain, we
elucidate how these spectra can effectively reveal transitions between Markovian and non-Markovian regimes, driven by the complex interplay
of dissipation, aggregate–bath coupling, and intra-aggregate dipole–dipole interactions. Our results demonstrate that reduced dissipation
induces spectral peak splitting, signaling the emergence of bath-induced non-Markovian effects. The spectral peak splitting can also be driven
by enhanced dipole–dipole interactions, although the underlying mechanism differs from that of dissipation-induced splitting. In addition,
with an increase in aggregate–bath coupling strength, initially symmetric or asymmetric peaks with varying spectral amplitudes may merge
under weak dipole–dipole interactions, whereas strong dipole–dipole interactions are more likely to cause peak splitting. Moreover, we find
that spectral features serve as highly sensitive indicators for distinguishing the geometric structures of aggregates while also unveiling the
critical role that geometry plays in shaping non-Markovian behavior. This study not only deepens our understanding of the Markovian to
non-Markovian transition but also provides a robust framework for optimizing and controlling quantum systems.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0262783

I. INTRODUCTION

The study of non-Markovian effects in open quantum sys-
tems has garnered significant attention in quantum optics, quan-
tum information, and quantum chemistry.1–5 These effects provide
deep insights into the fundamental interactions between quan-
tum systems and their environments, shedding light on complex
coherence and decoherence dynamics essential for advancing quan-
tum technologies such as quantum computing, communication,
and sensing. However, experimental detection and precise con-
trol of non-Markovian processes remain challenging due to the
complexity of environmental interactions. Overcoming these chal-
lenges can enable innovative strategies for error correction and

optimization in quantum devices, enhancing their reliability and
performance.6–11

Recent experiments have demonstrated Markovian to non-
Markovian transitions in quantum optical systems12 and explored
non-Markovian effects in diverse contexts, including entanglement-
assisted probing,13 entanglement oscillations,14 measurements of
non-Markovianity,15,16 micromechanical Brownian motion,17 and
multi-exponential decay dynamics in quantum dots.18 These
advances underscore the need for theoretical frameworks capable
of describing non-Markovian dynamics efficiently. Key approaches
include master equations,19 non-Markovian stochastic Schrödinger
equations,20–22 path integral methods,23–30 quantum jump meth-
ods,31 hierarchical equations of motion,32–34 and tensor network
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techniques.35–37 Among stochastic methods, the non-Markovian
quantum state diffusion (NMQSD) equation, a specialized stochas-
tic Schrödinger equation, is a versatile tool for studying diverse open
quantum systems. Unlike exact master equations, which are lim-
ited to specific models,38–40 NMQSD provides an exact and broadly
applicable formalism.41–44 The hierarchy of pure states (HOPS)
approach45 extends the NMQSD framework by resolving functional
derivatives, offering a systematic representation of non-Markovian
effects via a hierarchy of pure states. This method has been further
refined in recent studies.46–50 Building on NMQSD and HOPS, hier-
archical equations in the time51 and frequency domains52 have been
developed to describe absorption spectra of molecular aggregates
strongly coupled to vibrational modes.53–56

Quantum aggregates, such as molecular systems, exhibit col-
lective quantum phenomena, including coherence and excitonic
states, distinct from their individual components.57 These aggregates
demonstrate behaviors such as superradiance and tunneling, cru-
cial for applications in quantum computing,58 photosynthesis,59 and
nanotechnology.60 They also provide a versatile platform for explor-
ing fundamental aspects of quantum mechanics.61 By analyzing their
absorption spectra, one can uncover essential features such as mem-
ory effects, non-Markovian dynamics, and energy transfer processes,
providing key insights into their electronic structure, coherence, and
interactions with the environment.

Previous studies have examined non-Markovian effects in
absorption spectra across various contexts. Roden et al. combined
the NMQSD framework with an abstract approximation to calcu-
late energy transfer and absorption spectra of molecular aggregates,
comparing the results with exact pseudomode methods to vali-
date their approach.62 Ritschel et al. utilized NMQSD alongside
the thermofield method to compute temperature-dependent opti-
cal spectra of light-harvesting aggregates, effectively incorporating
environmental vibrations.51 Schröder et al. demonstrated how bath
spectral densities and long correlation times shape absorption line
shapes,63 while Vogel et al. employed femtosecond absorption spec-
troscopy to reveal non-Markovian correlations and hole-burning
phenomena.64

Building on these advancements, our study establishes the
absorption spectrum as a direct and experimentally accessible tool
for investigating the Markovian to non-Markovian transition in
open quantum systems. Unlike prior studies focusing on specific
systems or temporal correlations, we systematically connect spectral
features—such as peak splitting, merging, and shifting—to dissipa-
tion, aggregate–bath coupling, and geometry, providing a unified
framework for understanding non-Markovian behavior. Using hier-
archical equations in the frequency domain,52 we demonstrate how
reduced dissipation induces peak splitting, signaling a transition to
non-Markovianity, while enhanced dipole–dipole interactions and
aggregate–bath coupling create distinct spectral patterns. By ana-
lyzing configurations from monomers to tetramers, we reveal how
geometry influences non-Markovian effects, with linear aggregates
exhibiting pronounced spectral variations compared to the stability
of symmetric ring geometries. These findings establish the absorp-
tion spectrum as a powerful tool for studying non-Markovian effects
and advancing our understanding of quantum coherence and energy
transfer processes. While conventional measures such as the trace
distance criterion are widely used to characterize non-Markovianity,
they often abstract the underlying physical mechanisms. In

contrast, our spectral approach provides a complementary perspec-
tive by linking memory effects to observable spectral features. As
discussed in detail later, this connection offers both physical insight
and experimental accessibility.

This paper is organized as follows: Sec. II introduces the model
for a quantum aggregate. In Sec. III, we describe the hierarchical
equations in the frequency domain used to compute the absorption
spectrum. Section IV presents the absorption spectra, revealing tran-
sitions between Markovian and non-Markovian regimes, as well as
the distinctive geometric features of the aggregates. Finally, Sec. V
offers a discussion of the findings and concludes this paper.

II. QUANTUM AGGREGATE MODEL
We consider a quantum aggregate consisting of N two-level

monomers, each of which is strongly coupled to its own vibra-
tional bath, as illustrated in Fig. 1. In the single-excitation manifold,
where only one monomer is allowed to be excited at any given
time, the many-body ground and excited states are defined as
∣gel⟩ =∏

N
m=1 ∣ϕ

g
m⟩ and ∣πn⟩ = ∣ϕe

n⟩∏
N
m≠n ∣ϕ

g
m⟩, respectively. Here, ∣ϕg

n⟩

denotes the ground state of the nth monomer, and ∣ϕe
n⟩ represents

the excited state.
The total Hamiltonian in the single-excitation subspace is

expressed as51

H = Hsys +Henv +Hint, (1)

where

Hsys =
N

∑
n=1

ϵn∣πn⟩⟨πn∣ +
N

∑
n,m=1
n≠m

Vnm∣πn⟩⟨πm∣, (2)

FIG. 1. Illustration of a quantum aggregate system with N two-level monomers,
each represented by a sphere with a dipole moment indicated by an arrow.
The surrounding blue cloud represents the vibrational bath interacting with each
monomer. The insert shows the electronic states for a single monomer, where ∣ϕg

n⟩

and ∣ϕe
n⟩ denote the ground and excited states, respectively, with an energy sep-

aration ϵn. The dipoles are coupled through dipole–dipole interactions, influencing
the excitation dynamics across the aggregate. A light source on the left excites the
system, while the spectrum detector on the right captures the transition dynamics,
illustrating the shift from Markovian to non-Markovian regimes.
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Henv =
N

∑
n=1
∑
λ
ωnλa†

nλanλ, (3)

Hint = −
N

∑
n=1

Ln∑
λ
κnλ(a

†
nλ + anλ). (4)

In the system Hamiltonian Hsys, ϵn denotes the excitation energy
of the nth monomer (n = 1, . . . , N), and Vnm represents the
dipole–dipole interaction between the monomers n and m. For
this work, we consider degenerate levels in each monomer, setting
ϵn = 0.51 If ∣n −m∣ = 1, the dipole–dipole interaction is given by
Vnm = V cos θ, where θ is the angle between the dipole moments μ⃗n
and μ⃗m.65 For all other cases, Vnm = 0. In the interaction Hamilto-
nian Hint, Ln = ∣πn⟩⟨πn∣ denotes the system operator linearly coupled
to the bath modes.

In the environmental Hamiltonian Henv, a†
nλ and anλ repre-

sent the bosonic operators for the vibrational modes of the bath.
The coupling strength between the aggregate and the vibrational
modes is characterized by κnλ in the interaction Hamiltonian Hint.
Both κnλ and a†

nλ are indexed by n, indicating that each monomer in
the quantum aggregate interacts with an independent environment.
This coupling strength is typically encoded in a spectral density
Jn(ω) = π∑k∣κnλ∣

2δ(ω − ωnλ).
For simplicity, we assume Ornstein–Uhlenbeck noise66,67 is

utilized in developing the NMQSD.39,40,42–44 The corresponding
bath correlation function and the Lorentzian bath spectrum at zero
temperature are described as

αn(τ) = geiwnτ (for τ > 0) (5)

and

Jn(ω) = ∫
∞

−∞
dταn(τ)e−iωτ

=
2gγ

γ2
+ (ω −Ω)2 . (6)

Here, wn = Ωn + iγn with Ωn = Ω and γn = γ, implying each
monomer experiences a similar but independent environment. The
spectral density J(ω) in Eq. (6) describes how the environment’s dif-
ferent frequency modes ω contribute to the system’s dynamics. The
parameter g represents the coupling strength between the aggre-
gate and the bath, while the correlation parameter γ accounts for
the bath-induced dissipation rate of the quantum aggregate. For
consistency in our calculations, we use Ω = 1 as the energy unit.

III. LAPLACE-DOMAIN HIERARCHY OF EQUATIONS
The conventional method for calculating the linear absorption

spectrum involves solving the system dynamics in the time domain
and then applying a Fourier transform to the dipole–dipole corre-
lation function.5,51 In contrast, our work adopts a Laplace-domain
approach, deriving a hierarchy of linear algebraic equations directly
in the Laplace domain. This differs from the traditional time-domain
hierarchical equations, which are based on differential equations.52

The linear absorption spectrum is defined as the half-sided
Fourier transform of the dipole–dipole correlation function,5,51

expressed as F(ω) = ∑n,m μ⃗nμ⃗mR[∫
∞

0 dteiωtCnm(t)], where μ⃗n rep-
resents the transition dipole moment of the nth monomer and
Cnm(t) = ⟨πn∣ψ(0⃗)m (t)⟩. The state ∣ψ(0⃗)m (t)⟩ is obtained by solving

a hierarchy of coupled states ∣ψ(k⃗ )(t)⟩ as governed by Eq. (A1)
with the initial condition ∣ψ(0⃗ )(t = 0)⟩ = ∣πm⟩, indicating that the
excitation is initially localized in the mth monomer.

This absorption spectrum can be reformulated using the
Laplace transformation as

F(ω) =∑
n,m

μ⃗nμ⃗mR[ lim
ϵ→0

C̃nm(s)], (7)

where μ⃗nμ⃗m = μ2 for parallel dipoles and C̃nm(s) = L [Cnm(t)]
= ∫

∞

0 dte−stCnm(t) with s = ϵ − iω, where both ϵ and ω are real.
From the definition of Cnm(t), consequently,

C̃nm(s) = ⟨πn∣Ψ
⃗(0)

m (s)⟩, (8)

and the hierarchy of coupled algebraic equations for ∣Ψ
⃗(k)
(s)⟩ is

given by (see Appendix)

∣ψ(k⃗ )(t = 0)⟩ = (s + iHsys + i∑
n

knωn)∣Ψ(k⃗ )(s)⟩

−∑
n

Lnknαn(0)∣Ψ(k⃗−e⃗ n)(s)⟩ +∑
n

L†
n∣Ψ
(k⃗+e⃗ n)(s)⟩.

(9)

Here, k⃗ = (k1, . . . , kN) with kn ≥ 0 being the integers, and
e⃗n = {0, . . . , 1, . . . , 0} is a vector with a single nonzero value
of 1 at the nth position. The truncation scheme considers only k⃗
values satisfying∑nkn ≤ Emax, where Emax is chosen to be sufficiently
large to ensure convergence. To guarantee the convergence of the
hierarchical expansion, we set the truncation level to Emax = 12,
which has been verified to be adequate across all parameter regimes
considered in this study. Alternative truncation schemes are
discussed in Refs. 45 and 68. In the following Sec. IV, we utilize
Eqs. (7) and (8), along with the solution of Eq. (9), to calculate the
linear absorption spectrum of a quantum aggregate.

The numerical simulations in this work are based on the
zeroth-order stochastic equation [as given in Eq. (9)], which
provides an efficient approximation to capture the influence of
system–bath interactions. While this approach is formally most
accurate under weak to intermediate coupling and finite bath corre-
lation times, it has been widely demonstrated to yield qualitatively
reliable results even in regimes where non-Markovian effects are
significant.32,69 In particular, for the calculation of linear absorp-
tion spectra, the zeroth-order approximation effectively captures the
essential spectral features arising from dissipation and bath-induced
correlations.51 In our simulations, we have verified the numeri-
cal stability and convergence of results across a broad parameter
range, including small γ and moderately strong g, and have not
observed any unphysical behavior, supporting the applicability of
this approximation in the present study.

We note that since the calculations are based on hierarchical
algebraic equations in the frequency domain, time is not explicitly
considered in the simulations. The frequency-domain formulation
is obtained via Laplace transformation of the time-domain equa-
tions, which, in principle, involves integration over an infinite time
interval. This ensures that the full steady-state response of the system
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is captured, provided that the relevant timescales of system dynam-
ics are well encompassed. Therefore, explicit time truncation is not
required in this framework.

IV. NON-MARKOVIAN ABSORPTION SPECTRUM
In this section, we analyze the absorption spectra of various

quantum aggregates, including monomers, dimers, and more com-
plex trimer and tetramer configurations in both linear and ring
geometries. We demonstrate that monomers and dimers exhibit
fundamental signatures of the Markovian to non-Markovian transi-
tion. Furthermore, our analysis of trimers and tetramers reveals that
specific spectral features can accurately identify and differentiate the
geometric structures of these aggregates, providing deeper insights
into the manifestation of non-Markovian effects.

A. Analytical solutions for specific limiting cases
We first consider some analytically solvable limiting cases.

When the aggregate is decoupled from the vibrational environ-
ment (g = 0) or when environmental dissipation is overwhelmingly
strong (e.g., ϵn, Vnm ≪ γ→∞), the spectral properties can be accu-
rately derived by focusing solely on the system Hamiltonian Hsys,
which allows for exact diagonalization. In these cases, spectral ampli-
tudes are generally more pronounced in the absence of environ-
mental coupling compared to when dissipation is dominant. Here,
the system dynamics are predominantly determined by the eigenen-
ergies and eigenstates of the Hamiltonian Hsys, either due to the
absence of coupling to the vibrational bath or because the bath
dynamics are sufficiently fast to reach a steady state before the system
evolves (e.g., γ≫ ϵn, Vnm). Consequently, these eigenenergies mani-
fest as spectral peaks, which correspond to the electronic transitions
within the aggregate.

For a linear aggregate with open boundary conditions, the
eigenfunctions of the system Hamiltonian in Eq. (2) are described
by70

∣ψ(L)j ⟩ =
N

∑
n=1

c(L)jn ∣n⟩ (10)

with N ≥ j ≥ 1 and

c(L)jn =

√
2

N + 1
sin(

jnπ
N + 1

). (11)

The corresponding eigenvalues ω(L)j and oscillator strengths f (L)j

(which are proportional to the spectral amplitudes71,72) for absorp-
tion from the electronic ground state to an excited state are given
by

ω(L)j = 2V cos θ cos(
jπ

N + 1
), (12)

f (L)j = ∣
N

∑
n=1

c(L)jn ∣

2

=
1 − (−1)j

N + 1
cot2
(

jπ
2(N + 1)

). (13)

Spectral peaks with strengths f (L)j (where the oscillator strength of

a monomer is normalized to unity) are expected at energies ω(L)j .

Using Eq. (12), the transition frequencies ω(L)j are calculated and
listed in Table I. According to Eq. (13), only transitions with odd
values of j are observable in the spectrum, and these transitions are
represented by frequencies displayed in Table I.

For a ring aggregate with periodic boundary conditions, the
eigenfunctions of the system Hamiltonian in Eq. (2) with ∣πN+n⟩

= ∣πn⟩ are expressed as70

∣ψ(C)j ⟩ =
N

∑
n=1

c(C)jn ∣n⟩, (14)

where

c(C)jn =
1
√

N
ei 2jnπ

N . (15)

The corresponding transition frequencies and oscillator strengths
are given by

ω(C)j = 2V cos θ cos(
2jπ
N
), (16)

f (C)j = ∣
N

∑
n=1

c(C)jn ∣

2

=
(N − 1)2

N
δjN. (17)

Equations (16) and (17) indicate that only a single observable peak
at ω(C)N is present in the spectrum, as shown as j = N in Table II.

In particular, when the dipole–dipole interaction is absent (i.e.,
V = 0), the spectral peak position for an aggregate decoupled from
the vibrational bath (g = 0) coincides with ω(L)j = ω(C)j = 0, as given
by Eqs. (12) and (16), identical to that of a single monomer.

Note that in this subsection, we explore the oscillator strength,
which is directly proportional to the spectral amplitude of the
absorption spectrum.71,72 In Subsections IV B and IV C, we will
focus on analyzing the spectral amplitude obtained from numerical
results.

TABLE I. Electronic transition frequencies of linear quantum aggregates. Only transi-

tions with frequencies ω(L)j with odd j (N ≥ j ≥ 1) are observable in the absorption
spectrum. The parameters used are V = 1 in units of Ω and θ = 0.

N ω(L)j=1 ω(L)j=2 ω(L)j=3 ω(L)j=4

1 0
2 1 −1
3

√
2 0 −

√
2

4
√

5+1
2

√
5−1
2 −

√
5−1
2 −

√
5+1
2

TABLE II. Electronic transition frequencies of ring aggregates. Only transitions with

frequencies ω(C)j with j = N can be observed in the absorption spectrum. The
parameters used are V = 1 in units of Ω and θ = 0.

N ω(C)j=1 ω(C)j=2 ω(C)j=3 ω(C)j=4

3 −1 −1 2
4 0 −2 0 2
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B. Spectral signatures of the Markovian
to non-Markovian transition
1. Spectral analysis of a monomer

Figure 2(a) displays the linear absorption spectrum F(γ,ω) of
a monomer [illustrated in the inset of Fig. 2(a)] coupled to the envi-
ronment. As expected, a single peak at ω ≈ ω(L)1 = 0 (see Table I
with j = N = 1), representing an electronic transition of a monomer,
is observed at strong dissipation corresponding to a large γ. As γ
decreases, the peak broadens and splits, becoming evident when
the distance between the peaks surpasses the width of each indi-
vidual peak. This occurs around γ ≈ 1, indicating a bath-induced
transition in the monomer. In particular, for γ = 0, the spectral
peaks are exactly located at ω = −1, 0, 1, 2, 3, . . . with decreasing
amplitudes.5,73 These observations are further illustrated in the one-
dimensional spectra in Fig. 2(b) for three different values of the
dissipation rate, namely, γ = 0, 1, 5. The characteristic time of a
monomer can be expressed as 1/ω0, where ω0 = ω(L)1 . In the cur-
rent scenario, ω0 = 0 due to the consideration of ϵn = 0 in Eq. (2).
Physically, if the bath correlation time 1/γ [see Eqs. (5) and (6)]
is larger than or comparable to the monomer characteristic time
1/ω0, strong non-Markovian effects induced by the vibrational bath
modes on the electronic states will be present. Then, bath-induced
transitions become dominant, leading to the appearance of multi-
ple peaks in the spectrum. In contrast, if the system dynamics are
slower than those of the bath, such as in cases of strong dissipation
(γ≫ ω0) where the bath reaches its steady state before the system
evolves, the system will be in the Markovian regime. This results
in a single peak at ω = ω(L)1 = 0 for the electronic transition of a
monomer. Consequently, the spectrum of the monomer distinctly
reveals the transition from Markovian to non-Markovian behavior
as environmental dissipation is reduced. An alternative but funda-
mentally equivalent interpretation can be explained in the following
way: When the correlation parameter γ is small (weak dissipation),
information lost to the environment can flow back into the sys-
tem, leading to memory effects and, consequently, a non-Markovian

environment. In contrast, when γ is large (strong dissipation), infor-
mation rapidly dissipates into the environment and cannot return to
the system, rendering the environment memoryless and Markovian.

We analyze the spectral density Jn(ω), defined as the Fourier
transform of the bath correlation function αn(τ) in Eq. (6). Set-
ting γ = 0 reduces Jn(ω) to a delta function, Jn(ω) = 2πgδ(ω −Ω),
indicating a spectrum sharply peaked at a single frequency Ω. This
describes a purely coherent, non-dissipative environment where
bath modes are confined to a single frequency with no broadening,
resulting in no energy dissipation. Consequently, αn(τ) becomes
purely oscillatory, indicating no decay and suggesting energy reten-
tion within the system–bath interaction. This idealized case isolates
vibrational structure effects in a coherent setting, highlighting non-
dissipative conditions. For a more realistic model, a nonzero γwould
introduce spectral broadening and richer non-Markovian effects by
enabling interactions across a range of frequencies, thus yielding
more complex dynamics.

Figure 3 illustrates the absorption spectrum F(g,ω) of a
monomer [shown in the inset of Fig. 3(a)] as a function of bath cou-
pling strength g and frequency ω. As shown in Fig. 3(a), when the
monomer is decoupled from its bath (i.e., g = 0), a single sharp peak
is observed at ω = ω(L)1 = 0 [see Eq. (12) or Table I with j = N = 1],
representing the primary transition frequency of the monomer. As
the bath coupling strength g increases, the peak frequency shifts
continuously toward negative values, and the spectral amplitude
decreases. In addition, new peaks appear, which are induced by
the vibrational bath and correspond to higher frequencies. These
peaks converge toward ω ≈ 1, 2, 3, 4, . . . for small g, indicating the
emergence of vibrational bath modes within the system. The pres-
ence of multiple peaks indicates strong aggregate–bath coupling,
resulting in memory effects, where the bath retains information and
feeds it back into the quantum aggregate, thereby giving rise to
non-Markovian behavior. Figure 3(b) presents the one-dimensional
spectra extracted from the contour plot in Fig. 3(a) for three spe-
cific values of the bath coupling strength: g = 0, 1, 3. At g = 0, the
spectrum exhibits a single sharp peak at ω = 0, which is significantly

FIG. 2. (a) Absorption spectrum F(γ,ω) of a monomer as a function of the dissipation rate γ. (b) One-dimensional spectra extracted from (a) for specific dissipation rates:

γ = 0, 1, 5. With the monomer’s electronic transition frequency set to ω0 = 0, a spectral peak emerges at large γ with ω ≈ ω(L)
1 = 0, consistent with Eq. (12). For γ = 0,

these peaks are located at ω = ω(L)
1 = −1, 0, 1, 2, 3, . . .. Spectra are presented in units of μ2. The hierarchy depth is set to 12, with additional parameters g = 1 and

Ω = 1.

APL Quantum 2, 026105 (2025); doi: 10.1063/5.0262783 2, 026105-5

© Author(s) 2025

 19 June 2025 01:48:20

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

FIG. 3. (a) Contour plot of the absorption spectrum F(g,ω) for a monomer as a function of bath coupling strength g and frequency ω. The color scale represents the intensity
of the absorption spectrum, with the electronic transition frequency set at ω0 = 0. (b) One-dimensional spectra extracted from the contour plot for specific values of bath
coupling strength: g = 0 (green solid line, scaled by 100 for visibility), g = 1 (orange dashed line), and g = 3 (blue dashed-dotted line). The spectra are plotted in units of μ2.
The hierarchy depth is fixed at 12, and other parameters are γ = 0.05 and Ω = 1 unless otherwise specified.

more intense than the spectra for higher bath coupling strengths
(scaled by a factor of 100). As g increases to g = 1, the peak shifts to
ω ≈ −1, and additional peaks emerge, reflecting the influence of the
coupling on the absorption characteristics. At g = 3, the spectrum
becomes more complex, with multiple peaks distributed across a
wider frequency range, indicating that strong coupling significantly
alters the absorption properties of the monomer, resulting in more
pronounced vibrational resonances.

2. Spectral analysis of a dimer
We next study the dimer depicted in the inset of Fig. 4(a), and

the dipoles are oriented in parallel (θ = 0). The calculated spectra
are shown in Fig. 4. For a weak dipole–dipole interaction of V = 0.1
in Fig. 4(a), a peak at ω ≈ ω(L)1,V=0.1 = 0.1, which is consistent with
the value predicted by Eq. (12) (see Table I as well, where V = 1 is
used instead), is observed for a high dissipation rate γ (e.g., ≫ 1).
While Eq. (12) assumes g = 0, the result here uses g = 1. Despite
this difference, Fig. 4(a) shows no noticeable deviation. This peak
starts to split at γ ≈ 1, indicating non-Markovian features at small γ.

The peak positions for γ = 0 are almost the same as those of
a monomer, while the associated amplitudes are enhanced. This
enhancement arises because, for two uncoupled monomers with
V = 0, the amplitude is twice that of a single monomer. When
the dipole–dipole interaction is increased to V = 0.5 in Fig. 4(b)
and V = 1.0 in Fig. 4(c), the peak position at large γ shifts to
ω ≈ ω(L)1,V=0.5 = 0.5 and ω ≈ ω(L)1,V=1 = 1, respectively, in accordance
with Eq. (12) or Table I with j = 1 and N = 2. Notably, in Fig. 4(c), the
maximum spectral amplitude occurs at ω ≲ 1.0 when γ = 0, in con-
trast to the monotonically decreasing amplitude with ω observed for
a monomer in Figs. 2(a) and 2(b) or a weakly coupled dimer as exem-
plified in Fig. 4(a). Comparing Figs. 4(a)–4(c), we further notice that
the increase in the dipole–dipole interaction V raises the transition
frequency and shortens the system characteristic time compared to
a given bath correlation time 1/γ (e.g., for γ ≤ 1). This suggests a
potentially greater flow of information from the bath back to the sys-
tem, thereby enhancing non-Markovian effects. Alternatively, this
can be understood as follows: an increase in the dipole–dipole inter-
action within a dimer aggregate, for a fixed dissipation, reduces the
ratio γ/V . As a result, the relative impact of dissipation decreases,

FIG. 4. Absorption spectrum F(γ,ω) of a dimer as a function of the dissipation rate γ, shown for dipole–dipole interaction strengths of (a) V = 0.1, (b) V = 0.5, and (c)

V = 1 between two monomers. The spectral peaks at large γ, consistent with the values predicted by Eq. (12), are located at ω ≈ ω(L)
1 = 0, 0.1, 0.5 for panels (a)–(c),

respectively. The hierarchy depth is set to 12, with the angle between the dipoles θ = 0 and a bath coupling strength of g = 1. We set Ω = 1 as the energy unit. All other
parameters are consistent with those used in Fig. 2.

APL Quantum 2, 026105 (2025); doi: 10.1063/5.0262783 2, 026105-6

© Author(s) 2025

 19 June 2025 01:48:20

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

FIG. 5. Absorption spectrum F(g,ω) of a dimer as a function of bath coupling strength g, shown for dipole–dipole interaction strengths of (a) V = 0.1, (b) V = 0.5, and (c)
V = 1 between two monomers. The anti-crossing in (c) appears near (ω, g) ≃ (0.9, 0.7), with dashed curves offering clear visual guidance. The logarithmic color scale
highlights the absorption intensity across the frequency range ω, with the energy unit normalized to Ω = 1. The transition frequency is fixed at ω0 = 0. Other parameters,
including the damping rate γ = 0.05 and hierarchy depth of 12, are consistent with those used in Fig. 3.

allowing more information to flow from the bath back to the sys-
tem, leading to memory effects and, consequently, non-Markovian
behavior.

Figure 5 illustrates the absorption spectrum F(g,ω) of a dimer
[illustrated in the inset of Fig. 5(a)] as a function of bath coupling
strength g for three distinct dipole–dipole interaction strengths:
V = 0.1 [Fig. 5(a)], V = 0.5 [Fig. 5(b)], and V = 1.0 [Fig. 5(c)]. At
the lowest interaction strength of V = 0.1 in Fig. 5(a), the absorp-
tion spectrum is characterized by broad and smooth features, with
a peak emerging at frequency ω = ω(L)1,V=0.1 = 0.1 when g = 0 [see
Eq. (12) or Table I where V = 1 is considered instead]. As the bath
coupling strength g increases, the spectrum shifts gradually, and
new peaks emerge, but the features remain broad, indicating weak
dipole–dipole interactions. Increasing the interaction strength to
V = 0.5 [Fig. 5(b)] results in more distinct and structured absorp-
tion features. The initial peak at ω = ω(L)1,V=0.5 = 0.5, observed at g = 0,
shifts and eventually splits as g increases. At the highest interac-
tion strength of V = 1.0 [Fig. 5(c)], the absorption spectrum dis-
plays highly pronounced and well-defined peaks. In addition to the
peak at ω = ω(L)1,V=1 = 1 when g = 0, notably, anti-crossing behavior
is observed at points such as (ω, g) ≃ (0.9, 0.7), indicated by the
dashed curves for visual reference. This anti-crossing arises from
energy splitting induced by strong dipole–dipole interactions, which
reduces the relative effect of dissipation (represented by γ/V) and
enhances non-Markovian behavior.

C. Configuration-associated spectral signatures
1. Spectral response to vibrational dissipation

The spectra for a linear trimer, shown in the inset of Fig. 6(a),
are presented in Figs. 6(a) and 6(b). In contrast, the spectra for a ring
trimer, illustrated in the inset of Fig. 6(c) under periodic boundary
conditions (see Sec. IV A), are shown in Figs. 6(c) and 6(d). Each set
of figures corresponds to two different values of the dipole–dipole
interaction, providing a comparison between the two configura-
tions. In the case of the linear trimer with a weak dipole–dipole
interaction of V = 0.1 shown in Fig. 6(a), a single peak is observed
at ω ≈ ω(L)1,V=0.1 =

√
2/10 ≈ 0.1414 for large dissipation γ. Note that

the secondary peak at ω ≈ ω(L)3,V=0.1 = −
√

2/10 ≈ −0.1414, which has
a relatively weaker amplitude (see Table I for j = N = 3, where
V = 1 instead), falls within the bandwidth of the primary peak,

rendering it indistinguishable. Reducing γ leads to the splitting of
this peak into multiple peaks at frequencies nearly identical to those
of a monomer at γ = 0 [see Figs. 2(a) and 2(b)], indicating a tran-
sition from Markovian to non-Markovian regimes. When increas-
ing V , besides the shift of the peak to ω ≈ ω(L)1,V=1 =

√
2 ≈ 1.414 in

Fig. 6(b), there is an additional peak with a relatively weak ampli-
tude atω ≈ ω(L)3,V=1 = −

√
2 ≈ −1.414 in Fig. 6(b) for strong dissipation

(e.g., γ ∼ 5). Regarding the ring trimer, the spectra in Figs. 6(c) and
6(d) exhibit peaks at ω ≈ ω(C)3,V=0.1 = 0.2 and ω ≈ ω(C)3,V=1 = 2, respec-
tively, at large γ [see Eq. (16) or Table II]. These peaks exhibit
behaviors similar to those in the dimer case shown in Fig. 4, but

FIG. 6. Absorption spectrum F(γ,ω) for a trimer in both linear (a) and (b) and ring
(c) and (d) geometries, plotted as a function of dissipation rate γ. The dipole–dipole
interaction between adjacent monomers is V = 0.1 in (a) and (c) and V = 1 in
(b) and (d). In the linear configuration, the primary spectral peaks at large γ are

located at ω ≈ ω(L)
1 =

√

2/10 ≈ 0.1414 [panel (a)] and
√

2 ≈ 1.414 [panel (b)].

An additional, weaker spectral peak is observed at ω ≈ ω(L)
3 = −

√

2 ≈ −1.414

[panel (b)]. For the ring configuration, the corresponding peaks are ω ≈ ω(C)
3

= 0.2, 2 in panels (c) and (d), respectively. The dipoles are aligned at an angle
of θ = 0. We set Ω = 1 as the energy unit. All other parameters are consistent
with those used in Fig. 2.
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with distinct spectral amplitude intensities, as γ decreases or V
increases. Importantly, the comparison of these spectra in Fig. 6
demonstrates that one can distinguish a ring trimer from a linear
trimer.

A linear tetramer, shown in the inset of Fig. 7(a), has a
spectrum displayed in Fig. 7(a) for V = 0.1, which features a peak at
ω ≈ ω(L)1,V=0.1 = (

√
5 + 1)/20 ≈ 0.1618 for strong dissipation

(e.g., γ ∼ 5) [see Eq. (12) and Table I for j = 1 and N = 4]. Fur-
ther peak splittings are induced not only by the decrease in γ
but also by the increase in V , resembling the behavior seen in
the linear trimer case but differing in spectral intensity. The
former reflects bath-induced vibrational transitions, while the
latter represents the splitting of the system’s electronic states. For
example, for large γ, the increase in V splits the peak into two
peaks: ω ≈ ω(L)1,V=1 = (

√
5 + 1)/2 ≈ 1.618 with strong amplitude

and ω ≈ ω(L)3,V=1 = −(
√

5 − 1)/2 ≈ −0.618 with weak amplitude in
Fig. 7(b). The distance between these two peaks increases from
2.236 when decreasing γ from infinity, which is smaller than 2.828
for a trimer shown in Fig. 6(b). These unique spectral features
can help distinguish between linear trimers and tetramers. In
contrast to the linear configuration, the spectra of a ring tetramer,
depicted in the inset of Fig. 7(c) and presented in Figs. 7(c) and
7(d), exhibit behaviors similar to but distinct from those of a ring
trimer, shown in the inset of Fig. 6(c) and illustrated in Figs. 6(c)
and 6(d). Therefore, an absorption spectrum with an appropriate
dipole–dipole interaction could be used to distinguish a linear
tetramer from a ring one.

FIG. 7. Absorption spectrum F(γ,ω) for a tetramer in both linear (a) and (b)
and ring (c) and (d) geometries, plotted as a function of dissipation rate γ. The
dipole–dipole interaction between adjacent monomers is V = 0.1 in (a) and (c)
and V = 1 in (c) and (d). In the linear configuration, the primary spectral peaks
at large γ are located at ω ≈ ω(L)

1 = (

√

5 + 1)/20 ≈ 0.1618 [panel (a)] and

(

√

5 + 1)/2 ≈ 1.618 [panel (b)]. An additional, weaker spectral peak is observed
at ω ≈ ω(L)

3 = −(

√

5 − 1)/2 ≈ −0.618 [panel (b)]. For the ring configuration, the

corresponding peaks are ω ≈ ω(C)
4 = 0.2, 2 in panels (c) and (d), respectively.

The dipoles are aligned at an angle of θ = 0. We set Ω = 1 as the energy unit. All
other parameters are consistent with those used in Fig. 2.

2. Spectral response to aggregate–bath
coupling strength

Figure 8 displays the absorption spectrum F(g,ω) of a trimer
system, illustrated in the inset of Fig. 8(a), as a function of bath
coupling strength g and frequency ω, for both linear [top row:
panels (a) and (b)] and ring [bottom row: panels (c) and (d)]
geometries, with varying dipole–dipole interaction strengths. In the
linear trimer configuration with a weak dipole–dipole interaction
V = 0.1 [Fig. 8(a)], the spectrum initially exhibits two symmetric
peaks at ω = ω(L)1,V=0.1 =

√
2/10 ≈ 0.1414 with strong amplitude and

ω = ω(L)3,V=0.1 = −
√

2/10 ≈ −0.1414 with weak amplitude when g = 0
[see Eq. (12) and Table I]. As the bath coupling strength g increases,
these peaks begin to merge, with the strong peak shifting toward
negative frequencies and the weak peak merging into the spectrum.
With an increase in the dipole–dipole interaction to V = 1.0
[Fig. 8(b)], the spectrum shows two symmetric peaks at ω ≈ ω(L)1,V=1

=
√

2 ≈ 1.414 with strong amplitude and ω ≈ ω(L)3,V=1 = −
√

2
≈ −1.414 with weak amplitude (when g = 0), along with an asym-
metric peak at ω ≈ −0.4 (for small g > 0). As g increases, the
asymmetric peak merges with ω(L)3,V=1. Notably, an anti-crossing is
observed at (ω, g) ≈ (1.5, 1), as indicated by the dashed curves for
visual reference, highlighting the significant energy level interactions
and providing further evidence of non-Markovian effects.

In contrast, the spectra for the ring trimer configuration, shown
in the inset of Fig. 8(c), display distinct behavior. For a weak inter-
action V = 0.1 [Fig. 8(c)], a single peak appears at ω = ω(C)3,V=0.1 = 0.2
when g = 0 [see Eq. (16) or Table II]. At V = 1 [Fig. 8(d)], the ring
trimer spectrum exhibits a peak at ω = ω(C)3,V=1 = 2 when g = 0. The
increase in bath coupling strength g does not lead to the merging
of peaks, maintaining a more stable and isolated spectral structure,

FIG. 8. Absorption spectrum F(g,ω) of a trimer system in two different geome-
tries: linear [top row: (a) and (b)] and ring [bottom row: (c) and (d)], as a function of
bath coupling strength g. The anti-crossing in (b) appears near (ω, g) ≃ (1.5, 1),
with dashed curves offering clear visual guidance. The dipole–dipole interaction
strength V between adjacent monomers is set to (a) and (c) V = 0.1 and (b) and
(d) V = 1. The energy unit is normalized to Ω = 1. All other parameters, including
the damping rate γ and hierarchy depth, align with those used in Fig. 3.
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which contrasts with the linear trimer and further highlights the role
of geometry in influencing the non-Markovian effects.

Figure 9 illustrates the absorption spectrum F(g,ω) of a
tetramer system, shown in the inset of Fig. 9(a), for varying
dipole–dipole interaction strengths. The spectra are compared for
linear [top row: panels (a) and (b)] and ring [bottom row: panels (c)
and (d)] geometries as a function of bath coupling strength g and
frequency ω. In the linear tetramer with a weak dipole–dipole inter-
action V = 0.1 [Fig. 9(a)], the spectrum initially exhibits two separate
peaks at ω = ω(L)1,V=0.1 = (

√
5 + 1)/20 ≈ 0.1618 with strong amplitude

and ω = ω(L)3,V=0.1 = −(
√

5 − 1)/20 ≈ −0.0618 with weak amplitude
when g = 0. As the bath coupling strength g increases, these peaks
gradually merge. At the interaction strength V = 1 [Fig. 9(b)], the
peaks at ω ≈ ω(L)1,V=1 = (

√
5 + 1)/2 ≈ 1.618 with strong amplitude

and ω ≈ ω(L)3,V=1 = −(
√

5 − 1)/2 ≈ −0.618 with weak amplitude split
as g increases. This splitting reflects significant interactions between
the tetramer components and their environment.

In the ring tetramer with a weak dipole–dipole interaction
of V = 0.1 [Fig. 9(c)], the spectrum features a peak at ω = ω(C)4,V=0.1
= 0.2 for g = 0 and exhibits broad and smooth characteristics. As g
increases, the peaks shift slightly, but no significant splitting occurs.
The stability of the spectrum in the ring configuration suggests
that non-Markovian effects are less pronounced, likely due to the
symmetry and closed-loop structure, which stabilizes the system’s
response to environmental interactions. As the dipole–dipole inter-
action strength increases to V = 1 [Fig. 9(d)], the spectrum shows
a peak at ω = ω(C)4,V=1 = 2 for g = 0. The lack of splitting or emerg-
ing at higher dipole–dipole interaction strengths suggests that the
symmetry of the ring contributes to a more stable spectral structure
compared to the linear tetramer.

Finally, we summarize the impact of the dipole–dipole interac-
tion V on the absorption spectrum as demonstrated by our results

FIG. 9. Absorption spectrum F(g,ω) of a tetramer system in two different geome-
tries: linear [top row: (a) and (b)] and ring [bottom row: (c) and (d)], as a function
of the bath coupling strength g for various dipole–dipole interaction strengths
between adjacent monomers: (a) and (c) V = 0.1 and (b) and (d) V = 1. The
energy unit is set to Ω = 1. All other parameters, including the damping rate γ
and hierarchy depth, are consistent with those used in Fig. 3.

(see, e.g., Figs. 4, 6, and 7). At high dissipation rates (γ), V induces
peak splitting in the linear trimer [Fig. 6(b)] and tetramer [Fig. 7(b)],
with one peak exhibiting strong amplitude and another showing
weak amplitude. This splitting, which may indicate enhanced non-
Markovian effects, is absent in the dimer (Fig. 4), ring trimer
[Figs. 6(c) and 6(d)], and ring tetramer [Figs. 7(c) and 7(d)], where
the spectral features remain more stable. When γ is low and V
is small (e.g., V = 0.1 in Figs. 4, 6, and 7), the spectral ampli-
tude decreases progressively from the first peak onward, with the
strongest amplitude at the initial peak, resembling the behavior
observed in monomers and dimers. In contrast, for larger values of
V , the redistribution of spectral amplitude leads to a shift in maxi-
mum intensity away from the first peak, highlighting the influence
of more significant non-Markovian effects. Note that, in addition to
the peak splitting with strong and weak amplitudes induced by the
strong dipole–dipole interaction in Figs. 6(b) and 7(b) for the spec-
trum F(γ,ω), similar peak splitting with strong and weak amplitudes
is also observed in Figs. 8 and 9 for F(g,ω), as expected in the limit
γ→∞ or g → 0.

V. DISCUSSIONS AND CONCLUSIONS
In this work, we introduced absorption spectra as an inno-

vative and experimentally accessible tool to probe the Marko-
vian to non-Markovian transition. By systematically analyzing
quantum aggregates with varying geometries, we identified dis-
tinct spectral signatures—such as peak splitting, merging, and
shifting—that directly indicate non-Markovian behavior. These fea-
tures are intricately tied to key physical parameters, including dis-
sipation rate, aggregate–bath coupling strength, and intra-aggregate
dipole–dipole interactions.

We performed numerical calculations of absorption spectra
using Laplace-domain hierarchical equations for linear and ring
aggregates coupled to a vibrational bath with a Lorentzian noise
spectrum at zero temperature, noting that extensions to finite
temperatures are straightforward based on prior studies.41,51 Our
results reveal that reducing the dissipation rate induces spectral
peak splitting, marking the transition from Markovian to non-
Markovian regimes, while enhanced dipole–dipole interactions also
drive peak splitting through a distinct mechanism. Increasing the
aggregate–bath coupling strength leads to the merging of initially
symmetric or asymmetric peaks under weak dipole–dipole inter-
actions but causes peak splitting under strong interactions. Fur-
thermore, absorption spectra clearly differentiate linear and ring
geometries: linear aggregates, with reduced symmetry, exhibit intri-
cate peak splitting and merging that reflect stronger non-Markovian
effects under varying conditions, whereas ring geometries, charac-
terized by inherent symmetry and periodic boundary conditions,
maintain stable and isolated peaks, demonstrating lower suscepti-
bility to non-Markovian influences. These findings establish a com-
prehensive framework linking spectral features to non-Markovian
behavior and underscore the potential of absorption spectra as a
practical tool for exploring and controlling memory effects in diverse
quantum systems.

In our analysis, we set the central frequency Ω = 1 as a ref-
erence point to establish a consistent energy scale, enabling a sys-
tematic examination of how variations in spectral width γ affect
the transition between Markovian and non-Markovian behavior.
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The Markovianity of the dynamics depends primarily on the ratio
of γ to Ω rather than on the absolute value of Ω. When γ is large
relative to Ω, the spectral density broadens, leading to rapid decay
of the bath correlation function and Markovian dynamics. Con-
versely, a small γ narrows the spectral density around Ω, increasing
the bath coherence time, enhancing memory effects, and promoting
non-Markovian behavior. Fixing Ω = 1 provides a stable reference
for observing the influence of spectral broadening on the behavior
without a direct impact from Ω itself.

The transition from Markovian to non-Markovian behav-
ior can be characterized by measurable thresholds, such as the
aggregate–bath coupling strength or the spacing between vibration-
induced peaks relative to their widths. In the Markovian regime,
pure electronic peaks dominate when the coupling is zero or dis-
sipation is extremely strong. However, as coupling increases or
dissipation weakens, the peaks become influenced by the vibrational
bath. If the spacing between these peaks remains smaller than their
widths, the system retains Markovian characteristics. Once the spac-
ing surpasses the widths, the peaks become distinct, signaling a shift
to the non-Markovian regime. This transition is marked by reduced
dissipation, stronger coupling, the emergence of memory effects,
and more intricate interactions within the system.

Although our system operates with a Hermitian Hamiltonian
and lacks exceptional points (EPs), there are conceptual parallels
between the transitions we observe and those in non-Hermitian PT-
symmetric systems.13 In open quantum systems governed by Lind-
blad dynamics, particularly in the absence of quantum jumps, effec-
tive non-Hermitian Hamiltonians can describe the dynamics.74,75

The PT-symmetry phase transition, characterized by a Hamiltonian
EP, resembles the Markovian to non-Markovian transition seen in
our study. Exploring these connections further, including the impact
of quantum jumps, will be a focus of future research.

Our study introduces a new approach to probing the Marko-
vian to non-Markovian transition in open quantum systems through
absorption spectrum analysis, advancing beyond prior works. For
instance, Ref. 51 employed non-Markovian quantum state diffusion
to compute temperature-dependent linear spectra of chromophore
aggregates but did not explore the Markovian to non-Markovian
transition or the role of structured noise in shaping spectral fea-
tures. Similarly, Ref. 62 focused on validating approximations in
non-Markovian quantum state diffusion using pseudomode calcula-
tions without leveraging spectral analysis to identify this transition.
In contrast, our work systematically investigates distinct spectral
features—such as peak splitting, shifting, and merging—that serve
as direct and experimentally accessible indicators of the Marko-
vian to non-Markovian transition. By linking these features to
aggregate–bath coupling, dissipation, and geometry, we provide
configuration-specific insights into non-Markovian effects across
various aggregate geometries, including monomers, dimers, trimers,
and tetramers. A key innovation of our approach is the use of
hierarchical algebraic equations in the frequency domain, which
derive a hierarchy of linear equations directly in the Laplace
domain. This method achieves finer-grained resolution of spec-
tral features and memory effects compared to conventional time-
domain techniques, offering deeper insights into the dynamics of
complex quantum systems. Building on these advancements, our
findings establish a versatile framework for studying non-Markovian

behavior, paving the way for further exploration in quantum
information, light-harvesting systems, and materials science.

Various measures have been developed to quantify non-
Markovian effects in dynamical systems.76–82 Among these, the
trace distance measure76 is widely used, particularly in experi-
mental studies of Markovian to non-Markovian transitions.12 This
measure identifies memory effects by tracking changes in the dis-
tinguishability between quantum states, where an increase in trace
distance signals information backflow, which is a hallmark of non-
Markovianity. Although trace distance provides a general oper-
ational perspective, it abstracts memory effects without directly
addressing the underlying physical mechanisms or environmen-
tal structures. In contrast, our spectral approach connects non-
Markovianity to specific bath properties through observable spec-
tral features, such as resolvable peaks in absorption spectra. These
features arise under conditions of reduced dissipation or strong
coupling to the vibrational bath, offering an experimentally acces-
sible way to probe the physical origins of non-Markovian behavior.
There is a natural connection between these two measures. The
environmental memory effects that increase trace distance often
correspond to the structural characteristics revealed in the spec-
trum. By focusing on the frequency domain, our spectral method
highlights how dissipation strength, aggregate–bath coupling, intra-
aggregate dipole–dipole interactions, and geometry influence non-
Markovian transitions, providing a clear understanding of these
dynamics. Unlike time-domain techniques, which often struggle to
resolve complex features such as multiple non-exponential oscil-
lations, the spectral approach offers a direct and detailed repre-
sentation of memory effects. These two methods together provide
complementary insights. While the trace distance measure offers a
broad operational view of memory effects, the spectral approach
delves into the environmental structures and dynamics driving these
effects. By combining these perspectives, our framework enhances
the understanding of non-Markovian effects and provides a versatile
and experimentally grounded method for exploring and controlling
these phenomena.

In open quantum systems, non-Markovianity can be charac-
terized by either environmental spectral properties or the divisi-
bility of the reduced system’s dynamics. A non-flat spectral den-
sity typically indicates non-Markovianity by introducing memory
effects via structured environmental frequencies. Alternatively, non-
Markovianity is sometimes defined by completely positive trace-
preserving (CPTP)-divisibility: if the system’s evolution can always
be divided into CPTP maps, it is considered Markovian; other-
wise, it is non-Markovian. Recent findings (e.g., Ref. 83) challenge
the view that divisibility alone implies Markovianity, showing that
even CPTP-divisible processes can display non-Markovian cor-
relations. Our work examines non-Markovianity from a spectral
perspective, focusing on how vibrational structures affect dynam-
ics without necessarily implying a breakdown of CPTP-divisibility.
By clarifying this distinction, we offer a nuanced interpretation of
the non-Markovian features observed in our results across different
frameworks.

Our proposal is not confined to molecular aggregates, such as
Rydberg aggregates84 and excitonic systems in semiconductor quan-
tum dots,85 but extends to advanced quantum platforms. In molecu-
lar aggregates, external electric or magnetic fields can reshape energy
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landscapes, modulating aggregate–bath coupling, dissipation, and
dipole–dipole interactions,86 while tailored environments provide
control over dissipation processes. Beyond these systems, platforms
such as trapped ions and superconducting qubits offer promising
opportunities to investigate spectral signatures of the Markovian to
non-Markovian transition, expanding experimental possibilities and
advancing the exploration of non-Markovian dynamics in diverse
quantum systems.

Our findings on spectral signatures of the Markovian to non-
Markovian transition can be directly tested using well-established
experimental techniques. Linear absorption spectra, as a fundamen-
tal observable in molecular spectroscopy, can be readily obtained
through standard broadband absorption measurements, where a
tunable electromagnetic field probes the sample, and the frequency-
dependent absorption intensity is recorded.87,88 In addition, ultrafast
spectroscopic techniques such as pump–probe spectroscopy and
two-dimensional electronic spectroscopy (2DES) provide deeper
insights into transient spectral features, offering a direct means
to observe bath-induced non-Markovian effects.89–91 These exper-
imental techniques have been successfully employed to study exci-
tonic coherence, bath-induced energy transfer, and non-Markovian
relaxation in photosynthetic complexes and artificial aggregates.92

The theoretical predictions presented in this work, particularly
regarding spectral peak splitting and its dependence on dissipation,
aggregate–bath coupling, and dipole–dipole interactions, can thus
be validated using these methods.

Our findings offer valuable insights into the geometry and elec-
tronic transitions of quantum aggregates while providing a practical
framework for experimentally detecting and controlling the Marko-
vian to non-Markovian transition in open quantum systems—an
essential step toward advancing quantum technologies. Future
research could extend our spectral analysis to phase-modulated non-
linear spectroscopy65,93–95 and examine the role of non-Markovian
effects on quantum coherence and energy transfer in molecular
systems, such as photosynthetic complexes, to deepen the under-
standing of these fundamental processes. In addition, exploring the
interplay between non-Markovian dynamics and quantum error
correction could improve error mitigation in quantum informa-
tion processing and drive progress in quantum control and sensing
technologies.7,8,10,11,96
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APPENDIX: DERIVATION OF EQ. (9)

The calculation of the absorption spectrum is based on the
solution to the hierarchy of equations in the Laplace domain.52

This hierarchy was formulated given that it could be less expen-
sive to solve an algebraic equation than a differential equation when
studying spectral properties. For the sake of completeness, in this
appendix, we provide details on how Eq. (9) is derived. The coupled
stochastic equations for an infinite hierarchy of pure states read45,51

∂t ∣ψ(k⃗ )⟩ =
⎛

⎝
−iHsys −∑

n,j
knjwnj +∑

n,j
Lnz∗nj(t)

⎞

⎠
∣ψ(k⃗ )⟩

+∑
n,j

Lnkn,jαnj(0)∣ψ(k⃗−e⃗ nj)⟩ −∑
n,j

L†
n∣ψ
(k⃗+e⃗ nj)⟩. (A1)

Here, a general form of the bath correlation function for the
coupling to the nth system operator αn(t − s) = ∑J

j=1 αnj(t − s)
= ∑

J
j=1 knje−wnj(t−s) is considered. Applying the Laplace transforma-

tion,

L[ f (t)] = ∫
∞

0
dte−st f (t), (A2)

to Eq. (A1), we have

∣ψ(k⃗ )(t = 0)⟩ =
⎛

⎝
s + iHsys +∑

n,j
knjωnj

⎞

⎠
∣Ψ(k⃗ )(s)⟩

−∑
nj

Ln L[z∗nj(t)∣ψ
(k⃗ )
⟩] −∑

n,j
Lnknjαnj(0)∣Ψ(k⃗−e⃗ nj)⟩

+∑
n,j

L†
n∣Ψ
(k⃗+e⃗ nj)⟩, (A3)

where z∗nj(t) are the complex Gaussian stochastic processes with
the mean E[znj(t)] = 0 and correlations E[znj(t)znj(s)] = 0 and
E[znj(t)z∗nj(s)] = α(t − s), and the Laplace transformation of a
product of two functions is written formally as

L[z∗nj(t)∣ψ
(k⃗ )
⟩] =

1
2πi∫

x+i∞

x−i∞
Z∗nj(p)∣Ψ

(k)
(s − p)⟩dp. (A4)

The integration is done along the vertical line Re[p] = x that
lies entirely within the region of convergence of Z∗nj . Due to the
presence of this term, a compact form of the Laplace-domain
equation becomes challenging. However, when only considering
the zeroth-order terms with respect to noise or studying the
absorption spectrum where stochastic noise plays no role,51 the
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term L[z∗nj(t)∣ψ(k⃗ )⟩] does not contribute and, therefore, can be
neglected. Therefore, for the linear absorption and bath correlation
function in Eq. (5) (e.g., J → 1, wnj → wn, and knj → g) considered
in this work and ∣ψ(k⃗ )(t = 0)⟩ = ∣Ψ(k⃗ )(s = 0)⟩, Eq. (A3) becomes
Eq. (9).
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R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy trans-
fer through quantum coherence in photosynthetic systems,” Nature 446, 782
(2007).
90M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108,
1331 (2008).
91D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys.
Chem. 54, 425 (2003).
92H. Lee, Y. C. Cheng, and G. R. Fleming, “Coherence dynamics in pho-
tosynthesis: Protein protection of excitonic coherence,” Science 316, 1462
(2007).
93P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and
quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys.
125, 194303 (2006).
94L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton pro-
cesses and detection of collective resonances in dilute samples,” Phys. Rev. A 92,
053412 (2015).
95V. A. Osipov, X. Shang, T. Hansen, T. Pullerits, and K. J. Karki, “Nature of relax-
ation processes revealed by the action signals of intensity-modulated light fields,”
Phys. Rev. A 94, 053845 (2016).
96D. M. Reich, N. Katz, and C. P. Koch, “Exploiting non-Markovianity for
quantum control,” Sci. Rep. 5, 12430 (2015).

APL Quantum 2, 026105 (2025); doi: 10.1063/5.0262783 2, 026105-13

© Author(s) 2025

 19 June 2025 01:48:20

https://pubs.aip.org/aip/apq
https://doi.org/10.1002/qua.25386
https://doi.org/10.1063/1.1731278
https://doi.org/10.1063/1.1701181
https://doi.org/10.1016/0301-0104(84)80015-4
https://doi.org/10.1016/j.chemphys.2005.11.015
https://doi.org/10.1021/jz900062f
https://doi.org/10.1038/nchem.1145
https://doi.org/10.1002/anie.201108690
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1063/1.3512979
https://doi.org/10.1063/1.2171188
https://doi.org/10.1103/physreva.37.3825
https://doi.org/10.1103/physreva.95.052509
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1063/1.5022225
https://doi.org/10.1143/jpsj.74.3131
https://doi.org/10.1103/physrevb.51.14587
https://doi.org/10.1063/1.3528718
https://doi.org/10.1103/physrevresearch.6.023149
https://doi.org/10.1103/physrevlett.103.210401
https://doi.org/10.1103/physrevlett.105.050403
https://doi.org/10.1103/physreva.82.042103
https://doi.org/10.1103/physreva.86.044101
https://doi.org/10.1103/physrevlett.120.040405
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.3389/frqst.2023.1134583
https://doi.org/10.1103/physrevlett.123.040401
https://doi.org/10.1103/physrevlett.114.123005
https://doi.org/10.1103/physrevlett.114.123005
https://doi.org/10.1126/science.1142979
https://doi.org/10.1038/s41563-019-0288-5
https://doi.org/10.1063/1.461317
https://doi.org/10.1364/ol.29.000884
https://doi.org/10.1038/nature05678
https://doi.org/10.1021/cr078377b
https://doi.org/10.1146/annurev.physchem.54.011002.103907
https://doi.org/10.1146/annurev.physchem.54.011002.103907
https://doi.org/10.1126/science.1142188
https://doi.org/10.1063/1.2386159
https://doi.org/10.1103/physreva.92.053412
https://doi.org/10.1103/physreva.94.053845
https://doi.org/10.1038/srep12430

