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 Abstract— Fingerprint-based indoor positioning systems are 
being explored to aid in location-based services due to their 
robustness in non-line-of-sight conditions. Current systems utilize 
high-dimensional radio frequency (HDRF) fingerprints, such as 
Wi-Fi channel state information, to achieve higher positioning 
precision. Since data acquisition is labor-intensive, researchers 
proposed to enrich the dataset with generative models. It however 
faced challenges arising from capturing the intricate HDRF 
distribution using simplistic models and the lack of a framework 
that simultaneously addresses the generative model training, 
sample evaluation and selection. To synthesize high-quality HDRF 
fingerprints, this paper proposes an HDRF fingerprint generation 
framework using a conditional diffusion model that learns the 
packet-level feature distribution by decomposing HDRF 
fingerprints using grid points, anchors, and frequency channel 
information, while preserving the feature spatial correlation 
within a fingerprint. A sample selection process using the 
Mahalanobis distance, and the Principal Component Analysis Q-
statistic is used to ensure the sample fidelity. An adaptive learning 
strategy is further developed to integrate the generated synthetic 
HDRF fingerprints into downstream positioning tasks. 
Experimental results on two HDRF datasets quantitatively and 
qualitatively showcase the diversity and fidelity of the synthetic 
samples. Furthermore, compared to solely utilizing the original 
dataset, integrating the synthetic HDRF fingerprints from the 
developed framework to train downstream positioning models can 
decrease the positioning error by up to 16.9%. 
Index Terms— Fingerprint-based indoor positioning, Conditional 
diffusion model, Adaptive learning, Channel state information, 
BLE 5.1 

I. INTRODUCTION
ecent years, location-based services have fueled 
various indoor positioning system (IPS) developments 
[4]. IPSs leveraging ranging measurement methods, 

such as trilateration and triangulation, have achieved meter and 
submeter-level positioning accuracy in ideal indoor conditions 
but face challenges in complex environments with obstructions 
[5]. Recent advancements in communication technologies have 
facilitated the acquisition of radio frequency signals, such as 
Wi-Fi Channel State Information (CSI) [6] and the in-phase and 
quadrature-phase (I/Q) sample data from Bluetooth 5.1 [7]. 
These signals offer rich features with hundreds of dimensions 
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for establishing location-specific fingerprints and enable 
fingerprint-based IPSs to robustly localize targets under non-
line-of-sight (NLOS) conditions [8, 9]. This paper refers to 
these features as High-Dimensional Radio Frequency (HDRF) 
features and focuses on HDRF fingerprint-based IPS. 

HDRF fingerprints are typically constructed by sequentially 
combining packet-level features, which are obtained from 
multiple packets that originate from different antennas and 
communication channels. Different packet-level features 
display distinct characteristics, primarily due to factors such as 
antenna direction, multipath effects, interference from other 
radio frequency signals, and obstructions [10]. Therefore, 
HDRF fingerprints collected from proximate locations can 
exhibit a pronounced nonlinear discrepancy. Such 
discrepancies allow the system to distinguish between 
proximate locations and achieve high positioning precision. 
Correspondingly, the system needs to gather data from more 
locations with increased spatial density. However, collecting 
sufficient HDRF fingerprints is resource-intensive and time-
consuming, especially for large-scale environments. 
Researchers have explored data augmentation techniques, such 
as adding Gaussian noise [11], dropout [12], and crossover 
among fingerprints [13]. While these techniques enhance the 
model training performance, they do not capture the distribution 
of HDRF fingerprints, limiting the model generalization ability. 

Previous research also explored using semi-supervised 
learning, which combines a small subset of labeled fingerprints 
with a larger set of unlabeled fingerprints [14]. Although 
collecting unlabeled data can be less challenging, it still 
demands substantial effort. Researchers further investigated 
using generative models, such as Variational Autoencoders 
(VAEs) [15] and Generative Adversarial Networks (GANs) 
[16], to directly generate HDRF fingerprints and reduce the data 
acquisition cost [1, 2]. Despite the efforts, previous research 
still struggles to synthesize location-discriminating HDRF 
fingerprints and improve the positioning performance due to the 
following challenges: 

1) Previous research trains separate generative models for
each location (class) to generate distinct fingerprints [1-3]. 
Besides, due to the limited data collected at each location, the 
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developed generative models opted for a shallow architecture 
with convolutional layers [2]. However, under such a strategy, 
the correlations among the HDRF fingerprints at different 
locations have not been learned. Moreover, shallow networks 
with convolutional layers can only learn representations within 
a narrow input range [17]. It is sufficient for general images 
since they often exhibit local features (such as edges, lines, 
textures, etc.). In contrast, more distinctive global features can 
be found in HDRF fingerprints. Generative models for HDRF 
fingerprints would benefit from constructing a unified, deeper 
model that incorporates data from all locations. 

2) When assessing the performance of HDRF fingerprint 
generative models, prior research predominantly focused on 
visual assessments [2, 18], lacking a quantitative method to 
measure diversity and fidelity. Moreover, previous studies do 
not include the sample selection process, risking the inclusion 
of low-quality data into downstream positioning tasks. 

3) Limited datasets are common in HDRF fingerprint-based 
IPS, which can lead to imperfect fingerprint distribution capture 
with generative models. In prior research, direct training of 
positioning models with synthetic fingerprints tends to cause 
initiation from a suboptimal point in the parameter space, 
leading to inferior performance and overfitting. More suitable 
training strategies need to be developed when using synthesized 
HDRF fingerprints. 

This research addresses the above challenges and develops 
a framework named HDRF Conditional Diffusion (HDRF-CD) 
for HDRF fingerprint generation. Under HDRF-CD, a unified 
generative model is developed for all locations and learns the 
packet-level feature distribution of HDRF fingerprints using the 
conditional diffusion model (CDM), which allows for fine-
grained control over the generation process and has 
demonstrated remarkable generation capabilities to learn the 
high-dimensional complex data distribution. To mitigate the 
discrepancy between the packet-level distribution and the noise 
prior distribution employed in the diffusion model training 
process, a scale regularization loss using the predicted clean 
data is introduced to ensure sample fidelity. During the 
fingerprint sampling process, the spatial correlation of packet-
level features within an HDRF fingerprint is maintained 
through a strategic sampling approach that employs a diffused 
version of the original HDRF fingerprints. Sampled packet-
level features are then reassembled to form HDRF fingerprints. 
A sample selection process utilizing the Mahalanobis distance 
and Principal Component Analysis (PCA) Q-statistic is proposed 
to ensure the acquisition of high-quality samples. Furthermore, 
this paper develops an adaptive learning strategy to incorporate 
synthetic HDRF fingerprints into the positioning model 
training.  

To evaluate the quality of synthetic HDRF fingerprints, this 
paper introduces a metric called Diversity Fidelity Integrative 
Score (DFIS), leveraging the fixed meanings of each dimension 
in HDRF fingerprints. Then, we qualitatively and quantitatively 
showcase the generated samples by comparing them with those 
given by the previous generative methods with different 
metrics. Finally, the usage of synthetic HDRF fingerprints in 

downstream positioning tasks is investigated. 
The contributions of this paper can be summarized as 

follows:  
1) This paper introduces the first HDRF fingerprint 

generation framework HDRF-CD that utilizes the conditional 
diffusion model for HDRF fingerprint synthesis to enhance 
positioning performance. HDRF-CD trains a unified generation 
model that learns packet-level features of HDRF fingerprints 
with data from all locations. A scale regularization loss is 
incorporated on the predicted clean data to mitigate the 
disparity between the packet-level distribution and the noise 
prior distribution. HDRF-CD also systematically addresses the 
sample generation and selection process. Packet-level features 
of a single synthesis fingerprint are sampled from the diffused 
fingerprints to ensure sample diversity while preserving spatial 
correlation. A sample selection process employing the 
Mahalanobis distance and PCA Q-statistic is further 
implemented to obtain high-quality samples. 

2) This paper conducts experiments on an open-source Wi-
Fi CSI IPS dataset and a Bluetooth Low Energy (BLE) Angle 
of Arrival (AoA) dataset collected in this research. The BLE 
AoA dataset will be made publicly available. The 
comprehensive experimental results demonstrate that HDRF-
CD can generate plausible HDRF samples and outperform other 
methods evaluated using the proposed metric Diversity Fidelity 
Integrative Score (DFIS). Samples from HDRF-CD yield the 
best performance on both the BLE 5.1 dataset (average 3.3 
DFIS vs. the previous best of 1.1 DFIS) and the Wi-Fi CSI 
dataset (3.6 DFIS vs. the previous best of 2.6 DFIS), indicating 
superior data diversity among the generated samples while a 
higher resemblance to the real data.  

3) The developed model adaption strategy integrates the 
synthetic HDRF fingerprints from HDRF-CD into downstream 
positioning tasks and improves the positioning performance. 
Specifically, incorporating an additional set of synthetic HDRF 
fingerprints, which is half the size of the training dataset, leads 
to a reduction of 16.9% in Root Mean Squared Error (RMSE) 
on the BLE dataset and 12.4% on the Wi-Fi CSI dataset, 
respectively. 

The remainder of this paper is organized as follows: Section 
II introduces related research about the generative models for 
fingerprint-based IPS and generative diffusion model 
development. Section III provides the illustration of fingerprint-
based indoor positioning and HDRF fingerprint generation. 
Section IV introduces the unified HDRF data synthesis 
framework and the proposed adaptive learning process for 
using HDRF fingerprints in positioning model training. Section 
V presents the numerical experiments and the comparison 
results. Section VI gives insights into future research directions 
and concludes this paper. 

II. LITERATURE REVIEW 

A. Generative Models for Radio Frequency Fingerprint-Based 
IPS 
Different from fingerprint augmentation methods such as value 
exchange [13] and masking [11], generative models learn the 
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data distribution and produce data that closely resembles 
realistic data. Previous research has investigated the application 
of generative models in Received Signal Strength (RSS) 
fingerprint-based IPS. Alhomayani and Mahoor [3] studied the 
imbalanced data issue in BLE RSS-based IPS and utilized VAE 
as an oversampling tool. To construct a fine-grained indoor 
radio map with higher spatial granularity, Lan et al. [19] 
proposed a fingerprint augmentation framework, which 
comprises three modules: fingerprint-to-image conversion, 
super-resolution, and image-to-fingerprint conversion. Zou et 
al. [20] utilized Gaussian process regression conditioned least-
squares generative adversarial networks (GPR-GANs), which 
are trained on collected data in free space, to generate realistic 
RSS data in constrained spaces. 

Previous research also applied generative models to 
generate HDRF fingerprints. Compared to the single RSS 
value, HDRF fingerprints encompass high-dimension 
correlated features, introducing complex spatial-temporal 
dependencies. Chen and Chang [14] explored VAE and GAN-
based semi-supervised techniques for Wi-Fi CSI fingerprints. 
Their results suggest that generative models have the potential 
to enhance the efficiency and accuracy of localization systems. 
Chen et al. [1] proposed a Wi-Fi-based localization system that 
addressed the inconsistency in Wi-Fi CSI fingerprints caused 
by changes in body shapes and environments. They developed 
a data augmenter with individual VAEs for each location to 
generate synthetic fingerprints. Li et al. [2] developed an 
Amplitude-Feature Deep Convolutional Generative 
Adversarial Network (AF-DCGAN) model to enhance the 
diversity of the CSI amplitude feature maps and reduce human 
effort. They conducted experiments to visualize the generated 
diverse samples and improved accuracy compared to other 
similar techniques. 

The generative models from previous research for HDRF 
fingerprints were mainly developed to achieve context-specific 
data generation for individual locations. However, training with 
limited data for each location can cause the generative model to 
overlook the data diversity of different locations. Consequently, 
all individual models lack robust generalization capabilities 
across entire environments. This highlights the need for a 
comprehensive and unified generative development framework 
for HDRF fingerprints that can leverage data from all locations. 
Furthermore, previous research lacked comprehensive 
evaluations of the generated data to control the quality of 
samples for downstream positioning tasks. This research 
proposes a novel framework known as HDRF-CD, which 
allows the development of a unified generative diffusion model 
to generate HDRF fingerprints for all locations. HDRF-CD also 
comprises a sample selection strategy utilizing the Mahalanobis 
distance and a PCA-based Q-statistic measure to select data that 
closely resemble the original datasets. 

B. Diffusion Models and Conditional Guidance 
Previous works have explored the diffusion model, a class of 
likelihood-based models, for image synthesis tasks and showed 
their capabilities to produce high-quality images [21-23]. A 
diffusion model can be considered a Markovian Hierarchical 

Variational Autoencoder, and the latent dimension is exactly 
equal to the data dimension. The forward diffusion process 
gradually corrupts data into standard Gaussian noise over a 
series of timesteps. The backward sampling procedure, also 
known as denoising, gradually removes the noise from pure 
Gaussian random variables to obtain synthesis data. Ho et al. 
[21] introduced the denoising diffusion probabilistic models for 
high-quality image synthesis. They achieved a state-of-the-art 
Fréchet Inception Distance (FID) score and the results 
demonstrate the potential of diffusion models in generating 
high-quality images. Subsequent research further improved the 
diffusion model and developed several variants. Song et al. [24] 
introduced denoising diffusion implicit models (DDIMs), 
which employ non-Markovian diffusion processes to achieve 
the same training objective as DDPM with fewer denoising 
steps. Nichol and Dhariwal [25] improved the log-likelihood 
performance of DDPM by proposing a cosine noise schedule 
that improves Negative Log-Likelihood (NLL) and FID 
compared to the linear schedule. Rombach et al. [26] developed 
Latent Diffusion Models (LDMs) to reduce the computational 
complexity of training diffusion models by training them in the 
latent space of a pretrained autoencoder. Kingma et al. [27] 
derived a simple expression for the variational lower bound in 
terms of the signal-to-noise ratio (SNR) of the diffusion 
process. This enables the noise schedule to be optimized 
efficiently together with the diffusion model. Based on 
stochastic differential equations, Song et al. [28] introduced a 
unified framework for score-based generative models and 
DDPM. The framework employs a continuous evolution of 
distributions over time. 

Previous studies also investigated techniques for 
conditioning/guiding diffusion models on class/context 
information. Dhariwal and Nichol [29] introduced a classifier 
guidance method to allow for a trade-off between diversity and 
fidelity. Specifically, the diffusion score is incorporated with 
the gradient of the log-likelihood of an auxiliary classifier 
model and used in the sampling process. Ho and Salimans [30] 
further introduced the “classifier-free guidance” for balancing 
mode coverage and sample fidelity in diffusion models. Instead 
of training an extra classifier, this approach involves using the 
score estimates of both a conditional and an unconditional 
diffusion model to achieve a similar trade-off between sample 
quality and diversity. Bansal et al. [31] presented a universal 
guidance algorithm that utilizes the predicted clean image 
obtained from the predicted noise as input to the guidance 
function without retraining. Hong et al. [32] proposed a general 
formulation of diffusion guidance that leverages information 
within intermediate samples, allowing for a more general 
approach that does not require external conditions or additional 
training. Goel et al. [33] proposed a Structure-and-Appearance 
Paired Diffusion model (PAIR-Diffusion) that provides fine-
grained control over individual objects in an image. 

This research focuses on integrating the diffusion model into 
the generation of complex radio frequency fingerprints. HDRF-
CD specifically emphasizes the incorporation of conditional 
context information derived from signal packets to enhance the 
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diffusion model’s capability to aggregate fingerprints from 
various locations, thereby capturing the intricate dependencies 
within the data. 
 

III. FINGERPRINT-BASED INDOOR POSITIONING AND HDRF 
FINGERPRINT GENERATION 

This section first provides an overview of the fingerprint-based IPS 
with relevant concepts. Then, the problem of HDRF fingerprint 
generation addressed in this paper is illustrated. 

A. Fingerprint-based IPS 
The fingerprint-based IPS aims to localize targets based on the 
constructed fingerprints in indoor environments such as offices, 
malls, and warehouses. It utilizes multiple receivers, which are also 
called anchors, deployed at different locations to localize targets 
based on the constructed fingerprints. Each considered location is 
defined as a grid point for data collection and fingerprint 
construction. Targets move around the environment, carrying the 
Internet of Things (IoT) tag as the transmitter. The tag transmits 
signal packets periodically. The anchors receive packets from 
different directions, and the collected data is forwarded to a 
gateway, which then uploads the data to a central server. The server 
further processes the data into HDRF fingerprints for analyzing the 
targets' locations. 

The system development involves offline and online stages. In 

the offline phase, dataset construction and positioning model 
training are performed. For dataset construction, collectors 
equipped with tags traverse all points and pause at each grid point 
for a predefined period. The system logs the packets received from 
all anchor nodes and the corresponding grid points.  Table 1 
summarizes the commonly used metadata associated with the 
received packets to describe the attributes of the packets. It includes 
the anchor node that receives the packet, the received antenna of 
the anchor (each anchor can have multiple antennae to receive 
packets), and the communication channel (wireless advertising 
channels that broadcast signals at different frequencies). Apart 
from the grid point (label) information, the packet-level features 
also exhibit distinct variations based on these attributes. All 
attributes can be easily obtained directly from the received packets 
and work as conditions to construct fingerprints.  

A predefined number of packets collected over a continuous 
period is considered a packet set. All collected packets of each grid 
point are segmented into packet sets. One packet set is denoted as 
𝐹 = {𝑥!, … , 𝑥"}, where 𝑁 represents the number of packets and 
𝑥# ∈ ℝ$  represent the extracted 𝑀 dimensions feature from the 
𝑖%& packet. Then the packet set is processed into the HDRF 
fingerprint as a multidimensional vector with each dimension 
representing fixed means, such as anchor and antenna/channel. 
There can be redundant packets in one packet set and these features 
can be processed by taking the mean values or randomly selecting 
one of them. Then, all HDRF fingerprints along with their grid 
point labels are used to train the positioning model. 

During the online positioning phase, the system continuously 
monitors the packets transmitted by targets and collects the 
extracted features from these packets over a predetermined time 
frame. These features are preprocessed to form an HDRF 
fingerprint, which is subsequently input into a trained positioning 
model. The positioning model then estimates the tag’s location by 
generating an output vector, which represents the probabilities 
associated with different grid points. The dimension of the output 
corresponds to the number of grid points.  

 
Fig. 1. HDRF-CD framework. 

TABLE I 
ATTRIBUTES OF THE RECEIVED PACKET USED FOR 

FINGERPRINT-BASED IPS 
 

Attribute Description 

Receiving anchor Unique identifier of the node that successfully 
received the data packet 

Receiving antenna Specific antenna within the receiving node that 
captured the signal. 

Frequency Channel The designated frequency channel utilized for the 
transmission of the data packet. 
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B. HDRF fingerprint generation 
This research works on the HDRF fingerprint generation problems 
for HDRF fingerprint-based IPS to alleviate the labor intensity of 
data collection and enhance the generalization capability of 
positioning models. During data collection, users equipped with 
tags move randomly at each designed grid point. Consequently, 
only a portion of the space near grid points is traversed by the 
targets and the collected datasets lack the fingerprints for the 
unvisited locations in the vicinity of each grid point. This research 
proposes to synthesize these fingerprints using generative models. 
Let 𝐷%'(#) = ./𝐹* , 𝑦*1|𝑗 ∈ [1, 𝑁%'(#)]7  represent the collected 
training dataset and 𝐷+,) = ./𝐹8* , 𝑦*1|𝑗 ∈ 91, 𝑁+,):7 represent the 
synthetic HDRF dataset. 𝑁%'(#) and 𝑁+,) represent the amount of 
data in each dataset. This research aims to utilize the training 
dataset 𝐷%'(#)  to learn the data distribution of all grid points 
through generative models and to generate a synthetic HDRF 
dataset 𝐷+,) that can be generalized to the unvisited spaces around 
each grid point. 

IV. HDRF CONDITIONAL DIFFUSION FRAMEWORK 
This section presents the proposed framework HDRF-CD for 
HDRF fingerprint synthesis. Subsection A elucidates the overall 
framework. Subsection B first introduces the CDM training and 
data generation process. Then, a scale-driven conditional training 
process is developed to improve the fidelity of HDRF samples. In 
subsection C, the sample selection strategy based on the 
Mahalanobis distance and PCA-based Q-statistic measure is 
proposed for identifying high-quality packet-level features. 
Subsection D introduces the adaptive learning process that 
leverages the generated HDRF fingerprints with the original 
training data to improve the downstream positioning model’s 
performance. 

A. HDRF Fingerprints Decomposition and Combination 
The HDRF-CD framework, as shown in Fig. 1, comprises three 

steps: fingerprint decomposition, diffusion model training and 
feature sampling, and feature selection. In the upper left corner is 
the input original HDRF fingerprint dataset. The output is the 
synthesized HDRF fingerprints, shown in the upper right corner. 

The fingerprint decomposition is illustrated on the left-hand side 
of Fig. 1. An HDRF fingerprint is constructed with a collection of 
packet-level features (instances) where a correlation exists among 
their values but no necessary dependencies (in fact, with the high-
dimensional nature, one packet-level feature is sufficient to 
characterize a location). Fingerprints can also be easily 
disaggregated back into their packet-level features. It should be 
noted that this process is different from directly working on the 
individual packet-level feature. The packet-level features still need 
to be combined to construct HDRF fingerprints and employed for 
downstream positioning tasks. Due to the structural intricacy and 
large parameter space, training the diffusion generative model 
necessitates a substantial quantity of HDRF fingerprints, which are 
limited in practical scenarios. Therefore, HDRF-CD learns the 
packet-level feature distribution with explicit conditions and views 
an HDRF fingerprint as a multiple-instance set [34]. For each 

packet-level feature 𝑥# ,  let 𝑐# = {𝑦# , 𝑎𝑐# , 𝑎𝑡# , 𝑓#}  represent the 
explicit conditions for control purposes, where 𝑦# denotes the grid 
point index, 𝑎𝑐# denotes the anchor, 𝑎𝑡# denotes the antenna, and 
𝑓#  denotes the frequency channel. Different kinds of HDRF 
fingerprints can include partial conditions. For example, in a BLE 
5.1 packet, all antennas are sequentially utilized to obtain I/Q 
samples, and a processed BLE 5.1 I/Q fingerprint does not need to 
include the antenna condition information. 

Then, the packet-level features in a fingerprint are learned and 
generated by the proposed diffusion generative model. Under 
HDRF-CD, a unified diffusion generative model is developed to 
learn the packet-level features of all grid points. In the forward 
diffusion process, the packet-level feature is gradually transformed 
into pure noise through a series of timesteps. In the backward 
denoising process, the learned diffusion model iteratively recovers 
the original data from the noisy data and synthesizes the packet-
level features. Then, the obtained clean packet-level features from 
each anchor/antenna/channel conditional sampling process are 
reassembled to reconstruct the fingerprints for downstream 
localization model training.  

To preserve the spatial relationships among the features within 
a fingerprint, HDRF-CD employs a straightforward strategy that 
samples from the intermediate timesteps of the diffusion model. 
Compared to the final step of diffusion, where the features become 
pure noise, the intermediate time steps still retain the correlation 
among the packet-level features derived from the same HDRF 
fingerprint. As illustrated in the middle of Fig. 1, for an HDRF 
fingerprint, HDRF-CD utilizes the noisy version of its packet-level 
features at a predefined timestep 𝑡. Then, the backward denoising 
process is performed on these noisy packet-level features to obtain 
clean data, which are further combined into an HDRF fingerprint. 
Finally, as shown in the right part of Figure 1, HDRF-CD addresses 
the sample selection process for HDRF fingerprints, which is 
performed using the Mahalanobis distance and a PCA-based Q-
statistic measure. 

B. Conditional Diffusion Model and Scale-Driven Conditional 
Training 
This subsection first introduces the CDM training and sampling 
process. Then, the scale-driven training loss for alleviating the 
scale explosion of sample values utilizing the predicted clean data 
is illustrated. 

As depicted in the top-middle part of Fig. 1, the forward process 
of the diffusion generative model is defined as a Markov chain 
where Gaussian noise is gradually added to the original data based 
on a discrete variance schedule.  

𝑞(𝑥%|𝑥%-!) = 𝒩(𝑥%; 	(1 − 𝛽%)𝑥%-!, 𝛽%𝐈)), (1) 
where 𝑡 denotes the time step for adding noise, ranging from 1 to 
𝑇. The variable 𝑥% represents the noisy data at each time step, and 
𝛽% represents the corresponding variance schedule. This research 
keeps 𝛽% as a constant hyperparameter with a linear schedule [21]. 
Other schedules, for example, the cosine schedule [25] or joint 
learned through SNR, can also be employed. Then, the transition 
probability from the clean data 𝑥.~𝑝/(%( to 𝑥% is given by 
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𝑞(𝑥%|𝑥.) = 𝒩 K𝑥%; 	L𝛼%𝑥., K1 − L𝛼%N 𝐈)N ,

where	𝛼% =S(1 − 𝛽+)
%

+0!

. (2)
 

In the final time step, 𝑥.  is perturbed to a standard normal 
distribution (prior distribution). Through reparameterization, 
instead of predicting the original data inputs from the noisy data, 
the model 𝜃 tries to predict the noise 𝜖~𝒩(0, 𝐼) and optimize the 
model parameter using the following objective [21, 24]:  

min
1
𝔼2!,4,% ^𝜔(𝑡)`|𝜖1(𝑥% , 𝑡) − 𝜖|`5

5a , (3) 
where 𝜔(𝑡)  is a time-based weight parameter. For the reverse 
process, the model gradually recovers the original data from the 
noisy data. 

𝑝(𝑥%-!|𝑥%) = 𝒩(𝑥%-!; 	𝜇1(𝑥% , 𝑡)	𝑥% , 𝜎%𝟐𝐈)), (4) 
where 𝜇1(·) is parameterized using the model 𝜃, and	𝜎%𝟐 is set to 
untrained time-dependent constants (related to 𝛽% ). Then, the 
Markov chain sampling scheme of the diffusion model is: 

𝑝(𝑥.:8) = 𝑝(𝑥8)S𝑝(𝑥%-!|𝑥%)
8

%0!

, (5) 

where 𝑝(𝑥%-!|𝑥%) is defined in (4). HDRF-CD aims to learn the 
conditional distribution 𝑝(𝑥%-!|𝑥% , 𝑐),  which allows explicit 
control of the generated packet level feature by conditioning it on 
specific information. Then, at each transition step, conditioning 
information 𝑐 is incorporated, 

𝑝(𝑥.:8|𝑐) = 𝑝(𝑥8)S𝑝(𝑥%-!|𝑥% , 𝑐)
8

%0!

. (6) 

And the model can be trained with the loss: 
min
1
𝔼2!,4,% ^𝜔(𝑡)`|𝜖1(𝑥% , 𝑡, 𝑐) − 𝜖|`5

5a (7) 
In the sampling process, as the time step approaches 0, the noise 

in the samples gradually diminishes and the clean data are 
generated. Without additional domain knowledge, the scaled data 
(range of [-1, 1]) is commonly assumed to have a zero mean when 
generating images. However, the distribution of the HDRF features 
𝑝/(%(  often exhibits a non-zero mean. Fig. 2 illustrates the 
histogram of mean values across all dimensions of Wi-Fi CSI 
packet features, which have been scaled to the range of [-1, 1]. 
Notably, the mean values have a concentration of around 0.6. 

Therefore, HDRF-CD enhances the distribution learning by 
introducing constraints on the predicted clean data. With the fact 
that diffusion model 𝜖1(𝑥% , 𝑡, 𝑦)  tries to predict the noise 𝜖 =
2"-9:"2#
9!-:"

 [21], the predicted clean data can be derived from 𝑥j. =
2"-9!-:"4$(2",%,,)

9:"
. To measure the similarity between the clean 

predicted data 𝑥j. and original data 𝑥., one intuitive approach is to 
use the reconstruction loss. However, directly applying the 
reconstruction loss to each dimension of the data is inappropriate 
for HDRF data since it is inherently noisy. Perfectly reconstructing 
the original data can inadvertently emphasize and amplify the 
noise, hindering the model’s ability to learn meaningful features 
and patterns. Based on these considerations, HDRF-CD 
minimizes the L1 norm between !

$
∑ 𝑥j.,/$
/0!  and !

$
∑ 𝑥.,=$
/0! , 

where 𝑀  is the packet-level feature dimension. Finally, the 

training objective is given by  

min
1
l

𝔼2#,4,% ^𝜔(𝑡)`|𝜖1(𝑥% , 𝑡, 𝑦) − 𝜖|`5
5a

											+ n
1
𝑀o 𝑥j.,/

$

/0!
−
1
𝑀o 𝑥.,=

$

/0!
n
p . (8) 

C. Sample Selection Strategy 
In this section, a feature selection strategy for HDRF is 
proposed, which has not been extensively explored in 
previous fingerprint-based IPS research. While research in 
other areas has attempted to create additional discriminators 
[35-37] for sample selection, this often complicates the 
training and sampling processes for HDRF features. This 
paper proposes a strategy specifically designed for HDRF 
fingerprints, utilizing the Mahalanobis distance and PCA-
based Q-statistic measure, based on the fixed meaning of 
each dimension of HDRF fingerprints. 

Since each dimension of the packet-level feature has a fixed 
meaning, distance-based metrics can be directly used to 
measure similarity. Furthermore, this research posits that 

samples that deviate far from the training set are less likely 
to represent true data. This point has also been corroborated 
by the previous research [35-37]. Therefore, this research 
employs PCA Q-statistic, also known as the Squared 
Prediction Error (SPE), on the residual subspace to filter out 
a subset of samples based on their SPE values. A high SPE 
value for a new sample indicates a substantial deviation from 
the normal patterns captured in the training data. Besides, 
the computational complexity of the selection process is 
influenced by the size of the training dataset, generated 
sample candidates, and feature dimension. PCA enhances the 
selection effectiveness by reducing the feature dimension, 
alleviating the computational burden while still capturing 
the essential characteristics.  

The proposed selection strategy is implemented on the 
packet-level features. Each HDRF fingerprint consists of 

 
Fig. 2. Histogram of the mean values of Wi-Fi CSI data with a batch size of 
512. The X-axis represents the mean values of packet-level features scaled to 
a range of [-1, 1] across all dimensions. The Y-axis represents the count of 
data points. 
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packets sampled under all conditions. One HDRF fingerprint 
is included in the synthesized dataset only when all packet-
level features are selected. The overall process is summarized 
in Algorithm 1. Firstly, a PCA model is fitted with a 
predefined number of components using the training 
features and is applied to both the training features and the 
generated packet-level sample candidates. Then, Algorithm 1 
calculates the SPE on the data residual subspace. Next, the 
covariance matrix is calculated using the projected training 
features. Finally, the minimum Mahalanobis distance 
between each test sample and the training features is 
computed. By utilizing the proposed sample selection 
strategy, HDRF-CD eliminates the need to develop 
additional discriminators, thereby streamlining the overall 
processes. Furthermore, the entire selection process can also 
be implemented on GPUs with negligible additional 
computational time. 

Algorithm 1 Sample selection strategy using 
Mahalanobis distance and PCA Q-statistics 
Objective: Select samples from the generated sample set that 
are sufficiently similar to the training dataset with the 
predefined threshold. 
Input: PCA component 𝑲 , training features 𝒑 =
{𝒑𝟏, … , 𝒑𝑵} , sample features 𝒔 = {𝒔𝟏, … , 𝒔𝑴} , selection 
threshold 𝑹,	SPE ratio 𝝈% 
#1 Calculate the covariance matrix 𝑪 of 𝒑. 
#2 Principal Components Selection: chosen the 𝑲	principal 
components (eigenvectors) 𝑽 = (𝒗𝟏, … , 𝒗𝑲)	 obtained by 
singular value decomposition on the covariance matrix 𝑪. 
#3 Obtain the projected train data 𝒑z and samples 𝒔j. 
#4 Calculate the SPE	𝒔j𝑻(𝑰 − 	𝑽𝑽𝑻)𝒔j and the samples with 
the top 𝝈% smallest SPEs are retained. 
#5 Calculate the covariance matrix 𝑴 of 𝒑z. 
#6 Create Selected_Sample_List = []. 
#7 For 𝒔Cz  in 𝒔j	do. 
            Distance_list=[] 
            For 𝒑Dz  in 𝒑z	do 

                  Add 𝒅𝒊 = ~/𝒑Dz 	− 𝒔𝒋1
𝑻𝑴/𝒑Dz 	− 𝒔𝒋1  

                  to Distance_list 
            If Min(Distance_list)< 𝑹 do 
                  Add 𝒔𝒋 to Selected_Sample_List 
Output: Selected_Sample_List 

D. Adaptive Learning Process for Positioning Model 
This paper proposes employing the model adaptation strategy 
[38, 39], which leverages the model obtained from training 
with moderate condition domains in hard condition 
domains. For fingerprint-based indoor positioning problems, 
the concept of domain adaptation can be elucidated as 
follows: Considering the original training dataset, in each 
grid point, the HDRF fingerprints of the dataset are scattered 
around the center of the grid point, covering only a partial 
vicinity due to limited data availability. Therefore, this paper 

defines the source domain as the partial location vicinity. 
Then, the target domain, which corresponds to the full 
vicinity regions of all grid points, is also defined. Locations in 
the target domain, while not in the source domain, can 
correspond to the unseen HDRF fingerprints in the test 
dataset. The aim is to develop a positioning model capable of 
recognizing the fingerprints from the source domain while 
also being generalizable to the target domain. 

The source domain is denoted as 𝑆  (partial location 
vicinity) and the target domain (full location vicinity) is 
denoted as 𝑇 . This research focuses on the single-stage 
adaptation method, and the positioning model is adapted 
from the source domain to the target domain by leveraging 
the original training dataset and the synthesized dataset. 

After training on the dataset 𝐷%'(#), the learned positioning 
model is further adapted to the target domain by learning 
from both the synthetic HDRF dataset 𝐷+,) and the original 
dataset 𝐷%'(#) . To ensure a balanced influence of both 
datasets in the training process, a hyperparameter 𝜆  is 
introduced to the loss function to control the weighting 
assigned to each data point.  

𝐿𝑜𝑠𝑠 =o 𝐿/𝑦* , 𝑦*G1
""%&'(

*0!
+ 𝜆o 𝐿/𝑦* , 𝑦*G1

")*(

*0!
. (9) 

The cross-entropy loss 𝐿(. )  is applied to evaluate the 
difference between the predicted outputs and ground truth 
labels. 

V. NUMERICAL EXPERIMENTS 
This section presents experimental evaluations. First, 
subsection A provides details on benchmark indoor 
positioning fingerprint datasets, baseline methods, model 
implementations, and evaluation metrics. Second, in 
subsection B, a qualitative and quantitative assessment of the 
generated data is conducted, demonstrating the ability of 
HDRF-CD to synthesize high-quality data. Finally, 
subsection C investigates enhancing the positioning model’s 
performance by using both the generated data and the 
original training dataset. All experiments were performed on 
DGX A100 GPUs with 40 GB memory. 

A. Experiment Setup 
1) Datasets: This paper conducts performance evaluations 

using two HDRF datasets: (1) channels_July16 Wi-Fi CSI 
dataset; and (2) BLE 5.1 AoA location vicinity dataset. The 
first dataset is from [40] and consists of an 8 m x 5 m 
environment setup, with three anchors equipped with four 
antennas each. Following the processing approach of [40], 
the CSI obtained from each antenna was represented by a 
vector with a size of 234, which is the number of sub-
frequencies [2]. As a result, the shape of each fingerprint is 3 
x 4 x 234. Then, the data was scaled to fit within the range of 
[-1, 1]. In the collected dataset, the label information 
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associated with each fingerprint was represented by 
continuous 2D coordinates. Ten grid points were randomly 
selected, each with a radius of 0.5 m, and a separate class was 
assigned to each grid point. The grid points are shown in Fig. 
3 (a). In total, the dataset comprises 9,116 fingerprints and 
78,744 packets for all grid points.  

The second dataset was constructed by the authors’ team 
for this study. The data were collected in a 2.5 m x 1.5 m 
rectangular laboratory area in Building 19W at the Hong 
Kong Science Park, depicted in Fig. 3 (b). A grid was laid 
down consisting of 20 (5*4) points, with a grid spacing of 50 
cm. The coordinates of each grid point were measured in 
centimeters, following a coordinate system with the bottom 
left as the origin. For data collection, the Minew BLE 5.1 AoA 
G2 system was used, employing four anchors as receivers, 
and the E5 Beacons tag as the transmitter. The anchors were 
positioned at the corners, facing the ground at a height of 2.8 
m. During the data collection process, the BLE tag was placed 
on a robot that moved around, slightly deviating from the 
exact grid points. The tag transmitted BLE packets on three 
broadcasting channels. Each fingerprint involves one BLE 
packet from each anchor. Applying the I/Q sample 
processing method from prior studies [7, 41], a 32-length 

feature vector ranging within [-1, 1] is derived within every 
BLE packet based on I/Q samples among all antennas. 
Consequently, each fingerprint takes the form of 4 x 32. In 
total, the dataset comprises 8,509 fingerprints and 32,376 
packets for all grid points. The BLE dataset will be made 
publicly available. Example samples of two datasets are 
shown in the supplementary file. 

Although the HDRF datasets are collected continuously 
over time, each packet collected is independent of the others 
and can be considered temporally independent, not relying 
on previous or subsequent packets. Previous research has 
demonstrated the temporal stability of HDRF features [42, 
43]. Therefore, this work adopted 70% training, 10% 
validation, and 20% testing random split for both datasets, 
which is commonly adopted in previous research [44]. To 
ensure the reliability of the results while considering 
computational resources, three random splits of the datasets 
were conducted to create 3-fold cross-validation datasets. 

2) Baseline Methods and Model Implementation: The 
proposed HDRF fingerprint generation framework is 
compared with the following methods: VAE-based 
generative model from Chen et al. [1]; Deep generative 
models from Alhomayani et al. [3]; Amplitude-Feature Deep 
Convolutional Generative Adversarial Network (AF-
DCGAN) model from Li et al. [2]. In [2], the authors modified 
the last sigmoid layer of the discriminator in the DCGAN 
model, replacing it with a normalization layer. They also 
used the RMSProp optimization algorithm instead of Adam 
during the model training process.  

The timestep number 𝑇 was set to 1000 to implement the 
developed CDM. Such a number was widely adopted in 
previous works [21, 45]. It is large enough to address the 
truncation error, which is introduced by the discretization, 
and scales super linearly to the step size !

8
 [46]. This work 

employed a linear discrete variance schedule during the 
forward process, and the variance gradually increased from 
𝛽=8 x 10-H to 0.012. Similar to [21], the U-Net backbone was 
adopted for the model architecture [47] and three feature 
map resolutions for both datasets were used (from 8 x 8 to 2 
x 2 for BLE datasets and from 16 x 16 to 4 x 4 for CSI datasets, 
respectively). The final network has 15 convolutional 
residual blocks, 10 self-attention blocks, and four 
convolutional layers. Parameters are shared across time steps. 
With batch size 1000, the developed CDM was trained on the 
Wi-Fi CSI dataset for 16K steps and the BLE 5.1 dataset for 
54K steps. For both datasets, the generation was initiated 
from the time step of 600 using the noisy HDRF fingerprints 
to preserve spatial correlations. Then, the sample selection 
process was applied to each packet-level feature of a 
fingerprint separately. Ultimately, those fingerprints with 
every packet-level feature satisfying the selection threshold 

 
 

(a)  
 

 
 

(b)  
 
Fig. 3. The 2D top view of data collection environments. (a) Wi-Fi CSI dataset. 
The black traces are formed by data points. The clusters of different colors 
represent different grid points. The unit of the axis is meters. (b) BLE 5.1 dataset. 
Each black point representing a grid point with 0.5 grid spacing. 
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were chosen. The SPE ratio 𝜎 was set to 95%. The selection 
threshold 𝑅  was determined as the 70th percentile after 
sorting all samples in ascending order. The learning rate was 
set to 0.0003 for all generative models.  

The positioning models developed for both datasets utilize 
a sequential structure comprising two main components: a 
feature extraction module and a classification module. The 
detailed structures are shown in Fig. 4. The feature extraction 
module consists of two three-layer groups. Each group starts 
with a linear layer, followed by a sigmoid activation 
function, batch normalization, and a dropout layer with a 
dropout rate of 0.3. The feature dimensionality gradually 
decreases in each group.  

Similarly, each classification module also consists of two 
three-layer groups. Finally, a linear layer produces an output 
vector for classification. In the training phase, if there are no 
improvements when verifying the model with the validation 
set after 200 epochs, the model’s training will be terminated. 
The balancing parameter λ in the training of the positioning 
models was set to 0.5 for both datasets. The learning rate in 
the initial training stage was set to 0.0003 for both 
positioning models. In the adaption stage, the learning rate 
was set to 0.00005 for the BLE dataset and 0.0003 for the CSI 
dataset. 

3) Performance Metric: To quantitively evaluate the 
quality of synthetic HDRF datasets, this paper introduces the 
Diversity Fidelity Integrative Score (DFIS) as follows: 

𝐷𝐹𝐼𝑆 =
𝑀𝐸𝐷 + 𝑘 × 𝑉𝐸𝐷

𝑀𝑀𝐸𝐷 , (10) 

where  

𝑀𝐸𝐷 =
1

𝐺 ∗ 𝐴o o 𝐸[𝐷I,(]
J

(0!

K

I0!
; 

𝑉𝐸𝐷 = !
K∗J

∑ ∑ 𝐸#,*∈")&+,-.
/,& ^`𝑑#,* − 𝐸[𝐷I,(]`5aJ

(0!
K
I0! ; 

𝑀𝑀𝐸𝐷 =
1

𝐺 ∗ 𝐴o o 𝐸#∈"".)"/,& �min
K`𝑥* − 𝑥#`5N

, 	∀𝑗 ∈ 𝑁+(NOPQ
I,( �

J

(0!

K

I0!
. 

𝑘  is a weight parameter and can be simply set as 1. The 
numerator consists of two terms. The first term 𝑀𝐸𝐷 
involves calculating the Euclidean distances 𝑑#,*  between 
every two generated packet-level samples in the sample set 
𝑁+(NOPQ
I,(  belonging to point 𝑔  and anchor 𝑎 , resulting in a 

distance matrix 𝐷I,( = .𝑑#,* 	∀	𝑖, 𝑗 ∈ 𝑁+(NOPQ
I,( 7. In contrast to 

image data evaluation, which necessitates the development 
of additional feature extraction models [48], HDRF features 
have fixed meanings for each dimension, and the distances 
among samples can be easily calculated. 𝐸[·]  means the 
average value calculation and 𝐸[𝐷I,(] denotes the mean of 
the distance matrix 𝐷I,(. Then, 𝑀𝐸𝐷 calculates the average 
value among all grid points and anchors. 𝐺 and 𝐴 denote the 
numbers of grid points and anchors respectively. The second 
term 𝑉𝐸𝐷  calculates the sample distance variance in the 
same manner. The denominator term 𝑀𝑀𝐸𝐷  gives the 

similarity between synthetic samples and the data in the test 
set. In the equation of MMED,  𝑁%Q+%

I,(  represents the data set 
of grid point 𝑔  and anchor 𝑎  in the test set. 𝑀𝑀𝐸𝐷  is 
obtained by first computing the minimum Euclidean 
distance between each test set instance and its nearest 
neighbor in the sample set. Then, the average distance across 
all instances for grid point 𝑔  and anchor 𝑎  is evaluated. 
Finally, the mean values across all anchors and grid points 
are calculated to obtain 𝑀𝑀𝐸𝐷 . As shown in (10), the 
numerator of DFIS measures the diversity of synthetic 
samples, while the denominator represents the sample 
fidelity. A higher DFIS value (larger 𝑀𝐸𝐷 and 𝑉𝐸𝐷, smaller 
MMED) indicates better quality of the generated data. 

Remark 2: Due to the less sensitive spatial variations of CSI 
amplitudes, the features extracted from different antennas of 
the same anchor are similar. This work compared the CSI 
data by pooling all the antennas’ samples together for 

 
 

Fig. 5. CSI amplitude feature generated by the CDM model. 
 

 
Fig. 6. BLE AoA feature generated by the CDM model. 
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evaluation. Therefore, in the following experiments, both 
samples of the CSI dataset and BLE dataset are considered 
with different grid point and anchor conditions. 

 Finally, to evaluate the positioning performance, this 
paper utilizes the widely adopted metric Root Mean Squared 
Error (RMSE), 

𝑅𝑀𝑆𝐸 = �
1
𝑁o

(𝑥# − 𝑥j#)5 + (𝑦# − 𝑦j#)5
"

#0!

, (11) 

where (𝑥j# , 𝑦j#)  and (𝑥# , 𝑦#)  are the estimated and ground 
truth coordinates, respectively; 𝑁  is the size of the test 
dataset. The grid point with the highest probability is 
selected from the probability representation as the final 
location result. 

B. Assessment of Synthetic Data 
This subsection first presents a qualitative demonstration of 
the generated packet-level features, showcasing how HDRF-
CD effectively captures the patterns of radio frequency data. 
Then, the quantitative assessment is conducted using the 
abovementioned metrics and comparing the results with 
those given by other generative methods.  

1) Quality Performance: The generated data for the two 
datasets obtained from HDRF-CD are showcased in Fig. 5 
and Fig. 6 respectively. On the left-hand side of the figures, 
each subplot shows a selected instance from the test set (blue 
line) and its most similar sample from the training set (orange 
line). On the right-hand side, each subplot displays the same 
instance from the test set (blue line) and its associated most 
similar sample from the generated data (orange line). It can 
be observed that the developed CDM has effectively captured 
the trends of data variation and generated high-quality data.  

2) Quantitative Sample Evaluation with Performance 
Metric: This subsection quantitively evaluates the generated 
samples from all methods using the DFIS metric. For each 
method under each cross-validation dataset, we 
independently sample five times to obtain the statistical DFIS 
performance. Each time, the number of samples equivalent 
to the size of the training data sets is generated. The mean 
DFIS results are presented in Table II. Method "HDRF-
CD_NC" represents the DFIS performance of the synthetic 
samples generated from CDM without using the selection 
strategy. Each column 'Cross' means the results obtained 
under different cross-validation datasets. 

It can be observed from the table that HDRF-CD 
demonstrates superior performance on both datasets. In 
contrast, the best previous method AF-DCGAN achieved 
approximately 2.6251 DFIS on the Wi-Fi CSI dataset but only 
achieved 1.0473 DFIS when applied to the BLE AoA dataset. 
Besides, the samples of HDRF-CD consistently outperform 
other methods with the highest DFIS, indicating higher 

sample diversity while maintaining similarity to real HDRF 
fingerprints. For instance, for the BLE AoA dataset, HDRF-
CD achieves DFIS of 3.2623, 3.3139, and 3.2773 for Cross=0, 
Cross=1, and Cross=2, respectively. In contrast, the AF-
DCGAN method obtains 1.0473, 1.1243, and 1.0734. The 
superior sample diversity exhibited by CDM can be 
attributed to its ability to capture intricate details of packet-
level features and condition the sampling process with packet 
information to generate a diverse set of outputs. 

TABLE III 
MEAN RMSE PERFORMANCE ON THE BLE DATASET WITH 

DIFFERENT AMOUNT OF TRAINING AND SYNTHETIC DATA 
 

Method 
and data amount 

RMSE performance (m) 

Cross 0 Cross 1 Cross 2 

Baseline 0.5 0.1317 0.1237 0.1514 
Baseline 1 0.0921 0.0909 0.1139 

AF-DCGAN [2] 1 (0.5 gen) 0.1277 0.1229 0.1485 
Chen et al. [1] 1 (0.5 gen) 0.1271 0.125 0.1428 

Alhomayani et al. [3] 1 (0.5 gen) 0.1215 0.1154 0.1373 
Noise 1(0.5 gen) 0.1125 0.1108 0.134 

HDRF-CD 1(0.5 gen) 0.1011 0.0977 0.1214 
AF-DCGAN [2] 1.5 (0.5 gen) 0.0913 0.0875 0.1142 
Chen et al. [1] 1.5 (0.5 gen) 0.0952 0.0958 0.1153 

Alhomayani et al. [3] 1.5 (0.5 gen) 0.0872 0.0912 0.1118 
Noise 1.5 (0.5 gen) 0.0836 0.0828 0.1017 

HDRF-CD 1.5 (0.5 gen) 0.0742 0.0753 0.0979 
 

TABLE IV 
MEAN RMSE PERFORMANCE ON THE CSI DATASET WITH 

DIFFERENT AMOUNT OF TRAINING AND SYNTHETIC DATA 
 

Method 
and data amount 

RMSE performance (m) 

Cross 0 Cross 1 Cross 2 

Baseline 0.5 1.2531 1.2093 1.3586 
Baseline 1 0.874 0.7913 0.8514 

AF-DCGAN [2] 1 (0.5 gen) 1.1618 1.1546 1.2127 
Chen et al. [1] 1 (0.5 gen) 1.2415 1.242 1.3381 

Alhomayani et al. [3] 1 (0.5 gen) 1.2162 1.2255 1.3515 
Noise 1(0.5 gen) 1.2118 1.1976 1.293 

HDRF-CD 1(0.5 gen) 1.0834 1.0673 1.1423 
AF-DCGAN [2] 1.5 (0.5 gen) 0.8252 0.7431 0.8131 
Chen et al. [1] 1.5 (0.5 gen) 0.8943 0.8156 0.8779 

Alhomayani et al. [3] 1.5 (0.5 gen) 0.8656 0.7876 0.8375 
Noise 1.5 (0.5 gen) 0.8503 0.7645 0.8642 

HDRF-CD 1.5 (0.5 gen) 0.7381 0.7192 0.7457 
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Besides, by comparing the performance of “HDRF-CD_NC” 
and “HDRF-CD”, the proposed sample selection strategy can 
achieve higher DFIS. For example, for the Wi-Fi CSI dataset, 
the DFIS of HDRF-CD is higher by around 12% compared to 
HDRF-CD_NC, demonstrating the effectiveness of the 
developed selection strategy in improving the sample quality. 

C. Positioning Performance Improvements 
To further evaluate the synthetic HDRF fingerprints on 
downstream positioning tasks, the positioning models 
introduced in subsection V.A.2 were trained with the 
synthetic fingerprints and the adaption strategy proposed in 
subsection IV.D. We also compared the performance of a 
commonly used fingerprint augmentation technique, which 
directly adds Gaussian noise to the datasets. Given that the 
fingerprint values in both datasets are scaled to the same 
range of [-1, 1], in the following experiments, noise of zero 
mean and 0.01 standard deviation is applied. The positioning 
model was independently trained 5 times for each method 
under each cross-validation dataset to obtain the statistical 
performance. The mean RMSE results are summarized in 
Table III and Table IV. In the column "Method and data 
amount", each row contains numbers representing the 
amount of training data, which are multiples of the original 
training set size. "Baseline 0.5" and "Baseline 1" show the 
positioning performance using half of the original training 
dataset and the entire dataset without synthesized 
fingerprints. Other rows show the performance when using 
the synthesized fingerprints. The number before the 
parentheses indicates the total data used, while the number 
in the parentheses indicates the synthesized fingerprints in 
the total dataset. For example, "1 (0.5 gen)" means that the 
training data amount is the same as the original training 
dataset, and half of them is the synthetic data. "1.5 (0.5 gen)" 
represents the use of the full training dataset alongside 
synthetic HDRF fingerprints, which is half the size of the 
original training dataset. In these cases, the positioning 
model is first trained using only the original training dataset, 
followed by training with both the original data and the 
synthesized data. The results show that: 

1) The synthetic HDRF fingerprints from HDRF-CD could 
consistently improve the RMSE performance on both 
datasets. In the BLE cross 0 dataset, the "HDRF-CD 1 (0.5 
gen)" achieved a 23.2% reduction in positioning error (from 
0.1317 to 0.1011) compared to the "Baseline 0.5". Similarly, 
in the CSI cross 2 dataset, HDRF-CD 1(0.5 gen) showed a 15.9% 
reduction in positioning error compared to the "Baseline 0.5". 
In contrast, the generative model AFDCGAN improved 
performance on the CSI dataset (for example, AF-DCGAN 1 
(0.5 gen) achieved around 7.5% reduction compared to the 
"Baseline 0.5" among three cross datasets) but showed limited 
improvements on the BLE dataset (around 1.9% reduction in 
the same case). Additionally, the "Noise" data augmentation 
approach achieved performance improvement on the BLE 
dataset but had less impact on the CSI dataset. The results 
demonstrate the ability of HDRF-CD to generate different 
types of HDRF fingerprints. 

2) HDRF-CD learned the HDRF fingerprint patterns in the 
vicinity of locations and the synthesized fingerprints achieved 
the highest performance improvement in generalizing the 
model to unseen data. By comparing the case of “Baseline 1” 
with HDRF-CD 1.5 (0.5 gen), the utilization of additional 
synthetic HDRF fingerprints resulted in further 
improvements of around 16.9% and 12.4% on the three BLE 
cross datasets and CSI cross datasets, respectively.  

3) The improvement from using the synthetic HDRF 
fingerprints of HDRF-CD (for example, for the BLE cross 0 
dataset, compared to the case of Baseline 0.5, “HDRF-CD 1 
(0.5 gen)” yields an improvement of 23.2%) was less than the 
improvement achieved using the same amount of actual data 
(“Baseline 1” yields an improvement of 30%). The difference 
can be interpreted that while sampling from a noisy 
fingerprint of intermediate timesteps maintains spatial 
correlation at the fingerprint level, it concurrently constrains 
feature diversity. Additionally, at the packet feature level, 
despite employing sample selection methods based on 
similarity to the training set and using distance-based criteria, 
the verification of data authenticity remained uncertain. 
Future research can focus on addressing the presence of 
adversarial samples within the synthetic HDRF fingerprint 
datasets.  

VI. CONCLUSIONS 
This research addresses the fingerprint generation challenges in 
indoor positioning systems to enhance positioning 
performance. The key contributions involve generative model 
training, fingerprint sampling, and fingerprint selection. By 
decomposing fingerprints into packet-level features, the 
developed diffusion generative model learns the conditional 
packet-level data distribution leveraging the readily accessible 
High-Dimensional Radio Frequency (HDRF) packet 
information, such as grid points, antennas, anchors, and 

TABLE II 
MEAN DFIS PERFORMANCE COMPARISONS ON TWO HDRF 

DATASETS 
 

Dataset Method DFIS 
Cross=0 Cross=1 Cross=2 

BLE AoA 

Chen et al. [1] 0.4301 0.4341 0.4242 
Alhomayani et al. [3] 0.3441 0.3286 0.3251 

AF-DCGAN [2] 1.0473 1.1243 1.0734 
HDRF-CD_NC 2.9799 2.9527 2.9159 

HDRF-CD 3.2623 3.3139 3.2773 

Wi-Fi CSI 

Chen et al.  [1] 0.7234 0.7231 0.7016 
Alhomayani et al. [3] 0.4701 0.4093 0.4041 

AF-DCGAN [2] 2.6251 2.6555 2.5499 
HDRF-CD_NC 3.1447 3.2309 3.2126 

HDRF-CD 3.4636 3.6626 3.6444 
 



12 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
frequency channels.  Samples from the noisy fingerprints are 
then taken at intermediate time steps to preserve the spatial 
correlation of features within each HDRF fingerprint. To 
address the disparity between the packet-level distribution and 
the noise prior distribution employed in training, a scale 
regularization on the predicted clean data is introduced. To 
incorporate the synthetic HDRF fingerprints in downstream 
positioning tasks, an adaptive learning process in which the 
learned positioning model using the original training dataset is 
further retrained by learning from both the synthetic HDRF 
dataset and the training dataset.  

The approach was assessed against the well-studied 
numerical experiments of NAME THEM HERE. Using a 
Diversity Fidelity Integrative Score (DFIS) that quantitatively 
assesses the quality of the synthesized HDRF samples, the 
results show that the samples from HDRF-CD exhibit the 
highest DFIS, indicating superior data diversity among the 
generated samples while a higher resemblance to the real data. 
In particular, with the BLE 5.1 and Wi-Fi CSI datasets, HDRF-
CD achieves an average DFIS of 3.3 and 3.6 respectively, 
surpassing the best previous generation model (DFIS of 1.1 and 
2.6 respectively) for HDRF fingerprints.  

Applying the synthetic HDRF fingerprints to downstream 
positioning tasks further validates the effectiveness of HDRF-
CD. The experimental results show that compared to using only 
the original training dataset, incorporating the synthetic HDRF 
fingerprints from HDRF-CD into the training of downstream 
positioning models can further reduce the positioning error by 
around 17% and 12% on the BLE and CSI datasets, 
respectively. 

Future research can extend the HDRF-CD framework to 
generate data for unseen grid points. The spatial coordinate 
relationships of grid points can be encoded as generation 
conditions to enhance the generalization capability to unseen 
areas. 
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