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Abstract
The heterogeneity of medical images poses significant challenges to
accurate disease diagnosis. To tackle this issue, the impact of such
heterogeneity on the causal relationship between image features
and diagnostic labels should be incorporated into model design,
which however remains underexplored. In this paper, we propose a
mixed prototype correction for causal inference (MPCCI) method,
aimed at mitigating the impact of unseen confounding factors on
the causal relationships between medical images and disease la-
bels, so as to enhance the diagnostic accuracy of deep learning
models. The MPCCI comprises a causal inference component based
on front-door adjustment and an adaptive training strategy. The
causal inference component employs a multi-view feature extrac-
tion (MVFE) module to establish mediators, and a mixed prototype
correction (MPC) module to execute causal interventions. Moreover,
the adaptive training strategy incorporates both information purity
and maturity metrics to maintain stable model training. Experi-
mental evaluations on four medical image datasets, encompassing
CT and ultrasound modalities, demonstrate the superior diagnostic
accuracy and reliability of the proposed MPCCI. The code will be
available at https://github.com/Yajie-Zhang/MPCCI.
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1 Introduction
Medical image classification provides essential support to the clini-
cians and other medical professionals in diagnosing and treating
patients by analyzing lesion features of the human body within
medical images [11]. With wide applications in the real world, this
problem has been extensively researched. In the past few decades,
especially driven by the application of deep learning technologies,
a significant body of methods have been developed, which can
generally be categorized into detection-based approaches [10, 32],
segmentation-based approaches [28, 44, 45] and feature extraction
approaches [22, 23, 29, 30]. Despite the remarkable advancements
in previous studies, classifying images in the medical domain re-
mains much more challenging than it is for natural images. This is
primarily attributed to the inherently complex nature of the medi-
cal images. Compared with the natural images, the medical images
often contain more noise and artifacts, due to the limitations of cur-
rent imaging technologies, such as weak X-ray penetration of the
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Image Shape  Direction Margin Edge Internal Echo Back Echo
① Irregular Horizontal Unclear Incomplete Hyperechoic Mixed
② Oval Vertical Clear Complete Hypoechoic Decayed
③ Round Vertical  Clear Incomplete Hyperechoic Boosted

①                                                    ②                                                   ③

Figure 1: Illustration of different manifestations for the same
type of lesion in breast cancer ultrasound images. Lesion
attributes are also provided in the table below images.

equipment, presence of gas in the body, and motion artifacts [12].
In addition to these two factors that have received more attention
in previous research, lesion heterogeneity is also a crucial challenge
to the classifiers, which however is much less exploited.

Lesion heterogeneity in themedical imaging refers to the variabil-
ity in features and appearances of the same disease, encompassing
variations in terms of shape, size, density, intensity, texture, and
other lesion characteristics. An exemplar illustration is given in
Fig. 1. As shown in the figure, breast cancer may exhibit pronounced
heterogeneity in ultrasound images, with lesions varying signifi-
cantly in appearance. For example, the lesion shapes may be oval,
round, or irregular, and the complexity is further exacerbated when
combined with other varied attributes as shown in the table below
the images. The impact of heterogeneity on model performance
has been acknowledged in previous studies [27, 49], and there have
been some attempts to alleviate its negative effects through vari-
ance pooling structures [5] and data augmentation [52]. However,
these methods often yield suboptimal outcomes due to the lack of
a thorough examination on the root causes of heterogeneity.

Lesion heterogeneity is caused by various factors, such as the di-
verse origins of cancer cells, variable gene expressions, and patient-
specific susceptibilities [3]. These factors have significant influences
upon the prediction of a diagnostic label from the medical image.
For example, the patients with genetic predispositions are more
susceptible to the illness [3]. Hence in this work, we propose to
model these factors by leveraging causal inference [37] for enhanced
medical image classification. To enunciate our idea, we establish a
structural causal model for the medical image classification task, as
shown in Fig. 2. In this figure, the underlying causes of heterogene-
ity, denoted as C, involve various factors as above mentioned; the
medical images X and the diagnostic outcomes Y are both impacted
by the heterogeneity cause factors C. In formulation, there exist
X→ Y, denoting the causal path that image X contains the lesion
representations related to the given label Y, and X← C→ Y repre-
senting the backdoor path that X and Y exhibit spurious correlation
through C. That is, the factors in C affect the characterization of
medical imaging (X← C); in addition, these factors influence the
probability of a patient contracting a particular disease (C→ Y).
Following the Pearl’s causal inference theory [37], when we try to
find the causal effect of X on Y, we want the nodes we condition on
to block any “backdoor” path in which one end has an arrow to X,

X Y

C

0 1
N...

Figure 2: The structural causal model for a disease with het-
erogeneity. C represents the cause of heterogeneity, X denotes
medical images, and Y represents diagnostic results.

because such paths may make X and Y dependent, but are obviously
not transmitting causal influences from X; and if we do not block
them, they will confound the effect that X has on Y. Therefore, we
should adjust the confounders “C” to block the backdoor path for
better inference from X to Y. However, given the inherent difficulty
or even impossibility of quantifying these confounders, their ad-
verse impact upon the image-based diagnostic procedures remains
elusive and unaddressed.

In this work, we propose a novel approach for enhanced medical
image classification, named mixed prototype correction for causal
inference (MPCCI), which mitigates the influences of the confound-
ing factors on the medical diagnosis by exploiting front-door adjust-
ment (FDA) [37]. The FDA introduces a mediator variable, denoted
as A in Fig. 3, between the causal path of variables X and Y, to adjust
the causal pathway between them, which well addresses the immea-
surability of the elusive confounding factors. To implement MPCCI,
we first design a multi-view feature extraction (MVFE) module with
spatial-channel attention that allows these multi-view features to
serve as mediators in FDA to link the causal effect from images to
labels. We also develop a mixed prototype correction (MPC) module
that exchanges some features of the multi-view features and the
multi-view prototypes to effectively apply causal intervention on
the mediators. The multi-view prototypes contain meta-knowledge
of various disease categories, and the causal intervention mecha-
nism that exchanges features with them can correct the spurious
association between X and Y formed by the confounders. To im-
prove the smoothing of the feature exchange process, an adaptive
training strategy is presented, comprising two key components:
information purity (IP) and maturity (MT). The IP module is used
to measure the proportion of noise in the feature exchange process,
and MT is used to measure the stability of the model to noise in
different training stages.

Experiments on four medical datasets verify the effectiveness
of the proposed MPCCI on diagnosing covid, breast cancer, lymph
node metastasis, and thyroid. In summary, the contributions of this
work are as followings:
• This work is the first attempt to conduct cause-effect analysis
to alleviate the immeasurable condounders for enhancing
medical image classification. The proposed method solves
the problem by applying an FDA strategy, treating the multi-
view features as mediators to infer the causalities from im-
ages to labels.
• The proposed MPCCI includes two key modules (MVFE and
MPC) to achieve FDA step by step, which effectively miti-
gates the adverse effects of the confounders upon medical
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diagnosis. An adaptive training strategy, consisting of IP and
MT modules, is introduced to mitigate the noise effect in the
MPC module.
• The proposed MPCCI exhibits promising performance across
four distinct disease diagnosis tasks, yielding dependable
interpretability results.

2 Related Work
2.1 Medical Image Classification
Currently, medical image classification, a task aiming to identify
disease categories from unseen medical images, is generally tackled
by training deep learning models over annotated training datasets.
The model performance is mainly dependent on its architecture
design as well as the scale of the training data. Some methods
adopt advanced architectures, such as AlexNet [26], ResNet [20],
VGG [47], and ViT [32] for good classification performance. In re-
cent year, some works propose to extract and integrate multi-scale
information to improve classification accuracy, utilizing feature
pyramid networks [45], dilated convolutions [14], and attention
mechanisms [19, 30], etc. There are also models fusing local and
global features [8, 31] to achieve lifted efficacy in medical image
classification. These methods are all based on the assumptions of
sufficient high-quality training data, which are not always true.
In addition to these model-centric approaches, some other meth-
ods broaden the diversity and volume of training data to enhance
model generalization by utilizing GANs [4], variational autoen-
coders [6], MixUp [13], and diffusion models [25]. These data-
centric approaches also demonstrate strong effectiveness on med-
ical image classification tasks. However, either the model-centric
models, or the data-centric ones, fall short on addressing disease
heterogeneity and its related confounding factors, which hampers
their performance.

2.2 Causal Inference
The goal of causal inference is to unravel the complex causal rela-
tionships between variables, far beyond the mere correlations [50].
It serves as a powerful tool for understanding the roots and im-
plications of phenomena and thereby supports informed decision-
making and interventions. For its potent analytical power, causal
inference has been applied in various domains, such as medical
image classification [38], domain generalization [36], and medical
image segmentation [7, 34]. In medical image analysis, some meth-
ods [7, 34, 36] treat complex organ co-occurrences and background
phenomena such as pseudo artifacts as observable confounding fac-
tors, and leverage the backdoor adjustment strategy [37] for causal
intervention. Some works [38] harness counterfactual reasoning for
medical image analysis by crafting counterfactual samples to neu-
tralize the effects of observable confounding factors. These causal
inference based methods achieve promising results. Yet, they tend
to focus on observable confounding factors, which constrains their
effectiveness in handling cases with unobservable confounders.
In this work, we propose to utilize the FDA strategy to mitigate
the impact of unmeasured confounders for better medical image
classification performance.

X A Y

C

X A Y

C

(b) (c)

X A Y

C

(a)

Figure 3: (a) A structural causal model for medical image clas-
sification. (b) (c) Two steps of FDA, representing calculations
of 𝑃 (𝐴|𝑑𝑜 (𝑋 )) and 𝑃 (𝑌 |𝑑𝑜 (𝐴)) (red lines). Red fork denotes
the causal intervention from X to A.

3 Cause-Effect Analysis
In this section, we provide a brief analysis of the causal relationships
among the elements in our tasks, namely the input image 𝑋 , multi-
view features𝐴, image label𝑌 , and confounders𝐶 , using a structural
causal model (SCM) illustrated in Fig. 3 (a). We also describe how
FDA is used in this context.

The main causal relationships in Fig. 3 (a) include 𝑋 → 𝐴→ 𝑌 ,
𝐶 → 𝑋 , and 𝐶 → 𝑌 . 1) For 𝑋 → 𝐴→ 𝑌 , the input image 𝑋 is fed
into a deep neural network to extract multi-view features 𝐴, which
are then used to predict the label 𝑌 . 2) For𝐶 → 𝑋 , the confounders
𝐶 like genetics, origins of cancer cells, patient habits, etc. influence
the lesion manifestation 𝑋 . 3) For 𝐶 → 𝑌 , the confounders 𝐶 can
also affect the disease category 𝑌 of a patient. For example, the
patients with genetic predisposition for breast cancer have a higher
risk of malignancy.

Note that there are two paths connecting 𝑋 and 𝑌 : the front-
door path 𝑋 → 𝐴 → 𝑌 and the backdoor path 𝑋 ← 𝐶 → 𝑌 . The
existence of the backdoor path makes it difficult to evaluate the true
causality from 𝑋 to 𝑌 through deep networks. If 𝐶 is measurable,
the backdoor adjustment can be used to eliminate the link of𝐶 ← 𝑋 .
However, sincemost of𝐶 in this work are notmeasurable, we turn to
use front-door adjustment [37] to estimate the causality from𝑋 to𝑌 .
To achieve this, FDA employs a mediator 𝐴 to transmit knowledge
of 𝑋 to 𝑌 through the front-door path, and then evaluates the
causalities from 𝑋 to 𝑌 by combining the causal effects of 𝑋 to
𝐴 and 𝐴 to 𝑌 , i.e., to estimate the probabilities 𝑃 (𝐴|𝑑𝑜 (𝑋 )) and
𝑃 (𝑌 |𝑑𝑜 (𝐴)), respectively. The 𝑑𝑜-operation represents an active
intervention to a cause rather than a passive observation.

The P(A|do(X)) represents the causal relationship between 𝑋
and𝐴, as illustrated in Fig. 3 (b). Since the path of𝑋 ← 𝐶 → 𝑌 ← 𝐴

is blocked by the collider [37], we can write
𝑃 (𝐴|𝑑𝑜 (𝑋 )) = 𝑃 (𝐴 = 𝑎 |𝑋 = 𝑥). (1)

The P(Y|do(A)) (Fig. 3 (c)) pursues the true causality between
𝐴 and 𝑌 without confounders 𝐶 . There are two paths from 𝐴 to
𝑌 : 𝐴 → 𝑌 and the backdoor path 𝐴 ← 𝑋 ← 𝐶 → 𝑌 . Due to the
existence of the backdoor path, we need to cut off the link between
𝐴 and 𝑋 by controlling 𝑋 , and we can write 𝑃 (𝑌 |𝑑𝑜 (𝐴)) as

𝑃 (𝑌 |𝑑𝑜 (𝐴)) =
∑︁
𝑥

𝑃 (𝑌 = 𝑦 |𝐴 = 𝑎,𝑋 = 𝑥) . (2)

Through layer-by-layer causal effect calculation, the causality
from 𝑋 to 𝑌 can be represented as

𝑃 (𝑌 |𝑑𝑜 (𝑋 )) =
∑︁
𝑎

𝑃 (𝑌 = 𝑦 |𝑑𝑜 (𝐴 = 𝑎))𝑃 (𝐴 = 𝑎 |𝑑𝑜 (𝑋 = 𝑥))

=
∑︁
𝑎

𝑃 (𝐴 = 𝑎 |𝑋 = 𝑥)
∑︁
𝑥 ′
𝑃 (𝑌 = 𝑦 |𝐴 = 𝑎,𝑋 = 𝑥 ′)𝑃 (𝑋 = 𝑥 ′),

(3)
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Figure 4: Illustration of the MPCCI framework. MPCCI consists of three main components: the MVFE, MPC, and the adaptive
training strategy. MVFE involves expert networks that use spatial-channel attention to generate multi-view features. MPC is
implemented by fusing mixed prototypes with original multi-view features to simulate

∑
𝑥 ′ 𝑃 (𝑌 |𝐴, 𝑥 ′). In addition, the adaptive

training strategy, consisting of IP and MT, is adopted to improve the smoothing of the feature exchange process.

where 𝑥 ′ is an index of summation in 𝑃 (𝑌 |𝑑𝑜 (𝐴)).

4 Methodology
In this section, we introduce the proposed Mixed Prototype Cor-
rection for Causal Inference (MPCCI) approach in medical image
classification. As shown in Fig. 4, it involves multi-view feature
extraction (MVFE) and mixed prototype correction (MPC) mod-
ules to implement the FDA strategy. Additionally, we present an
adaptive training approach, incorporating the information purity
(IP) and the maturity (MT), to alleviate the noise at MPC. The IP
module quantifies the noise proportion during the feature exchange
process, while MT assesses the model’s robustness to noise across
various training phases.

4.1 Multi-View Feature Extraction
The MVFE module is responsible for generating multi-view fea-
tures 𝐴, which serve as the mediator in Fig. 3 (a) and are used to
implement 𝑃 (𝐴|𝑑𝑜 (𝑋 )) in Eq. (1). First, we input the image into a
convolutional neural network (CNN) such as ResNet18 [18] to ob-
tain feature maps E = 𝑓𝑏 (𝑥) ∈ R𝐷×𝐻×𝑊 , where 𝑓𝑏 is the function
of the CNN, and 𝐷 , 𝐻 ,𝑊 represent the number of channels, height,
and width of E, respectively. To extract multi-view features from the
E, we employ two parallel paths. We apply global average pooling
to E to obtain a global feature vector g ∈ R𝐷 and construct expert
networks [21] with spatial-channel attention following CBAM [43].
Spatial-channel attention adopted in CNN allows for the adaptive
weighting of feature maps across both spatial and channel dimen-
sions. This enables the network to selectively focus on informative
features, enhancing its ability to learn and identify complex visual
patterns. To ensure that each expert network learns different fea-
tures of an image, they are initialized with different parameters.
The formulation of the expert networks can be expressed as

a𝑘 = 𝑓 𝑘𝑎 (E) ∈ R𝐷 , (4)

where 𝑓 𝑘𝑎 represents the k-view feature vector a𝑘 generated by the
k-th function of spatial-channel attention.

After extracting the mediator A, it is crucial to ensure that the
learned multi-view features are distinct across classes. To achieve
this goal, the multi-view features and global feature are concate-
nated and then fed into the classifier (a fully-connected layer is
used in this work) denoted as 𝑓𝑐 , to produce the predicted label y
of the image 𝑥 :

y = 𝑓𝑐 (g,A) = 𝑓𝑐 (g| |a1 | | · · · | |a𝐾 ) ∈ R𝐶 , (5)

where | | represents the concatenation operation, 𝐶 is the number
of categories, and 𝐾 is the number of expert networks. The cross-
entropy loss is used to optimize 𝑓𝑐 :

L𝑜 = −
∑︁

𝑙𝑐𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑦𝑐 )∑𝐶
𝑗=1 𝑒𝑥𝑝 (𝑦 𝑗 )

, (6)

where l ∈ R𝐶 denotes the ground-truth label of 𝑥 . If 𝑥 belongs to
the c-th category, 𝑙𝑐 = 1; otherwise 𝑙𝑐 = 0.

4.2 Mixed Prototype Correction
The MPC module aims to correct the side-effects of confounders
and further explore the causality of 𝐴 on 𝑌 by estimating

𝑃 (𝑌 |𝑑𝑜 (𝐴)) =
∑︁
𝑥 ′
𝑃 (𝑌 |𝐴, 𝑥 ′)𝑃 (𝑥 ′). (7)

However, it is infeasible to collect all possible 𝑥 ′ (lesions that might
appear in reality) with 𝐴 for predicting 𝑌 . Thus we use mixed
multi-view prototypes to approximate 𝑥 ′. Multi-view prototype
learning [48] is an emerging machine learning technique that aims
to learn a set of prototypes across different views to capture the
underlying structure of representative examples for each category.
Specifically, we use the 𝑐-th class-specific average multi-view fea-
tures to approximate the 𝑐-th multi-view prototypes, denoted as
S𝑐 = {s𝑐1, · · · , s

𝑐
𝐾
} ∈ R𝐾×𝐷 . We then generate the mixed multi-view
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prototypes Ŝ, which partially come from the source multi-view pro-
totypes (𝑐-th) and another random counterparts (𝑐′-th), to express
𝑥 ′ as

Ŝ = vS𝑐 + (1 − v)S𝑐
′
, (8)

where v ∈ {0, 1}𝐾 represents the random exchanging index vector
of S𝑐 . Namely, each 𝑣𝑘 represents whether the 𝑘-th prototype in S𝑐

should be exchanged by the 𝑘-th prototype in S𝑐
′ . Since Ŝ captures

lesions that have distinct characteristics in specific view features,
it can serve as a substitute for 𝑥 ′. To predict label 𝑌 , we fuse Ŝ with
A via a fusion module. Cross-attention [30] is a mechanism that
enables neural networks to capture the interdependent relationship
between two heterogeneous features using a learnable similarity
matrix. In this work, we incorporate cross-attention with the fea-
ture mapping function ℎ(·) into the fusion module to explore this
independence. The output is fused multi-view features denoted as
Â:

Â = A + (ℎ(A)ℎ(Ŝ)𝑇 )Ŝ. (9)

We can concatenate Â with global feature vector g to predict label
as ŷ = 𝑓𝑐 (g, Â) using Eq. (5).

4.3 Adaptive Training Strategy
We utilize an adaptive training strategy to maintain stable model
training. Since Ŝ randomly mixes the 𝑐-th and 𝑐′-th multi-view
prototypes, there is a possibility that Â is predicted as the 𝑐′-th
category. In this study, we hypothesize that two factors are related
to this situation: 1) the information purity (IP) in Ŝ, and 2) the
maturity (MT) of the fusion module.

The IP refers to the amount of prototype information from the
source category contained in Ŝ. If Ŝ contains a large amount of
prototype information from other categories, the probability of Â
being predicted as other categories increases. Therefore, we use∑

v
𝐾

and
∑ (1−v)

𝐾
to represent the possibility of Â being predicted

as the 𝑐-th class and 𝑐′-th class, respectively.
The MT represents the ability of the fusion module to accurately

fuse label-related prototype information to Â. When the fusion
module cannot fuse multi-view prototypes well, the probability of
accurately predicting ŷ𝑐 decreases. We assume that MT increases
with the process of network iterative optimization, and we denote
MT as 𝛼 = 𝛼0 + 𝑐𝑢𝑟_𝑒𝑝𝑜𝑐ℎ

𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ , where 𝛼0 represents the initialized
maturity. Based on these two factors, we can write the probabilities
of ŷ to be ŷ𝑐 and ŷ𝑐′ :

𝑃 (ŷ𝑐 ) =𝑚𝑖𝑛(1,
∑
v
𝐾
+ 𝛼); 𝑃 (ŷ𝑐′ ) =𝑚𝑎𝑥 (0,

∑ (1 − v)
𝐾

− 𝛼) . (10)

Based on this adaptive training strategy, the optimization goal of
MPC can be formulated as:

L𝑓 = −
∑︁
𝑥 ′
(𝑃 (ŷ𝑐 )𝑙𝑐𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑦𝑐 )∑𝐶
𝑗=1 𝑒𝑥𝑝 (𝑦 𝑗 )

+ 𝑃 (ŷ𝑐′ )𝑙𝑐′𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑦𝑐′ )∑𝐶
𝑗=1 𝑒𝑥𝑝 (𝑦 𝑗 )

)𝑃 (𝑥 ′),
(11)

where 𝑃 (𝑥 ′) is set to a uniform distribution 1
𝑁

because 𝑥 ′ is gener-
ated from a random mixture with equal probability.

4.4 Overall Loss Function
By combining the MVFE, MPC, and the adaptive training strategy,
the overall loss function L, which is the optimization objective to
be minimized during training iterations, is a combination of the
original loss L𝑜 and the fusion loss L𝑓 :

L = L𝑜 + 𝜆L𝑓 , (12)
where 𝜆 is a hyperparameter that controls the relative weight of the
fusion loss. To ease the understanding of MPCCI, the pseudo-code
is presented as Algorithm 1.

Algorithm 1 The pseudo-code of MPCCI
Input: Training dataset 𝑋 = {(𝑥1, 𝑙1), (𝑋2, 𝑙2), · · · , (𝑥𝑛, 𝑙𝑛)}
Outpt: Predicted labels
1: Initialize network of MPCCI:

𝑓 = 𝑓𝑐 (𝑓𝑏 (·) | |𝑓 1𝑎 (𝑓𝑏 (·)) | | · · · | |𝑓 𝐾𝑎 (𝑓𝑏 (·)))
2: for i = 1, ..., Epoch do
3: /* MVFE */
4: E← 𝑓𝑏 (𝑥) // Compute feature maps
5: a𝑘 ← 𝑓 𝑘𝑎 (E) // Compute mutli-view features
6: g← 𝑎𝑣𝑔𝑝𝑜𝑜𝑙 (E) // Compute the global feature
7: y← 𝑓𝑐 (g,A) // Compute the predicted label
8: Compute L𝑜 via Eq. (6)
9: /* MPC */
10: S𝑐

𝑘
← 1

𝑛𝑐
(a𝑐
𝑘 1 + · · · + a

𝑐
𝑘𝑛𝑐
) // The multi-view prototypes

11: Ŝ← vS𝑐 + (1 − v)S𝑐′ // The mixed prototypes
12: Â← A + (ℎ(A)ℎ(Ŝ)𝑇 )Ŝ // The fused multi-view features
13: ŷ← 𝑓𝑐 (g, Â)
14: /* The adaptive training strategy */
15: Compute the IP factor:

∑
v
𝐾

and
∑ (1−v)

𝐾
// The probabilities to be predicted as c-th and c’-th classes

16: 𝛼 ← 𝛼0 + 𝑐𝑢𝑟_𝑒𝑝𝑜𝑐ℎ
𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ // The MT

17: Compute L𝑓 via Eq. (11)
18: Update 𝑓 by minimizing L = L𝑜 + 𝜆L𝑓
19: end for

5 Experiment
We conduct comprehensive experiments to evaluate the perfor-
mance of the porposed MPCCI approach. At below, we first in-
troduce the datasets used for experiments, evaluation protocols,
compared methods, and implementation details. Then, we report
and analyze the quantitative results obtained across four medical
datasets. Moreover, the validation of heterogeneity cause C and
data set analysis are conducted to systematically evaluate MPCCI.
We also take further experimental analysis to assess the capabili-
ties of MPCCI. This analysis encompasses an examination of the
number of features, the function of the mixing mechanism, and the
visualization results.

5.1 Datasets
Four medical image datasets are utilized for the evaluation of
MPCCI. The details of the datasets are provided as follows:

The CT COVID-19 [33] dataset comprises 7,593 COVID-19
CT images sourced from 466 patients, 6,893 normal CT images
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from 604 patients, and 2,618 CAP CT images from 60 patients. For
experimentation purposes, a total of 14,486 images from the normal
and COVID-19 categories are selected. These images are randomly
partitioned into training, validation, and test sets at a ratio of 7:1:2.

The BUSI [2] is a publicly available dataset consisting of 780
ultrasound images of three classes, i.e., normal, benign, and malig-
nant. In this work, we follow the setting of MIB Net [42] which
achieves the best result reported to date and use only the benign
images (437) and malignant images (210). Conforming to the proto-
col of MIB Net, the dataset is partitioned into training, validation,
and test sets at a ratio of 8:1:1.

The FJPH is a dataset established by ourselves for predicting the
likelihood of lymph node metastasis. The data inside are obtained
anonymously from a local hospital (Fujian Provincial Hospital)
to ensure the privacy of all involved patients. It consists of 889
ultrasound images categorized into two classes: metastasis (500
ultrasound images) and non-metastasis (389 ultrasound images). We
employ this dataset to demonstrate the versatility of the proposed
method in different ultrasound imaging scenarios. Adhering to the
settings of BUSI, we partition this dataset into training, validation,
and test sets at a ratio of 8:1:1.

The FJTU is a thyroid ultrasound dataset established from the
Fujian Provincial Hospital for four sub-types of thyroid, e.g., thy-
roid adenoma (TA), follicular carcinoma (FC), follicular variant of
PTC (FV-PTC), and medullary carcinoma (MC). It consists of 1,969
ultrasound images from 290 patients. Five-fold cross-validation is
utilized for this dataset. In addition, a subset of the data, FJTU-
H (349 images from FC and 174 images from FV-PTC), includes
gender information and 9 heterogeneous attributes annotated by
professional doctors. The attribute distribution exhibits severe het-
erogeneity within the same category as in Fig. 5. The FJTU-H is
utilized for dataset analysis of heterogeneity and validation of het-
erogeneity cause C.
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5.2 Compared Methods and Evaluation Metrics
Compared methods. In order to comprehensively validate the
effectiveness of MPCCI, we make comparisons with various meth-
ods. Initially, we select four representative deep learning models
with backbone architectures of ResNet18 [18], VGG16 [40], ViT [9],
and Mamba [15] for image processing. These four methods utilize
distinct feature extraction mechanisms to identify image features,
facilitating the assessment of MPCCI performance across differ-
ent architectures. Additionally, we employ several representative
supervised learning methods for image classification, such as CAB-
Net [17] and CAD_PE [24], along with data augmentation tech-
niques likeMixupNet [51] andMixStyleNet [54], as well as invariant

Table 1: Performance comparison between MPCCI and com-
pared methods on the CT COVID-19 dataset. The best and
second best results are marked in bold and with underline
respectively.

Method ACC (%) P (%) R (%) F1 (%)
ResNet18[18] 95.44±0.71 98.87±0.94 92.36±1.03 95.50±0.36
Fishr[39] 96.06±1.30 94.57±0.28 97.31±0.94 95.92±0.73

CABNet[17] 95.89±0.64 95.06±1.04 96.37±1.50 95.71±0.83
MixupNet[51] 95.10±0.45 96.82±1.51 92.74±1.89 94.74±0.57
MixStyleNet[54] 95.10±1.49 96.82±1.42 92.47±1.76 94.72±0.82
VGG16[40] 93.96±1.84 94.68±2.59 93.74±1.86 94.21±1.58
ViT[9] 95.22±0.21 95.59±0.58 94.52±0.71 95.06±0.63

Mamba[15] 79.67±0.00 77.38±0.00 86.50±0.00 81.69±0.00
MPCCI (Ours) 96.10±0.51 96.18±0.24 96.37±0.84 96.28±0.18

feature learning method Fishr [39], to further evaluate the perfor-
mance of MPCCI. It is noteworthy that for the BUSI dataset, we also
incorporate state-of-the-art modality-specific methods for breast
cancer disease, including TNTs [16], BVA Net [46], HoVer-Trans
[35], and MIB Net [42], for comparative analysis with MPCCI.

Evaluation metrics.We evaluate MPCCI using four commonly
used metrics in classification tasks: accuracy (Acc), precision (P),
recall (R), and F1-score (F1).

5.3 Experimental Details
In our experiments, we utilize ResNet18 as the backbone of MPCCI.
All medical images are resized to 128 × 128 pixels. The model
is trained using the SGD optimizer, with learning rates set to
0.0001/0.0001/0.001/0.0001 for the CT COVID-19, BUSI, FJPH, and
FJTU datasets respectively. All experiments are conducted on a
single Nvidia RTX3090 GPU, with batch sizes set to 10/10/128/10.
The hyperparameter 𝛼 is set to 0.5, while 𝜆 is set to 0.1/0.1/1/0.1 for
the four datasets respectively.

For the baseline methods, we reproduce the source codes of
ResNet18 [18], VGG16 [40], ViT [9], Mamba [15], CABNet [17],
MixupNet [51], MixStyleNet [54], Fishr [39], and CAD_PE [24]. All
experimental results are based on the average of five experiments
conducted with different random seeds. The results of TNTs [16],
BVA Net [46], HoVer-Trans [35], and MIB Net [42] are directly cited
from the original papers, as their source codes are not publicly
accessible.

5.4 Experimental Results
Table 1, Table 2, and Table 3 present the overall performance of
MPCCI and the compared methods. On CT COVID-19 dataset,
our MPCCI method exhibits strong performance, underscoring
its efficacy and robustness in COVID-19 image classification tasks.
Specifically, it achieves the highest performances of 96.10% and
96.28% on precision and F1-score respectively. On the BUSI dataset,
MPCCI achieves the best average results of four evaluation metrics,
demonstrating its superiority. Compared to MIB Net, which takes
advantages of multi-task learning method in both classification and
segmentation, our MPCCI outperforms it with improvements of
0.26%, 0.99%, 2.94%, and 2.19% in accuracy, precision, recall, and
F1-score, respectively. This demonstrates that our approach can
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Table 2: Performance comparison between MPCCI and compared methods on the BUSI and FJPH datasets for ultrasound
images. The best and second best results are marked in bold and with underline respectively.

Method BUSI FJPH
ACC (%) P (%) R (%) F1 (%) ACC (%) P (%) R (%) F1 (%)

TNTs* [16] 81.20±3.20 76.30±5.70 61.10±10.40 67.9±5.70 - - - -
BVA Net* [46] 84.3 88.3 75.1 - - - - -

HoVer-Trans* [35] 85.50±5.00 87.60±6.20 86.70±11.50 87.20±8.00 - - - -
MIB Net* [42] 92.97±1.11 93.21±1.50 92.97±1.10 92.85±1.01 - - - -
ResNet18 [18] 91.39±2.48 91.76±1.72 95.91±1.82 93.75±1.78 80.90±1.12 80.31±1.17 87.60±4.40 83.74±0.87
Fishr [39] 93.04±2.74 96.61±1.34 93.18±2.36 94.34±1.23 84.26±0.84 87.87±2.91 74.35±3.77 80.55±2.45

CABNet [17] 89.23±5.37 95.12±1.78 88.63±3.63 91.76±3.15 83.14±1.49 83.33±4.63 76.92±9.92 80.00±7.17
MixupNet [51] 92.30±2.69 95.34±1.68 93.18±2.51 94.25±1.83 84.26±2.34 79.06±3.21 87.17±2.95 82.92±2.14
MixStyleNet [54] 86.15±5.04 90.69±4.93 88.63±6.42 89.65±4.64 76.40±1.18 76.47±2.43 66.66±3.88 71.23±2.94

VGG16 [40] 93.12±1.08 94.45±1.26 94.45±1.45 94.45±1.31 82.47±1.80 83.33±0.98 85.60±4.40 84.41±0.74
ViT [9] 90.76±3.72 93.18±3.55 93.18±4.16 93.18±3.77 74.83±0.45 74.33±0.67 84.40±1.60 79.03±0.21

Mamba [15] 67.69±0.00 67.69±0.00 100.00±0.00 80.73±0.00 68.53±0.00 68.33±0.00 82.00±0.00 74.54±0.00
MPCCI (Ours) 93.23±2.15 94.20±1.36 95.91±1.82 95.04±1.59 85.62±3.14 86.62±5.05 88.80±3.20 87.57±2.23

*Note: These results are directly cited from the original papers, as their source codes are not publicly accessible.

Table 3: Performance comparison on FJTU. The best and
second best results are marked in bold and with underline
respectively.

Method FV-PTC FC TA MC
Fishr 85.42 70.68 57.77 71.02

CABNet 86.99 71.30 58.03 71.73
MixupNet 86.79 65.15 56.63 70.03
MixStyleNet 86.86 62.28 57.45 66.33
CAD_PE 86.84 71.48 57.91 72.46
ResNet18 86.05 68.98 57.52 74.67
MPCCI 87.15 72.77 59.26 77.99

perform well in diagnosing breast cancer in ultrasound images with
only instance-level labels. On the FJPH dataset, the performance
of MPCCI consistently surpasses the runner-up by 1.36%, 1.20%,
and 3.83% in accuracy, recall, and F1-score, respectively. The re-
sults highlight its consistent superiority across various datasets
and underscores its potential for practical applications in medical
image analysis. On the FJTU dataset, we test the accuracy for the
four sub-types. Compared to SOTA and baseline methods, the pro-
posed MPCCI achieves the best performance across all categories.
While our method generally outperforms the compared methods,
it occasionally lags behind by 1% to 2% in Precision or Recall. This
discrepancy may stem from our method’s suboptimal performance
in handling specific categories. A potential improvement direction
is to leverage prototype learning for enhancing the classification
boundaries [41].

Ablation Study. We conduct ablation studies on CT COVID-19
and FJPH datasets to explore the individual contributions of each
component of the proposed MPCCI. The four components eval-
uated are MVFE, MPC, and its two contained criteria (i.e., IP &
MT). The results of ablation studies are presented in Table 4 with
AB1: ResNet18 (baseline), AB2: AB1+MVFE, AB3: AB2+MPC, AB4:
AB3+IP, and AB5: MPCCI (AB4+MT). The results show that both

MVFE and MPC contribute to the improvements in performance
compared to the baseline, demonstrating that MPCCI based on FDA
can effectively evaluate the causal effect from image to label. More-
over, the results also reveal that it is crucial to consider both IP and
MT factors simultaneously, as the performance drops significantly
when only IP is considered.

Validation of Heterogeneity Cause C. The gender/age is the
unobserved confounding factor C [1]. Inspired by this work [1],
the FJTU-H dataset is divided into male and female groups. Sub-
sequently, we conduct generalization tests on these two groups
separately. The higher generalizability indicates that the algorithm
is less influenced by the confounding factor of gender. The results
are shown in Table 5. It can be seen that MPCCI is less affected by
the confounding factor C (gender).

Data Set Analysis. We utilize the FJTU-H dataset to validate
the effectiveness of our method in addressing heterogeneity. Two
sets of control experiments are conducted: random splitting and
splitting by low/high heterogeneity. The Pearson correlation in
low and high heterogeneity groups are 0.8 and 0.5, respectively.
The experimental results are shown in Table 6. It can be found
that in the random splitting group, the baseline method (ResNet18)
and our MPCCI method achieve similar results. However, in the
splitting by heterogeneity group, our method significantly outper-
forms the baseline, demonstrating its effectiveness in handling the
heterogeneity issue.

Experimental Extensions. In this section, we aim to address
three questions to provide more detailed analysis of the proposed
method: 1) What is the optimal number of expert networks required
to optimize feature views? 2) How do the mixing mechanism and
fusion module contribute to the performance of MPC? 3) Can the
interpretability of MPCCI be quantitatively assessed? To answer the
first question, we conduct experiments by changing the number of
expert networks from one to nine on the FJPH dataset and observe
the performance. The results in Fig. 6 (a) show that the optimal
performance is achieved with five expert networks, indicating that
an increased number of views does not correlate directly with
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Table 4: Ablation study of MPCCI on CT COVID-19 and FJPH. AB1: ResNet18 (baseline), AB2: AB1+MVFE, AB3: AB2+MPC,
AB4: AB3+IP, and AB5: MPCCI (AB4+MT). The best and second best results are marked in bold and with underline respectively.

Method CT COVID-19 FJPH
ACC(%) P (%) R (%) F1 (%) ACC(%) P (%) R (%) F1 (%)

AB1 95.44±0.71 98.87±0.94 92.36±1.03 95.50±0.36 80.90±1.12 80.31±1.17 87.60±4.40 83.74±0.87
AB2 95.47±0.33 95.47±0.57 95.91±0.75 95.69±0.25 81.57±0.45 80.54±3.46 88.80±3.20 84.41±0.50
AB3 95.72±1.13 98.20±1.61 93.54±1.34 95.81±1.42 84.95±2.69 83.93±5.87 90.40±1.60 86.99±1.90
AB4 95.92±0.47 97.68±1.21 94.47±1.13 96.05±0.24 83.37±0.90 82.36±0.97 89.60±0.40 85.82±0.71
AB5 96.10±0.51 96.18±0.24 96.37±0.84 96.28±0.18 85.62±3.14 86.62±5.05 88.80±3.20 87.57±2.23

Table 5: Results of generalization ability for the unoberserved
confounder C (gender) on FJTU-H dataset

Method Male2Female Female2Male
ACC(%) F1 (%) ACC(%) F1 (%)

ResNet18 70.43 78.96 66.55 77.02
MPCCI 74.20 85.16 67.21 77.88

Table 6: Results of heterogeneous generalization on FJTU-H
dataset

Method Random Group Heterogeneous Group
ACC(%) F1 (%) ACC(%) F1 (%)

ResNet18 93.67 95.43 73.41 81.29
MPCCI 93.74 95.68 77.63 83.29

enhanced performance. To address the second question, we assess
the performance of “MPC1” mode (where the mixing mechanism is
removed, andA is fused with only the source multi-view prototypes
S𝑐 ) and “MPC2” mode (where the fusion module is removed, and
Â is calculated by randomly mixing A and S𝑐 ). From Fig. 6 (b), we
observe that both the mixing mechanism and the fusion module
are necessary for MPC, demonstrating its ability to simulate the
feature representation of lesions in various states. To answer the
third question, we visualize the class activation maps (CAM) [53]
for four samples in the FJPH and CT COVID-19 datasets using
baseline (ResNet18), Fishr, and MPCCI in Fig. 7. The lesions in the
original images have been marked by professional doctors and
shown with red circles. By comparing the locations of the lesions
and visualization results, we can see that MPCCI can attend to the
entire lesion, while ResNet18 and Fishr can only focus on a small
part of the lesion or miss it entirely. Therefore, the CAM results
of MPCCI can provide interpretable results to doctors, thereby
facilitating medical diagnosis.

6 Conclusion
In this paper, we propose a novel approach MPCCI for enhanced
medical image classification by addressing the unmeasurable con-
founding factors present in medical imaging analysis. Leveraging
FDA, MPCCI estimates the total causal effect of an image on its
corresponding label, thus mitigating the negative effects of the
confounders. The proposed approach comprises an MVFE mod-
ule with spatial-channel attention, allowing multi-view features
to serve as mediators in FDA, and an MPC module to effectively

Figure 6: (a) Performance change by increasing the number
of expert networks in MVFE. (b) Effect exploration to the
contributions of different mixing mechanisms and fusion
modules in MPC.

FJPH CT COVID-19
Lymph node 
metastasis

Non-lymph node 
metastasis COVID Non-COVID

Original 
images

ResNet18

Fishr

MPCCI Low High

Low

High

Figure 7: Comparative visualization of lesion detection by
ResNet18, Fishr, and MPCCI on FJPH and CT COVID-19
datasets. Professional doctors have annotated the lesions
in the original images, which are delineated in red for clar-
ity.

apply causal intervention on the mediators. An adaptive training
strategy, including IP and MT, is introduced to maintain the stable
training during the feature exchange process. Experimental results
on four medical datasets demonstrate the effectiveness of MPCCI,
achieving high accuracy, precision, recall, and F1-score in diagnos-
ing COVID-19, breast cancer, lymph node metastasis, and thyroid.
In the future, we plan to conduct extensive validation studies across
a wider spectrum of medical conditions and imaging modalities.
By rigorously evaluating the performance of MPCCI on diverse
datasets encompassing a myriad of medical scenarios, we aim to
demonstrate its efficacy and versatility in facilitating accurate and
reliable diagnostic decision-making.
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