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Abstract—Different from natural videos, where artifacts dis-
tributed evenly, the artifacts of compressed screen content videos
mainly occur in the edge areas. Besides, these videos often
exhibit abrupt scene switches, resulting in noticeable distortions
in video reconstruction. Existing multiple-frame models using
a fixed range of neighbor frames face challenges in effectively
enhancing frames during scene switches and lack efficiency in re-
constructing high-frequency details. To address these limitations,
we propose a novel method that effectively handles scene switches
and reconstructs high-frequency information. In the feature
extraction part, we develop long-term and short-term feature
extraction streams, in which the long-term feature extraction
stream learns the contextual information, and the short-term
feature extraction stream extracts more related information
from shorter input to assist the long-term stream to handle
fast motion and scene switches. To further enhance the frame
quality during scene switches, we incorporate a similarity-based
neighbor frame selector before feeding frames into the short-
term stream. This selector identifies relevant neighbor frames,
aiding in the efficient handling of scene switches. To dynamically
fuse the short-term feature and long-term features, the muti-scale
feature distillation focuses on adaptively recalibrating channel-
wise feature responses to achieve effective feature distillation. In
the reconstruction part, a high-frequency reconstruction block is
proposed for guiding the model to restore the high-frequency
components. Experimental results demonstrate the significant
advancements achieved by our proposed Long Short-term Fusion
by Multi-Scale Distillation (LSFMD) method in enhancing the
quality of compressed screen content videos, surpassing the
current state-of-the-art methods.

Index Terms—Screen content video, quality enhancement, deep
learning.

I. INTRODUCTION

ITH the development of intelligent terminal, screen
W content videos have received increasing attention such
as the cloud gaming, video conference, online education, etc.
The spread of the COVID-19 in 2020 has led to a surge in
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demand for online education and virtual conferences, making
Screen Content Coding (SCC) [1] [2] essential for effective
screen sharing. Consequently, enhancing the quality of screen
content videos has become a critical challenge.

Unlike natural videos, which typically feature a dynamic
range of colors, screen content videos exhibit distinct char-
acteristics in both the spatial and temporal domains. In the
spatial domain, these videos often contain large uniform, and
flat areas with minimal textural complexity, as well as repeated
patterns found in graphical user interfaces, spreadsheets, or
web pages. Moreover, the color palette in screen content
videos tends to be more limited compared to that of natural
videos. This is because screen content is often sourced from
digital sources that use a specific set of colors for icons,
text, and simple graphics. By making use of these screen
content characteristics, SCC [1] was proposed as an extension
of HEVC [3] to increase coding efficiency. In addition to
the conventional HEVC intra (INTRA) mode [4], the SCC
standard adopts two dedicated coding modes, Intra Block Copy
(IBC) and palette (PLT) [5]. IBC [6] uses the reconstructed
block from the current frame as the prediction block, while
PLT enumerates a color value for each coding block to
generate a color table and assigns an index to each sample
to indicate its corresponding color in the color table. These
tools are beneficial for flat areas and repeated regions. As a
result, the low-frequency region can be reconstructed well,
and the artifact is mainly focused on the high-frequency
region. In the temporal domain, screen content video often
consists of static or rapid-moving texts and charts. More-
over, during web browsing, the video content can abruptly
change in the next frame, known as “scene switch”, which is
frequently occurring in screen content videos. However, the
abrupt changes in content typical of scene switches strain the
motion compensation algorithms in SCC [1], which rely on
continuity between frames. Consequently, these transitions can
cause substantial drops in Peak Signal-to-Noise Ratio (PSNR),
leading to noticeable visual quality degradations.

In recent years, various neural network architectures have
been proposed for video quality enhancement in natu-
ral videos. Compared with single-frame methods [7]-[11],
multiple-frame methods have shown even better enhancement
results by utilizing the information from the neighbor frames.
However, these multiple-frame methods, such as flow-based
alignment [12], [13] and deformable-based alignment [14]-
[16], based on motion consistency between frames in natural
videos. They may always struggle to compensate for sub-
stantial content variations between frames [17], particularly
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during scene switches. This is due to the irrelevant information
provided by neighbor frames during these switches, which
can decrease the effectiveness of the quality enhancement
model. As aforementioned, the particularity of screen con-
tent videos, with rapid scene changes and artifacts in high-
frequency regions, makes it challenging for both optical flow
and deformable convolution methods to accurately determine
positions from preceding and following frames, limiting their
effectiveness in enhancing screen content videos. Therefore,
there is a critical need for the development of a new multi-
frame video quality enhancement method that effectively
addresses the unique challenges posed by scene switches in
screen content videos.

Based on the unique characteristics of screen content, we
propose a Long Short-term Fusion by Multi-scale Distilla-
tion (LSFMD) method to effectively restore high-frequency
details and improve quality during scene switches in com-
pressed screen content videos. This method consists of a long
short-term feature extraction module and a high-frequency
reconstruction module. The long short-term feature extraction
module is designed to retain useful information from neighbor
frames while minimizing their impact during scene transitions,
allowing the model to enhance video quality despite scene
switches and rapid motion. The high-frequency reconstruction
module focuses on reconstructing the sharp edges, as the
artifacts in screen content (SC) videos predominantly occur
around these regions. In the short-term feature extraction
stream, we introduce a Similarity-based Neighbor Frame Se-
lector (SNFS) that identifies and selects relevant frames among
neighbor frames to minimize disturbances from unrelated
frames. This selector ensures that short-term information is
extracted from frames with similar content, enhancing the ac-
curacy of the reconstruction. The selected frames pass through
the Multi-scale Residual Block (MSRB) to capture short-
term features for flat areas and text regions using different
kernel sizes, while a 3D Residual Block extracts long-term
features for contextual information. To effectively fuse short-
term and long-term information, we design a Multi-scale
Hierarchical Feature Distillation (MHFD) mechanism. This
mechanism transforms features from different scales to refine
the hierarchical features at various network depths using local-
global attention to distill significant features to the target
frame which can capture more information for uneven noise
distribution in screen content videos. This allows for better
handling of scene switches and consistency in scenes. The
fused features are then used as input for our proposed High-
Frequency Reconstruction Block (HFRB), which utilizes the
scale-space theory [18], [19] to factorize the feature map
tensors and extract the high-frequency information to guide
the model in restoring fine details of the target frame. This
approach ensures the preservation and enhancement of critical
high-frequency details, resulting in better video quality.

The main contributions of this work are summarized below:

e To the best of our knowledge, our proposed LSFMD is

the first approach in screen content video quality enhance-
ment to extract and fuse the long short-term features in
the corresponding frames to improve frame quality during
scene switches and restore the high-frequency detail.

o Instead of using a fixed set of neighbor frames to enhance
the target frame, an SNFS is proposed to dynamically
identify and select the most relevant frames based on
content similarity. This adaptive frame selection mech-
anism minimizes the disturbance from unrelated frames,
enhancing the accuracy of the reconstruction.

e To avoid the loss of features with the depth of the
network, we propose the MHFD to capture the correlation
of hierarchical features between short-term and long-term
feature extraction streams to distillate the useful informa-
tion related to the target frame, making the reconstructed
frame more high-quality.

e Different from the conventional reconstruction part using
vanilla convolution, the HFRB is proposed to parallelly
reuse the high-frequency information of the target frame
to adaptively restore the high-frequency details of the
reconstructed frame.

The rest of this paper is organized as follows. Section II
briefly introduces related works. In Section III, the proposed
LSFMD model is presented in detail. In Section IV, we
describe the experimental setting and analyze the performance
of the experimental results. Finally, Section V concludes the

paper.

II. RELATED WORKS
A. Single-frame Quality Enhancement

Numerous studies have been developed to enhance the
quality of compressed videos using spatial information from a
single frame. For instance, the In-loop Filtering CNN (IFCNN)
[7] replaces the conventional Sample Adaptive Offset (SAO)
filter with a three-layer CNN module to improve video quality
within the codec. Similarly, the Variable-filter-size Residue-
learning CNN (VRCNN) [8] aims to reduce distortion in
videos by modifying internal codec modules. Other approaches
focus on post-processing techniques to enhance video quality
after decoding. For example, the Deep CNN-based Auto De-
coder (DCAD) [9] employs ten convolutional layers to utilize
spatial information and improve videos on the decoder side.
The Quality Enhancement CNN (QE-CNN) [20] was designed
to enhance both I and P/B frames, effectively addressing
intra- and inter-coding quantization distortion. Additionally,
the work in [21] proposed using partition information to
boost the video quality. Our previous work [22] also utilizes
mode information from the codec to guide the CNN in the
enhancement process. However, these approaches primarily
consider spatial information, overlooking the crucial role of
temporal information in video quality enhancement.

B. Multi-frame Quality Enhancement

Yang et al. introduced the Multi-Frame Quality Enhance-
ment (MFQE 1.0) approach [12], which utilizes temporal
information to enhance video quality. This method uses high-
quality frames from compressed video as reference frames to
improve the quality of low-quality target frames through a
Multi-frame CNN. Subsequently, an updated version, MFQE
2.0 [13], was developed to improve efficiency and achieve
better performance. These methods employ dense optical flow
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for motion compensation to aggregate information from both
target and reference frames. However, optical flow alignment
is unsuitable for screen content video quality enhancement,
as scene switches can disrupt the pixel-wise correspondence
between frames, leading to inaccurate optical flow estimation.
In addition to flow-based methods, deformable convolution-
based methods have been proposed to learn offsets from
compressed frames to obtain aligned features for VQE. An
alternative work proposed in [14] is the deformable-based
alignment (STDF) approach, which adaptively compensates
for sampling positions of frames, capturing the most relevant
context and removing artifacts in the target frame. The Spatio-
Temporal Detail Information Retrieval (STDR) network in
[15] incorporates a multi-path deformable alignment module
to enhance the accuracy of offset generation by integrating
alignment features from various receptive fields. In a related
development, a new end-to-end network, termed Coarse-to-
Fine Spatio-Temporal Information Fusion (CF-STIF) [16],
has been proposed for enhancing the quality of compressed
videos. This network advances the field by predicting more
precise offsets, aided by its capability to utilize a larger
receptive field. Besides, in the natural video, the motion
vector can be utilized to guide the enhancement process in
Coding Priors-Guided Aggregation Network (CPGA) [23].
While flow-based, deformable-based, and motion vector-based
alignments have primarily been proposed for natural video
quality enhancement, they may not effectively compensate for
the position of the target frame in screen content videos. To
enhance screen content videos, the Content Adaptive Network
based on Two Branches (CAT) [24] was proposed to perform
specific enhancements on text and graphics separately. Another
method, Spatial-Temporal Adaptive (STA) [25], introduced
a dual-branch structure for parallel single-frame and multi-
frame feature extraction to enhance screen content videos.
However, these approaches utilizing deformable convolution
may potentially reduce the accuracy of compensating the
target frame’s position, which reduces their efficiency and
practicality. The Quality Enhancement Network using Cross-
Frame Information (QECF) [17] introduced a cross-fusion
block instead of an alignment-based method. However, QECF
was specifically developed for gaming videos, which consist
of a series of consistent frames. A temporal group alignment
and fusion network (TGAF) [26] was proposed for the quality
enhancement of compressed videos by selecting the frames
from the video to form a group of pictures according to the
temporal distances to the target frame. However, the skipping
selection adds irrelated frames when the scene switch occurs.
To address the unique characteristics of screen content videos,
which often involve dramatic motion and scene switches, we
propose a novel network that overcomes the limitations of ex-
isting approaches. This new method is designed to handle the
specific challenges posed by screen content videos, ensuring
more accurate and effective video quality enhancement.

III. PROPOSED METHOD

A. Motivation

In Section I, we discussed the unique characteristics of
screen content videos, such as rapid scene changes and ar-

(©

Fig. 1. (a) Original natural frame Kimono, (b) original screen content frame
68 scwebbrowsing, (c) artifact of natural frame, and (d) artifact of screen
content frame.
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Fig. 2. (a) PSNR statistics for natural video Kimono, (b) PSNR statistics for
screen content video scwebbrowsing.

tifacts in high-frequency regions, which make it challenging
for existing methods to effectively enhance their quality. This
can be observed in Fig. 1(a) and Fig. 1(b), where we compare
typical frames from a natural video, and the screen content
video, respectively. Fig. 1(c) and Fig. 1(d) then show the
artifact distributions of the natural and screen content videos,
respectively. The artifact distribution is obtained by calculat-
ing the differences between the reconstructed frame and the
original frame. We can observe in Fig. 1(c) that the artifact
appears throughout the entire area of the natural content due
to its diverse range of colors and camera noise. In contrast,
we can see in Fig. 1(d) that the artifact mainly occurs in the
high-frequency regions of screen content. This highlights the
importance of accurately reconstructing high-frequency details
in screen content video quality enhancement.

In the temporal domain, we observe that scene switches
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Fig. 3. Our proposed LSFMD structure, which contains long short-term feature extraction, multi-scale hierarchical feature distillation, and high-frequency

reconstruction.

in screen content videos can cause significant drops in Peak
Signal-to-Noise Ratio (PSNR), leading to noticeable visual
quality degradations. To verify this, we encoded the natural
video Kimono and the screen content video scwebbrowsing,
and then calculated the PSNR between the reconstructed
frames and the original frames as shown in Fig. 2. We
observe that the PSNR changes in natural videos (Fig. 2
(a)) tend to remain within a certain range across different
frames, while those in screen content videos exhibit significant
variations. Besides, we also observe that the compressed
screen content video exhibits significant PSNR drops during
scene switches resulting in noticeable quality degradations that
severely impact the Quality of Experience (QoE). However,
existing multiple-frame methods, such as flow-based alignment
[12], [13] and deformable-based alignment [14], [24]-[26], are
inadequate for compensating for substantial content variations
between frames [17], as they rely on a prediction network to
compensate for the positions of neighbor frames. Inaccuracies
in the prediction network can diminish the performance of the
quality enhancement network. In addition, the alignment-free
method described in [17] extracts the high-quality region from
neighbor frames to enhance the target frame. However, these
traditional methods that utilize a fixed set of neighbor frame to
enhance the target frame may provide irrelevant information
during scene switches, affecting the performance of the model.
Consequently, we develop a novel video quality enhancement
method to address the challenges of scene switches and
dramatic motions in screen content videos.

B. Overview of the Framework

Our LSFMD model, as shown in Fig. 3, aims to remove
artifacts in screen content videos that involve numerous dra-
matic motion and scene switch scenarios. In this context, we
denote a low-quality frame at time ¢ as ItL Q@ e REXW  where
H and W indicate the vertical and horizontal resolutions of the
frame. The main objective of LSFMD is to enhance the quality
of ItL Q by effectively using both short-term and long-term
temporal information. To achieve this, our model considers the
preceding and succeeding R = 2 frames as reference frames

to capture the necessary temporal context. The enhanced high-

quality frame I/7% € RF*W can be expressed as
' = Huspup ({1 %% o IP9, o IESY) (1)

where Hpspyp(-) represents the proposed LSFMD,
{I,"% LQ LQ ,ItL +QR} represents the group of the 2R + 1
input frames. Next, we will discuss our proposed framework
in Fig. 3, which comprises two modules: a long short-term
feature extraction module and a high-frequency reconstruction
module. In the long short-term feature extraction module, we
construct two streams: a short-term feature extraction stream
and a long-term feature extraction stream. These streams
aim to extract short-term and long-term information from
input frames of varying lengths. In addition, a multi-scale
hierarchical feature distillation (MHFD) is proposed to
enhance the reusability and effectiveness of the short-term
and long-term features. This approach enables us to handle
the scene switch situation adaptively. By assigning weights
to the features in an adaptive manner, our network can
effectively learn the correlations between short-term and
long-term features. In the reconstruction part, we focus on
reconstructing the high-frequency information of the target
frame. This component plays a crucial role in enhancing
the visual quality of the output, particularly in preserving
and enhancing the fine details that are often lost during
compression. We will provide a detailed explanation of
each component within our LSFMD frame in the following
subsections.

C. Long Short-term Feature Extraction

The utilization of single-stream deep neural networks has
been widely used for video quality enhancement [14], [17],
[24]. However, as the depth of the neural network increases,
the presence of unrelated features from neighbor frames can
hinder the model’s ability to effectively learn and extract
the relevant information related to the target frame. This
issue becomes particularly problematic in scenes with rapid
motion and frequent scene switches, as the unrelated features
can have a detrimental impact on the quality enhancement
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of the target frame. To tackle this challenge, it is crucial
to focus on the useful and related features of the target
frame, especially during situations involving rapid motion and
scene switches. Consequently, in contrast to the traditional
single-steam method, we propose a long short-term feature
extraction stream, where the short-term stream provides the
relevant features to assist the long-term stream, enabling a
more focused and effective analysis of the target frame.

Within the long-term feature extraction stream, using the
3D Residual Block to extract the long-term feature allows
the network to understand the video content in spatial and
temporal domain which is crucial for maintaining the integrity
of text and graphics across consecutive frames. The structure
of the long-term feature extraction stream is shown in Fig. 3.
We first transform the input sequence to the feature domain by
applying a 3D convolution layer to obtain the initial feature
Flg as:

F) = COnU3><3><3({ItL_QR, s ItLQ, e ItL_FQR}) )

where Convsxsx3(+) denotes the 3 x 3 x 3 convolution layer.
Then stacked Residual Blocks compute the features as:

Fj} = Hyp(Fj;'),n € [1,N] 3)
F; = MazP(FY) 4)

where N is the total number of residual blocks in the long-term
feature extraction, FJ} represents the extracted features after
the n'" residual blocks H%(-), and MazP(-) denotes the
maxpooling, which is utilized to transform the feature domain.
The output of the long-term feature extraction stream, denoted
as Fj;, is obtained by passing the features through the N*"
residual block H} (), followed by MazP(-).

This output, Flt, encapsulates the contextual information,
but special attention must be given to flat areas and repetitive
text regions, which are commonly found in screen content
videos. These regions require different scale filters to ef-
fectively capture more useful information. Inspired by the
Multi-Scale Residual Block (MSRB) [27] used in image
super-resolution, the short-term information extraction stream
utilizes the MSRB to adaptively detect features at different
scales. For flat areas, larger filters can be used to capture
broader context, which is significant for these regions. In
contrast, sharp edges, such as those found in text, are critical
features that need to be preserved in screen content videos
to maintain readability. To address this, the MSRB employs
smaller kernels to capture the high-frequency details associated
with text edges, ensuring that the sharpness and clarity of text
are retained in the reconstructed frame. The structure of the
short-term feature extraction stream is summarized as follows:

Is = Hsnps({IF%, . 119, . THS Y (5)
FS = Convsys(Is) (6)
Fly = Hy;gpp(Fi),n € [1,N] @)

where Convsxs(-) denotes the 3 x 3 convolution layer.
Moreover, Hgn g represents the Similarity-based Neighbor
Frame Selector, which identifies the most relevant short-term

Sliding window

=

Group a

Groupb  Groupc

Fig. 4. SNFS, Group a: {I,SLiQQ,I,SLin,ItLQ}, Group b: {ItLin,ItLQ,ItLJrQl},

LQ ;LQ ;L
Group c: {I; Q It+Q27 [t+%}

neighbor frames to the target frame Ig, as discussed in the next
subsection, and F7; represents the extracted features after the
n'" MSRB H¥; 55 (+), respectively. We can obtain the output
F of the short-term feature extraction stream by stacking the
MSRB.

Similarity-based Neighbor Frame Selector: Extracting
the short-term feature from the shorter input can reduce the
disturbance from unrelated neighbor frames. However, during
scene transitions, the fixed window for choosing neighbor
frames may introduce irrelevant information. To further en-
hance the frame quality during scene switches, the proposed
method incorporates a similarity-based neighbor frame selec-
tor (SNFS) in the short-term feature extraction stream. In the
SNFS, we employ a sliding window to separate the input
frames {ItL_%, .,ItLQ, ...,Iﬁg} to different groups as shown
in Fig. 4. Group a denotes {I/%, I, IF9}, group b denotes
{ItL_%,ItLQ,ItL_g}, and group ¢ denotes {ItLQ,ItL+%,ItL+Q2 ,
SNFS, then calculates the pearson correlation coefficient [28],
[29] between each neighbor frame and target frame in each
group. This calculation allows for the selective identification of
frames that are most relevant and pertinent to the target frame.
A larger pearson correlation coefficient indicates a greater
degree of similarity. In summary, the working process of the
proposed SNFS is operated as:

P, = pearson(I[%, IF?) + pearson(I}9, IF9),
P, = pearson(ItL_Ql,ItLQ) +p6arson(ItL+Ql,ItLQ),
P, = pearson([ﬁg, Ik9) —l—pearson(ItLJg,ItLQ)7

P = max(P,, P, P.)

®)

where pearson(-) denotes the operation to calculate the pear-
son correlation coefficient between the neighbor frames and
the target frame, and P denotes the maximum value among
P,, Py, and P.. Once P is determined, the SNFS chooses the
group with the larger pearson correlation as the input Ig in
Eq. (5). This adaptive selection enables quality enhancement,
especially in the context of scene switches and fast motion,
where the fixed-window approach may introduce irrelevant
information. By adopting the pearson correlation-based frame
similarity evaluation, the SNFS can effectively identify the
most relevant neighbor frames to the target frame, ensuring
that the short-term feature extraction stream has access to the
most pertinent information for improving the overall video
quality.

D. Multi-scale Hierarchical Feature Distillation

As the depth of the network increases, the extracted short-
term and long-term features will gradually disappear during
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Fig. 5. Comparisons of different hierarchical feature utilization methods, (a)
Structure A, (b) Structure B, and (c) Structure C.

the conduction process. Therefore, taking advantage of hier-
archical features becomes crucial for significantly improving
model performance. However, many existing models overlook
the importance of hierarchical features, as shown in Fig. 5
(a), resulting in sub-optimal results. Moreover, simply con-
catenating all hierarchical features, as in Fig. 5 (b), fails
to eliminate redundant features, resulting in inefficient video
reconstruction. Therefore, an effective method that can exploit
hierarchical features and eliminate redundant features is cru-
cial for screen content video quality enhancement. To address
this, our proposed MHFD introduces two key components: the
Feature Transformation Strategy and the Local-global Channel
Attention Mechanism.

Feature Transformation Strategy: The feature transforma-
tion component is specially designed to refine the hierarchical
features at different network depths through a series of non-
linear transformations. This process aims to enhance the
representational power of the network. To achieve this, we
employ a series of convolutional layers:

1) Initial feature combination: After obtaining the hierar-

chical feature from the first convolution layer, we utilize
a 1 x 1 convolution layer to combine the short-term and
long-term features.

2) Shallow feature extraction: Subsequently, a 5 X 5 convo-

lution layer is employed to extract the shallow features.
The use of a larger 5 x 5 receptive field ensures the
retention and amplification of salient features.

3) Deeper feature processing: The remaining hierarchical

features are processed by a combination of 1 x 1 and
3 x 3 convolution layers. This combination allows for
capturing finer details by utilizing a smaller receptive
field.

The process can be summarized as:

Fro= Convgx(Convixi ([MaxP(F}), F']))
I — { 5, n=0 9

3, otherwise
wheren =0,--- , N—1, F™ denotes the feature obtained from
the nt" feature transformation branch, Conuvyxy(-) presents
the k x k convolution layer, and [-, -] denotes the concatenation
operation.

Local-global Channel Attention Mechanisms: As in Fig.
6, the inputs of MHFD are the hierarchical features obtained
through convolution at different scales. However, these fea-
tures may contain redundancy information. To further distillate
the useful information in the target frame, we design a local-
global attention mechanism that combines the benefits of local

0 0 n n N-1pN-1
Ez th """ Ff F;l """ Er F;-z
MaxP ’ MaxP ’l MaxP ’
v v v
1x1 conv 1x1 conv 1x1 conv
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Fig. 6. Multi-scale hierarchical feature distillation (MHFD).

attention and global attention. The local channel attention
mechanism is tailored to focus on feature maps specific to
certain channel locations. This allows the model to prioritize
local patterns and textures that are essential for high-quality
video reconstruction in each hierarchical feature branch. We
utilize the channel attention [30] to generate the attention
weight f " which can be obtained as:

Heoa(r) = o(Convy 1 (ReLU (Convy «1 (AvgP(+))))) (10)
fl"ZHCA(Fn) (11)

where Hc4(+) denotes the channel attention operation, o(-)
is the sigmoid function, ReLU(-) is the ReLU [31] activa-
tion function, and AvgP(-) represents the average pooling
operation. The attention weights f™ indicate the sensitivity
of different features in the n'" feature transformation branch.
Hence, local attention feature ()}’ can be computed as:

On the other hand, the global channel attention mechanism
offers a broader perspective by considering the entire channel
extent of the feature maps. By assigning attention weights
across different hierarchical feature branches, we can prevent
the loss of high-frequency hierarchical features as the network
depth increases. The synergy between local and global channel
attention mechanisms facilitates a more dynamic and context-
aware feature distillation. The global attention feature (), can
be obtained as:

(12)

fo=Hea([F°,--  FN71)) (13)

Qg:fg'[ﬁof"aFN_l} (14)
where f, denotes the attention weight assigned for all hierar-
chical features.

Finally, the output feature map () of the MHFD can be
obtained by combining the local and global attention features:

chonlel([Q?a"' ) i\/—l]®O_(Qg)) (15)
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Fig. 7. The structure of HFRB in the high-frequency reconstruction module.

where ® denotes elementwise multiplication. Here, the output
@ of MHFD is the local-global attention-weighted feature
which contains the refined information from each scale of long
short-term feature extraction. After we obtain the distillated
feature (), we can fuse it with the short-term and long-term
features, as depicted in Fig. 3, as:

Zy = Convix1([FY, Fit, Q))

where Z; is the output of the long short-term feature extraction
module in Fig. 3, which contains the long short-term features
and multi-scale hierarchical features. Increasing the depth of
the network causes the extracted short-term and long-term
features to diminish in prominence as they propagate through
the model. Therefore, taking advantage of hierarchical features
will greatly improve model performance.

(16)

E. High-frequency Reconstruction

Conventional reconstruction blocks using vanilla convolu-
tion typically focus on reconstructing the frame as a whole.
However, this approach sometimes overlooks finer details that
contribute significantly to the perceived sharpness and clarity
of the screen content image. High-frequency components of
this image, such as edges, textures, fonts, and fine structures,
contain crucial details. By explicitly incorporating this in-
formation into the reconstruction block, we can restore fine
details that are often lost during the compression process,
which is vital for delivering an enhanced visual experience
in screen content videos. To extract the high-frequency feature
adaptively, we utilize the scale-space theory introduced in [18],
[19] to factorize the feature map tensors into low- and high-
frequency groups. The HFRB is then designed in this paper
to effectively integrate this high-frequency information into
the reconstruction module. With the stacking of the HFRB in
Fig. 7, the interaction between the extracted high-frequency
features and the reconstructed features dynamically fine-tunes
the high-frequency details in parallel. The synergistic effect
of this parallel interaction not only aids in restoring the
completeness of textures and edges but also enhances the
overall quality of the reconstructed feature.

Different from the traditional reconstruction part using a
single input from the previous layer, our HFRB in Fig. 7
combines features from the previous layer and extra features
extracted from the target frame. Let us denote the input feature
tensors to the m** HFRB, where m =1,--- , M, as:

1) XH ¢ RO-e)eyxhxw. high frequency feature maps

extracted from the target frame.

2) XL e Roe xgxy, low-frequency feature maps ex-
tracted from the target frame.

3) Zn € R*PXw: features from the long short-term
extraction module and the high-frequency feature from
the target frame excepting the input of the first HFRB,
which is Z; in Eq. (16).

where h and w denote the spatial dimensions, and ¢ and
cy denote the channel number where ¢y = 2c¢ apart from
the last HFRB. In the last HFRB, c; is equal to ¢ for
the channel matching. Here, a € [0,1] denotes the ratio of
channels allocated to the low-frequency part. The setting of
the o will be introduced in Section IV-A.

By explicitly incorporating the target frame information
into the reconstruction block, our model can more effectively
restore fine details often lost during the training process. The
output feature tensors of the m*" HFRB is denoted as X7 | €
R(l cx)CthXw XL 41 € Racjvx , and Zm—i—l c Rexhxw .

The process of HFRB is represented as:

{X7rz+1’ X7Ln+17 Zm+1} = HHFRB(XH XL Zm)

m? m?

(17)
where

XH. | = Conusys(XH) + Up(OOTl’ngg(XL))
XEo = Conugys(XE)+ COTL’ngg(A’UgP( ),
Z7n+1 = COTL’USXS(Zm) m+1
(18)
where HZFRB(.) denotes the m'® HFRB and Up(-) denotes
the upsampling operation by a scale factor of 2. Up(-) oper-
ation denotes the upsampling of the input by a scale factor
of 2. The Up(-) and AvgP(-) operations are used for com-
munication between the low-frequency and high-frequency
feature groups, which helps adjust the feature dimensions. In
the HFRB, the output feature Z,,.; encapsulates the high-
frequency information from the target frame. This feature is
subsequently fed into the next layer to extract deeper features.
Concurrently, the high-frequency details from the target frame
are fed into the subsequent layer for analysis and extraction
of the most pertinent features. The HFRB’s capability to
handle multiple inputs allows for the parallel extraction and
integration of high-frequency information. This enables the
LSFM model to dynamically shift its focus towards these
crucial details as it progresses deeper into the network. This
adaptive mechanism ensures that the essential high-frequency
characteristics from the target frame are not overlooked but
are instead emphasized throughout the reconstruction process.
Finally, the reconstructed frame can be represented as:
e e

:Convgxg(ConU1x1([ZM7Xzfvﬂ))+ (19

where the Z; and X are the output of the last HFRB. In
the reconstruction module, this high-frequency information is
progressively integrated with the major features in the HFRB.
The parallel extraction and integration of high-frequency de-
tails enable the model to dynamically adjust its focus on
these components as the network deepens. This newly adaptive
mechanism ensures that the essential details from the target
frame are not lost but rather emphasized, leading to improved
frame quality.
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F. Training Scheme

To effectively handle the high-frequency information and
improve the performance, we adopt the robust Charbonnier
loss function in [32], [33] to train our model in an end-to-end
manner. The loss function L is represented as:

- 2
I — \/HItHQ _ If’QH +e2

where [ tH Q is the ground truth frame at time ¢, ffl Q, represents
the enhanced frame generated at time ¢ by our model, and
e =107 is a constant value used across all experiments.

(20)

IV. EXPERIMENTAL RESULTS
A. Implementation Details

Our proposed LSFMD model mainly focuses on enhanc-
ing the video quality of screen content sequences. In our
LSFMD framework, each convolutional layer, except for the
final convolutional layer, is followed by a ReLU activation
function [31] to introduce non-linearity into the model. Due
to the limited number of available screen content sequences
within the Common Test Condition (CTC) [34], we gathered
additional screen content sequences from other sources [35]—
[37]. Our dataset consists of 41 video sequences with various
resolutions, including 2560x1440, 19201080, and 1280x720.
The lengths of these videos range from 300 to 600 frames,
with frame rates varying between 20 and 60 fps. Among
these sequences, 28 videos were adopted for training and the
remaining 13 videos were for model testing. In the test set,
10 video sequences are provided from the CTC [34], that is
a common dataset to exemplify various challenges in video
quality enhancement. Notably, the CTC dataset contains only 3
videos characterized by frequent scene switches and dramatic
motions. To make a robust assessment of the model’s capabil-
ities in handling real-world scenarios that feature rapid scene
changes and motion complexities, we added 3 self-capture se-
quences to introduce more variations with scene transitions and
dynamic motions. The video sequences were encoded using
the HEVC reference software HM16.20-SCMS8.8 under Low
Delay Main SCC (LDMS) configuration as the network inputs,
while the uncompressed raw video sequences were used as
the ground-truths. We utilized four Quantization Parameters
(QPs) of 22, 27, 32, and 37 for encoding the sequences
and training a separate model for each QP. During training,
only the luminance channel (Y channel) of each frame was
considered as input. Model construction and training were
implemented using PyTorch. The patch size of each input
image and its corresponding ground truth was 128 x 128. To
augment our dataset, we randomly selected 300 patches from
one frame for each iteration. In our experiments, the learning
rate was set to 0.0001 for all QPs. The adaptive moment
estimation (Adam) optimization method [38] was used to train
the model for 300000 iterations. A computer equipped with
Ubuntu 20.04 operating system, an Intel i9-10900K CPU, 64
GB RAM, and NVIDIA 3090Ti GPUs, was used to perform
the model training.

In the LSFMD model, the number of MSRB and RB are set
as 3 (N = 3) and the number of HFRB is also set as 3 (M =

3). The a in HFRB was set as 0.5 throughout the module for
the channel matching between the extracted high-frequency
feature and the reconstructed feature within the HFRB, apart
from the first and the last HFRB. To convert a vanilla feature
representation to a low-frequency and high-frequency feature
representation, we set « in the first HFRB to 0. In this case, the
low-frequency input of the first HFRB is disabled. To convert
the low-frequency and high-frequency feature representation
back to vanilla feature representation, we set « in the last
HFRB to 0, disabling the low-frequency output in the HFRB,
and resulting in a single output.

B. Overall Performance

Objective Visual Quality Assessment: In this section,
we compare the proposed LSFMD method with the state-of-
the-art video quality enhancement methods, STDF-R3 [14],
QECF [17], CAT [24], TGAF [26], STA [25], CF-STIF-M
[16], and STDR [15]. To evaluate the quality enhancement
performance of each quality enhancement method, the Peak
Signal-to-Noise Ratio (PSNR) improvement (APSNR) and the
Structural Similarity Index (SSIM) improvement (ASSIM) are
used. Table I shows the average APSNR and the average
ASSIM, respectively, over all frames of each test sequence.
The best APSNR/ASSIM is highlighted in bold. We can
see that our proposed LSFMD outperforms other methods in
most cases, highlighting the effectiveness of our approach.
For instance, when using a QP of 37, our LSFMD achieves
the highest APSNR of 1.915 dB for the paperpdf sequence,
which contains text and graphics. The average APSNR of our
LSFMD is 0.938 dB, which is 46.33% higher than that of
CAT (0.641 dB), 52.52% higher than that of QECF (0.615
dB), 48.42% higher than that of STDF-R3 (0.632 dB), 16.09%
higher than that of TGAF (0.808 dB), 8.31% higher than that
of STA (0.866 dB), 17.25% higher than that of CF-STIF-M
(0.800 dB), 20.72% higher than that of STDR (0.777 dB), and
21.19% higher than that of EAST-LITE (0.774 dB). For other
QPs ( 22, 27, and 32), our LSFMD approach also outperforms
other state-of-the-art video quality enhancement approaches.
A similar trend can be found for ASSIM. This demonstrates
that our LSFMD approach not only performs well in reducing
pixel-level differences but also enhances the visual quality
perceived by the human visual system. To further evaluate
the performance, BD-rate [34] is used to indicate the bitrate
savings achieved by these models under the equivalent PSNR.
The experimental results are compared and tabulated in Table
II. Our LSFMD obtains an average BD-rate savings of 7.53%.
For the test sequence scSlideShow with dramatic motion and
scene switch, our LSFDM achieves up to 12.50% BD-rate
saving for the Y component under LDMS configuration. We
conjecture that our LSFMD effectively removes the artifacts
and restores the high-frequency information, thereby enhanc-
ing the quality of decoded frames and reducing the BD-rate.

Subjective Visual Quality Comparison: This section com-
pares the subjective quality of different models. Fig. 8 shows
the subjective visual quality performance of various models
on the sequences ChineseEditing, MissionControlClip3, and
scwebbrowsing, all encoded with QP = 37. From this figure,
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TABLE I
OVERALL APSNR AND ASSIM (x10~3) OF DIFFERENT MODELS AT QP=22,27,32,37

QP Seq. STDF-R3 [14] QECF [17] CAT [24] TGAF [26] STA [25] CF-STIF-M [16] STDR [15] EASTLITE [37] Proposed LSFMD
APSNR __ASSIM | APSNR _ASSIM | APSNR _ ASSIM | APSNR _ASSIM | APSNR _ ASSIM | APSNR _ ASSIM | APSNR __ ASSIM | APSNR _ ASSIM | APSNR _ ASSIM

1 0.327 318 0.325 323 0318 719 0432 711 0477 792 0.369 398 0.408 733 0417 6.02 0451 759

2 0.273 222 0.244 1.63 0.200 1.24 0.480 379 0.382 212 0.360 241 0321 177 0.525 5.55 0.529 454

3 0.867 278 0.770 2.7 0.951 327 1.101 3.63 1134 3.62 1.243 341 1266 401 0.991 4.82 1.356 425

4 0492 417 0.503 4.12 0477 4.00 0.610 430 0.672 474 0.625 472 0.546 4.59 0573 4.17 0.679 512

5 1.281 2.87 1225 267 1.421 3.08 1.728 318 1771 3.38 1718 328 1718 331 1.500 3.36 1915 3.49

37 6 0.779 238 0.831 234 0.864 279 1.233 424 1254 3.90 1.127 332 1.189 381 1.069 4.56 1.299 4.08
7 0.301 346 0.365 351 0.329 3.05 0516 4.13 0538 385 0.278 385 0306 4.16 0.528 3.07 0.589 4.78

8 0914 402 0910 3.98 0.878 421 0.866 411 1.166 4.62 1.054 430 1.094 452 1.076 385 1.165 452

9 0453 571 0373 353 0416 6.26 0463 6.44 0.529 6.61 0.526 5.97 0.408 5.04 0.476 435 0.56 6.83

10 0.406 4.90 0427 4.93 0.403 4.86 0.545 497 0.597 572 0.520 551 0514 5.1 0.545 459 0.635 577

11 1.008 328 0.907 338 0.969 3.56 1.137 378 1292 402 1.286 3.93 1.046 372 1.107 6.91 1.494 423

12 0.569 533 0.563 5.19 0.568 5.18 0.721 573 0.754 5.93 0.672 5.67 0.689 6.08 0.647 5.82 0.799 6.67

13 0.545 5.06 0551 4.96 0.535 4.98 0.677 538 0.698 5.55 0.625 525 0.591 551 0.612 3.69 0.720 6.01

Ave. | 0632 380 0,615 355 0.641 390 0.808 135 0.866 454 0.800 478 0.777 730 0.774 467 0.938 4.9

32 Avg | 0533 2.09 0531 2.12 0.541 2.04 0.656 2.19 0.790 2.66 0.704 254 0.655 237 0.684 237 0.798 2.67
27 Avg. | 0467 0.1 0495 .07 0.429 0.91 0586 0.99 0.626 Li5 0.608 122 0.588 .10 0.548 L2 0.692 127
22 Avg | 0417 0.53 0470 054 0426 0.55 0,550 0.61 0.603 0.66 0.533 0.64 0537 0.62 0.496 0.61 0.611 0.68

1: BigBuck(1920x 1080, 404 frames, 60 fps) 2: ChineseEditing(1920x 1080, 600 frames, 60 fps) 3: EnglishDocumentEditing(1920x 1080, 300 frames,

30 fps) 4: MissionControlClip3(1920x 1080, 600 frames, 60 fps) 5: Paperpdf(1920x1080, 300 frames, 60 fps) 6: Sephora(1920x1080, 300 frames,
60 fps) 7: mixvideo(1920x 1080, 300 frames, 60 fps) 8: scSlideShow(1280x720, 500 frames, 20 fps) 9: scmap(1280x720, 600 frames, 60 fps) 10:
scprogramming(1280x 720, 600 frames, 60 fps) 11: scwebbrowsing(1280x720, 300 frames, 30 fps) 12: MissionControlClip1(2560x 1440, 600 frames, 60

fps) 13: MissionControlClip2(2560 x 1440, 600 frames, 60 fps).

TABLE I
OVERALL BD-RATE(%) OF DIFFERENT MODELS AT QP=22,27,32,37

Sequences STDF-R3 [14]  QECF [17] CAT [24] TGAF [26] Proposed LSFMD
BigBuck -5.33 -6.09 -6.13 -7.24 -7.90
ChineseEditing -1.39 -1.44 -1.25 -2.06 -3.03
EnglishDocumentEditing -2.67 -2.59 -2.68 -3.53 -4.33
MissionControlClip3 -6.02 -6.24 -5.91 -71.17 -8.21
Paperpdf -4.17 -4.53 -4.19 -5.81 -7.03
Sephora -5.81 -6.07 -5.78 -7.25 -10.07
mixvideo -2.05 -2.25 -2.00 -2.69 -3.34
scSlideShow -9.94 -10.05 -9.85 -11.19 -12.50
scmap -7.22 -6.42 -6.00 -7.58 -8.56
scprogramming -5.81 -6.39 -6.33 -8.02 -8.66
scwebbrowsing -3.14 -2.91 -2.90 -3.67 -3.66
MissionControlClip1 -1.27 -7.44 -7.44 -9.09 -10.87
MissionControlClip2 -7.25 -7.54 -7.19 -8.65 -9.70
Average -5.24 -5.38 -5.20 -6.46 -7.53
Compressed STDF-R3 QECF CAT TGAF LSFMD Raw

Fig. 8. Subjective visual quality comparison at QP = 37 on ChineseEditing,

we can clearly see that the reconstructed frames of HM16.20-
SCM8.8 exhibit noticeable compression artifacts and suffer
from significant loss of high-frequency information details.
These artifacts and details cannot be effectively restored by
STDF-R3 [14], QECF [17],CAT [24], or TGAF [26]. As
depicted in Fig. 8, our proposed LSFMD removes the artifacts
and restores the content more effectively than the other models.

ChineseEditing
= R AN SR
75% 1 gz SR

scwebbrowsing
UL -

@asat
-ll_I!r 1R E “ﬂ
0o B

MissionControlClip3, and scwebbrowsing.

Taking the ChineseEditing sequence as an example, it can
be observed that the edges of the background still disappear
in other methods, but they are successfully restored by our
LSFMD. For MissionControlClip3, the clock’s numbers are
blurry and the words in the background under the clock
are unreadable. After being processed by our LSFMD, the
details of the clock are restored clearly, and the content of the
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Fig. 9. APSNR curves of STDF-R3, QECF, CAT, and our LSFMD method
for sequences, (a) scprogramming and (b) scSlideShow.

background under the clock is clear. For scwebbrowsing, we
visualize the frame during the scene switch situation. There is
a loss of high-frequency information, resulting in blurry text
and icons. However, when applying our proposed approach,
these elements become clearer. The examples presented in
Fig. 8 collectively demonstrate the superiority of LSFMD over
other models in terms of subjective visual quality. Once again,
this showcases the ability of our LSFMD model to effectively
restore high-frequency information and handle scenarios in-
volving scene switches.

Additionally, to further substantiate the effectiveness of our
proposed method, we conducted a subjective video quality
assessment (VQA) study on five videos with scene switches
and fast motion as shown in Table III We invited 14 review-
ers, including both professionals and non-professionals with
backgrounds in computer vision, to evaluate the enhanced
videos according to industry recommendations and the VQA
guidelines outlined in [39] using the double stimulus method.
Subsequently, we calculated the mean opinion score (MOS) for
each video using the method described in [40], [41]. The MOS
results in Table III demonstrate that our proposed method
outperforms other state-of-the-art video quality enhancement
methods. These findings confirm that our method not only en-
hances video quality at the pixel level, as shown in Table I, but
also more closely aligns with human perceptual preferences
in terms of visual quality. This highlights the ability of our
approach to effectively handle screen content videos featuring
scene transitions and dramatic motion, which can significantly
influence the Quality of Experience (QoE) for viewers.

Quality Evaluation on Dramatic Motion and Scene

ACROSS VARIOUS VIDEO ENHANCEMENT METHODS

TABLE III
PERFORMANCE EVALUATION OF MEAN OPTION SCORE (USER STUDY)

Sequences STDF-R3  QECF CAT TGAF  LSFMD
ChineseEditing 50.981 40.364  39.907 48.659  61.938
scwebbrowsing 44.173 54943  50.282  58.994 64.764

EnglishDocumentEditing 39.741 37361 54422 45547  59.476
scmap 52.067 52233 56432 51.794  57.057
scprogramming 54.529 48.091 51.833 45942  57.343

Switches: To evaluate the capability of our proposed LSFMD
in handling dramatic motion and scene switches, two different
types of screen content videos were selected to compute
the APSNR curves for STDF-R3, QECF, CAT, TGAF, STA,
CF-STIF-M, STDR, and our proposed method. The scpro-
gramming sequence involves pop-up windows and window
switching. These dynamic motions are commonly seen in daily
life and can pose difficulties for video quality enhancement al-
gorithms. Additionally, the scSlideShow sequence is composed
of spliced videos from CTC [34], allowing us to evaluate the
performance of our method in scenarios involving abrupt scene
transitions. The results are shown in Fig. 9, where dashed
lines indicate scene switch frames and gray shadow regions
distinguish the frames exhibiting dynamic motion. The result
in Fig. 9(a) demonstrates that our proposed LSFMD mostly
outperforms the others from frame 38 to frame 63 in the
scprogramming sequence. This shadow region encompasses
window switches and a pop-up window. It can demonstrate
that our proposed method can achieve significant APSNR
during periods of dramatic motion. While the STA only utilizes
the single frame to handle the scene switch which does not
perform well in dramatic motion. In Fig. 9(b), frame 28 and
frame 44 represent the switch points between two PowerPoint
slides in the scSlideShow sequence. Notably, our proposed
method demonstrates an improvement during most of the
transition points, highlighting its effectiveness in handling
abrupt scene transitions. In summary, our approach can take
the balance between the performance in dynamic content and
scene transitions but also proves effective in enhancing the
quality of videos with slight motion. This robustness to screen
content videos highlights the versatility and reliability of our
method.

Model Size and Computational Complexity: Table IV
displays the average APSNR in relation to the model parame-
ters and floating point operations (FLOPs) for various methods
including LSFMD, STDF-R3, QECF, CAT, and TGAF. These
results are averaged over all test sequences. Our RB, MSRB,
and MHFD modules in the LSFMD lead to increased con-
sumption of FLOPs and require more parameters, as shown
in Table IV. However, these modules are specifically designed
to learn contextual information, capture high-frequency de-
tails, and efficiently remove redundant hierarchical features,
respectively. This is further supported by the results of our
ablation study, which will be discussed in the next section. As
a result, the performance of LSFMD significantly surpasses
other methods, as in Table IV. In addition, our LSFMD is a
modular network, allowing for easy adjustment of the model
size by varying the number of RB, MSRB, and HFRB blocks.
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TABLE IV
COMPARISION OF MODEL SIZE AND COMPUTATIONAL COMPLEXITY
Model STDF-R3  QECF CAT  TGAF LSFMD-N2M2 _ LSFMD
A PSNR (dB) 0.632 0.615 0.641 0.808 0.883 0.938
Parameters (KB) | 36451 773313  848.546  1403.1 1244.029 1903.075
FLOPs (G) 3.856 3.292 7.541 20344 36.383 54.449

Therefore, in applications with computational limitations, we
can use a lightweight structure, such as LSFMD-N2M2, with
fewer blocks (IV = 2, M = 2). The LSFMD-N2M2 requires
fewer model parameters than TGAF, as shown in Table IV,
yet still achieves 0.883 dB APSNR, which is 9.28% higher
than that of TGAF (0.808 dB). This highlights the efficiency
and effectiveness of our proposed method.

Quality Enhancement at Different QPs: To verify the
generalization ability of the LSFMD model across different
QPs, we conducted additional encoding of all test sequences
at QPs of 24, 29, 34, and 39, while training the model at
different QPs: QP = 22, 27, 32, and 37. The performance in
terms of APSNR is presented in Fig. 10. Fig. 10(a) shows
the APSNR of the model trained at QP = 22 and tested at
QP = 22 and 24. In Fig. 10(b), the model is trained at QP =
27 and tested at QP = 27 and 29. Similarly, Fig. 10(c) and
Fig. 10(d) show APSNR of the model trained at QP =32 and
37, respectively, and tested at different QPs = 32 and 34, 37
and 39. As shown in this figure, each trained model can obtain
good quality enhancement on decoded videos at adjacent QPs,
thereby verifying the model’s generalization ability at various
QPs.

Transfer to Natural Video Domain: To further demon-
strate the generalization capabilities of our proposed LSFMD
approach, we retrained it on naturally compressed sequences.
To ensure a fair comparison, we used the same dataset and
experimental setup as in MFQE 2.0 [13], compressing at
QP = 37 to retrain the QECF, CAT, STA, and our proposed
LSFMD. The results of MFQE2.0, STDF-R3, TGAF, CF-
STIF-M, and STDR are extracted from the original papers.
While our method is specifically designed for screen content
video, the results demonstrate its commendable in natural
domains as well. In Table V, our findings show that the
average PSNR/SSIM of the test sequences increased by 0.729
dB/0.01378, surpassing the MFQE 2.0 [13] method, which
achieved an increase of 0.562 dB/0.01090. In addition, our
approach outperforms other screen content-oriented methods
such as QECF and CAT. These findings confirm the robustness
of our LSFMD approach.

C. Ablation Study

In this section, we conducted several ablation experiments
on the LSFMD model to analyze its effectiveness in handling
scene switches and reconstructing high-frequency details. To
evaluate the performance, we present the APSNR curve for
frames affected by scene switches and visualize the frame
that loses high-frequency information. Other ablation studies
are evaluated by calculating the average PSNR improvement
across all test sequences.

Study of Long Short-term Feature Extraction: As dis-
cussed in Section III-B, the long short-term feature extraction
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Fig. 10. APSNR of the model trained and tested at different QPs under
LDMS configuration. (a) Trained at QP=22, Tested at QP=22 and 24, (b)
Trained at QP=27, Tested at QP=27 and 29, (c) Trained at QP=32, Tested at
QP=32 and 34, and (d) Trained at QP=37, Tested at QP=37 and 39.

consists of short-term feature extraction, long-term feature
extraction, and MHFD. These components can adaptively
handle scene switches to achieve better performance in screen
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TABLE V
OVERALL APSNR AND ASSIM (x10~3) OF DIFFERENT MODELS AT QP=37 IN MFQE2.0 DATASET # THE RESULT OF EACH SEQUENCE OF
CF-STIF-M Is NOT PROVIDED IN THE ORIGINAL PAPER

Class Sequences MFQE2.0 CF-STIF-M STDF-R3 TGAF STDR STA QECF CAT Proposed LSFMD
PSNR  SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR  SSIM | PSNR  SSIM | PSNR  SSIM | PSNR SSIM | PSNR SSIM
A PeopleOnStreet 0.92 15.7 - - 0.65 10.4 0.84 13.2 1.53 234 1.22 19.6 1.16 19.1 0.89 15.8 1.22 19.8
Traffic 0.59 10.2 - 1.18 18.2 1.53 233 0.85 13.4 0.67 11.5 0.60 112 0.51 10.4 0.66 11.3
BasketballDrive 0.47 83 - 0.77 14.7 1.06 19.4 0.94 15.0 0.71 12.7 0.69 123 0.57 11.1 0.69 11.9
BQTerrace 0.40 6.7 - 0.54 13.2 0.71 17.9 0.72 12.3 0.56 9.7 0.53 9.3 0.42 8.1 0.54 9.3
B Cactus 0.50 10.0 - 0.7 12.3 0.82 152 0.85 152 0.67 123 0.61 11.9 0.45 10.1 0.66 12.1
Kimono 0.55 11.8 - 0.58 9.3 0.68 11.6 1.05 19.1 0.77 154 0.68 14.3 0.48 11.9 0.73 14.6
ParkScene 0.46 12.3 - 0.66 10.7 0.92 15.0 0.70 16.9 0.50 12.8 0.42 11.6 0.29 9.8 0.49 12.9
BasketballDrill 0.58 12.0 - 0.48 10.9 0.64 16.4 0.99 18.9 0.77 15.4 0.73 15.0 0.61 13.9 0.70 14.4
c BQMall 0.62 12.0 - 0.90 16.1 1.13 20.7 1.19 21.2 0.86 17.4 0.81 16.6 0.62 14.4 0.84 16.7
PartyScene 0.36 11.8 - 0.60 16.0 0.81 229 0.79 224 0.59 17.3 0.45 14.1 0.39 13.8 0.58 16.5
RaceHorses 0.39 8.0 - 0.70 12.6 0.89 17.1 0.55 15.3 0.47 11.5 0.39 10.4 0.30 8.5 0.36 9.4
BasketballPass 0.73 15.5 - 0.73 17.5 0.97 24.8 1.26 25.1 0.93 19.3 0.83 17.3 0.64 14.5 0.93 18.9
D BlowingBubbles 0.53 17.0 - 0.91 11.3 1.22 159 0.86 26.7 0.68 21.6 0.57 19.2 0.49 17.6 0.64 19.7
BQSquare 0.34 6.5 - 0.68 19.6 0.83 26.3 1.28 17.2 0.90 12.5 0.43 7.7 0.61 9.5 0.82 12,5
RaceHorses 0.59 14.3 - 0.95 18.2 1.23 25.1 0.95 24.4 0.70 17.6 0.60 15.9 0.46 124 0.64 16.7
FourPeople 0.73 9.5 - 0.92 10.7 1.02 13.0 1.12 13.7 1.01 12.9 0.90 122 0.84 11.8 0.92 124
E Johnny 0.60 6.8 - 0.69 73 0.83 8.9 0.89 9.8 0.84 9.2 0.81 9.3 0.73 9.4 0.77 8.8
KristenAndSara 0.75 8.5 - - 0.94 8.9 1.11 11.3 1.18 11.4 1.01 10.7 0.94 10.1 0.78 9.7 0.95 10.3
Average 0.56 10.9 0.89 15.9 0.75 13.2 0.96 17.7 0.98 17.9 0.77 14.4 0.68 13.2 0.56 11.8 0.73 13.8
TABLE VI
COMPARISONS OF DIFFERENT STRUCTURES IN OUR PROPOSED LSFMD AT QP=37
Structure A B C D E F G H 1 J K
SNFS v v v v - v v v v v v
The number “N” of MSRBs in short term feature extraction 3 3 3 - 3 3 2 3 3 4 4
The number “N” of RBs in long term feature extraction 3 3 - 3 3 3 2 3 3 4 4
MHFD - - - - v s v v s v v
Hierarchical feature concatenation v - - - - - - - - -
The number “M” of HFRBs in high-frequency reconstruction 3 3 3 3 3 3 2 2 4 3 4
APSNR (dB) 0.899 0.899 0.839 0.727 0.930 0.938 0.883 0.903 0.897 0.945 0.933
Parameters (KB) 1783.825 1790.689  1780.177 569.521 1903.075 | 1903.075 | 1244.029 1799.347 2006.803  2458.969  2562.697
Time consumption (ms) 482.913 493.575 167.801 382.764  508.190 521.824 411.629 530.556 546.855 705.566 718.751

content videos. To verify the effectiveness of these structures,
we remove the short-term feature extraction stream, long-
term feature extraction stream, or MHFD from LSFMD. The
ablation results are shown in Table VI. We also compare
the overall time consumption for enhancing a single frame
at 1280 x 720 resolution using different structures in this
table. When we remove the MHFD, as shown in Fig. 5(a),
the “Structure A” column in Table VI reveals a APSNR loss
of approximately 0.039 dB compared to our method. This in-
dicates that the inclusion of MHFD improves the performance
of our model. Furthermore, we also note that the inclusion
of MHFD adds 38.911ms to the overall time consumption for
enhancing a single frame at 1280 x 720 resolution, as shown
in the “Time consumption” column of the table. This indicates
that the local-global channel attention effectively balances time
consumption and performance, further illustrating our model’s
efficiency. We also compare MHFD with the hierarchical
feature utilization methods mentioned in Fig. 5(b) and pre-
sented the result in the “Structure B” column, demonstrating a
APSNR drop of about 0.039 dB. This suggests that distilling
the useful hierarchical features makes our model pay more
attention to the features of the target frame. The “Structure
C” and “Structure D” demonstrate the results of using only
short-term feature extraction and long-term feature extraction,
respectively. We observe a significant drop in APSNR, which
clarifies the importance of the combination of these two
streams.

To further validate that our modules meet their design
objectives, we visualize the extracted features from Fig. 11(a)
when different modules are adopted. The feature maps from
the short-term feature extraction module, highlighted in Fig.

11(b) and Fig. 11(d), primarily focus on high-frequency infor-
mation of the target frame. On the other hand, the long-term
feature extraction module captures more extensive features
from neighbor frames, as illustrated in Fig. 11(c) and Fig.
11(e). It is worth noting that in the region highlighted by the
red rectangle in Fig. 11(c), we can see the features from the
neighbor frame are also introduced. This observation verifies
that our SNFS in the short-term feature extraction stream en-
sures that short-term information is extracted from frames with
similar content, enhancing the accuracy of the reconstruction.
After the SNFS, the MSRB captures high-frequency details
associated with text edges, preserving the sharpness and clarity
of the text in the reconstructed frame, as we claim. Compared
to the features extracted from the short-term stream, the long-
term feature extraction integrates information from neighbor
frames, enriching the feature set and maintaining the integrity
of text and graphics across consecutive frames, as detailed in
Section III-C.

Therefore, our proposed MHFD effectively leverages these
insights by combining the advantages of both long-term and
short-term feature extractions. This successful integration is
demonstrated in Fig. 11(f), where the region corresponding
to the red rectangle in Fig. 11(f) shows more relevance to
the target frame than the correlated region in Fig. 11(c). This
observation further verifies that MHFD integrates both low and
high-frequency features while filtering redundant features of
neighbor frames. This balanced feature integration enhances
the overall effectiveness of our approach to video quality
enhancement.

In summary, the ablation study highlights the effectiveness
of the long short-term feature extraction components, includ-
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Fig. 11.

Visualization of feature maps produced by different modules of the proposed LSFMD. (a) Enhanced frame of our proposed LSFMD, (b) feature

map F9, st in short-term feature extraction, (c) feature map F in long-term feature extraction, (d) feature map F' .1 in short-term feature extraction, (e) feature

map F;, in long-term feature extraction, and (f) feature map Q@ of MHFD.
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ing short-term feature extraction, long-term feature extraction,
and MHFD, in achieving better performance for screen content
videos.

Study of SNFS: As discussed in Section III-B, the SNFS
enables the model to adaptively handle scene switches and
enhances performance in screen content videos. To verify
the effectiveness of the SNFS, we remove the SNFS from
LSFMD. The ablation results are shown in Table VI and
Fig. 12, where dashed lines indicate scene switch points.
In the “Structure E” column of Table VI, it is evident that

incorporating the SNFS adds an additional 13.634ms for
improving each frame. However, this increase in processing
time is considered acceptable given the improvement in quality
it delivers. In Fig. 12, “LSFMD-NS” represents the LSFMD
model without SNFS. The results reveal that the LSFMD-
NS model experiences a slight decrease in PSNR during
the scene switch compared to our proposed LSFMD model.
This means that using the similarity frame to extract short-
term information can further improve the quality of frames
in the presence of scene switches. In other words, the SNFS
component plays a crucial role in the LSFMD model’s ability
to adaptively handle scene switches and maintain high-quality
performance. By using the similarity frame, the SNFS helps
the model better extract short-term information, leading to
improved reconstruction quality during scene transitions.

Study of High-frequency Reconstruction Block (HFRB):
To verify the efficiency of our proposed HFRB in restoring
high-frequency information in the target frame, we conducted
a visual analysis of the high-frequency details in a frame
from the “scmap” sequence. As illustrated in Fig. 13, the
model labeled “LSFMD-NH” represents the LSFMD model
without the incorporation of the HFRB. The absence of the
HFRB in this model leads to a noticeable blurriness in the
text, underscoring the importance of high-frequency detail
preservation for maintaining text clarity and overall image
sharpness. This comparison highlights the critical role of the
HFRB in enhancing the visual quality of the reconstructed
frames. The HFRB effectively restores the fine details that are
often lost during the compression process, resulting in sharper
and clearer images, especially in the text regions. To examine
how the number of HFRB blocks affects performance, we
varied the quantity of these blocks. The outcomes of these
adjustments are detailed in columns “Structure F”, “Structure
H”, and “Structure I” of Table VI. The results indicate that
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the optimal number of HFRB blocks is “3”.

Influence of the Number of Blocks: The LSFMD features
a modular network design that facilitates simple tuning of the
model size through the adjustment of MSRB, RB, and HFRB
block quantities. From columns “Structure F” to “Structure
K” in Table VI, we observe that increasing the number of
these blocks significantly enhances the PSNR gain. However,
beyond a certain depth, the performance begins to decline.
An excessive number of blocks not only hampers training but
also leads to the loss of useful information. To strike a balance
between performance and model size, we set N = 3 and M =
3 in the final LSFMD model.

This modular architecture enables fine-tuning of network
complexity to achieve the desired performance-complexity
trade-off. For instance, in Table IV, the LSFMD with fewer
blocks (N = 2, M = 2) requires fewer model parameters than
TGATF, but still outperforms TGAF in terms of APSNR. This
design flexibility ensures that the LSFMD can be optimized for
different application scenarios and computational constraints,
making it a versatile and adaptable solution for screen content
video reconstruction.

V. CONCLUSION

In this paper, we propose a novel method tailored for
handling scene switches and reconstructing high-frequency
information in screen content videos. Our approach includes
a long short-term feature extraction module, consisting of
three components: the long-term feature extraction stream,
which learns contextual information; the short-term feature
extraction stream, which selects relevant features from shorter
inputs to better manage fast motion and scene switches; and
the multi-scale feature distillation mechanism, which adaptive
fuse the short-term and long-term features. Meanwhile, we
introduce the SNFS into the short-term feature stream to
further enhance the quality of scene switch frames. In the
reconstruction phase, we propose the HFRB, which guides
the model to focus on restoring high-frequency components.
This is crucial for preserving the sharpness and clarity of
text and other fine details in screen content videos. The
novel contributions of our work, including the modular feature
extraction module, the SNFS mechanism, and the HFRB, have
collectively led to substantial improvements in screen content
video reconstruction quality. Experimental results demonstrate
that our proposed LSFMD significantly enhances the quality
of compressed videos, surpassing the current state-of-the-art
methods. Moreover, we conduct thorough ablation studies to
verify the effectiveness of the designed network structure and
its individual components. Currently, the high computational
demands of our proposed method may limit its suitability
for resource-constrained devices. Moving forward, we plan to
explore the use of teacher-student techniques [42], [43] to fine-
tune a more lightweight version of the model. This strategy has
the potential to significantly reduce computational complexity
by allowing the lightweight student model to learn from a more
complex teacher model, distilling essential knowledge into a
simpler form that requires fewer computational resources. Ad-
ditionally, we aim to further enhance computational efficiency

through model compression techniques such as pruning and
quantization [44]. To improve the model’s generalizability, we
will also broaden our dataset to include a diverse range of
screen content videos, dynamic scenarios, and varied noise
patterns. To optimize the model for real-time applications,
our focus will be on minimizing frame dependencies, utilizing
parallel processing technologies like GPUs and FPGAs, and
deploying adaptive complexity mechanisms that can adapt to
varying hardware specifications and content types. By incor-
porating these ideas, we aim to enhance the model’s suitability
for real-time applications, thereby extending its practical use
across various smart devices.
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