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Abstract— Screen content video (SCV) has drawn much more 

attention than ever during the COVID-19 period and has evolved 

from a niche to a mainstream due to the recent proliferation of 

remote offices, online meetings, shared-screen collaboration, and 

gaming live streaming. Therefore, quality assessments for screen 

content media are highly demanded to maintain service quality 

recently. Although many practical natural scene video quality 

assessment methods have been proposed and achieved promising 

results, these methods cannot be applied to the screen content 

video quality assessment (SCVQA) task directly since the content 

characteristics of SCV are substantially different from natural 

scene video. Besides, only one no-reference SCVQA (NR-SCVQA) 

method, which requires handcrafted features, has been proposed 

in the literature. Therefore, we propose the first deep learning 

approach explicitly designed for NR-SCVQA. First, a multi-

channel convolutional neural network (CNN) model is used to 

extract spatial quality features of pictorial and textual regions 

separately. Since there is no human annotated quality for each 

screen content frame (SCF), the CNN model is pre-trained in a 

multi-task self-supervised fashion to extract spatial quality feature 

representation of SCF. Second, we propose a time-distributed 

CNN transformer model (TCNNT) to further process all SCF 

spatial quality feature representations of an SCV and learn spatial 

and temporal features simultaneously so that high-level 

spatiotemporal features of SCV can be extracted and used to assess 

the whole SCV quality. Experimental results demonstrate the 

robustness and validity of our model, which is closely related to 

human perception. 

Index Terms—human visual experience, multi-channel 

convolutional neural network, multi-task learning, no reference 

video quality assessment, screen content video quality assessment, 

self-supervised learning, spatiotemporal features 

I. INTRODUCTION

n the era of advanced technology, massive screen content 

has been generated with rapid development and boosted for

various screen content-related applications, such as remote 

office, online meetings, shared-screen collaboration, and 

gaming live streaming [1]. For improving compression 

capability and efficiently transmitting the screen content media, 

screen content coding has been developed as an extension of 

high-efficiency video coding (HEVC) and is supported in 

versatile video coding [2]. However, the SCV will unavoidably 

be processed by screen content media compression, 

transmission, and reproduction, thereby generating various 

distortions and affecting the human visual experience [1]. 

Consequently, quality assessment for screen content media is 

highly demanded to maintain the service quality and has drawn 

increasing attention from researchers. 

Image/Video quality assessment (IQA/VQA) can generally 

be evaluated in subjective and objective aspects [3]. Subjective 

quality assessment invites humans to review distorted 

images/videos and score their quality based on subjective 

perception. Although it can estimate the most accurate video 

quality since it directly reflects the human visual experience, 

subjective methods are time-consuming and not applicable to 

real-time processing. In contrast, objective quality assessment 

is a practical alternative to automatically evaluate image/video 

quality without the enormous time and labor resources. An ideal 

objective method should be equivalent to the subjective results. 

Objective quality assessment methods can be further classified 

into three types by the degree of use of reference [4]: full-

reference (FR), reduced-reference (RR), and no-reference (NR). 

Many effective IQA/VQA methods have been proposed by 

various techniques and achieved promising results for natural 

scene images (NSI) [6-10] and natural scene video (NSV) [11-

18]. However, these methods cannot be applied to the SCVQA 

task directly since the content characteristics of SCV are 

substantially different from NSI/NSV [19]. As illustrated in Fig. 

1(a), NSI/NSV is captured by the camera from real-world 

scenes, which often include landscapes, people, and wildlife. 

This imagery typically comprises camera noise, complex 

textures and contents, rich colors, and smooth edge transitions. 

In contrast, SCV generally consists of computer-generated 

content, such as text, tables, animations, and computer screens. 

SCV may sometimes incorporate elements of traditional natural 

content [20]. Fig. 1(b) illustrates the distinctive features of SCV, 

characterized by sharp edges, prominent textual elements, 

repetitive patterns, and limited color variations [20]. 

Consequently, the content attributes of SCV differ significantly 

from those of NSI/NSV. Moreover, despite the content 

characteristics of screen content image (SCI) being similar to 
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Fig. 1. (a) The imagery of NSV; (b) The imagery of SCV. 
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SCV, the SCI quality assessment (SCIQA) method [20-26] 

cannot effectively evaluate the perceptual quality of the SCV 

since SCV has the additional temporal and spatiotemporal 

information compared with SCI [27]. Therefore, a precise VQA 

method designed explicitly for SCVs is still to be developed and 

highly desired. 

To the best of our knowledge, only three FR methods [28-

30], and one NR method [31] have been explicitly designed and 

proposed for SCVQA, namely FR-SCVQA and NR-SCVQA, 

respectively. Although these FR-SCVQA methods have 

demonstrated promising results, their practical application is 

limited as reference videos are not always accessible in real-

world scenarios [5]. Besides, despite the NR-SCVQA metrics 

proposed by Li [31] have also shown encouraging results by 

exploring fifteen features from intra- and inter-frames, the 

generalization of perceptual SCVQA is restricted since it is a 

handcrafted feature-based method, which only focuses on 

specific distortions that limit its performance. There is plenty of 

room for improvement. Recently, many deep learning models 

that can learn the hidden features and feature representation 

have been proposed for NR natural scene video quality 

assessment (NR-NSVQA). Therefore, developing a deep 

learning-based NR-SCVQA method is our goal to resolve the 

above critical issue for the SCVQA task. 

Developing a deep learning-based NR-SCVQA method, 

similar to the NR-NSVQA method, presents a common 

challenge: the substantial computational power and memory 

required for training when directly applying deep neural 

network models for VQA. Given that a raw video typically 

contains high resolution and frame rate, processing the entire 

VQA database at once for end-to-end training is impossible due 

to the limited computational power and memory size of the 

graphics processing unit. According to NR-NSVQA methods, 

separating the spatial and temporal learning process is realistic 

to alleviate the above problems. However, there is no robust 

label for the spatial learning process since each distorted video 

only provides a single perceived video quality, Mean Opinion 

Score (MOS), graded by reviewers as ground truth, and there is 

no human-annotated label (frame quality score) for each frame 

for the spatial learning process. Therefore, NR-NSVQA 

methods utilized some pre-trained models to extract spatial 

feature representation of frames for the VQA task. For example, 

the works in [14-15] and [32] used the CNN model pre-trained 

on ImageNet [33] to extract the frame feature representation 

from the image classification task to the VQA target domain 

and then feed all features into the regression model for temporal 

learning. However, given the significant difference in content 

characteristics between SCV and NSI/NSV, as well as images 

from ImageNet used for image classification tasks, the 

aforementioned pre-trained model may lead to a domain gap 

issue, resulting in an improper spatial feature representation of 

screen content frame (SCF) for the SCVQA task. This 

represents a major challenge in the development of the deep 

learning-based NR-SCVQA method. 

To resolve the above issue, we propose a novel deep 

learning-based NR-SCVQA method. Our method leverages a 

multi-task self-supervised learning (SSL) multi-channel CNN 

model in combination with a time-distributed CNN transformer 

model (TCNNT) to learn the optimized spatial quality feature 

representation of SCF and the high-level spatiotemporal 

features of video to predict the human perceived SCV quality 

score. Specifically, since humans perceive textual and pictorial 

regions differently, resulting in diverse visual perception 

characteristics [30], the textual segmentation method is first 

employed to separate the SCF into the pictorial and textual parts. 

The SCF is combined with the saliency map derived from its 

pictorial region and the edge information map obtained from its 

textual region, which is then input into our proposed multi-

channel CNN for handling separately and fusing. Subsequently, 

we employ a multi-task SSL approach by integrating the 

pairwise ranking task [10] alongside additional SSL tasks, such 

as the distortion classification task and degradation degree task, 

as a new multi-task SSL multi-channel CNN model to learn the 

optimized spatial quality feature representation of SCF, 

ultimately benefiting the SCVQA downstream task. Afterward, 

all SCF spatial quality feature representations of an SCV are 

extracted and fed into our proposed TCNNT model. The 

TCNNT uses a time-distributed CNN model to process data 

sequences with temporal dependencies, further enhancing 

spatial feature extraction for video by processing each 

timestamp of frames simultaneously. Then, the transformer 

model in TCNNT handles temporal features using a self-

attention mechanism, capturing dependencies across time steps. 

Thus, our TCNNT model learns the spatial and temporal 

features concurrently, optimizing spatiotemporal features of 

SCV for precise SCVQA quality prediction. The contributions 

of this work are summarized as follows: 

• To our best knowledge, this is the first deep-learning 

approach explicitly designed for the NR-SCVQA task. 

This method compensates the constraints of FR methods 

[28-30] for real-world application and overcomes the 

limitations of the handcrafted feature-based NR method 

[31], improving the performance and generalization of 

perceptual quality evaluation for SCV. 

• We propose the multi-channel CNN model to learn the 

optimized spatial quality feature representation of SCF 

via multi-task SSL (pairwise ranking, distortion 

classification, and degradation degree tasks). This 

approach compensates for the shortage of human-

annotated labels for SCFs during the spatial feature 

learning process. This strategy also enhances our 

model’s performance and generalization capabilities. 

• We are the first to combine the time-distributed CNN 

module and the transformer encoder module (TCNNT 

model) for the VQA task. Unlike the existing NR-

NSVQA methods in [14-15], [32] which separate the 

spatial and temporal learning process, the goal for our 

proposed TCNNT model is to simultaneously learn 

spatial and temporal features in an end-to-end manner, 

ultimately resulting in optimized/high-level 

spatiotemporal features of SCV, providing a precise 

final SCV quality score. 
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• By evaluating our model on two SCVQA databases, we 

verify that our model can predict the SCV quality via 

deep features representation learning, precisely close to 

human visual perception compared with other classic 

and state-of-the-art NSIQA/NSVQA and 

SCIQA/SCVQA methods. 

The rest of this paper is organized as follows. In Section II, 

we present the relevant research works. In Section III, the 

details of our proposed model are described. Then, the 

experimental results and related analysis are presented in 

Section IV. Finally, Section V concludes the paper. 

II. RELATED WORKS IN NR-VQA 

A. Natural Scene VQA Methods 

FR-NSVQA methods: At the early development stage of FR-

NSVQA, some successful and efficient FR-NSIQA methods, 

such as PSNR, SSIM [6], and GMSD [7] are used as the spatial 

feature extraction algorithms in some FR-NSVQA approaches 

and incorporate some temporal pooling methods and weight 

functions to obtain the NSV quality score. Since temporal 

information is also critical for VQA, some studies instead 

design models focusing on the quality of the complete video 

rather than the average quality of frames. MOVIE [11] 

developed a general, spatio-spectrally localized multiscale 

framework to evaluate the video quality by considering both 

spatial and temporal (and spatiotemporal) along motion 

trajectories. ST-MAD [12] extends the image-based algorithm 

(most apparent distortion) to quantify motion-based distortion 

of spatial-temporal slices created by taking time-based slices of 

the original and distorted videos to achieve practical quality 

assessment for natural video. In STRRED [13], a Gaussian 

scale mixture model is used to compute the amount of spatial 

and temporal information differences between the reference and 

distorted videos, which could be further combined to obtain the 

spatiotemporal-reduced reference entropic differences to 

evaluate the video quality.  

NR-NSVQA methods: Similar to the FR-NSVQA methods, 

some NR-NSIQA methods [8-9] are used to extract the visual 

features of frames or the quality of frames to predict the NSV 

quality with some temporal pooling methods. With the rise of 

deep neural network models that can learn the data 

representation, hidden features, and abstract features 

automatically, most NR-NSVQA models use pre-trained deep 

neural network models for spatial feature extraction instead of 

handcrafting spatial features. For example, VSFA [14] extracts 

content-aware features from a CNN model pre-trained on the 

image classification task, which can also compensate for the 

lack of enormous training samples to train the robust deep CNN 

model, and then predicts the video quality using a gated 

recurrent unit (GRU) temporal-memory model. The authors in 

[36] also improved this method by training on mixed datasets. 

Also, CNN-TLVQM [15] combines the handcrafted human 

visual system features extracted from TLVQM [37] and the 

spatial features obtained from a pre-trained CNN via transfer 

learning. It then uses a support vector regression model to 

evaluate the predicted quality score. However, due to the 

content and characteristics of SCV being substantially different 

from NSV, VQA methods adopted by NSV cannot provide the 

optimal feature representation for SCV, which obstructs the 

effectiveness and accuracy of SCVQA, which is also proven by 

Li [31]. 

B. Screen Content VQA Methods 

To the best of our knowledge, only three FR methods [28-

30], and one NR method [31] are explicitly designed for 

SCVQA. The work in [28] conducted a subjective study for 

SCVs and established the first SCV database (SCVD). 

Meanwhile, it was verified that existing IQA/VQA methods 

cannot effectively evaluate the perceptual quality of the SCV. 

Therefore, the first FR-SCVQA method [28], namely the 

spatiotemporal Gabor feature tensor-based model (SGFTM) 

was designed explicitly for SCVs. The SGFTM uses the 3D-

Gabor filter to extract spatiotemporal screen content visual 

feature representation of reference and distorted SCV and 

evaluate the quality of distorted SCV by measuring their 

similarity. Moreover, Li [29] built another SCV database for 

compressed SCVs (CSCVQ). The work in [29] also 

investigated that general IQA and VQA cannot fulfill the need 

for quality assessment for screen content due to content and 

characteristics differences. It also proposed a new FR-SCVQA 

method, MS-RSDS, that measures the SCF quality by 

 
Fig. 2. The framework of our proposed NR-SCVQA model. 
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computing the similarity of multi-scale relative standard 

deviation difference of two continuous time references and 

distorted frames to obtain the final SCV quality score by 

average pooling. Besides, Li further proposed the first and only 

NR-SCVQA method [31], in which fourteen handcrafted screen 

content spatial features and one handcrafted temporal feature 

are extracted and incorporated with a support vector regression 

to obtain the final SCV quality score. Recently, HSFM [30], the 

latest FR-SCVQA method, uses 3D Laplacian of Gaussian to 

capture the spatiotemporal edge information and then combines 

it with natural spatiotemporal feature extracted by 3D mean 

subtracted and contrast normalized with a weighting strategy to 

evaluate the SCV quality score. Although the FR-SCVQA and 

NR-SCVQA methods described above have shown promising 

results, these handcrafted-based methods only focus on specific 

distortions and features, which restrict the generalization of 

perceptual quality features of SCVs and the accuracy of 

SCVQA.  

III. PROPOSED METHOD 

 To better predict the SCV quality, we propose a novel deep 

learning-based NR-SCVQA method that adopts a multi-task 

SSL multi-channel CNN model with a TCNNT model. The 

framework of our proposed model is shown in Fig. 2. First, we 

divide the pictorial and textual regions of SCF via the textual 

segmentation method and transform them into the saliency map 

and edgy information map separately. Then, the multi-channel 

CNN model is used to explore spatial quality features of 

pictorial and textual regions separately via multi-task learning 

(including pairwise ranking task, distortion classification task, 

and degradation degree task). Therefore, the model can be 

trained to assess SCFs in an SSL manner without using any 

human-annotated labels, which can be the pretext task to extract 

the optimized spatial quality feature representation for the 

SCVQA downstream task. Lastly, all SCF spatial quality 

feature representations at each timestamp of an SCV are 

extracted and fed into our proposed TCNNT model. The 

TCNNT model then further processes the spatial and temporal 

features simultaneously so that high-level spatiotemporal 

features of SCV can be extracted to predict the final SCV 

quality comprehensively. We detail each part in the following 

sub-sections.  

A. Multi-task SSL with Multi-channel CNN Model 

Naive supervised learning is impossible due to the lack of a 

ground-truth label for each SCF. To compensate for the 

shortage of labels, we propose to pre-train the multi-channel 

CNN to learn the spatial quality feature representation of SCF 

with multi-task SSL strategy by identifying pairwise ranking, 

distortion type, and degradation degree. SSL is a form of 

unsupervised learning that can let the network learn critical 

features from unlabeled data by providing a non-human 

annotated supervision signal [38]. For example, the model in 

[39] predicts the image rotation to learn the image 

representation for the image classification task. [40] solved the 

Jigsaw puzzles via SSL and repurposed them for the object 

detection task. [41] designed the model to predict the relative 

position between the central patch and its neighboring location, 

which can capture visual similarity across images for visual 

representation learning. For the related task, RankIQA [10] pre-

trained the Siamese network to rank the quality of images to 

learn image quality features for the IQA task. 

Moreover, compared with the aforementioned task-specific 

SSL models, multi-task SSL aims to let the model learn multi-

tasks in parallel while using shared features. By solving 

multiple learning tasks at the same time, the shared features and 

knowledge learned from each task are helpful in learning other 

tasks for better feature representation learning, which results in 

improving the learning efficiency, accuracy, and generalization 

learning ability of the model [42]. Motivated by this, we 

propose to integrate the pairwise ranking task, distortion 

classification task, and degradation degree task to train our 

multi-channel CNN model so that our new model can assess 

SCFs in a multi-task SSL manner with better performance. 

1) Pre-processing Stage 

 Before the training process of our multi-channel CNN 

model, we first use the textual segmentation method to separate 

the SCF into the pictorial region (𝐼𝑃) and textual region (𝐼𝑇). 

This is because an SCF usually contains mixed screen content 

and natural scene information. However, the content 

characteristics of screen content and natural scene information 

are substantially different. Also, human perception varies 

between textual and pictorial regions, resulting in diverse visual 

perception characteristics for these areas [20]. Therefore, the 

evaluation of SCF must account for these varied visual 

characteristics. Consequently, it becomes essential to extract 

the spatial features of pictorial and textual regions of SCF 

independently. 

Segmentation: In this paper, we implement the fast CNN-

based document layout analysis algorithm [43] to divide the 

 
Fig. 3. Results from the SCF segmentation stage. (a) and (d) are the 

distorted SCF; (b) and (c) are the pictorial and textual region of (a); (e) 

and (f) are the pictorial and textual region of (d) 
 

 
Fig. 4. (a) Saliency map of the pictorial region in Fig. 3(b); (b) Edge 

information map of the textual region in Fig. 3(c) 
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SCF into pictorial and textual regions. First, the SCF is 

segmented into blocks of content by the running length 

algorithm described in [44] and a 3×3 dilation operation. Then, 

the horizontal and vertical projections of these SCF blocks are 

determined and fed into a one-dimensional CNN model to 

classify SCF blocks into text, table, or graph. Finally, the 

classification results are used to group all text boxes and table 

boxes into textual regions. Graph boxes, along with the 

remaining background, are categorized as part of pictorial 

regions of the frame. As a result, the SCF is divided into 

pictorial 𝐼𝑃 and textual 𝐼𝑇  regions, as shown in Fig. 3. 

Pictorial Region: After separating the pictorial 𝐼𝑃  and 

textual 𝐼𝑇  regions of SCF, and acknowledging the complex 

nature of human visual perception as well as the diverse ways 

in which viewers process and perceive different content types 

and regions, we calculate the saliency map of 𝐼𝑃  as the visual-

aware map for the pictorial region of SCF as shown in Fig. 4(a). 

This approach is based on the understanding that pictorial 

regions often contain intricate and diverse visual information. 

The utilization of saliency detection is crucial for identifying 

regions within the pictorial regions that are most likely to 

capture the  ie er’s attention.  his valuable insight enables our 

model to assign variable weights to different regions, 

proportionate to their relevance. This ensures that the most 

visually compelling areas exert a more prominent impart on the 

quality assessment process.  

To obtain the saliency map of 𝐼𝑃 , we first implement the 

method in [45] to determine the saliency residuals using the log-

spectrum algorithm. Then, we invert the saliency residuals 

ℛ(𝑓) from the spectral domain back to the spatial domain to 

compute the preliminary saliency map as follows: 

ℛ(𝑓) = ℒ(𝑓) − 𝒜(𝑓)                          (1) 

𝑃𝑆𝑀(𝑓) = ℱ−1(ℛ(𝑓))                         (2) 

where 𝑓 is the form of the pictorial region of the input distorted 

SCF 𝐼𝑃  after Fourier Transform (𝑓 = 𝐹𝑇(𝐼𝑃)), 𝒜(𝑓) is the real 

part of 𝑓 , and ℒ(𝑓)  is the log spectrum of 𝒜(𝑓) . ℱ−1(∙) 

indicates the inversion process of ℛ(𝑓) from the spectral back 

to the spatial domain. Moreover, to further extract the fine-

grained features of the preliminary saliency map, the visual 

saliency feature (VSF) method in [46] is applied to calculate the 

center-surround differences on the salient region in the 

preliminary saliency map that helps to define borders and 

compute the final saliency map 𝑆𝑀 of 𝐼𝑃 as follows: 

𝑆𝑀 = 𝑉𝑆𝐹(𝑃𝑆𝑀(𝑓))                          (3) 

This saliency map 𝑆𝑀 represents important pictorial regions 

and it is used as the input of our multi-channel CNN. 

Textual Region: As we all know, the textual region of SCF 

𝐼𝑇  contains various textual elements with plenty of sharp edges. 

These sharp edges are vital for ensuring text clarity and 

legibility. However, video compression may induce artifacts, 

particular along edges, which negatively impact the readability 

of characters and thus affect the perceived overall quality. 

Moreover, it is a well-established fact that human visual 

attention is naturally drawn to areas with high contrast and clear 

boundaries, such as the edges of text. Consequently, edge 

detection plays a pivotal role in quality assessment by 

highlighting potential focal points within the textual region that 

are likely to capture viewer attention.  

Therefore, to capture the textual visual characteristics of 

SCF, we compute the Gabor feature map as the edge 

information map for the textual region of distorted SCF since 

the receptive field of edge information can be well reflected by 

the Gabor response. As shown in Fig. 4(b), the Gabor feature 

map shows the rich edge information of the textual region of 

Fig. 3(c). To obtain the Gabor feature map of 𝐼𝑇 , we convolve 

𝐼𝑇  with the horizontal- and vertical-oriented odd Gabor filters, 

𝐺ℎ(𝑥, 𝑦) and 𝐺𝑣(𝑥, 𝑦), individually to compute the horizontal 

and vertical Gabor responses, 𝐻(𝑥, 𝑦) and 𝑉(𝑥, 𝑦), as follows: 

𝐺ℎ(𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦

𝑒𝑥𝑝 {
−1

2
[(

𝑥

𝜎𝑥

)
2

+ (
𝑦

𝜎𝑦

)

2

]} sin(2𝜋𝜔𝑥) 

 
Fig. 5. The network architecture of our proposed CNN model. (a) The structure of Residual Block 2 (ch); (b) The structure of Residual Block 

(ch). Conv(ch, kn, st, pd) represents the 2D convolution operation where ch is the output channel, kn × kn is the kernel size, st represent the size 

of stride and pd is the padding size. BN, FC and GP represent the batch normalization operation, fully connected layer and global pooling. 
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𝐺𝑣(𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦

𝑒𝑥𝑝 {
−1

2
[(

𝑥

𝜎𝑥

)
2

+ (
𝑦

𝜎𝑦

)

2

]} sin (2𝜋𝜔𝑦) 

𝐻(𝑥, 𝑦) = 𝐺ℎ(𝑥, 𝑦) ∗ 𝐼𝑇(𝑥, 𝑦) 

  𝑉(𝑥, 𝑦) = 𝐺𝑣(𝑥, 𝑦) ∗ 𝐼𝑇(𝑥, 𝑦)                      (4) 

where (𝑥, 𝑦) denotes the pixel coordinate in the SCF, 𝜔 is the 

frequency of the sinusoidal function, 𝜎𝑥 and 𝜎𝑦 are the standard 

deviations of the Gaussian function in the x-direction and y-

direction, respectively. After that, the edge information map of 

𝐼𝑇 , 𝐸𝑀 , is then constructed by adding the horizontal and 

vertical Gabor responses together as follows: 

𝐸𝑀 = 𝐻(𝑥, 𝑦) + 𝑉(𝑥, 𝑦)                        (5) 

This edge information map 𝐸𝑀 represents important screen 

content regions and rich edge information used as the input of 

our multi-channel CNN. 

2) Multi-task SSL Multi-channel CNN Model Pretext Task 

To train our multi-channel CNN model with no robust label 

of SCF, we use quality ranking, distortion type, and degradation 

degree of SCF as non-human annotated supervision signals, or 

so-called pseudo labels 𝑃𝐿 = [𝑅𝐾, 𝐷𝑇, 𝐷𝐿] where 𝑅𝐾  is the 

quality ranking indicator of the pairwise SCF, 𝐷𝑇 indicates the 

distortion type and 𝐷𝐿  represents the degradation degree of 

SCF. Then, 𝑃𝐿  can be used for the unlabeled data 𝑈𝑑 =

[𝐼𝑑 , 𝑆𝑀, 𝐸𝑀], which includes the distorted SCF (𝐼𝑑 ) and its 

corresponding saliency map of 𝐼𝑃 (𝑆𝑀) and edge information 

map of 𝐼𝑇  (𝐸𝑀), for our multi-channel CNN model to conduct 

the multi-task SSL to learn the spatial quality feature 

representation of SCF for the SCVQA downstream task, which 

also compensates for the shortage of human-annotated labels 

for SCFs. 

Multi-channel Mechanism: As shown in Fig. 5, in our 

model, the multi-channel mechanism is used to explore the 

spatial quality feature of pictorial and textual regions 

separately. The spatial quality features of the pictorial region, 

𝐹𝑃𝑅, are first extracted from the channel of 𝐼𝑑 and the channel 

of 𝑆𝑀 (the violet region in Fig. 5), which is given by: 

𝐹𝑃𝑅 = 𝑃𝑅𝑁𝑒𝑡(𝐹𝐼𝐷(𝐼𝑑) ⊕ 𝐹𝑆𝑀(𝑆𝑀))               (6) 

where the symbol ⊕ is the element-wise summation operation, 

𝐹𝐼𝐷(∙)  and 𝐹𝑆𝑀(∙)  represent the shallow feature extraction 

processes on 𝐼𝑑  and 𝑆𝑀, and 𝑃𝑅𝑁𝑒𝑡(∙) is used to extract the 

spatial quality features focusing on the pictorial region. Thus, 

we can extract spatial quality features of pictorial regions by 

concentrating on the critical and visually significant regions 

within the pictorial area, utilizing the saliency map. This 

approach enables the model to identify and emphasize the most 

relevant visual information, leading to a more accurate 

representation of the pictorial regions of SCF.  

In the meantime, the channel of 𝐼𝑑 and the channel of 𝐸𝑀 

(the orange region in Fig. 5) focus on learning spatial quality 

features of the textual region, 𝐹𝑇𝑅, which is given by: 

𝐹𝑇𝑅 = 𝑇𝑅𝑁𝑒𝑡(𝐹𝐼𝐷(𝐼𝑑) ⊕ 𝐹𝐸𝑀(𝐸𝑀))              (7) 

where 𝐹𝐸𝑀(∙) represents the shallow feature extraction process 

on 𝐸𝑀 , and 𝑇𝑅𝑁𝑒𝑡(∙)  is the operation of extracting spatial 

quality features of the textual region. This approach can 

effectively integrate the edge information from the textual 

region into the spatial quality features, emphasizing the 

significance of edge features within the SCF. By incorporating 

these edge features, the model can better learn spatial quality 

features of the textual region, thereby improving the 

representation of the textual regions of SCF.  

Following the extraction of spatial quality features from the 

pictorial and textual regions by 𝑃𝑅𝑁𝑒𝑡(∙)  and 𝑇𝑅𝑁𝑒𝑡(∙) 

individually, it is essential to fuse these features (𝐹𝑃𝑅 and 𝐹𝑇𝑅) 

to evaluate the overall visual perception of the entire SCF, 

which comprises both pictorial and textual content. Therefore, 

𝐹𝑃𝑅 and 𝐹𝑇𝑅 are then concatenated and processed to represent 

the whole spatial quality features of distorted SCF 𝐼𝑑 (𝐹𝑆𝐶𝐹) as 

follows: 

𝐹𝑆𝐶𝐹(𝑈𝑑) = 𝑆𝐶𝐹𝑁𝑒𝑡([𝐹𝑃𝑅 , 𝐹𝑇𝑅])                (8) 

where[∙] is the concatenation operation, and 𝑆𝐶𝐹𝑁𝑒𝑡(∙) is the 

feature fusion operation of spatial quality features of both 

pictorial and textual regions. This fusion process allows for a 

more holistic assessment of the SCF by considering the 

interplay between the natural content and screen content, 

ultimately providing an optimized spatial feature representation 

of the perceived visual quality of SCF. These SCF spatial 

quality features, 𝐹𝑆𝐶𝐹 , are then further employed for various 

SSL pretext tasks. 

Pairwise Ranking Task: The main pretext task of the multi-

task SSL is the pairwise ranking task [10]. For two SCFs with 

the same content and distortion type but with different 

degradation degrees, 𝐼𝑖
𝑑 and 𝐼𝑗

𝑑 where 𝑖 and 𝑗 are the distortion 

intensity index and 𝑖 ≠ 𝑗, the relative SCF quality ranking is 

known since the SCF quality would be lower with a higher 

degradation degree generally, e.g., increasing the distortion 

level of noise or blur results in a less clear SCF and a lower 

perceptual quality compared to the same SCF with a weaker 

increase in distortion. Therefore, it is conjectured that by 

encouraging the model to distinguish the pairwise quality 

ranking of 𝐼𝑖
𝑑  and 𝐼𝑗

𝑑 , our new model can learn the crucial 

spatial quality feature representations of SCF. To conduct the 

SSL pairwise ranking task, first, spatial quality features of 𝐼𝑖
𝑑, 

𝐹𝑆𝐶𝐹(𝑈𝑖
𝑑), are processed by two dense layers, 𝐹𝐶𝑅, to output 

one scalar, denoted by 𝐹𝑃𝑅𝐾
𝑖 = 𝐹𝐶𝑅(𝐹𝑆𝐶𝐹(𝑈𝑖

𝑑))  where 𝑈𝑖
𝑑 =

[𝐼𝑖
𝑑 , 𝑆𝑀𝑖 , 𝐸𝑀𝑖]. After that, we randomly select a pairwise SCF 

𝐼𝑗
𝑑  for 𝐼𝑖

𝑑  to evaluate the pairwise ranking level. We use the 

same model and network parameter treated as the Siamese 

network to compute the output, 𝐹𝑃𝑅𝐾
𝑗

= 𝐹𝐶𝑅(𝐹𝑆𝐶𝐹(𝑈𝑗
𝑑)), for 𝐼𝑗

𝑑. 

Therefore, the loss of pairwise ranking task is computed as: 

𝐿𝑃𝑅𝐾
𝑖 = {

max(0, 𝐹𝑃𝑅𝐾
𝑖 − 𝐹𝑃𝑅𝐾

𝑗
+ 𝜀)  𝑖𝑓 𝑅𝐾 = 0

max(0, 𝐹𝑃𝑅𝐾
𝑗

− 𝐹𝑃𝑅𝐾
𝑖 + 𝜀)  𝑖𝑓 𝑅𝐾 = 1

 

𝐿𝑅𝐾 =
1

𝑀
∑ 𝐿𝑃𝑅𝐾

𝑀                                (9) 

where M is the batch size, and 𝜀 is the margin. It is noticed that 

𝑅𝐾 = 1/0 when the quality ranking of 𝐼𝑖
𝑑 is higher/lower than 

the pairwise SCF 𝐼𝑗
𝑑. Therefore, our model can learn the crucial 

spatial quality features of SCF by distinguishing the pairwise 
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quality ranking of 𝐼𝑖
𝑑 and 𝐼𝑗

𝑑 to improve the SCF quality feature 

representation learning process. 

Distortion Classification Task: Moreover, SCFs with 

different distortion types, such as transmission, display, and 

compression distortions, result in explicitly different visual 

distortion and perceived visual quality [47]. Therefore, in 

addition to the pairwise ranking task, the distortion 

classification task is also trained in the multi-task SSL manner 

for our new model to characterize the distortion class of SCF to 

enhance the generalization learning ability and efficiency of our 

model by solving multiple learning tasks at the same time. To 

conduct the distortion classification pretext task, we also use 

two dense layers, different from the dense layers used for the 

pairwise ranking task, to compute the probability of distortion 

type, denoted by 𝐹𝐷𝑇 = 𝐹𝐶𝐷2(𝐹𝐶𝐷1(𝐹𝑆𝐶𝐹(𝑈𝑑))). Then, the loss 

can be computed by 𝐹𝐷𝑇 and its pseudo labels 𝐷𝑇. 

𝐿𝐷𝑇 =
1

𝑀
∑ 𝐿𝐶𝐸

𝑀 (𝐹𝐷𝑇 , 𝐷𝑇)                   (10) 

where 𝐿𝐶𝐸(∙) is the categorical cross-entropy loss function. By 

doing so, the SCF quality feature representation learning 

process of our model can be further improved by exploring 

explicitly different visual distortions and perceived visual 

quality from different distortion classes.  

Degradation Degree Task: The degree of degradation is 

𝐼𝑑 is also the crucial clue for the SCF quality feature 

representation learning. By focusing on the degradation degree 

of SCF, the model can more effectively comprehend and learn 

quality variations, thereby refining the spatial quality feature 

representation and improving the overall prediction accuracy. 

Therefore, apart from the pairwise ranking task, the degradation 

degree task is also included. Since each distortion type of SCVs 

results in a different perceived visual quality range and the 

distortion level prediction is correlated to distortion type, we 

use the first dense layer from the distortion classification task, 

𝐹𝐶𝐷1, as shared features and connect it with a new dense layer, 

𝐹𝐶𝐷𝐷, for the degradation degree task to improve the learning 

ability. Therefore, the loss function for the degradation degree 

task is computed as follows: 

𝐿𝐷𝐿 =
1

𝑀
∑ 𝐿𝐶𝐸

𝑀 (𝐹𝐷𝐿 , 𝐷𝐿)                   (11) 

where 𝐹𝐷𝐿 = 𝐹𝐶𝐷𝐷(𝐹𝐶𝐷1(𝐹𝑆𝐶𝐹(𝑈𝑑)))  and 𝐷𝐿  is the pseudo 

labels for distortion level.  

Multi-task Learning: Finally, we combine several SSL 

tasks by weighting and adding the losses together as the overall 

loss function for our multi-channel CNN model, in which the 

multi-task learning can improve the learning efficiency, 

prediction accuracy, and generalization ability of our new 

model for better SCF quality feature representation learning for 

the following SCVQA downstream task. The resulting overall 

loss is 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿𝑅𝐾 + 𝛽(𝐿𝐷𝑇 + 𝐿𝐷𝐿)            (12) 

where 𝛽 is the weighting parameter. 

3) Screen Content Quality Feature Representation Extraction 

After completing the training process of the multi-task SSL 

multi-channel CNN model, we can use it to extract the 

optimized spatial quality feature representation of SCFs for the 

SCVQA downstream task. Specifically, the feature maps are 

extracted at the last convolutional layer in the well-trained 

multi-channel CNN model as SCF spatial quality feature 

representation 𝐹𝑆𝐶𝐹, as shown in Fig. 5. In practice, we divide 

the SCF into 𝐵 non-overlapping frame patches, and each frame 

patch obtains its spatial quality feature representation 𝐹𝑆𝐶𝐹𝑃
𝑏  

through the well-trained multi-channel CNN model. 

Ultimately, the mean and standard deviation of all quality 

feature representations of frame patches within the SCF are 

taken as its SCF quality feature representation 𝐹𝑆𝐶𝐹
𝑡  for the 

SCVQA task as follows: 

𝐹𝑆𝐶𝐹
𝑡  = {𝜇{𝐹𝑆𝐶𝐹𝑃

𝑏 }, 𝜎{𝐹𝑆𝐶𝐹𝑃
𝑏 }}

𝑏=1

𝑏=𝐵

                 (13) 

where B is the total number of frame patches in tth SCF, and 

𝜇 (∙) and 𝜎 (∙)  represent the mean and standard deviation 

operation, respectively. This aggregated feature representation 

effectively captures the variability and central tendency of the 

quality features 𝐹𝑆𝐶𝐹𝑃
𝑏 , providing a more comprehensive quality 

feature representation of SCF 𝐹𝑆𝐶𝐹
𝑡 . 

B. Screen Content Video Quality Prediction via TCNNT Model 

 Most existing deep learning-based VQA methods [14-15], 

[32] separate the spatial and temporal learning process for the 

VQA task, which can only lead to a low-level or sub-optimal 

spatiotemporal feature learning for the VQA task since the 

model cannot learn the spatial and temporal features 

simultaneously (in an end-to-end manner) to evaluate the 

quality of the whole video. Hence, we propose the TCNNT 

model, designed to concurrently learn spatial and temporal 

features in an end-to-end manner, which can distill the high-

level and optimal spatiotemporal features to obtain the final 

precise predicted SCV quality for the SCVQA task. 

First, we concatenate all SCF quality feature representations 

of the cth distorted SCV as a feature vector 𝑆𝐶𝑉𝑄𝑐 =

[𝐹𝑆𝐶𝐹
1 , 𝐹𝑆𝐶𝐹

2 , … , 𝐹𝑆𝐶𝐹
𝑇𝑐−1

, 𝐹𝑆𝐶𝐹
𝑇𝑐 ], where c = 1,2, 3, ...., C, C is the total 

 
Fig. 6. The network architecture of our proposed TCNNT model.  
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number of videos in the SCVQA database, 𝐹𝑆𝐶𝐹
𝑡  is the SCF 

quality feature representation of tth SCF, and Tc is the total 

number of frames of the cth distorted SCV. After that, the time-

distributed CNN module, 𝑇𝐶𝑁𝑁, is used to process the 𝑆𝐶𝑉𝑄𝑐  

at different timestamps and output the optimized spatial quality 

feature vector 𝑂𝑄𝑉𝑐  as follows: 

𝑂𝑄𝑉𝑐 = 𝑇𝐶𝑁𝑁(𝑆𝐶𝑉𝑄𝑐)                       (14) 

where 𝑂𝑄𝑉𝑐 = [𝑂𝑄𝐹1, 𝑂𝑄𝐹2, … , 𝑂𝑄𝐹𝑇𝑐−1, 𝑂𝑄𝐹𝑇𝑐
] , 𝑂𝑄𝐹𝑡  is 

the optimized spatial quality feature representation of tth SCF 

with a shape of 1×512 in each timestamp, as shown in Fig. 6. 

Unlike the conventional CNN module used in [14-15], [24], 

[32] for image/spatial feature extraction, time-distributed CNN 

modules are often employed in video action recognition tasks, 

as they possess the ability to extract spatiotemporal features and 

identify patterns in the data, enabling to recognize and classify 

actions happening over time. Leveraging these capabilities, we 

propose to adopt the time-distributed CNN module for the VQA 

task. Through the above process, the time-distributed CNN 

module is applied to every temporal slice individually, treating 

samples as different timestamps to extract an optimized spatial 

quality feature representation for each timestamp and capturing 

temporal information in the series data, which is different from 

the standard CNN module that can only process spatial features 

and cannot handle the time series data. This salient feature of 

the time-distributed CNN module can be integrated with the 

temporal pooling method as an end-to-end model, which can 

simultaneously process the spatial and temporal features to 

explore the spatiotemporal feature to boost the performance of 

our model for more precise SCV quality prediction. The 

effectiveness of the time-distributed CNN model will be further 

analyzed in Section IV.H. 

Furthermore, for the temporal processing, instead of using 

the long short-term memory (LSTM) or GRU used in [14-15], 

we adopt the transformer encoder model since the self-attention 

mechanism of the transformer model allows the model to 

capture the attention allocation along the whole sequence. It is 

used to capture the influence of attention distribution crossing 

temporal and is suitable combined with a time-distributed CNN 

model for the VQA task to evaluate the whole video quality 

comprehensively [34-35]. More experimental results of the 

model combination will be presented in Section IV.H. 

Since the training process of our TCNNT model is in an end-

to-end manner, as shown in Fig. 6, in which the time-distributed 

CNN model is responsible for extracting the optimized spatial 

feature as each timestamp, and the transformer model is capable 

of exploring temporal features and capturing dependencies 

across time steps simultaneously so that high-level 

spatiotemporal features of SCV can be extracted to predict the 

SCV quality score as follows: 

�̂�𝑐
𝐿 = 𝑇𝐶𝑁𝑁𝑇(𝑆𝐶𝑉𝑄𝑐) = 𝑀𝐿𝑃(𝑇𝐸(𝑃𝐸(𝑄𝐸, 𝑂𝑄𝑉𝑐))) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)           (15) 

where 𝑄𝐸 is the quality learnable parameter, 𝑃𝐸(∙) represents 

the positional encoding process, 𝑇𝐸(∙) is the operation of the 

transformer encoder model implemented by following [34] 

including the multi-head self-attention layers 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(∙) 

(where 𝑄 = 𝑋 ∙ 𝑊𝑄 , 𝐾 = 𝑋 ∙ 𝑊𝐾 , 𝑉 = 𝑋 ∙ 𝑊𝑉 are Query, Key, 

Value, 𝑋  is the input features ( 𝑃𝐸(𝑄𝐸, 𝑂𝑄𝑉𝑐) ) and 𝑊 

represents the parameter matrix) and position-wise fully 

connected feed-forward layers. Finally, 𝑀𝐿𝑃(∙) contains two 

dense layers to predict the final SCV quality score �̂�𝑐
𝐿. The loss 

function of the supervised learning TCNNT model is defined as: 

ℒ𝑇𝐶𝑁𝑁𝑇 =
1

𝑁
∑ (�̂�𝑖

𝐿 − 𝑣𝑖
𝐿)2𝑁−1

𝑖=0                        (16) 

where N is the batch size, �̂�𝐿  represents the final predicted 

video quality score by our TCNNT model and 𝑣𝐿  is the ground 

truth label (MOS) of the corresponding SCV collected from the 

subjective study, provided by published databases [28-29]. 

Therefore, in this end-to-end training process, our proposed 

TCNNT model can boost performance and enhance SCV quality 

prediction by learning the high-level spatiotemporal features and 

temporal attention information simultaneously. 

IV. EXPERIMENTAL RESULTS 

A. Screen Content Video Quality Databases and Evaluation 

 To demonstrate the validity of our proposed model, the 

performance of our proposed model and various existing 

classical and latest IQA/VQA methods are evaluated on the two 

existing SCVQA databases, SCVD [28] and CSCVQ [29]. The 

summary of the above SCVQA databases is shown in Table I. 

 1) SCVD [28] is the first subjective video database explicitly 

designed for the SCVQA, containing 800 distorted SCVs. These 

videos are generated from 16 reference SCVs with 5 degrees of 

quality degradation on ten different distortion types, including the 

acquisition and transmission distortions (Gaussian noise, 

Gaussian blur, motion blur, and packet loss), display distortions 

(contrast change, color saturation change, and color quantization 

with dithering), and compression distortions (H.264, HEVC and 

SCC). Each distorted SCV is of resolution 1920×1080 and a 10-

second video with a frame rate of 30 frame per second (fps). The 

MOS is provided in the range of 20.12 to 74.08. 

2) CSCVQ [29] is another subjective video database for 

SCVQA, specifically focusing on compression distortion. It 

contains 165 distorted SCVs with a resolution of 1280×720 

compressed from 11 screen application scenario reference videos 

using the H.264, HEVC, and HEVC-SCC with five degrees of 

quality degradation. All SCVs have a duration of 10 seconds with 

a frame rate of 30 fps, and the MOS ranges from 20.53 to 72.76. 

To evaluate the performance of our proposed model, three 

commonly used metrics: Pearson Linear Correlation Coefficient 

(PLCC), Spearman Rank Order Correlation Coefficient 

(SROCC), and Root Mean Square Error (RMSE), are utilized 

to measure the accuracy and monotonic consistency between 

TABLE I 

THE SUMMARY OF THE SCV DATABASES 

Database Resolution 
# of Videos Frame 

Rate (fps) 

# of 

Distortion 
Duration 

(seconds) 
Ref. Dis. Type Level 

SCVD 1920×1080 16 800 30 10 5 10 

CSCVQ 1280×720 11 165 30 3 5 10 
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the objective prediction and subjective assessment, higher 

PLCC/SROCC, or lower RMSE means better performance. 

Before estimating the above metrics, a nonlinear logistic 

regression process is performed to map prediction results as the 

same scale space as the subjective scores with different value 

domains to ensure a fair performance comparison according to 

the video quality experts group (VQEG) [48] as follows: 

                  �̂� = 𝛽1 [
1

2
−

1

1+exp [𝛽2(𝑄−𝛽3)]
] + 𝛽4𝑄 + 𝛽5          (17) 

where β1, β2, β3, β4, β5 are the parameters to be determined. 

B. Implementation Details 

 For the multi-task SSL multi-channel CNN model training, 

all input SCFs and the corresponding saliency map and edge 

information map were split into 512×512 image patches. The 

parameter 𝛽 in (12) was set as 0.6 through the experiments. We 

trained the model for 1000 epochs with an initial learning rate 

of 0.0001 using an Adam optimizer. Also, (12) is used as the 

loss function as a multi-task learning for pre-training our CNN 

model.  

The mean and standard deviation of all quality feature 

representations of frame-patches within the SCF as its SCF 

spatial quality feature representation was then extracted from 

our multi-channel CNN model to form the feature vector, 

𝑆𝐶𝑉𝑄𝑐 , as the input of the TCNNT model. Specifically, two 

transformer encoder layers were used in our TCNNT model. 

TABLE II 

PERFORMANCE COMPARISON OF SCVQA MODELS ON TWO SCVQA DATABASES. THE TOP THREE BEST RESULTS OF EACH 

PERFORMANCE INDEX, PLCC, SROCC, AND RMSE, ARE SHOWN IN BOLD WITH COLORS IN RED, BLUE, AND BLACK, RESPECTIVELY. 

A NOTATION OF * IS USED TO INDICATE DEEP LEARNING-BASED METHODS. 

IQA/VQA FR/NF Method 
 SCVD   CSCVQ  

 LCC↑ S  CC↑   SE↓  LCC↑ S  CC↑   SE↓ 

NSIQA 

FR 

 PSNR 0.6267 0.6213 10.5931 0.8139 0.7862 8.1364 

 SSIM [6] 0.7063 0.6896 9.7032 0.8263 0.7949 7.9237 

 GMSD [7] 0.7135 0.7768 9.3967 0.8916 0.8763 5.4866 

NR 
 BRISQUE [8] 0.5867 0.6012 11.1861 0.7113 0.6886 9.6452 

 NIQE [9] 0.5541 0.5679 11.5851 0.6984 0.6975 9.9134 

SCIQA 
FR 

 ESIM [21] 0.7798 0.7736 8.5236 0.8936 0.8872 5.6687 

 SQMS [25] 0.7525 0.7662 8.8216 0.8864 0.8617 5.9376 

 SVQI [22] 0.7213 0.7322 9.3024 0.8571 0.8414 6.3653 

NR  Yang’s Wor [ 0]* 0.7794 0.7715 8.5578 0.8772 0.8568 6.0684 

NSVQA 

FR 

 MOVIE [11] 0.6132 0.5569 10.7596 0.8916 0.8797 5.6716 

 STMAD [12] 0.7368 0.7307 9.1362 0.8633 0.8513 6.109 

 STRRED [13] 0.7531 0.7448 8.9673 0.8911 0.8962 5.4964 

NR 
 VSFA [14]* 0.7514 0.7678 9.0108 0.7968 0.8124 7.6718 

 VIDEVAL [16] 0.7462 0.7466 9.0964 0.8775 0.8569 5.9511 

SCVQA 

FR 

 SGFTM [28] 0.8315 0.8232 7.4371 0.8941 0.8831 5.5108 

 MS-RSDS [29] 0.8196 0.8062 7.7934 0.9308 0.9225 4.9163 

 HSFM [30] 0.8486 0.8308 7.1956 0.9463 0.9240 4.4720 

NR 
 Li’s Wor  [31] 0.8063 0.8136 8.1762 0.9232 0.9013 5.0618 

Proposed* 0.8945 0.9073 6.1979 0.9387 0.9312 4.7517 
 

IQA/VQA FR/NF Method 
 Direct Average   Weighted Average  

 LCC↑ S  CC↑   SE↓  LCC↑ S  CC↑   SE↓ 

NSIQA 

FR 

 PSNR 0.7203 0.7038 9.3648 0.6587 0.6495 10.173 

 SSIM [6] 0.7663 0.7423 8.8135 0.7268 0.7076 9.3989 

 GMSD [7] 0.8026 0.8266 7.4417 0.744 0.7938 8.7281 

NR 
 BRISQUE [8] 0.649 0.6449 10.4157 0.608 0.6161 10.9226 

 NIQE [9] 0.6263 0.6327 10.7493 0.5788 0.5901 11.2993 

SCIQA 
FR 

 ESIM [21] 0.8367 0.8304 7.0962 0.7993 0.793 8.0355 

 SQMS [25] 0.8195 0.8140 7.3796 0.7754 0.7825 8.3285 

 SVQI [22] 0.7892 0.7868 7.8339 0.7445 0.7509 8.8002 

NR  Yang’s Wor [ 0]* 0.8283 0.8142 7.3131 0.7961 0.7861 8.1322 

NSVQA 

FR 

 MOVIE [11] 0.7524 0.7183 8.2156 0.6608 0.6121 9.8896 

 STMAD [12] 0.8001 0.7910 7.6226 0.7584 0.7513 8.6186 

 STRRED [13] 0.8221 0.8205 7.2319 0.7767 0.7707 8.3738 

NR 
 VSFA [14]* 0.7741 0.7901 8.3413 0.7592 0.7754 8.7819 

 VIDEVAL [16] 0.8119 0.8018 7.5238 0.7687 0.7655 8.5586 

SCVQA 

FR 

 SGFTM [28] 0.8628 0.8532 6.4740 0.8422 0.8334 7.1077 

 MS-RSDS [29] 0.8752 0.8644 6.3549 0.8386 0.8261 7.3015 

 HSFM [30] 0.8975 0.8774 5.8338 0.8653 0.8467 6.7299 

NR 
 Li’s Wor  [31] 0.8648 0.8575 6.6190 0.8263 0.8286 7.6437 

Proposed* 0.9166 0.9193 5.4748 0.9021 0.9114 5.9506 
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We used (16) as a loss function to train the whole model with 

an initial learning rate of 0.0001 using the Adam optimizer. 

C. Performance Evaluation on SCVQA Databases 

 We trained and tested our model on the two SCVQA 

databases individually and compared the performance with 

other classical and state-of-the-art SCIQA/SCVQA and 

NSIQA/NSVQA approaches. Eighteen IQA/VQA approaches 

(including FR and NR approaches): Five NSIQA methods 

(PSNR, SSIM [6], GMSD [7], BRISQUE [8], and NIQE [9]), 

four SCIQA methods (ESIM [21], SQMS [25], SVQI [22] and 

Yang’s work [20]), five NSVQA methods (MOVIE [11], 

STMAD [12], STRRED [13], VSFA [14] and VIDEVAL [16]) 

and four SCVQA methods (SGFTM [28], MS-RSDS [29], 

HSFM [30] and Li’s  or  [31]), were included. It is important 

to note that SGFTM, MS-RSDS, HSFM, and Li's work [31] 

represent the most recent methods proposed for the SCVQA 

task. However, SGFTM, MS-RSDS, and HSFM are FR-

SCVQA methods, and their practical application is constrained, 

considering reference videos are not always available in real-

 orld scenarios. Also, Li’s  or  [31] relies on handcrafted 

features, concentrating solely on specific distortions and 

selected features, which inevitably limits the method's 

generalization capabilities and the accuracy of SCVQA. 

The mean performance of PLCC, SROCC, and RMSE results 

of the above competitors and the proposed model on the SCVD 

and CSCVQ SCV databases are given in Table II. The direct 

average (the mean performance of two SCVQA databases) and 

weighted average (weighted mean performance based on the 

size of two SCVQA databases) performances are also presented 

as the overall performance. As we can see, our proposed model 

achieves almost all the best (10 out of 12) performances in 

terms of PLCC, SROCC, and RMSE. On the SCVD database, 

the correlation and accuracy of our proposed model are superior 

to other methods. Our proposed model achieves a remarkable 

performance of 0.8945 and 0.9073 in terms of PLCC and 

SROCC. It demonstrates superior performance, improving 

PLCC and SROCC by 5.4% and 9.2%, respectively, compared 

to the second-best model, HSFM [30], which is the best non-

deep learning method. Furthermore, when compared to other 

deep learning-based methods on the SCVD database, our model 

demonstrates a clear distinction. The deep learning-based 

SCIQA method, Yang's work [20], achieves PLCC and SROCC 

scores of only 0.7794 and 0.7715. Similarly, the deep learning-

based NSVQA method, VSFA [14], registers score of 0.7514 

and 0.7678 in PLCC and SROCC. These results highlight that 

both deep learning-based SCIQA and NSVQA methods are not 

fully equipped to accurately measure the perceptual quality of 

SCVs. This shortfall is primarily due to the distinct content 

characteristics of SCVs, which differ significantly from NSVs 

and the SCVs contain additional temporal and spatiotemporal 

information compared to SCIs. 

On the CSCVQ database, our performance is the second-best 

in terms of PLCC and RMSE and is on par with HSFM [30] 

with a slight difference of 0.0076 and 0.2797, but our proposed 

model obtains a higher SROCC. Also, our proposed model 

outperforms HSFM [30] on the SCVD database with about 

0.0459, 0.0765, and 0.9977 improvements in terms of PLCC, 

SROCC, and RMSE. These results show that our proposed 

model has better generalizability. The success of our model can 

be attributed to its adaptability and robustness in handling 

diverse distortions. The CSCVQ database, which is tailored to 

compression distortion, yields promising results when 

evaluated with HSFM [30]. On the other hand, the SCVD 

database introduces a more complex and diverse set of 

distortions, offering ten different types of transmission, display, 

and compression challenges. Existing FR-SCVQA methods 

[28-30], relying on filters like 3D-Gabor and 3D Laplacian of 

Gaussian for edge information extraction, as well as NR-

SCVQA [31] with its dependence on handcrafted features, 

show effectiveness within certain types of distortions. 

However, their ability to address a wide range of distortions 

may be limited. In contrast, our proposed deep learning-based 

NR-SCVQA model is crafted to learn from and generalize 

across a wide range of data and distortions, thereby exhibiting 

superior generalization capabilities and outperforming others in 

the varied distortion landscape of the SCVD. It is also worth 

noting that HSFM [30] is the FR method with the help of 

reference information when doing the quality assessment. 

However, our proposed model is an NR-SCVQA metric, which 

is more practical for assessing the perceived video quality in 

real applications without reference to SCV. Compared with 

another NR-SCVQA method [31], our proposed model 

improves with large margins, of approximately 10.9% in PLCC 

and 11.5% in SROCC on the SCVD database as well as 1.7% 

in PLCC and 3.3% in SROCC on the CSCVQ database, which 

again confirms the effectiveness of our proposed model. 

Furthermore, in terms of overall performance, our proposed 

model outperforms other competitors with respect to PLCC, 

SROCC, and RMSE. It shows improvements of 2.1%, 4.8%, 

and 6.2% using a direct average, and 4.3%, 7.6%, and 11.6% 

using a weighted average, respectively, over the second-best 

model, HSFM [30], the leading non-deep learning method. Our 

proposed model evidently outperforms other IQA/VQA 

methods and exhibits the best effectiveness and generalization 

performance on two SCV databases. Also, it proves that our 

proposed deep learning-based method is more robust and 

effective than other non-deep learning-based SCVQA [28-31] 

methods. 

D. Performance Evaluation on Cross-databases 

 To further validate the generalization capability of our 

proposed model, we examine its performance on the SCVD and 

CSCVQ databases in a cross-database validation. This section 

describes the outcomes when our model is trained on one 

TABLE III 

CROSS-DATABASES AND JOINT-DATABASES EXPERIMENT.  

Training on Methods 
Testing on 

SCVD CSCVQ 

SCVD 
Li’s Wor  [31] / 0.764 

Proposed / 0.837 

CSCVQ 
Li’s Wor  [31] 0.659 / 

Proposed 0.787 / 

Combined 
Li’s Wor  [31] 0.731 0.807 

Proposed 0.828 0.884 
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database and evaluated on another. Using the same 

experimental framework, we then compare its PLCC 

performance with the NR-SCVQA method proposed in [31]. 

Table III clearly shows that the generalization ability of our 

proposed model, when assessed in cross-database scenarios, 

outperforms the method in [31] in terms of PLCC. Besides, we 

conducted a supplementary experiment in which we randomly 

selected samples from both SCVQA databases for training and 

utilized the remaining samples for evaluation. When our model 

is trained on this joint database scenario, the results in Table III 

show a significant improvement over the competing NR-

SCVQA method. Specifically, the PLCC performance of our 

model has 13.2% and 9.5% improvement on the SCVD and 

CSCVQ SCVQA databases, respectively. These results clearly 

demonstrate the robust generalization capability of our 

proposed model. Its success in achieving promising results in 

both cross-database and joint-database situations underscores 

its potential for effective real-world implementation.  

E. Ablation Study of Sub-algorithms at Pre-processing State 

To thoroughly assess the effectiveness of our proposed 

method, the performance variations of our model were 

investigated when employing different sub-algorithms at the 

pre-processing stage, including saliency map (SM) extraction 

and edge map (EM) extraction methods. Instead of the methods 

employed in this paper ([45-46] for SM and the Gabor filter for 

EM), we also investigated the method proposed in [49] for SM 

extraction and the Sobel filter for EM extraction. Table IV 

showcases the outcomes achieved by two SM extraction 

methods (Items 1 and 2) on the CSCVQ database. The results 

indicate that both methods achieve similar and satisfactory 

results. It is evident that both methods, effectively focusing on 

the relevant regions, as depicted in Fig. 7(a) and Fig. 7(b), 

which highlight the face and tie area. However, when it comes 

to EM extraction methods, the Gabor filter outperforms the 

Sobel filter (Items 1 and 3). This can be attributed to the 

capability of the Gabor filter to capture texture information and 

more complex edge features in an image compared to the Sobel 

filter, making it better suited to represent features in edge 

regions. Overall, all combinations and variations of different 

sub-algorithms achieve satisfactory results on the CSCVQ 

database, with PLCC values exceeding 0.91. This demonstrates 

the effectiveness of our proposed method. 

F. Ablation Study of Multi-Task Learning 

 As mentioned in Section III, multi-task SSL allows the 

model to learn multi-tasks in parallel while using shared 

features. In other words, the features learned from each task are 

also used for other tasks for better feature representation 

learning, which can improve the learning efficiency, prediction 

accuracy, and generalization learning ability of the model by 

solving multiple learning tasks at the same time [42]. Therefore, 

to demonstrate the effects of multi-task learning (pairwise 

ranking task in (9), distortion classification task in (10), and 

degradation degree task in (11)) for the SCF spatial quality 

feature representation learning, the ablation study was 

performed on the multi-channel CNN model using various 

training settings. It contains four combinations: performing the 

pairwise ranking task only (𝐿𝑅𝐾 ), performing the multi-task 

learning by the pairwise ranking task and the distortion 

classification task ( 𝐿𝑅𝐾 + 𝐿𝐷𝑇 ), performing the multi-task 

learning by the pairwise ranking task and the degradation 

degree task (𝐿𝑅𝐾+𝐿𝐷𝐿), and performing the multi-task learning 

with all three tasks (𝐿𝑅𝐾+𝐿𝐷𝑇+𝐿𝐷𝐿). It is noted that we only 

used the training set and validation set data to perform the 

ablation study. Experimental results are shown in Table V. 

Although the SCF spatial quality feature representation 

extracted from the multi-channel CNN model, which is pre-

trained by the pairwise ranking task only ( 𝐿𝑅𝐾 ), with the 

TCNNT model achieves a satisfactory result, it can be seen that 

multi-task learning (𝐿𝑅𝐾 +𝐿𝐷𝑇 , 𝐿𝑅𝐾 +𝐿𝐷𝐿 , and 𝐿𝑅𝐾 +𝐿𝐷𝑇 +𝐿𝐷𝐿 ) 

can also be of great help in obtaining the optimized SCF spatial 

quality feature representation to predict SCV quality scores 

more precisely. When only 𝐿𝑅𝐾  is performed on our multi-

channel CNN model, the PLCC results are 0.8471 and 0.8878 

in the SCVD and CSCVQ databases, respectively. The PLCC 

results, when incorporating the distortion classification or 

degradation degree task with the pairwise ranking task 

( 𝐿𝑅𝐾 + 𝐿𝐷𝑇  and 𝐿𝑅𝐾 + 𝐿𝐷𝐿 ) performed on the SCVD, have 

improved 5.7% and 1.9%. Furthermore, performing the multi-

task learning with all three tasks (𝐿𝑅𝐾+𝐿𝐷𝑇+𝐿𝐷𝐿) on the multi-

channel CNN model achieves the best results with a 7.9% 

improvement. It proves that compared with task-specific or 

single-task learning, the multi-task SSL lets our model learn 

multi-tasks in parallel while using shared features to improve 

the feature representation learning. Therefore, by solving 

TABLE IV 

PERFORMANCE VARIATIONS ON ADOPTED SUB-

ALGORITHMS. 

 Saliency Map Edge Map CSCVQ 

Items [45-46] [49] Gabor Sobel  LCC↑ 

1 

proposed 
    0.9462 

2     0.9397 

3     0.9153 

 
Fig. 7. (a) Saliency map of pictorial region in Fig. 3(b) using [45-

46]; (b) Saliency map of pictorial region in Fig. 3(b) using [49]. 

 

      

TABLE V 

ABLATION STUDY OF OUR PROPOSED MODEL WITH 

VARIOUS TASK LEARNING ON MULTI-CHANNEL CNN. 

Multi-task SSL  SCVD   CSCVQ  

𝑳𝑹𝑲 𝑳𝑫𝑻 𝑳𝑫𝑳  LCC↑ S  CC↑  LCC↑ S  CC↑ 

   0.8471 0.8602 0.8878 0.8843 

   0.8957 0.9104 0.9236 0.9183 

   0.8629 0.8766 0.8925 0.9019 

   0.9136 0.9241 0.9462 0.9417 
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multiple learning tasks (distinguishing pairwise ranking 𝐿𝑅𝐾 , 

characterizing the distortion type 𝐿𝐷𝑇 , and identifying the 

degradation degree of SCF 𝐿𝐷𝐿) simultaneously, the learning 

efficiency, prediction accuracy, and generalization learning 

ability of our new model are improved. 

G. Ablation Study of Multi-Channel Learning 

To assess the effectiveness of our multi-channel CNN model 

in learning spatial quality features of pictorial and textual 

regions, we conducted a series of experiments under different 

configurations by removing either the channel of the pictorial 

region (𝐹𝑃𝑅 in (6)) or the channel of the textual region (𝐹𝑇𝑅 in 

(7)) or both from our proposed model to evaluate their 

contributions and performance individually. In Group 1, we 

extracted spatial quality feature representations solely from the 

channel of 𝐼𝑑  without implementing edge and saliency 

extraction, increasing its channel depth to align with the feature 

extraction capabilities of our proposed method. In Group 2, we 

removed the channel of the textual region, 𝐹𝑇𝑅  in (7). 

Conversely, in Group 3, we excluded the channel of the 

pictorial region, 𝐹𝑃𝑅 in (6), from our proposed model. Finally, 

Group 4 represents the full implementation of our proposed 

multi-channel CNN model. 

The results in Table VI reveal that solitary implementation 

of 𝐹𝑇𝑅  or 𝐹𝑃𝑅  (Group 2 and Group 3) can surpass the 

performance of the fundamental spatial quality feature learning 

strategy of Group 1 which does not include edge and saliency 

extraction. This highlights the significant advantages that extra 

either edge or and saliency information pro ides to the model’s 

capability to identify spatial quality features with greater 

precision. Compared to the results of Group 2, the PLCC value 

of Group 3 increased from 0.8665 to 0.8917 on SCVD and from 

0.9072 to 0.9274 on CSCVQ. It proves that the channel of the 

textual region, 𝐹𝑇𝑅 , is more effective in learning the spatial 

quality feature of SCF since the SCF often contains relatively 

sharp edges and texts, and human visual system is more 

sensitive to the edges. Moreover, due to the fact that SCF 

usually contains mixed screen content and natural content, the 

improvement is limited when considering either pictorial or 

textual regions only. After performing the multi-channel 

mechanism to incorporate 𝐹𝑃𝑅  and 𝐹𝑇𝑅  as in (8), our multi-

channel CNN model (Group 4) can achieve the best results on 

SCVD and CSCVQ regarding PLCC and SROCC. It shows that 

our multi-channel CNN can obtain the best performance by 

considering both spatial quality features of the pictorial and 

textural parts. 

H. Ablation Study of Spatiotemporal Features Learning 

Moreover, we analyze the effectiveness of the high-level 

spatiotemporal features learning by our TCNNT model. There 

are four groups in the experiment: prediction of the SCV quality 

score using SCV quality feature representation vectors, 𝑆𝐶𝑉𝑄𝑐 , 

by fully connected layer (FCL) integrated with LSTM without 

exploring the high-level spatiotemporal features and temporal 

attention information (FCL+LSTM), prediction by FCL 

combined with Transformer encoder model (TEM) to 

investigate the temporal attention information only 

(FCL+TEM), prediction by time-distributed CNN model 

(TCNN) incorporated with LSTM which explores the 

spatiotemporal features only (TCNN+LSTM), and prediction 

by TCNN incorporated with TEM as our TCNNT model to 

explore both high-level spatiotemporal features and temporal 

attention information simultaneously (TCNNT). The 

experimental results are shown in Table VII. 

Although the prediction by FCL integrated with the LSTM 

model (FCL+LSTM) can achieve a satisfactory result, it can be 

seen that replacing the FCL with TCNN (TCNN+LSTM) or 

replacing the LSTM with TEM (FCL+TEM) can also be of 

great help in predicting precise video quality scores via learning 

either spatiotemporal features or temporal attention 

information. When the FCL+LSTM model is used, the PLCC 

results are 0.8589 and 0.8964 in the SCVD and CSCVQ 

SCVQA databases. The PLCC results of TCNN+LSTM and 

FCL+TEM on SCVD improved from 0.8589 to 0.9067 and 

0.8715, respectively. However, our proposed TCNNT further 

boosts the performance and achieves the best results on SCVD 

and CSCVQ by learning the spatiotemporal features and 

temporal attention information together, thereby enhancing the 

SCV quality prediction with the help of high-level 

spatiotemporal features learning. 

I. Runtime 

We assess the runtime of our proposed model and benchmark 

it against four FR/NR-SCVQA models. For a fair comparison, 

all methods were tested on the same device running a Windows 

10 platform, equipped with an Intel i9-10900K CPU, 64GB 

RAM, and NVIDIA GeForce RTX 3090 24GB GPU. 

 Table VIII shows the results of the runtime comparison. We 

evaluated two videos of varying resolutions (720p and 1080p) 

TABLE VI 

ABLATION STUDY OF OUR PROPOSED MODEL WITH 

VARIOUS FEATURE LEARNING ON MULTI-CHANNEL CNN.  

   SCVD   CSCVQ  

 𝑭𝑷𝑹 𝑭𝑻𝑹  LCC↑ S  CC↑  LCC↑ S  CC↑ 

Group 1   0.8409 0.8437 0.8786 0.8812 

Group 2   0.8665 0.8742 0.9072 0.9167 

Group 3  
 0.8917 0.8893 0.9274 0.9210 

Group 4 

(Proposed) 
  0.9136 0.9241 0.9462 0.9417 

 

 

TABLE VII 

ABLATION STUDY OF SPATIOTEMPORAL FEATURES 

LEARNING WITH VARIOUS COMBINATION OF MODEL 

 Spatial Temporal  SCVD   CSCVQ  

 FCL TCNN LSTM TEM  LCC↑ S  CC↑  LCC↑ S  CC↑ 

FCL+LSTM     0.8589 0.8731 0.8964 0.8853 

FCL+TEM     0.8715 0.8864 0.9135 0.9207 

TCNN+LSTM     0.9067 0.9089 0.9271 0.9186 

TCNNT 

(proposed) 
    0.9136 0.9241 0.9462 0.9417 
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from the CSCVQ and SCVD databases to determine the 

necessary runtime for each SCVQA method. To ensure a fair 

and accurate comparison, the analysis measured the time taken 

from the input of a raw video to the generation of the final SCV 

quality score. While our proposed model has longer runtime 

compared to FR-SCVQA methods, it provides superior 

prediction accuracy results, as depicted in Fig. 8. Notably, our 

model employs an NR approach, which can evaluate video 

quality without the need for an original reference video. This is 

particularly useful in real-world scenarios where reference 

videos are not always available. Broadcasters can leverage our 

NR-SCVQA approach to monitor the quality of transmitted 

content, ensuring a consistent visual experience for viewers. 

Similarly, streaming services can employ our NR-SCVQA 

method to dynamically adjust video quality in response to the 

intricacies of the content and fluctuating network conditions. 

Such an application not only optimizes bandwidth utilization 

but also upholds the integrity of video quality. This is critical 

for educational content video, news, and other SCV. 

Compared to the NR-SCVQA method presented in [31], our 

proposed model not only surpasses it in terms of PLCC but also 

offers a significant computational advantage. For both 720p and 

1080p resolution videos, our model achieves an approximate 

45% reduction in runtime. Overall, Fig. 8 clearly demonstrates 

that our proposed NR-SCVQA model can better balance 

prediction accuracy and requested processing time, making it a 

superior choice for applications where both accuracy and speed 

are critical. 

V. CONCLUSIONS 

In this paper, we developed an SCF spatial quality feature 

representation learning through multi-channel CNN using 

multi-task SSL and proposed a TCNNT model further to extract 

the high-level spatiotemporal features of the entire sequence to 

assess the perceptual quality of SCV. First, we solve the 

limitations of the lack of available human-annotated label data 

for the SCVQA via the multi-channel CNN using multi-task 

SSL by solving the pairwise ranking, distortion classification, 

and degradation degree tasks. This is one of the major 

bottlenecks that we break through in VQA. Furthermore, the 

multi-channel CNN can learn the spatial quality feature of the 

pictorial and textural parts separately and then concatenate 

those features to learn the optimized SCF spatial quality feature 

representation. Finally, the TCNNT model is proposed to 

further process all SCF spatial quality feature representation in 

an SCV to explore high-level spatiotemporal features by jointly 

learning spatial and temporal features, thereby providing the 

optimized spatiotemporal features to obtain the final precise 

predicted SCV quality for SCVQA. Experimental results 

demonstrate the robustness and effectiveness of our proposed 

model, which outperforms other handcrafted features-based 

FR/NR-SCVQA methods. It proves that our NR-SCVQA 

model, the first deep learning-based SCVQA method, 

compensates for the shortcomings of handcrafted feature-based 

methods that improve the performance and generalization of 

perceptual quality evaluation for SCV. However, our proposed 

model currently may not operate in real-time due to its runtime 

requirements. Looking ahead, a lightweight NR-SCVQA model 

should be developed by exploring the adoption of temporal 

downsampling or spatial-temporal sampling techniques. These 

strategies have the potential to significantly reduce 

computational complexity and requested processing time. By 

integrating such methods into our model, we can increase its 

feasibility for real-time applications, broadening its practical 

utility for broadcasting. 
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