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Abstract: The increasing pressure on global supply chains to reduce carbon emissions has driven the 

need for sustainable supply chain network design (SSCND). This paper proposes an innovative 

framework for SSCND that optimizes facility location and scale decisions under uncertainty using 

blockchain technology. By incorporating cap-and-trade regulations and carbon trading into a mixed-

integer linear programming model, the study addresses both the economic and environmental objectives 

of supply chains. A two-stage stochastic programming approach is employed to optimize the SSCND. 

The first stage focuses on facility location decisions and the second stage on production adjustment, 

transportation, and carbon trading under demand uncertainty. The carbon trading decisions are 

integrated into the model by assigning a monetary value to carbon dioxide emissions and allowing for 

dynamic adjustments to real-time environmental impacts. A primal decomposition algorithm is 

introduced to address the computational challenges involved in solving the two-stage stochastic 

programming model. Numerical experiments based on data derived from SAIC Motor Corporation’s 

supply chain demonstrate the effectiveness of the model and algorithm. This study provides an efficient 

approach for integrating environmental sustainability into supply chain management, offering valuable 

insights for industries aiming to achieve carbon neutrality.  

Keywords: Sustainable supply chain network design; blockchain; smart contract; cap-and-trade 

regulation; primal decomposition algorithm. 

Managerial relevance statement: This study provides valuable insights for manufacturing managers 

and policymakers seeking to optimize sustainable supply chains. By integrating blockchain technology 

and carbon trading mechanisms, the proposed model enables more efficient facility location decisions, 

production adjustments, and transportation strategies under demand uncertainty. Managers in 

manufacturing companies can use this framework to enhance the transparency and traceability of carbon 

emissions while making cost-effective, data-driven decisions that align with sustainability goals. The 

research highlights that accurately forecasting demand fluctuations and strategically allocating carbon 

quotas—particularly by allocating sufficient quotas to logistics centers—can significantly reduce 

carbon credit purchasing costs. Policymakers can leverage these insights to adjust carbon quota policies 
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and promote the adoption of green transportation and low-carbon technologies. An unexpected finding 

is that, under the regulatory pressure of cap-and-trade policies, blindly increasing production to meet 

uncertain demand results in higher costs. This suggests that manufacturing companies should carefully 

align production capacity with actual demand, avoiding overproduction that may result in additional 

costs under the carbon trading system. They should also assess demand fluctuations thoroughly and 

avoid excessive reliance on unstable market demands. 

1. Introduction 

Supply chain operations significantly contribute to global CO₂ emissions. At the supplier stage, raw 

material transformation into semi-finished goods generates substantial hydrocarbons and acidic 

compounds, including sulfur oxides. For instance, steel manufacturing alone accounts for 

approximately 7% of global CO₂ emissions. The logistics phase further exacerbates emissions, varying 

with transportation methods, fuel types, and distances [1]. For example, Perez-Martinez et al. [2] report 

emission factors of 2.3 km/L for 40-ton class 8 trucks and 8.2 km/L for diesel vans, translating to about 

3,800 g CO₂ per kg of fuel. These emissions collectively drive global warming, intensifying climate-

related disasters. To mitigate these impacts, governments worldwide have adopted various carbon 

policies and mechanisms [3]. Among these, cap-and-trade regulations are acknowledged as one of the 

most successful market-based approaches for controlling corporate emissions. Under cap-and-trade 

schemes, firms exceeding quotas must purchase credits, while those with surplus credits can sell them 

for profit, fostering accountability and incentivizing sustainability [4]. 

Cap-and-trade regulations make it crucial for businesses to achieve specific sustainability objectives 

[5]. In response to pressures to prioritize environmental sustainability, businesses increasingly 

incorporate blockchain technology into their supply chain networks. Blockchain offers transparency, 

immutability, and decentralization [6],[7],[8], enabling real-time sharing of carbon emission data, 

streamlining carbon trading, and enhancing the credibility of transactions. By ensuring transparency, 

enhancing data security, and providing immutable transaction records, blockchain can optimize carbon 

emission tracking and simplify verifying sustainability practices across the supply chain. This is 

particularly crucial in carbon trading and regulatory compliance, where accountability and trust are 

essential. Therefore, by integrating blockchain with supply chain management (SCM), businesses not 

only enhance the efficiency of their operations but also contribute to their sustainability goals [9],[10]. 

However, integrating blockchain into supply chain management presents several key challenges, such 

as ensuring data integrity, creating efficient and scalable smart contract mechanisms, and ensuring the 

traceability of transactions in dynamic environments. Motivated by SAIC Motor Corporation’s need for 

sustainable, low-carbon strategies, this study proposes a blockchain-based decision framework inspired 
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by Manupati et al. [9]. Our framework integrates smart contracts with real-time operational decisions, 

enabling automatic execution of carbon trading and production adjustments under predefined 

blockchain protocols. Unlike Manupati et al. [9], who focus solely on production allocation under 

carbon tax policies, our approach incorporates demand uncertainty and carbon trading, expanding the 

scope of decision-making and enhancing the adaptability of supply chains to real-world complexities. 

This dynamic interaction between blockchain and SCM ensures compliance, flexibility, and scalability, 

addressing the challenges of modern supply chain operations. 

Specifically, our model addresses demand uncertainty in supply chains through a two-stage stochastic 

programming approach. The first stage involves making strategic facility location decisions. In contrast, 

the second stage focuses on operational adjustments, such as modifying production quantities, altering 

transportation plans, and making carbon trading decisions in response to demand fluctuations. The 

academic literature shows that the two-stage framework, where the first stage involves strategic 

planning and the second stage focuses on tactical adjustments to real-world uncertainties, is widely used 

and effective in addressing uncertainty and multi-level decision-making problems across various 

domains [11],[12],[13]. Furthermore, to address the increased complexity introduced by integer 

decision variables in the two-stage stochastic model, we propose a primal decomposition algorithm. 

Similar to Benders decomposition, our algorithm differs in that it transmits primal columns from the 

second-stage subproblem to the first-stage master problem, whereas Benders uses dual-based cuts 

(rows). Our algorithm is particularly effective when the second-stage subproblem involves integer 

variables, a scenario where traditional Benders decomposition is not applicable. 

To summarize, the contribution of this work is twofold. From a practical perspective, this study 

responds to the need for sustainable supply chains under cap-and-trade regulations and the challenges 

posed by demand uncertainty in manufacturing enterprises. By integrating blockchain technology, the 

model addresses key issues such as inefficiency, lack of trust, and insufficient data security in traditional 

supply chains, ensuring transparency and secure data sharing. Additionally, incorporating carbon 

trading mechanisms offers a cost-effective approach to achieving both environmental and economic 

goals, enabling manufacturers to optimize facility location, production, and transportation strategies 

under uncertainty. From an academic perspective, while numerous studies have explored blockchain 

technology in supply chain management [14],[15],[16],[17],[18], most have focused on the conceptual 

and functional characteristics of blockchain, with limited attention given to its integration within mixed-

integer mathematical models for supply chain optimization. To our knowledge, this study is the first to 

combine blockchain technology with carbon trading mechanisms in the context of sustainable supply 

chain network design under demand uncertainty. By employing a mathematical modeling approach, this 
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research contributes to supply chain optimization and environmental sustainability, enriching and 

extending the current literature. 

This paper is structured as follows. Section 2 reviews the related literature. Section 3 provides a 

comprehensive explanation of the problem. Section 4 presents a mixed-integer linear programming 

(MILP) model for the two-stage decision-making process. Section 5 introduces the algorithm for 

solving the model. Section 6 presents the numerical experiments conducted to validate the model and 

algorithm. The final section concludes the paper with a summary of the study’s key insights. 

2. Related works 

The main contribution of this study lies in applying blockchain technology to address the challenge 

of sustainable supply chain network designs (SSCND). We provide a framework for making decisions 

regarding facility location and scaling under uncertainty utilizing blockchain to enhance the 

management of sustainable supply chains. The literature on this topic focuses on two key areas: SSCND 

under uncertainty and the application of blockchain and smart contract technologies in SCM. 

2.1 SSCND under uncertainty 

Supply chain network design (SCND), or strategic supply chain planning, involves critical long-term 

decisions shaping a business’s success [19]. It focuses on defining supply chains’ infrastructure and 

physical layout, including facility locations, capacities, production processes, technologies, regional 

distribution, and supplier selection, all requiring significant investment. [20]. Recently, sustainable 

supply chains have garnered increasing attention due to pressure from various stakeholders, such as 

consumers, management, government regulators, and community activists, and global competition 

[21],[22]. This emphasis on sustainability has driven research on SSCND, in which initial investments 

in introducing facilities across various locations and capacity allocation are crucial as they significantly 

influence environmental outcomes during the operational phase [23]. However, SSCND is further 

complicated by market uncertainty and limited resources in real-world scenarios [24]. Addressing these 

uncertainties has thus become a central focus of academic researchers and industry practitioners. To 

successfully do so, a thorough grasp of the challenges and opportunities in this domain is crucial, as 

emphasized by key studies on SSCND [20],[25],[26]. 

The primary approach to modeling sustainable supply chain networks under uncertainty is to use 

carbon emissions as an environmental indicator while addressing various uncertainties specific to the 

problem at hand. For instance, Pishvaee et al. [27] introduce a bi-objective fuzzy mathematical 

programming model to design green logistics networks under uncertain conditions, employing the CO₂ 

equivalent index to evaluate environmental impacts. Zhen et al. [28] present a comprehensive 
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methodology for designing a green and sustainable closed-loop supply chain network in the face of 

uncertain demand. They propose a bi-objective optimization model that minimizes CO₂ emissions and 

total operational costs, incorporating environmental standards and the factors influencing facility 

capacity in the decision-making process. Kaur et al. [29] further enhance the understanding of 

sustainable supply chain modeling by proposing an elastic, sustainable framework that integrates 

production and procurement through fuzzy theory. This approach addresses market demand and 

machine capacity uncertainties while accounting for carbon emissions. Similarly, Hasani et al. [30] 

contribute a robust multi-objective optimization model for configuring a green global supply chain 

network amidst disruptions and uncertainties. Their model simultaneously optimizes three objectives: 

maximizing expected profit, minimizing facility centralization to mitigate disruptions, and reducing 

CO₂ emissions related to material shipments within the sustainable network. Furthermore, Kumar et al. 

[31] propose an MILP model for designing uncertain supply chain networks, considering both carbon 

emissions and social factors and utilizing chance-constrained programming to address uncertainty.  

Based on the aforementioned research trends, this study evaluates a sustainable supply chain using 

two key environmental indicators: the fixed CO2 emissions of facilities at various emission control 

levels and the CO2 emissions due to transportation. Additionally, it considers demand uncertainty, an 

important factor in realistic scenarios, to further extend research on the design of sustainable supply 

chain networks. 

2.2 Modeling supply chains using blockchain and smart contracts 

Blockchain technology provides a shared, distributed database with unique features such as 

cryptographic security, immutability, traceability, and intelligent execution [32],[33]. These 

characteristics help address the complexity and critical challenges involved in SCM, particularly in 

ensuring transparency, reliability, and efficiency [34],[35]. Blockchain technology is being increasingly 

adopted in low-carbon supply chains, enabling consumers to oversee the processes of producing low-

carbon products. This enhanced transparency improves brands’ reputations and presents new market 

opportunities [36]. With growing environmental awareness among the public, an increasing number of 

consumers are willing to pay a premium for sustainable products [37], and sustainability has become a 

key factor in corporate performance [38]. In response, major corporations such as Walmart, Alibaba 

[39], De Beers, UPS, and FedEx have adopted blockchain to enhance transparency and monitor their 

carbon footprints, promoting sustainable practices. 

Research consistently shows that sustainable supply chains can greatly benefit from the adoption of 

blockchain technology [40]. In the context of fashion supply chains, Choi et al. [41] emphasize the 
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advantages of blockchain, particularly in emerging markets such as China and India, where transparency 

and traceability are increasingly important. Building on their study, Guo et al. [42] find that blockchain 

facilitates environmental transparency and increases consumers’ willingness to spend on sustainable 

fashion products. In addition to its impact on the fashion industry, blockchain has proven effective in 

other sectors. For instance, El Hathat et al. [43] demonstrate its utility in tracing greenhouse gas 

emissions in the palm oil supply chain, ultimately enhancing sustainability and competitiveness. 

Similarly, Xu et al. [44] illustrate how blockchain can optimize remanufacturing operations, particularly 

for high-emission industries, by integrating manufacturers, third-party companies, and online platforms 

into a more efficient system. Further advancing this understanding, Yousefi et al. [45] develop a systems 

analysis approach to assess the broader impact of blockchain on sustainable supply chains. Their 

findings suggest that the appropriate adoption of blockchain can significantly improve environmental 

sustainability and increase the traceability of products. Blockchain’s potential also extends to 

agricultural supply chains, in which it helps address sustainability challenges [46] and advances the 

adoption of circular economy principles [47]. 

Smart contracts, a crucial application of blockchain technology [48], are computer programs that 

automatically execute, control or document the terms of a contract. In a system that uses smart contracts, 

participants create their contracts by specifying the code and implementing it on the blockchain. When 

predefined conditions are met, the contract’s terms are automatically executed. In SCM, this technology 

can significantly enhance efficiency, transparency, and traceability while reducing disputes and the risk 

of fraud. The effective implementation of blockchain technology across different industries requires the 

definition and execution of smart contracts using various mathematical models and algorithms [49]. For 

instance, Li et al. [50] design an innovative and practical framework for emissions trading in the road 

transport sector utilizing cutting-edge blockchain technology. In their system, all transactions related to 

emission permits are efficiently managed and recorded through smart contracts on a decentralized 

blockchain. This approach results in a significant reduction in management costs. Similarly, Agrawal et 

al. [51] propose a traceability framework based on blockchain technology, incorporating customized 

smart contracts and transaction protocols. Using the example of an organic cotton supply chain, they 

demonstrate how a blockchain-based, traceable, multi-layer textile and apparel supply chain system can 

enhance sustainability and ensure transparency for all stakeholders. Expanding on this, Sadawi et al. 

[52] introduce a multi-layered blockchain framework within the Blockchain of Things (BoT), 

incorporating smart contracts to design a refined carbon emissions trading system characterized by 

transparency and automated trading and control processes. Building further on the integration of 

blockchain in supply chains, Ismail et al. [53] combine blockchain technology with emerging 
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technologies such as artificial intelligence (AI) and the Internet of Things (IoT) to propose a blockchain-

based fish supply chain framework. By utilizing the core functions of blockchain and smart contracts 

deployed on the Ethereum platform, their approach ensures the integrity and security of fish supply 

chain data. 

In conclusion, the rise of blockchain technology has established smart contracts as a leading 

technology, enhancing the customization of traditional transactions in carbon trading markets. This 

study uses smart contracts to integrate carbon trading decisions into SCND problems and designs smart 

contract rules to implement carbon trading decisions. The proposed approach balances economic and 

environmental considerations in the supply chain and thus enriches the literature in this field. 

2.3 Summary of related works 

A review of the literature reveals that although significant advancements have been made in the 

domain of SSCND, several critical research gaps remain to be addressed. 

First, previous studies, such as those by Zhen et al. [28] and Hasani et al. [48], primarily focus on 

minimizing CO₂ emissions and optimizing costs under uncertainty but do not effectively integrate 

market-based carbon trading mechanisms into the design of supply chain networks. Their models 

optimize supply chain performance based on emission reductions, but they overlook the dynamic role 

that carbon trading plays in facility location and scaling decisions. This study differs by incorporating 

carbon trading as a pivotal factor in the decision-making process, accounting for environmental goals 

and market-driven carbon management strategies. 

Second, although blockchain and smart contracts are heralded for their potential to improve supply 

chains’ transparency and operational efficiency, challenges to their widespread implementation still 

exist [54]. Most research focuses on blockchain’s role in operational processes such as transaction 

tracking and verification. Few studies explore its application to decision-making in SSCND, particularly 

concerning facility locations and carbon trading. This study bridges this gap by integrating blockchain 

technology and a two-stage stochastic programming model into SSCND to facilitate facility location, 

scaling, and carbon trading decisions under uncertainty. This approach represents a novel application 

of blockchain to SSCND beyond its traditional use to achieve operational improvements. 

Finally, although uncertainties in demand, costs, and environmental factors are widely acknowledged 

as challenging to SSCND, existing models addressing these uncertainties using fuzzy or stochastic 

approaches fall short when applied to large-scale supply chains. In this study, the proposed primal 

decomposition algorithm improves the computational efficiency of the stochastic model and provides a 

robust solution to large-scale SCND problems. Unlike those used in earlier models, this algorithm 
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effectively handles the complexities of integrating blockchain, smart contracts, and carbon trading into 

a sustainable supply chain, making it a significant methodological contribution to the study. 

3. Problem description 

This paper focuses on using blockchain and smart contract technologies to optimize decision-making 

regarding facility locations and scale in a sustainable supply chain network. In this section, we introduce 

the proposed blockchain decision-making framework and describe the first and second stages of the 

decision-making process outlined in the framework. 

3.1 Decision-making process framework under blockchain 

To address the challenge of uncertain demand, we develop a two-stage stochastic programming 

model to optimize sustainable supply chain networks for manufacturing enterprises facing increasing 

pressure due to carbon cap-and-trade regulations. Our objective is to minimize overall carbon emissions 

and supply chain costs. By integrating blockchain technology, our model enhances operational 

efficiency, transparency, and trust in the supply chain network while reducing human intervention and 

improving decision-making accuracy. The decision-making process consists of two stages: the first 

stage focuses on strategic planning to establish a baseline schedule that meets specific demands, 

whereas the second stage concentrates on operational adjustments based on demand fluctuations in 

realistic scenarios. 

The decision-making process and the key decision-making characteristics of the two stages under the 

framework of the blockchain mechanism are shown in Figure 1. The first step involves deploying smart 

contracts throughout a sustainable supply chain, ensuring their presence across nodes. By utilizing 

distributed ledger technology in the form of smart contracts, we can effectively capture and transmit 

real-time transaction data and carbon emission information from every node within the supply chain. 

This valuable data is then securely added to the blockchain for seamless stakeholder sharing. 

Subsequently, leveraging this blockchain-based information alongside smart contracts enables us to 

provide decision support through a two-stage stochastic programming model and primal decomposition 

algorithm integrated into our decision support system. Smart contracts play a key role by establishing 

predefined rules based on carbon threshold conditions. Once activated, they enable continuous 

monitoring of carbon emissions at each node in real-time. In instances where carbon emissions exceed 

allocated limits (in Figure 1，𝑒𝑠
𝐹 and 𝑒𝑙

𝑅 represent the carbon quotas of the producers and logistics 

centers, respectively), an alert is triggered by the smart contract, prompting necessary adjustments to 

be made within the current plan or facilitating carbon trading activities maintain emissions levels within 

acceptable thresholds. 
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The details of the decision-making framework, such as the optimal location with the consideration of 

facility scales and the carbon trading decision, are detailed in Sections 3.2 and 3.3, respectively. 

 
Figure 1: Supply chain network optimization framework based on blockchain 

3.2 The first stage of decision-making under the blockchain 

The primary objective of the first stage of the decision-making process is to determine the optimal 

locations and scales of producers and logistics centers given specific capacity and emission control 

levels while minimizing the total cost of meeting customer demand. This stage establishes an initial 

baseline plan at the strategic level. Specifically, we determine a set of producers and logistics centers 

with constraints on capacity and emission control levels. Emission control levels are quantified by CO2 

emissions, such that lower emissions correspond to higher control levels. Following the methodology 

of Zhen et al. [28], we categorize the levels of capacity and emission control into discrete values, “1,” 

“2,” and “3,” with higher numbers representing higher levels of capacity and environmental 

performance, respectively, but also higher costs. The supply chain must select producers (denoted by 

𝛼𝑠𝑐𝑏) and logistics centers (denoted by 𝛽𝑙𝑐𝑏) with suitable capacity levels (indexed by 𝑏) and emission 

control levels (indexed by 𝑐) from the candidate sets of producer sites 𝑆 and logistics center sites 𝐿 

to satisfy customer demand (denoted by 𝑑𝑘). The total production and processing volume at each node 

(denoted by 𝜇𝑠𝑙  and 𝜃𝑙𝑘 ) must not exceed the node’s capacity level. The products produced by 

producers are first transported to various logistics centers for processing and then delivered to customers. 

Product flow between producers and logistics centers must be balanced during transportation. 

Blockchain’s distributed ledger technology plays a crucial role in this stage by recording the 

initialization of multi-layer supply chain data variables and enabling information sharing among 

stakeholders. The ledger collects and records transaction and emissions data, which are passed on as 

goods move through the supply chain. Our model uses this data to preprocess and calculate the 

quantities of products processed and transported at each node and the initial optimal cost, thereby 
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establishing an initial baseline plan for the optimal locations and scales of facilities. 

3.3 The second stage of decision-making under the blockchain framework 

Building on the selection of locations and scales from the first stage, the second stage addresses the 

challenge of uncertain demand (denoted by 𝑑̃𝜔𝑘) by adjusting the production and transportation plans 

and ensuring that the carbon emission of each node (for example, denoted by 𝑞𝑐𝑠
𝐹  and 𝑞𝑐𝑙

𝑅  for producers 

and logistics centers, respectively, with emission control level 𝑐; this value is the sum of the node’s 

fixed CO2 emissions) does not exceed the specified carbon quota (denoted by 𝑒𝑠
𝐹 and 𝑒𝑙

𝑅) of the node. 

Through this process, we aim to optimize overall supply chain costs and effectively reduce carbon 

emissions, achieving an optimal operational decision plan. 

Blockchain’s smart contract technology plays a crucial role in this stage. Smart contracts can record 

and track carbon emissions and goods transfer data in real-time, treating carbon emissions as tradable 

carbon credits (one carbon credit equals the right to emit 1000 kg of CO₂ equivalent) and sharing this 

data on a distributed ledger. Using the blockchain-enabled system, each supply chain node initializes a 

smart contract, which triggers an alert when emissions exceed a threshold, indicating that they surpass 

the carbon quota. This real-time monitoring and automatic alert system significantly enhances the 

transparency and responsiveness of SCM. 

Specifically, in the second stage of the decision-making process, our model simulates the threshold 

constraints encoded in smart contracts by setting carbon quota limits (i.e., 𝑒𝑠
𝐹 and 𝑒𝑙

𝑅) for producers 

and logistics centers. After the smart contract is activated, it monitors the carbon emissions of each node 

in the supply chain in real-time and transmits this information on the blockchain. This enables our 

decision support system to readjust decisions based on the actual needs of each node in a real-world 

scenario. For example, demand uncertainty may cause the actual processing and transportation of goods 

by supply chain nodes (denoted by 𝜃̃𝜔𝑙𝑘 and 𝜇̃𝜔𝑠𝑙) to deviate from the baseline plan (i.e., 𝜇𝑠𝑙 and 

𝜃𝑙𝑘), resulting in the total CO₂ emissions at each node exceeding or falling below its specified carbon 

quota. Enterprises can offset the excess or shortfall in carbon emissions by purchasing or selling carbon 

credits (denoted by 𝜁𝜔𝑠
+  or 𝜁𝜔𝑠

−  for producers and 𝜂̃𝜔𝑙
+  or 𝜂̃𝜔𝑙

−  for logistics sites, respectively) in the 

carbon trading market, keeping emissions within set thresholds and minimizing penalties. Thus, in the 

second stage, we innovatively incorporate carbon trading into the total supply chain cost, assigning a 

monetary value to carbon emissions and integrating environmental impact into the economic analysis 

of the supply chain. Note that in this process, some customer demand may be abandoned due to the 

consideration of emission reduction, and the unmet demand may result in certain losses to the supply 

chain. Therefore, we penalize logistics centers for unmet customer demand to reflect the potential losses 
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to the entire supply chain. 

By calculating the total cost of the current supply chain and incorporating it into the two-stage 

decision-making process, our decision support system addresses different demand scenarios to ensure 

the best overall operation in each scenario. The iterative data sharing and optimization process is 

executed until the optimal solution is found. Therefore, in the second stage, in which demand 

uncertainty is addressed, our framework minimizes the expected operating and carbon trading costs in 

each scenario to determine the volume of goods produced and transported and the carbon credits 

purchased and sold by each supply chain node. This process results in the actual plan for scheduling 

decisions (at the operational level) across various demand scenarios. 

4. Two-stage model 

Our two-stage stochastic programming model addresses the SSCND problem under demand 

uncertainty. The model accounts for each facility’s capacity and carbon emission levels, uncertain 

customer demand, production or processing costs, transportation costs, delivery and holding costs, and 

carbon credit transaction costs. The overall cost consists of two components: fixed costs and estimated 

operating expenses. As scenario-based programming is typically adopted to address parameter 

uncertainties, we represent uncertainties in our model parameters through a set of scenarios. Our 

objective is to reduce the total cost across the various scenarios. 

4.1 Notations 

In this subsection, we list the names of the variables used in the mathematical model. For ease of 

comprehension, the parameters and decision variables in the mathematical model are represented by 

Roman and Greek letters, respectively. 

Indices and sets 

𝑆  set of candidate producer sites indexed by 𝑠; 

𝐿  set of candidate logistics center sites indexed by 𝑙; 

𝐾  set of customers indexed by 𝑘; 

𝐵  set of capacity level options of producer sites indexed by 𝑏; 

𝐶  set of emissions control level options of facilities indexed by 𝑐; 

Ω  set of uncertain demand scenarios, indexed by 𝜔. 

Parameters 

𝑑𝑘 demand of customer 𝑘; 

𝑑̃𝜔𝑘 demand of customer 𝑘 under scenario 𝜔; 

𝑔𝑚𝑛
𝐶  cost of one truckload products from location 𝑚 to 𝑛, including vehicle transportation cost 
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and product holding cost (RMB), 𝑚 ∈ 𝑆 ∪ 𝐿, 𝑛 ∈ 𝐿 ∪ 𝐾; 

𝑔𝑚𝑛
𝐸  CO2 emissions (in kg) of trucks from location 𝑚 to 𝑛, 𝑚 ∈ 𝑆 ∪ 𝐿, 𝑛 ∈ 𝐿 ∪ 𝐾; 

𝑓𝑠𝑐𝑏
𝐹  fixed cost (RMB) of opening a producer at location s with capacity level 𝑏 and emissions 

control level 𝑐; 

𝑓𝑙𝑐𝑏
𝑅  fixed cost (RMB) of opening a logistics center at location 𝑙  with capacity level 𝑏  and 

emissions control level 𝑐; 

𝑚𝑠𝑏
𝐹  production capacity of producer 𝑠 with capacity level 𝑏; 

𝑚𝑙𝑏
𝑅  processing capacity of logistics facility 𝑙 with capacity level 𝑏; 

𝑘𝑠𝑏
𝐹  unit production cost (RMB) of producer 𝑠 with capacity level 𝑏; 

𝑛𝑙𝑏
𝑅  unit processing cost (RMB) of logistics facility 𝑙 with capacity level 𝑏; 

𝑞𝑐𝑠
𝐹  fixed CO2 emissions (in kg) with emissions control level 𝑐 from opening production point 

𝑠, for example, when 𝑐 is equal to 1,2,3, respectively, 𝑞𝑐𝑠
𝐹 = 300,250,200 kg; 

𝑞𝑐𝑙
𝑅  fixed CO2 emissions (in kg) with emissions control level 𝑐 from opening logistics facility 𝑙, 

for example, when 𝑐 is equal to 1,2,3, respectively, 𝑞𝑐𝑙
𝑅 = 150,125,100 kg; 

𝑒𝑠
𝐹 carbon quota (in kg) to producer 𝑠; 

𝑒𝑙
𝑅 carbon quota (in kg) to logistics center 𝑙; 

𝑜𝑠
𝐹 limited number of carbon credits purchased by producer 𝑠; 

𝑜𝑙
𝑅 limited number of carbon credits purchased by logistics center 𝑙; 

𝑐0  market price of carbon credits (RMB); 

𝑐1  penalty costs (RMB) for not meeting customer needs; 

𝑝𝜔 probability of scenario 𝜔 with uncertain demand, ∑ 𝑝𝜔𝜔∈Ω = 1. 

Decision variables 

𝛼𝑠𝑐𝑏 binary, equals one if a producer is built at location s with emissions control level 𝑐 and 

capacity level 𝑏, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵, otherwise, equals zero; 

𝛽𝑙𝑐𝑏 binary, equals one if a logistics center is built at location 𝑙 with emissions control level 𝑐 

and capacity level 𝑏, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵, otherwise, equals zero; 

𝜇𝑠𝑙 quantity of product transported from producer 𝑠 to logistics center 𝑙; 

𝜃𝑙𝑘 the demand of customer 𝑘 that is satisfied by logistics center 𝑙. 

Variables denoted with a tilde (“~”) and parameter “𝜔” correspond to the actual values in scenario 

𝜔. For example, the above two variables when denoted with a tilde (“~”) and parameter “𝜔”, namely 

𝜃̃𝜔𝑙𝑘 and 𝜇̃𝜔𝑠𝑙, refer to the actual values in scenario 𝜔. In addition, decision variables related to carbon 

trading corresponding to scenario 𝜔 are defined as follows. 
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𝜁𝜔𝑠
+  carbon credits purchased by producer 𝑠 under scenario 𝜔; 

𝜁𝜔𝑠
−  carbon credits sold by producer 𝑠 under scenario 𝜔; 

𝜂̃𝜔𝑙
+  carbon credits purchased by logistics center 𝑙 under scenario 𝜔; 

𝜂̃𝜔𝑙
−  carbon credits sold by logistics center 𝑙 under scenario 𝜔. 

4.2 Mathematical model 

Using the definition provided above, M1 is formulated as follows. 

4.2.1 Model’s objective 

The model aims to minimize the total supply chain cost, with the objective function comprising four 

main components.  

(1) The total fixed cost of establishing the producers and logistics centers, 𝐹𝐶 , is expressed as 

follows: 𝐹𝐶 = ∑ ∑ ∑ 𝑓𝑠𝑐𝑏
𝐹

𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏𝑠∈𝑆 + ∑ ∑ ∑ 𝑓𝑙𝑐𝑏
𝑅

𝑏∈𝐵𝑙𝑐∈𝐶𝑙∈𝐿 𝛽𝑙𝑐𝑏; 

(2) The cost of transferring goods from producers to logistics centers, which includes production, 

transportation, and holding costs, 𝑃𝐿 , is expressed as follows: 𝑃𝐿 = ∑ ∑ 𝜇𝑠𝑙(𝑔𝑠𝑙
𝐶 +𝑙∈𝐿𝑠∈𝑆

∑ ∑ 𝑘𝑠𝑏
𝐹

𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏); 

(3) The cost of delivering goods from logistics centers to customers, including transportation, 

handling, and holding costs, 𝐿𝐶 , is expressed as follows: 𝐿𝐶 = ∑ ∑ 𝜃𝑙𝑘𝑘∈𝐾𝑙∈𝐿 (𝑔𝑙𝑘
𝐶 +

∑ ∑ 𝑛𝑙𝑏
𝑅 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 ); 

(4) The objective of the subproblem in the second stage, which represents the expected cost of 

managing uncertain demand across all scenarios, is denoted by 𝒬(𝜽, 𝜔). 

Given the above components of the model, the formulation of the model’s objective function is 

expressed as follows. 

[𝐌𝟏] Min 𝑇𝐶 = 𝐹𝐶 + 𝑃𝐿 + 𝐿𝐶 + ∑ 𝑝𝜔𝜔∈Ω 𝒬(𝜽, 𝜔)        (1) 

4.2.2 The constraints of the first stage 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 ≤ 1        ∀𝑠 ∈ 𝑆      (2) 

∑ ∑ 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 ≤ 1        ∀𝑙 ∈ 𝐿      (3) 

∑ 𝜃𝑙𝑘𝑙∈𝐿 ≥ 𝑑𝑘         ∀𝑘 ∈ 𝐾      (4) 

∑ 𝜇𝑠𝑙𝑠∈𝑆 = ∑ 𝜃𝑙𝑘𝑘∈𝐾         ∀𝑙 ∈ 𝐿      (5) 

∑ 𝜃𝑙𝑘𝑘∈𝐾 ≤ ∑ ∑ 𝑚𝑙𝑏
𝑅

𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑙𝑐𝑏     ∀𝑙 ∈ 𝐿      (6) 

∑ 𝜇𝑠𝑙𝑙∈𝐿 ≤ ∑ ∑ 𝑚𝑠𝑏
𝐹 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶       ∀𝑠 ∈ 𝑆      (7) 

𝜃𝑙𝑘, 𝜇𝑠𝑙 ≥ 0          ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾   (8) 

𝛼𝑠,𝑐,𝑏 , 𝛽𝑙,𝑐,𝑏 ∈ {0,1}        ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵.  (9) 



 

14 

 

Constraints (2) and (3) ensure that the producer or logistics center has only one possible capacity 

level and one possible emission control level. Constraints (4) ensure that the logistics center meets all 

demands generated by the customer. Constraints (5) ensure the conservation of product flow between 

the logistics center and the producer. Constraints (6) limit the total volume of products transported to 

the logistics center to not exceed the volume specified by the capacity level of the center. Constraints 

(7) limit the capacity of the producer. Constraints (8) and (9) establish the allowable range for the 

decision variables in the first stage. 

4.2.3 The second-stage subproblem’s objective 

The objective of the subproblem in the second stage consists of three parts: expected operating costs, 

expected carbon trading costs, and expected penalty costs for unmet demand. 

𝒬(𝜽, 𝜔) = (𝑃𝐿̃ + 𝐿𝐶̃) + 𝑐0[∑ (∑ (𝜁𝜔𝑠
+ − 𝜁𝜔𝑠

− )𝑠∈S + ∑ (𝜂̃𝜔𝑙
+ − 𝜂̃𝜔𝑙

− )𝑙∈𝐿 )𝜔∈Ω ] +

∑ ∑ 𝑐1(∑ 𝜃𝑙𝑘𝑘∈𝐾 − ∑ 𝜃̃𝜔𝑙𝑘𝑘∈𝐾 )
+

𝑙∈𝐿𝜔∈Ω             (10) 

where 𝑃𝐿̃ = ∑ ∑ ∑ 𝜇̃𝜔𝑠𝑙(𝑔𝑠𝑙
𝐶 + ∑ ∑ 𝑘𝑠𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)𝑙∈𝐿𝑠∈𝑆𝜔∈Ω ; 

𝐿𝐶̃ = ∑ ∑ ∑ 𝜃̃𝜔𝑙𝑘(𝑔𝑙𝑘
𝐶 + ∑ ∑ 𝑛𝑙𝑏

𝑅
𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑙𝑐𝑏)𝑘∈𝐾𝑙∈𝐿𝜔∈Ω . 

The first part (i.e., 𝑃𝐿 ̃ and 𝐿𝐶̃) represents the actual operating cost in scenario 𝜔, which is similar 

to the operating cost in the first stage. The second part is the carbon trading cost in scenario 𝜔, 

represented by 𝑐0[∑ (∑ (𝜁𝜔𝑠
+ − 𝜁𝜔𝑠

− )𝑠∈S + ∑ (𝜂̃𝜔𝑙
+ − 𝜂̃𝜔𝑙

− )𝑙∈𝐿 )𝜔∈Ω ] . Note that the unit of the decision 

variable (i.e., 𝜁𝜔𝑠
+ , 𝜁𝜔𝑠

− , 𝜂̃𝜔𝑙
+ , or 𝜂̃𝜔𝑙

− ) is carbon credit, and one carbon credit equals 1,000 kg of CO2. The 

last part of the expression ∑ ∑ 𝑐1(∑ 𝜃𝑙𝑘𝑘∈𝐾 − ∑ 𝜃̃𝜔𝑙𝑘𝑘∈𝐾 )
+

𝑙∈𝐿𝜔∈Ω  is the penalty cost. It represents the 

difference between the customer demand handled by a logistics center in the first stage and the customer 

demand actually handled by the logistics center in scenario 𝜔 in the second stage. When the demand 

handled in the second stage is less than that in the first stage, we penalize the logistics center using a 

penalty cost 𝑐1. 

4.2.4 The constraints of the second stage 

∑ 𝜃̃𝜔𝑙𝑘𝑙∈𝐿 ≤ 𝑑̃𝜔𝑘         ∀𝑘 ∈ 𝐾, 𝜔 ∈ Ω    (11) 

∑ 𝜇̃𝜔𝑠𝑙𝑠∈𝑆 = ∑ 𝜃̃𝜔𝑙𝑘𝑘∈𝐾        ∀𝑙 ∈ 𝐿, 𝜔 ∈ Ω     (12) 

∑ 𝜃̃𝜔𝑙𝑘𝑘∈𝐾 ≤ ∑ ∑ 𝑚𝑙𝑏
𝑅

𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑙𝑐𝑏     ∀𝑙 ∈ 𝐿, 𝜔 ∈ Ω     (13) 

∑ 𝜇̃𝜔𝑠𝑙𝑙∈𝐿 ≤ ∑ ∑ 𝑚𝑠𝑏
𝐹 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶      ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (14) 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 + ∑ 𝜇̃𝜔𝑠𝑙𝑔𝑠𝑙

𝐸
𝑙∈𝐿 − 𝜁𝜔𝑠

+ + 𝜁𝜔𝑠
− ≤ 𝑒𝑠

𝐹 ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (15) 

∑ ∑ 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 𝑞𝑐𝑙
𝑅 + ∑ 𝜃̃𝜔𝑙𝑘𝑔𝑙𝑘

𝐸
𝑘∈𝐾 − 𝜂̃𝜔𝑙

+ + 𝜂̃𝜔𝑙
− ≤ 𝑒𝑙

𝑅 ∀𝑙 ∈ 𝐿, 𝜔 ∈ Ω     (16) 

𝜁𝜔,𝑠
+ ≤ 𝑜𝑠

𝐹          ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (17) 
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𝜂̃𝜔,𝑙
+ ≤ 𝑜𝑙

𝑅          ∀𝑙 ∈ 𝐿, 𝜔 ∈ Ω     (18) 

𝜁𝜔,𝑠
+ , 𝜁𝜔,𝑠

− , 𝜂̃𝜔,𝑙
+ , 𝜂̃𝜔,𝑙

− , 𝜃̃𝜔,𝑙,𝑘 , 𝜇̃𝜔,𝑠,𝑙 ≥ 0     ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω.  (19) 

Constraints (11) ensure that the demand processed by the logistics center is less than or equal to the 

customer’s demand. Constraints (12)–(14) are similar to the constraints (5)–(7). Constraints (15) and 

(16), respectively, calculate the carbon credits transacted (purchased and sold) by producers and 

logistics centers by leveraging blockchain technology in scenario 𝜔. Constraints (17) and (18) limit the 

carbon credits purchased by producers and logistics centers in scenario 𝜔, respectively. Constraints (19) 

define the decision variables involved in the second stage. 

4.3 Linearization of the objective 

The nonlinear components like ∑ ∑ [𝜇𝑠𝑙(∑ ∑ 𝑘𝑠𝑏
𝐹

𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)]𝑙∈𝐿𝑠∈𝑆   can be linearized by 

introducing additional variables, denoted as 𝜀𝑠𝑏𝑙, and Constraints (20)–(23). 

𝜀𝑠𝑏𝑙 ≤ 𝑀 ∑ 𝛼𝑠𝑐𝑏𝑐∈𝐶         ∀𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿   (20) 

𝜀𝑠𝑏𝑙 ≤ 𝜇𝑠𝑙           ∀𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿   (21) 

𝜀𝑠𝑏𝑙 ≥ 𝜇𝑠𝑙 − 𝑀(1 − ∑ 𝛼𝑠𝑐𝑏𝑐∈𝐶 )      ∀𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿   (22) 

𝜀𝑠𝑏𝑙 ≥ 0          ∀𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿.   (23) 

Then, the above part in the objective can be reformulated as ∑ ∑ ∑ 𝜀𝑠𝑏𝑙𝑘𝑠𝑏
𝐹

𝑙∈𝐿𝑏∈𝐵𝑠𝑠∈𝑆  , 𝑃𝐿′ =

∑ ∑ 𝜇𝑠𝑙𝑔𝑠𝑙
𝐶

𝑙∈𝐿𝑠∈𝑆 + ∑ ∑ ∑ 𝜀𝑠𝑏𝑙𝑘𝑠𝑏
𝐹

𝑙∈𝐿𝑏∈𝐵𝑠𝑠∈𝑆 . 

The second nonlinear term in the objective function ∑ ∑ 𝜃𝑙𝑘𝑘∈𝐾𝑙∈𝐿 (∑ ∑ 𝑛𝑙𝑏
𝑅 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 ) is handled 

similarly. We introduce additional variables, denoted as 𝜅𝑙𝑏𝑘, and the following constraints. 

𝜅𝑙𝑏𝑘 ≤ 𝑀 ∑ 𝛽𝑙𝑐𝑏𝑐∈𝐶         ∀𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾   (24) 

𝜅𝑙𝑏𝑘 ≤ 𝜃𝑙𝑘          ∀𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾   (25) 

𝜅𝑙𝑏𝑘 ≥ 𝜃𝑙𝑘 − 𝑀(1 − ∑ 𝛽𝑙𝑐𝑏𝑐∈𝐶 )      ∀𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾   (26) 

𝜅𝑙𝑏𝑘 ≥ 0          ∀𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾.   (27) 

The new cost function can then be expressed as: 𝐿𝐶′ = ∑ ∑ 𝜃𝑙𝑘𝑔𝑙𝑘
𝐶

𝑘∈𝐾𝑙∈𝐿 +

∑ ∑ ∑ 𝜅𝑙𝑏𝑘𝑘∈𝐾𝑏∈𝐵𝑙𝑙∈𝐿 𝑛𝑙,𝑏
𝑅 . 

Similarly, we linearize the nonlinear part of the objective function of scenario 𝜔 in the same way. 

Such as ∑ ∑ ∑ [𝜇̃𝜔𝑠𝑙(∑ ∑ 𝑘𝑠𝑏
𝐹

𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)]𝑙∈𝐿𝑠∈𝑆𝜔∈Ω  , we define the additional variables 𝜀𝜔̃𝑠𝑏𝑙  and 

Constraints (28)–(31). 

𝜀𝜔̃𝑠𝑏𝑙 ≤ 𝑀 ∑ 𝛼𝑠𝑐𝑏𝑐∈𝐶         ∀𝜔 ∈ Ω, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿  (28) 

𝜀𝜔̃𝑠𝑏𝑙 ≤ 𝜇̃𝜔𝑠𝑙         ∀𝜔 ∈ Ω, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿  (29) 

𝜀𝜔̃𝑠𝑏𝑙 ≥ 𝜇̃𝜔𝑠𝑙 − 𝑀(1 − ∑ 𝛼𝑠𝑐𝑏𝑐∈𝐶 )     ∀𝜔 ∈ Ω, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿  (30) 
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𝜀𝜔̃𝑠𝑏𝑙 ≥ 0          ∀𝜔 ∈ Ω, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵𝑠, 𝑙 ∈ 𝐿.  (31) 

Then, the above part in the objective can be reformulated as ∑ ∑ ∑ ∑ 𝜀𝜔̃𝑠𝑏𝑙𝑙∈𝐿𝑏∈𝐵𝑠𝑠∈𝑆 𝑘𝑠𝑏
𝐹

𝜔∈Ω , 

𝑃𝐿̃′ = ∑ ∑ ∑ 𝜇̃𝜔𝑠𝑙𝑔𝑠𝑙
𝐶

𝑙∈𝐿𝑠∈𝑆𝜔∈Ω + ∑ ∑ ∑ ∑ 𝜀𝜔̃𝑠𝑏𝑙𝑙∈𝐿𝑏∈𝐵𝑠𝑠∈𝑆𝜔∈Ω 𝑘𝑠𝑏
𝐹 . 

The second nonlinear term in the objective function ∑ ∑ ∑ 𝜃̃𝜔𝑙𝑘𝑘∈𝐾𝑙∈𝐿𝜔∈Ω (∑ ∑ 𝑛𝑙𝑏
𝑅 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 ) is 

handled similarly. We introduce additional variables, denoted as 𝜅̃𝜔𝑙𝑏𝑘, and the following constraints. 

𝜅̃𝜔𝑙𝑏𝑘 ≤ 𝑀 ∑ 𝛽𝑙𝑐𝑏𝑐∈𝐶         ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾  (32) 

𝜅̃𝜔𝑙𝑏𝑘 ≤ 𝜃̃𝜔𝑙𝑘         ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾  (33) 

𝜅̃𝜔𝑙𝑏𝑘 ≥ 𝜃̃𝜔𝑙𝑘 − 𝑀(1 − ∑ 𝛽𝑙𝑐𝑏𝑐∈𝐶 )     ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾  (34) 

𝜅̃𝜔𝑙𝑏𝑘 ≥ 0          ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵𝑙 , 𝑘 ∈ 𝐾.  (35) 

The new cost function can then be expressed as 𝐿𝐶̃′ = ∑ ∑ ∑ 𝜃̃𝜔𝑙𝑘𝑔𝑙𝑘
𝐶

𝑘∈𝐾𝑙∈𝐿𝜔∈Ω +

∑ ∑ ∑ ∑ 𝜅̃𝜔𝑙𝑏𝑘𝑘∈𝐾𝑏∈𝐵𝑙𝑙∈𝐿𝜔∈Ω 𝑛𝑙𝑏
𝑅 . 

The objective function contains nonlinear terms such as (∑ 𝜃𝑙𝑘𝑙∈𝐿 − ∑ 𝜃̃𝜔𝑙𝑘𝑙∈∈𝐿 )
+

 , To linearize 

these expressions, we introduce additional variables 𝜊̃𝜔𝑙𝑘
𝜃+

, 𝜊̃𝜔𝑙𝑘
𝜃−

, and impose the following constraints. 

𝜃𝑙𝑘 − 𝜃̃𝜔𝑙𝑘 = 𝜊̃𝜔𝑙𝑘
𝜃+

− 𝜊̃𝜔𝑙𝑘
𝜃−

       ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾   (36) 

𝜊̃𝜔𝑙𝑘
𝜃+

, 𝜊̃𝜔𝑙𝑘
𝜃−

≥ 0         ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾.   (37) 

Then, the objective function (10) is modified as follows. 

𝒬(𝜽, 𝜔) = (𝑃𝐿̃′ + 𝐿𝐶̃′) + 𝑐0[∑ (∑ (𝜁𝜔𝑠
+ − 𝜁𝜔𝑠

− )𝑠∈S + ∑ (𝜂̃𝜔𝑙
+ − 𝜂̃𝜔𝑙

− )𝑙∈𝐿 )𝜔∈Ω ] +

∑ ∑ 𝑐1 ∑ 𝜊̃𝜔𝑙𝑘
𝜃+

𝑙∈𝐿𝑘∈𝐾𝜔∈Ω .              (38) 

Model M1 has been reformulated into an MILP model, denoted as M2. 

[𝐌𝟐] Min  𝑇𝐶 = 𝐹𝐶′ + 𝑃𝐿′ + 𝐿𝐶′ + ∑ 𝑝𝜔𝜔∈Ω 𝒬(𝜽, 𝜔)        (39) 

subject to Constraints (2)–(9), (11)–(37). 

5. Primal decomposition algorithm  

A primal decomposition algorithm is designed to solve the model. Section 5.1 discusses the 

algorithm’s framework. Sections 5.2 and 5.3 provide detailed information on how the algorithm is 

applied within the two-stage stochastic programming model. 

5.1 Algorithmic framework 

A primal decomposition algorithm decomposes a problem into a master problem and a subproblem 

that are generally easier to solve than the original problem. In this context, the master problem and 

subproblem correspond to the problems in the first and second stages. 

Figure 2 shows the algorithm’s framework. The algorithm employs an iterative approach, solving the 
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relaxation of the set-partitioning formulation for the second stage using the second-stage column 

generation (CG) process, detailed in Section 5.2. Concurrently, the first-stage equivalent model is 

solved using a first-stage CG-based algorithm, as explained in Section 5.3. 

 
Figure 2: The overall framework of the primal decomposition algorithm 

The second-stage CG procedure generates columns based on various scenarios, which are then 

incorporated into the first stage. Based on these generated columns, model M1  is converted into 

M1Equ . The first-stage CG-based algorithm is used to solve the first-stage integer programming 

problem, producing a feasible integer solution for the first stage. The first-stage problem is also 

formulated as a set-partitioning problem. To differentiate between the columns from the two stages of 

the problem, the columns from the first stage are referred to as f-columns, whereas those from the 

second stage are called s-columns. Specifically, the s-columns approximate the decisions of the second 

stage and are passed to the first-stage master problem. The f-columns are the columns generated in the 

first stage, which not only include the decisions of the first stage but also contain the selection decisions 

for the sub-columns corresponding to all scenarios in the second stage. 

5.2 The CG for the second stage 

Given any initial first-stage solution, we obtain a scenario-dependent model for each scenario ω. For 

simplicity and to enhance readability, we will omit the scenario index 𝜔 in the following discussion. 

[𝐌𝐒𝐭𝐚𝐠𝐞𝟐]  Min ∑ 𝑝𝜔𝜔∈Ω [∑ ∑ 𝜇̃𝜔𝑠𝑙(𝑔𝑠𝑙
𝐶 + ∑ ∑ 𝑘𝑠𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)𝑙∈𝐿𝑠∈𝑆 + ∑ ∑ 𝜃̃𝜔𝑙𝑘(𝑔𝑙𝑘

𝐶 +𝑘∈𝐾𝑙∈𝐿

∑ ∑ 𝑛𝑙𝑏
𝐹

𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑙𝑐𝑏) + 𝑐0(∑ 𝜁𝜔𝑠𝑠∈S + ∑ (𝜂̃𝜔𝑙
+ − 𝜂̃𝜔𝑙

− )𝑙∈𝐿 ) + ∑ 𝑐1(∑ 𝜃𝑙𝑘𝑙∈𝐿 − ∑ 𝜃̃𝜔𝑙𝑘𝑙∈𝐿 )
+

𝑘∈𝐾 ] (40) 
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subject to Constraints (11)–(19). 

Then the model is expressed as the master problem (MP), denoted as MMP
Stage2

, and the subproblems 

(PPs), denoted as MPP
Stage2

, following standard column generation practices. For each logistics center 𝑙 

in the given scenario, we define the set 𝒫̃𝑙 to include all feasible assignment plans. Each plan in 𝒫̃𝑙 is 

indexed by 𝓅, with the associated cost denoted by 𝑐̃𝓅. We introduce a binary variable 𝜆̃𝓅, 𝓅 ∈ 𝒫̃𝑙, 

where 𝜆̃𝓅 equals one if plan 𝓅 is selected for logistics center 𝑙, and zero otherwise. The parameter 

𝐴̃𝑘
𝓅

  is defined to denote demand from customer 𝑘  assigned to logistics center 𝑙  for processing in 

assignment plan 𝓅. A parameter 𝐵̃𝑠
𝓅

 is defined to denote the number of products transported from 

producer 𝑠  to logistics center 𝑙  in assignment plan 𝓅 . A parameter 𝐶̃𝑠
𝓅

  is defined to denote the 

carbon credits purchased by producer 𝑠 to meet the requirements of logistics center 𝑙 in assignment 

plan 𝓅 . A parameter 𝐷̃𝑠
𝓅

  is defined to denote the carbon credits sold by producer 𝑠  to meet the 

requirements of logistics center 𝑙 in assignment plan 𝓅. 

[𝐌𝐑𝐌𝐏
𝐒𝐭𝐚𝐠𝐞𝟐

] Min ∑ ∑ 𝑐̃𝓅𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿             (41) 

subject to 

∑ 𝜆̃𝓅𝓅∈𝒫̃𝑙
= 1         ∀𝑙 ∈ 𝐿      (42) 

∑ ∑ 𝐴̃𝑘
𝓅

𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿 ≤ 𝑑̃𝜔𝑘       ∀𝑘 ∈ 𝐾      (43) 

∑ ∑ 𝐵̃𝑠
𝓅

𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿 ≤ ∑ ∑ 𝑚𝑠𝑏
𝐹 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶     ∀𝑠 ∈ 𝑆      (44) 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 + ∑ ∑ 𝐵̃𝑠

𝓅
𝑔𝑠𝑙

𝐸 𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿 − ∑ ∑ 𝐶̃𝑠
𝓅

𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿 + ∑ ∑ 𝐷̃𝑠
𝓅

𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿 ≤ 𝑒𝑠
𝐹  

∀𝑠 ∈ 𝑆      (45) 

∑ ∑ 𝐶̃𝑠
𝓅

𝜆̃𝓅𝓅∈𝒫̃𝑙𝑙∈𝐿 ≤ 𝑜𝑠
𝐹       ∀𝑠 ∈ 𝑆      (46) 

𝜆̃𝓅 ≥ 0           ∀𝑙 ∈ 𝐿, 𝓅 ∈ 𝒫̃𝑙.    (47) 

Objective (41) aims to minimize the total cost associated with the selected feasible plans (s-columns). 

Constraints (42) ensure that each logistics center 𝑙 is assigned at most one feasible plan. Constraints 

(43) guarantee that the demand processed by logistics center 𝑙  does not exceed its total demand. 

Constraints (44) and (45) restrict the quantity of products shipped from producer 𝑠 to logistics center 

𝑙 that it remains within the producer’s production capacity and carbon emission limits. Constraints (46) 

limit the maximum amount of carbon credits purchased by producer 𝑠. During each iteration, dual 

variables from MMP
Stage2

 are used in the MPP
Stage2

 to generate new s-columns. Here, π𝑙, ρ𝑘, 𝜚𝑠, τ𝑠, 

and 𝜑𝑠 are dual variables for Constraints (42)–(46), respectively. 

The CG procedure involves breaking down the MPP
Stage2

  into |𝐿|  distinct subproblems, each 
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corresponding to a particular logistics center. The following describes the formulation of the pricing 

subproblem, designed to generate feasible plans (s-columns) for each logistics center. 

[𝐌𝐏𝐏
𝐒𝐭𝐚𝐠𝐞𝟐

] Min 𝑐̃𝓅 − [π𝑙 + ∑ 𝜌𝑘𝜃̃𝜔𝑘𝑘∈𝐾 + ∑ ϱ𝑠𝜇̃𝜔𝑠𝑠∈𝑆 + ∑ 𝜏𝑠𝑠∈𝑆 (𝑔𝑠𝑙
𝐸 𝜇̃𝜔𝑠 − 𝜁𝜔𝑠

+ + 𝜁𝜔𝑠
− ) +

+ ∑ 𝜑𝑠𝜁𝜔𝑠
+

𝑠∈𝑆 ]                 (48) 

subject to Constraints (12)–(13), (16), and (18) in·which the logistics center index 𝑙 is omitted in the 

subscripts of the related parameters and the·variables. 

𝑐̃𝓅 = ∑ 𝜇̃𝜔𝑠(𝑔𝑠
𝐶 + ∑ ∑ 𝑘𝑠𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)𝑠∈𝑆 + ∑ 𝜃̃𝜔𝑘[𝑔𝑘

𝐶 + ∑ ∑ 𝑛𝑏
𝑅

𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑐𝑏]𝑘∈𝐾 +

𝑐0[∑ (𝜁𝜔𝑠
+ − 𝜁𝜔𝑠

− )𝑠∈S + (𝜂̃𝜔
+ − 𝜂̃𝜔

−)] + 𝑐1 ∑ (𝜃𝑘 − 𝜃̃𝜔𝑘)
+

𝑘∈𝐾         (49) 

Objective (48) aims to minimize the reduced cost associated with the optimal assignment plan. 

Constraint (49) calculates the total cost of the logistics center plan. 

5.3 The CG for the first stage 

We developed a model M1Equ  equivalent to the original model M1 , and defined the Restricted 

Master Problem (RMP) and Pricing Problem (PP) for this model. Note that each column of the 

equivalent model consists of a series of sub-columns (i.e., columns from the first-stage CG), with the 

number of sub-columns corresponding to the number of second-stage scenarios. Additionally, new 

parameters and decision variables were defined. 

Newly defined parameters and sets: 

𝒫̃𝜔𝑙 represent the collection of all sub-columns for logistics center 𝑙 in scenario 𝜔, indexed by 

𝓅; 

𝑟̃𝜔𝑙𝑘𝑝 in the sub-column indexed by 𝓅 within scenario ω, the demand of customer 𝑘 handled by 

logistics center 𝑙; 𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙; 

𝑗𝜔̃𝑠𝑙𝑝 in the sub-column indexed by 𝓅  within scenario ω , the number of products transported 

from producer 𝑠 to logistics center 𝑙, 𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙; 

𝑧̃𝜔𝑠𝑙𝑝
+  in the sub-column indexed by 𝓅  within scenario ω , the carbon credits purchased by 

producer 𝑠 to meet the transportation needs of logistics center 𝑙, 𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙; 

𝑧̃𝜔𝑠𝑙𝑝
−  in the sub-column indexed by 𝓅 within scenario ω, the carbon credits sold by producer 𝑠 

to meet the transportation needs of logistics center 𝑙, 𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙; 

𝑤̃𝜔𝑙𝑝
+  in the sub-column indexed by 𝓅  within scenario ω , the carbon credits purchased by 

logistics center 𝑙, 𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙; 

𝑤̃𝜔𝑙𝑝
−  within the sub-column 𝓅 within scenario ω, the carbon credits sold by logistics center 𝑙, 

𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙. 



 

20 

 

Newly defined variables: 

𝜒̃𝜔𝑙𝑝 binary; equals one when sub-column 𝓅 is chosen for logistics center 𝑙 in scenario 𝜔, 𝜔 ∈

Ω, 𝓅 ∈ 𝒫̃𝜔𝑙. 

𝜗̃𝜔𝑙𝓅 cost associated with sub-column 𝓅 for logistics center 𝑙 in scenario 𝜔,  

Then, we formulate M1Equ  as follows. Note that in order to adapt the CG algorithm, a new 

parameter 𝛼𝑠𝑐𝑏𝑙
′  is defined in the M1Equ to the decision variable 𝛼𝑠𝑐𝑏. 

[𝐌𝟏𝐄𝐪𝐮] Min 𝐹𝐶 + 𝑃𝐿 + 𝐿𝐶 + ∑ ∑ ∑ 𝑝𝜔𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿𝜔∈Ω 𝜗̃𝜔𝑙𝓅𝜒̃𝜔𝑙𝑝      (50) 

subject to Constraints (2)–(9). 

∑ 𝜒̃𝜔𝑙𝑝 = 1𝓅∈𝒫̃𝜔𝑙
         ∀𝑙 ∈ 𝐿, 𝜔 ∈ Ω     (51) 

∑ ∑ 𝑟̃𝜔𝑙𝑘𝑝𝜒̃𝜔𝑙𝑝𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ≤ 𝑑̃𝜔𝑘      ∀𝑘 ∈ 𝐾, 𝜔 ∈ Ω    (52) 

∑ ∑ 𝑗𝜔̃𝑠𝑙𝑝𝜒̃𝜔𝑙𝑝𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ≤ ∑ ∑ 𝑚𝑠𝑏
𝐹 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶    ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (53) 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 + ∑ ∑ 𝑗𝜔̃𝑠𝑙𝑝𝑔𝑠𝑙

𝐸 𝜒̃𝜔𝑙𝑝𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 − ∑ ∑ 𝑧̃𝜔𝑠𝑙𝑝
+

𝓅∈𝒫̃𝜔𝑙
𝜒̃𝜔𝑙𝑝𝑙∈𝐿 +

∑ ∑ 𝑧̃𝜔𝑠𝑙𝑝
− 𝜒̃𝜔𝑙𝑝𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ≤ 𝑒𝑠

𝐹       ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (54) 

∑ ∑ 𝑧̃𝜔𝑠𝑙𝑝
+ 𝜒̃𝜔𝑙𝑝𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ≤ 𝑜𝑠

𝐹      ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (55) 

𝛼𝑠𝑐𝑏𝑙
′ = 𝛼𝑠𝑐𝑏         ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿  (56) 

𝜗̃𝜔𝑙𝓅 = ∑ 𝑗𝜔̃𝑠𝑙𝑝(𝑔𝑠𝑙
𝐶 + ∑ ∑ 𝑘𝑠𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏𝑙

′ )𝑠∈𝑆 + ∑ 𝑟̃𝜔𝑙𝑘𝑝𝑘∈𝐾 (𝑔𝑙𝑘
𝐶 + ∑ ∑ 𝑛𝑏

𝑅
𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑙𝑐𝑏) +

𝑐0[∑ (𝑧̃𝜔𝑠𝑙𝑝
+ − 𝑧̃𝜔𝑠𝑙𝑝

− )𝑠∈S + (𝑤̃𝜔𝑙𝑝
+ − 𝑤̃𝜔𝑙𝑝

− )] + ∑ 𝑐1(𝜃𝑙𝑘 − 𝑟̃𝜔𝑙𝑘𝑝)
+

𝑘∈𝐾       

            ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝓅 ∈ 𝒫̃𝜔𝑙   (57) 

𝜒̃𝜔𝑙𝑝, 𝛼𝑠𝑐𝑏 , 𝛼𝑠𝑐𝑏𝑙
′ , 𝛽𝑙𝑐𝑏 ∈ {0,1}   ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝓅 ∈ 𝒫̃𝜔𝑙 , 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵  (58) 

𝜃𝑙𝑘, 𝜇𝑠𝑙 ≥ 0          ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾.   (59) 

The nonlinear components like ∑ ∑ ∑ 𝑝𝜔𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿𝜔∈𝛺 𝜗̃𝜔𝑙𝓅𝜒̃𝜔𝑙𝑝 can be linearized by introducing 

additional variables, denoted as 𝜓𝜔𝑙𝑝. To achieve this, we impose a new set of constraints. 

𝜓𝜔𝑙𝑝 ≤ 𝜗̃𝜔𝑙𝓅         ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑝 ∈ 𝑃   (60) 

𝜓𝜔𝑙𝑝 ≤ 𝑀𝜒̃𝜔𝑙𝑝         ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑝 ∈ 𝑃   (61) 

𝜓𝜔𝑙𝑝 ≥ 𝜗̃𝜔𝑙𝓅 − 𝑀(1 − 𝜒̃𝜔𝑙𝑝)      ∀𝜔 ∈ Ω, 𝑙 ∈ 𝐿, 𝑝 ∈ 𝑃   (62) 

With the newly introduced variables and constraints, model M1Equ is reformulated into an MILP 

model. 

[𝐌𝟏𝐄𝐪𝐮] Min 𝐹𝐶 + 𝑃𝐿 + 𝐿𝐶 + ∑ ∑ ∑ 𝑝𝜔𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿𝜔∈Ω 𝜓𝜔𝑙𝑝       (63) 

subject to Constraints (2)–(9), (51)–(59), (60)–(62). 

By utilizing the sub-columns from the sets 𝒫̃𝜔𝑙 , second-stage decisions across all scenarios are 
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incorporated into the first-stage master problem via Constraints (56) to (64). We then restructure the 

equivalent model M1Equ into a set covering model. In our approach, the algorithm iterates between 

solving M1Equ to obtain a valid first-stage solution (i.e., a baseline schedule), and generating new s-

columns from the second stage by applying the second-stage column generation process in MStage2. 

The complete set of all feasible assignment plans for logistics center 𝑙 is represented as Γ𝑙, where each 

individual assignment plan, indexed by ℓ𝑙, corresponds to a column. A binary decision variable 𝜆ℓ𝑙
 is 

assigned to each column, taking the value of one if column ℓ𝑙 is selected for logistics center 𝑙, and 

zero otherwise. The cost for each column ℓ𝑙 is denoted by 𝑐ℓ𝑙
. A parameter 𝛼𝑠𝑐𝑏𝑙

′  is defined to denote 

producer 𝑠 sited in a location with a level of emission control 𝑐 and a level of production capacity 𝑏 

for the logistics center 𝑙. A parameter 𝐺𝑘
ℓ𝑙 is defined to denote demand from customer 𝑘 assigned to 

logistics center 𝑙  in column ℓ𝑙 . A parameter 𝑈𝑠
ℓ𝑙  is defined to denote the number of products 

transported from producer 𝑠 to logistics center 𝑙 in column ℓ𝑙. A parameter 𝐿𝜔𝑝
ℓ𝑙  is set to one when 

plan 𝓅 ∈ 𝒫̃𝜔𝑙 is chosen in column ℓ𝑙. A parameter 𝐻𝑠𝑐𝑏
ℓ𝑙  is defined to equals one if producer 𝑠 sited 

in a location with a level of emission control 𝑐 and a level of production capacity 𝑏 for the logistics 

center 𝑙 in column ℓ𝑙. 

[𝐌𝟏𝑹𝑴𝑷 
𝑬𝒒𝒖

] Min ∑ ∑ 𝑐ℓ𝑙
𝜆ℓ𝑙

 ℓ𝑙∈Γ𝑙𝑙∈𝐿             (64) 

subject to 

∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙
= 1         ∀𝑙 ∈ 𝐿      (65) 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 ≤ 1`        ∀𝑠 ∈ 𝑆      (66) 

∑ ∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙
𝐺𝑘

ℓ𝑙
𝑙∈𝐿 ≥ 𝑑𝑘       ∀𝑘 ∈ 𝐾      (67) 

∑ ∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙
𝑈𝑠

ℓ𝑙
𝑙∈𝐿 ≤ ∑ ∑ 𝑚𝑠𝑏

𝐹 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶     ∀𝑠 ∈ 𝑆      (68) 

∑ ∑ 𝑟̃𝜔𝑙𝑘𝑝𝐿𝜔𝑝
ℓ𝑙

𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ∑ 𝜆ℓ𝑙ℓ𝑙∈𝛤𝑙
≤ 𝑑̃𝜔𝑘    ∀𝑘 ∈ 𝐾, 𝜔 ∈ Ω    (69) 

∑ ∑ 𝑗𝜔̃𝑠𝑙𝑝𝐿𝜔𝑝
ℓ𝑙

𝓅∈𝒫̃𝜔𝑙
∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙𝑙∈𝐿 ≤ ∑ ∑ 𝑚𝑠𝑏

𝐹 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶  ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (70) 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 + ∑ ∑ 𝑗𝜔̃𝑠𝑙𝑝𝑔𝑠𝑙

𝐸 𝐿𝜔𝑝
ℓ𝑙

𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙
− ∑ ∑ 𝑧̃𝜔𝑠𝑝

+
𝓅∈𝒫̃𝜔𝑙

𝐿𝜔𝑝
ℓ𝑙 ∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙𝑙∈𝐿 +

∑ ∑ 𝑧̃𝜔𝑠𝑝
− 𝐿𝜔𝑝

ℓ𝑙 ∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙𝓅∈𝒫̃𝜔𝑙𝑙∈𝐿 ≤ 𝑒𝑠
𝐹     ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (71) 

∑ ∑ 𝑧̃𝜔𝑠𝑝
+ 𝐿𝜔𝑝

ℓ𝑙
𝓅∈𝒫̃𝜔𝑙

∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙𝑙∈𝐿 ≤ 𝑜𝑠
𝐹    ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (72) 

𝐻𝑠𝑐𝑏
ℓ𝑙 ∑ 𝜆ℓ𝑙ℓ𝑙∈Γ𝑙

= 𝛼𝑠𝑐𝑏       ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿  (73) 

𝛼𝑠𝑐𝑏 ∈ {0,1}         ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵   (74) 

𝜆ℓ𝑙
≥ 0          ∀𝑙 ∈ 𝐿.      (75) 
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During each iteration, the dual variables from M1𝑴𝑷
𝑬𝒒𝒖

 are passed to the subproblem (PP) to generate 

new columns. Here, 𝑦𝑙 , 𝑢𝑘 , 𝜛𝑠 , 𝜍𝜔𝑘 , 𝜎𝜔𝑠 , 𝜉𝜔𝑠 , 𝜄𝜔𝑠  and ð𝑠𝑐𝑏𝑙  are dual variables for Constraints 

(65) and Constraints (67)–(73), respectively. 

The PP is split into |𝐿| separate pricing subproblems, with each one assigned to a specific logistics 

center. The subproblem for generating f-columns for logistics center 𝑙  is denoted as PP𝑙  and 

formulated as the M1𝑃𝑃 
𝐸𝑞𝑢

. The new variables defined for the PP are as follows. 

𝜒̃𝜔𝑝 binary; equals one when sub-column 𝓅 is chosen for logistics center 𝑙 in scenario 𝜔, 𝜔 ∈

Ω, 𝓅 ∈ 𝒫̃𝜔𝑙; 

𝜗̃𝜔𝓅 cost associated with sub-column 𝓅 for logistics center 𝑙 in scenario 𝜔, 𝜔 ∈ Ω, 𝓅 ∈ 𝒫̃𝜔𝑙. 

Since the variables mentioned are utilized in the pricing subproblem for a single logistics center, the 

index 𝑙 is omitted from the variable subscripts for simplicity. 

[𝐌𝟏𝑷𝑷 
𝑬𝒒𝒖

]  Min 𝑐ℓ𝑙
− (𝑦𝑙 + ∑ 𝜃𝑘𝑘∈𝐾 𝑢𝑘 + ∑ 𝜇𝑠𝑠∈𝑆 𝜛𝑠 + ∑ ∑ ∑ 𝑟̃𝜔𝑘𝑝𝜒̃𝜔𝑝𝜍𝜔𝑘𝑘∈𝐾𝓅∈𝒫̃𝜔𝑙𝜔∈Ω +

∑ ∑ ∑ 𝑗𝜔̃𝑠𝑝𝜒̃𝜔𝑝𝜎𝜔𝑠𝑠∈𝑆𝓅∈𝒫̃𝜔𝑙𝜔∈Ω + ∑ ∑ ∑ 𝜉𝜔𝑠𝑠∈𝑆𝓅∈𝒫̃𝜔𝑙𝜔∈Ω (𝑗𝜔̃𝑠𝑝𝑔𝑠
𝐸𝜒̃𝜔𝑝 − 𝑧̃𝜔𝑠𝑝

+ 𝜒̃𝜔𝑝 + 𝑧̃𝜔𝑠𝑝
− 𝜒̃𝜔𝑝) +

∑ ∑ ∑ 𝜄𝜔𝑠𝑠∈𝑆𝓅∈𝒫̃𝜔𝑙𝜔∈Ω 𝑧̃𝜔𝑠𝑝
+ 𝜒̃𝜔𝑝 + ∑ ∑ ∑ ð𝑠𝑐𝑏𝛼𝑠𝑐𝑏

′
𝑏∈𝐵𝑠𝑐∈𝐶𝑠∈𝑆 )       (76) 

subject to Constraints (3), (5), (6), (51), (57) and (58)–(59) in·which the logistics center index 𝑙 is 

omitted in the subscripts of the related parameters and the·variables. 

𝑐ℓ𝑙
= ∑ ∑ ∑ 𝑓𝑠𝑐𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 /𝐿𝛼𝑠𝑐𝑏

′
𝑠∈𝑆 + ∑ ∑ 𝑓𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑐𝑏 + ∑ 𝜇𝑠(𝑔𝑠

𝐶 + ∑ ∑ 𝑘𝑠𝑏
𝐹

𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏
′ )𝑠∈𝑆 +

∑ 𝜃𝑘𝑘∈𝐾 (𝑔𝑘
𝐶 + ∑ ∑ 𝑛𝑏

𝐹𝛽𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 ) + ∑ ∑ 𝑝𝜔𝓅∈𝒫̃𝜔𝑙𝜔∈Ω 𝜗̃𝜔𝓅𝜒̃𝜔𝑝       (77) 

The objective (76) aims to minimize the cost of the assignment plan. Constraint (77) calculates the 

cost of the assignment plan for the logistics center.  

6. Numerical experiments 

To assess the effectiveness of the proposed model and the efficiency of the primal decomposition 

algorithm, numerical experiments were performed on a workstation equipped with an Intel Xeon Gold 

5218R CPU running at 2.10 GHz and 32 GB of RAM. The models and algorithms were implemented 

using C# in Visual Studio 2022, utilizing the ILOG CPLEX 22.1.0 solver. Each instance was allocated 

a maximum of 3,600 seconds for computation. 

6.1 Experimental settings 

We use SAIC as a case study, utilizing data from the organization to conduct numerical experiments 

to validate our model and algorithm. SAIC is one of the largest automobile manufacturers in China. It 

is headquartered in Shanghai and has multiple production bases and logistics centers in provinces such 
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as Shanghai, Shandong, Hubei, Fujian, and Liaoning. These facilities include various automobile 

manufacturing and assembly plants, forming a complex and extensive supply chain network. In recent 

years, SAIC has actively promoted green manufacturing and sustainable development by implementing 

measures to reduce carbon emissions and achieve environmentally friendly production practices. Figure 

3 illustrates the geographic distribution of SAIC’s customer segments and the potential candidate sites 

for their production facilities and logistics centers. In the figure, larger circular icons (representing 

customer segments) indicate higher local customer demand. The test data are extrapolated from 

historical operational records. Appendix A comprehensively describes the primary input parameters 

used in the mathematical model. 

 
Figure 3: Layout of potential facility locations and customer positions 

We create 4 experimental groups, and the largest ISG has 100 uncertain scenarios. Table 1 details the 

specific settings for the set of instances. 

Table 1: Scale of instance groups employed in the experiments 

Group ID No. of producers No. of logistics centers No. of customers No. of scenarios 

ISG1 2 3 3 5 

ISG2 5 7 7 25 

ISG3 6 8 8 50 

ISG4 6 8 8 100 

6.2 Solution quality 

We begin by evaluating small–scale instances to compare the optimal performance of CPLEX, our 

proposed primal decomposition algorithm, and a lower bound (LB) that relaxes the binary variables 

𝛽𝑙𝑐𝑏. The results from testing randomly generated instances in the ISG1 and ISG2 groups, detailed in 
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Table 2, show that CPLEX can only handle the initial set of small-scale instances, ISG1, which consists 

of five scenarios. The computation time the solver requires for ISG1 is slightly less than our algorithm 

requires. However, as the problem size increases, the computation time required by CPLEX rises 

sharply. As indicated by the gap value (𝐺𝐴𝑃2 ) in Table 2, our approach achieves optimal solutions 

consistently (with an average deviation of 0 from the optimal solutions), demonstrating its reliability. 

Table 2: Performance of the algorithm on small-scale instances 

Instances  CPLEX  LB  Primal decomposition algorithm 

Group ID  𝐹𝐶𝑃𝐿𝐸𝑋 𝑡𝐶𝑃𝐿𝐸𝑋  𝐹𝐿𝐵  𝐹𝐷𝐶𝐺 𝑡𝐷𝐶𝐺 𝐺𝐴𝑃1 𝐺𝐴𝑃2 

ISG1 

1-1  70632 0.33  63,252  70,632 9.06 11.67% 0.00% 

1-2  65504 0.25  55,608  65,504 6.67 17.80% 0.00% 

1-3  62702 0.25  53,639  62,702 7.06 16.90% 0.00% 

1-4  80977 0.47  68,217  80,977 9.19 18.70% 0.00% 

 1-5  67581 0.25  52,813  67,582 8.50 27.96% 0.00% 

ISG2 

2-1  — —  185,153  206,832 50.70 11.71% — 

2-2  — —  170,759  179,058 32.58 4.86% — 

2-3  — —  170,211  190,536 48.78 11.94% — 

2-4  — —  139,192  169,600 39.83 21.85% — 

2-5  — —  128,427  150,624 60.02 17.28% — 

Average           16.07% 0.00% 

Notes: (1) 𝐹𝐶𝑃𝐿𝐸𝑋, 𝐹𝐿𝐵 and 𝐹𝐷𝐶𝐺 denote the objective values of the solutions obtained from CPLEX, the LB, 

and the primal decomposition algorithm, respectively. The units of these objective values are in ten thousand 

RMB. (2) 𝑡𝐶𝑃𝐿𝐸𝑋 and 𝑡𝐷𝐶𝐺 represent the computation times, in seconds, for the CPLEX solver and the primal 

decomposition algorithm, respectively. (3) 𝐺𝑎𝑝1 = (𝐹𝐷𝐶𝐺 − 𝐹𝐿𝐵)/𝐹𝐿𝐵 ; 𝐺𝑎𝑝2 = (𝐹𝐶𝑃𝐿𝐸𝑋 − 𝐹𝐷𝐶𝐺)/𝐹𝐶𝑃𝐿𝑋𝐸  . (4) 

The symbol“—” indicates that CPLEX was unable to solve the instances within the 3600-second time limit. 

The CPLEX solver is not effective at solving large-scale instances. To further demonstrate the 

efficacy of our algorithm, we perform tests on large-scale instances and compare the results of the 

primal decomposition algorithm against those of the LB. As shown in Table 3, the average deviation 

(GAP3) between the results of our algorithm and the LB is around 11.10%, similar to the average 

deviation of 16.07% observed for smaller instances. CPLEX fails to solve any test cases in ISG2, ISG3, 

and ISG4 within 1 hour. In contrast, the primal decomposition algorithm obtains solutions for each 

instance within 5 minutes, demonstrating its effectiveness in large-scale instances. 

Table 3: Performance of the algorithm on large-scale instances 

Instances  LB  Primal decomposition algorithm 

Group ID  𝐹𝐿𝐵  𝐹𝐷𝐶𝐺 𝑡𝐷𝐶𝐺 𝐺𝐴𝑃1 

ISG3 

3-1  203,301  231,616  116.65  13.93% 

3-2  192,416  221,088  96.10  14.90% 

3-3  185,317  215,006  77.78  16.02% 

3-4  194,579  225,643  72.63  15.96% 

3-5  187,398  217,529  88.89  16.08% 

ISG4 

4-1  327,690  347,617 186.47  6.08% 

4-2  236,647  257,420  266.78 8.78% 

4-3  279,510  300,284  236.87  7.43% 

4-4  387,364  412,762  299.85  6.56% 
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4-5  330,424  347,738  245.64  5.24% 

Average       11.10% 

Notes: (1) 𝐹𝐿𝐵  and 𝐹𝐷𝐶𝐺  denote the objective values of the solutions obtained from LB and primal 

decomposition algorithm, respectively. The units of these objective values are in ten thousand RMB. (2) 𝑡𝐷𝐶𝐺 

represents the computation times, in seconds, for primal decomposition algorithm. (3) 𝐺𝑎𝑝1 = (𝐹𝐷𝐶𝐺 − 𝐹𝐿𝐵)/𝐹𝐿𝐵. 

6.3 Benefits of stochastic programming 

In this paper, we adopt a stochastic programming approach to address uncertainty in customer 

demand in supply chains. To demonstrate the advantages of this method, we define three distinct 

decision-making approaches and conduct a series of experiments to compare them. 

Method 1: This method employs a stochastic model (i.e., the proposed model M1) to optimize the 

problem under various uncertainty scenarios. The resulting objective value is denoted by 𝑍1. 

Method 2: This method uses a deterministic model. The model is constructed based on the original 

model but operates under a single scenario. In this scenario, each random parameter (such as customer 

demand) is replaced with its expected value, the average across all scenarios. The first stage of the 

problem is solved under this deterministic setup, and the second stage is then solved based on the 

solution from the first stage. The objective value of this method is denoted as 𝑍2. 

Method 3: This approach addresses the problem by solving a set of deterministic models, each 

representing a specific scenario derived from actual customer demand. Following the resolution of these 

models, the average of their objective values is calculated and referred to as 𝑍3. 

Table 4: Experimental results on the benefits of stochastic programming 

Instances 𝑍1 𝑍2 𝑍3 𝑔𝑎𝑝𝑠𝑡𝑜𝑐ℎ𝑎 𝑔𝑎𝑝𝑖𝑛𝑓𝑜 

Group ID 

ISG2 2-6 380,048 396,792 377,350 4.41% 0.71% 

2-7 297,297 312,561 294,245 5.13% 1.03% 

2-8 559,387 588,776 548,485 5.25% 1.95% 

2-9 345,116 366,580 339,801 6.22% 1.54% 

2-10 441,107 470,506 428,758 6.67% 2.80% 

2-11 211,091 226,844 201,898 7.46% 4.35% 

2-12 341,569 368,120 334,157 7.77% 2.17% 

2-13 107,596 120,786 104,115 12.26% 3.24% 

2-14 233,204 262,167 226,351 12.42% 2.94% 

2-15 126,630 143,646 123,514 13.44% 2.46% 

Average     8.10% 2.32% 

Notes: (1) The units of these objective values are in ten thousand RMB. (2) 𝑔𝑎𝑝𝑠𝑡𝑜𝑐ℎ𝑎 = (𝑍2 − 𝑍1)/𝑍1  and 

𝑔𝑎𝑝𝑖𝑛𝑓𝑜 = (𝑍3 − 𝑍1)/𝑍1. 

𝑍1 is generally less than or equal to 𝑍2, and the disparity between these two values represents the 

cost associated with disregarding uncertainty in the decision-making process. This difference is referred 

to as the value of the stochastic solution, 𝑉𝑎𝑙𝑠𝑡𝑜𝑐ℎ𝑎 = 𝑍2 − 𝑍1, and it quantifies the impact of ignoring 

stochastic factors. Method 3 is often impractical in real-world scenarios due to the challenges inherent 

in accurately predicting customer demand. In such cases, 𝑍3 is often considered as a lower bound for 
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𝑍1 . The disparity between 𝑍1  and 𝑍3  is referred to as the value of perfect information, 𝑉𝑎𝑙𝑖𝑛𝑓𝑜 =

𝑍3 − 𝑍1, and it quantifies the impact of uncertainty and the potential benefits of accurate information. 

Therefore, it is critical to incorporate stochastic factors into the initial stages of scheduling methods. 

The results of the comparative experiments are summarized in Table 4. In the table, the percentages of 

𝑉𝑎𝑙𝑠𝑡𝑜𝑐ℎ𝑎 and 𝑉𝑎𝑙𝑖𝑛𝑓𝑜 relative to the target value of the original model are represented by 𝑔𝑎𝑝𝑠𝑡𝑜𝑐ℎ𝑎 

and 𝑔𝑎𝑝𝑖𝑛𝑓𝑜, respectively. These results underscore the importance of considering uncertainty during 

the optimization process. 

6.4 Managerial insights from sensitivity analysis 

We conduct several experiments to obtain insights for managing sustainability in supply chains. 

(1) Sensitivity analysis of customer demand 

We perform a series of sensitivity analyses to assess how various levels of certain and uncertain 

demand affect the overall cost of the supply chain. These analyses are conducted using the ISG3 scale, 

and the findings are illustrated in Figure 4. 

 
Figure 4: Sensitivity analysis of customer demand 

Figure 4(a) illustrates that total supply chain costs increase as the average certain customer demand  

(𝑑𝑘) grows along the horizontal axis when the average uncertain customer demand across all uncertainty 

scenarios (𝑑̃𝜔𝑘) is fixed at 220. The term “average customer demand” refers to “expected customer 

demand”, typically derived from historical data or forecasts that provide a consistent value. In our model, 

this demand represents a scenario where uncertainty is not considered. “Average uncertain customer 

demand” refers to the average demand across all uncertain scenarios. Considering potential variations 

or fluctuations in customer demand, we use the average value to represent the unpredictability of 

demand under such conditions. Notably, when certain demand reaches the same level as uncertain 

demand (i.e., 𝑑̃𝜔𝑘 = 220), the increase in costs becomes more pronounced. Our mathematical model 

and real-world observations can explain this phenomenon: certain demand represents information 

known to supply chain members and primarily influences first-stage decisions, such as facility location 

and capacity planning. An increase in demand leads to higher production and transportation 
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requirements, and existing capacity may become insufficient, necessitating additional facilities and 

increasing costs. When first-stage certain demand surpasses second-stage uncertain demand, the actual 

uncertain demand handled by the supply chain is less than initially planned, a scenario commonly 

observed in real-world supply chains. For example, due to market fluctuations and emission reduction 

requirements, the actual customer demand handled by the supply chain may be lower than previously 

estimated. In such cases, the unmet demand causes the supply chain to incur penalties, which are 

reflected as additional costs in our model, resulting in a more significant increase in cost. Therefore, 

supply chain members should strive to accurately forecast uncertain demand and mitigate the impact of 

demand fluctuations on the supply chain to minimize costs. 

Figure 4(b) shows that when the average certain customer demand (𝑑𝑘) is fixed at 80, the total supply 

chain costs decrease as the average uncertain customer demand across all scenarios of uncertainty (𝑑̃𝜔𝑘) 

increases along the horizontal axis, eventually stabilizing. Consistent with the analysis depicted in 

Figure 4(a), when uncertain demand is lower than certain demand (in the 60-80 range on the horizontal 

axis of Figure 4(b)), the total supply chain costs fluctuate significantly. The total supply chain costs 

decline most sharply when uncertain demand is less than and approaches certain demand (𝑑𝑘 = 80). 

As uncertain demand exceeds certain demand, the cost decreases, but at a slower rate, until it stabilizes. 

This is because handling higher uncertain demand reduces penalty costs. Still, carbon quotas and carbon 

credit limits prevent the supply chain from meeting demand indefinitely, causing costs to reach a lower 

bound. Therefore, supply chain members should strive to meet demand as much as possible while 

considering emission reduction requirements to avoid overproduction. 

(2) Sensitivity analysis on the ratio of carbon quota for producers and logistics center 

Secondly, the influence of the ratio of the carbon quota of producers to that of logistics centers on the 

total cost of the supply chain is investigated. To explore differences in the decision-making outcomes 

at different scales, we conduct experiments using examples of both small-scale and large-scale supply 

chains. The results are shown in Figure 5. 

 
Figure 5: Sensitivity analysis of the ratio of the carbon quota of producers to that of logistics centers 

As shown in Figure 5, total supply chain costs decrease as the carbon quota ratio between producers 
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and logistics centers decreases in both small-scale and large-scale scenarios. In both cases, the most 

significant cost reduction occurs when the ratio is 1.4, after which the cost reduction trend gradually 

slows as the ratio continues to decrease. This is because a smaller ratio implies a relatively larger carbon 

quota for logistics centers than producers, allowing logistics centers to sell more carbon credits, thereby 

reducing costs. 

In practical terms, logistics centers, which serve as transportation hubs connecting producers and 

customers, tend to emit more carbon dioxide during transportation than producers. Moreover, 

transportation-related carbon emissions constitute a significant portion of the total emissions across the 

supply chain. This highlights the importance of strategically allocating carbon quotas, ensuring that 

logistics centers, often the largest emitters, have sufficient quotas to avoid excessive carbon credit costs. 

Therefore, supply chain managers should prioritize minimizing distances between supply chain nodes 

to reduce transportation-related emissions in real-world scenarios. Additionally, efforts should be made 

to allocate more carbon quota to logistics centers to optimize cost-efficiency and carbon management.  

(3) Sensitivity analysis of minimum production capacity 

Finally, we examine the impact of producers’ minimum production capacity levels on the total supply 

chain costs. To explore differences in the decision-making outcomes across different scales, we conduct 

experiments using examples of both small-scale and large-scale supply chains. The results are shown 

in Figure 6. 

 
Figure 6: Sensitivity analysis of the minimum level of producers’ capacity 

As shown in the figure, regardless of scale, total supply chain costs decrease as producers’ minimum 

production capacity increases, eventually reaching a lower bound. This is because higher minimum 

production capacity reduces the number of producers required to meet fixed demand, thereby lowering 

initial facility location and operational costs. Additionally, as more demand is satisfied, penalty costs 

decrease, leading to a corresponding reduction in total costs. 

However, when the minimum production capacity reaches a certain threshold (e.g., 640 in Figure 6), 

further capacity increases no longer reduce costs. This is because the existing capacity is sufficient to 

meet demand, and additional production would only result in increased inventory and transportation 
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costs. In our model, increased production also raises the processing volume at logistics centers, thereby 

increasing carbon emissions. Producers and logistics centers may limit production to reduce carbon 

emissions and related trading costs, leading to idle capacity and stabilized costs. 

From a managerial perspective, this indicates the importance of evaluating appropriate capacity 

levels when selecting production equipment. Blindly pursuing higher capacity is not advisable. Instead, 

producers should invest in energy-efficient and environmentally friendly equipment to avoid the waste 

and cost increases associated with overcapacity, which could impact the sustainability and profitability 

of the supply chain. 

6.5 Benefits of blockchain 

A key contribution of this study is integrating blockchain technology into the design of sustainable 

supply chain networks, along with the formulation of smart contract rules to limit carbon emissions and 

optimize carbon trading decisions. The advantages of blockchain are evaluated by comparing the 

proposed model to one that does not incorporate blockchain technology. This evaluation is detailed in 

Appendix B. The results, illustrated in Figure 7, indicate that blockchain technology reduces the total 

cost of the supply chain, as quantified by the gap (%) values. The results also demonstrate that when 

demand (𝑑𝑘 in Figure 7) is higher, the benefits of blockchain, as indicated by the gap (%) values, are 

greater. The benefits become more pronounced as the supply chain’s scale grows. These findings 

demonstrate that the blockchain-enabled model offers substantial advantages in carbon emission control, 

cost efficiency, and operational flexibility. Specifically, the blockchain-enabled model more effectively 

maintains emissions within allocated limits, achieves lower overall costs through automated carbon 

trading, and responds more efficiently to demand fluctuations than the conventional model. 

 
Figure 7: Benefits of considering blockchain 

6.6 Robustness of the model against carbon credit price deviations 

The carbon credit prices in this study are estimated based on data from the National Carbon Trading 

Market Information Network (https://www.cets.org.cn/). However, carbon credit prices fluctuate 

significantly daily, and market volatility may lead to inaccuracies in the estimates. We thus conduct a 
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robustness test to evaluate the model’s robustness against carbon credit price fluctuations. As shown in 

Figure 8, when carbon credit prices exceed the estimated values by 10%, 15%, and up to 30%, the total 

cost (i.e., OBJ) calculated based on the estimates differs by no more than 1% from the optimal results 

obtained using actual parameters. This confirms the robustness of the proposed model under carbon 

credit price fluctuations. 

 
Figure 8: Robustness test of the price of carbon credits 

7. Conclusions 

This study contributes to the literature in three key respects by integrating blockchain and smart 

contract technologies into the design of sustainable supply chains. 

First, from a modeling perspective, the study introduces a blockchain-enabled two-stage stochastic 

model to optimize sustainable supply chain operations. The model optimizes facility location and scale 

decisions under uncertainty and incorporates market-driven carbon management, enabling real-time 

carbon trading decisions at the operational level. This integration of market mechanisms ensures that 

carbon credits are dynamically managed, allowing firms to effectively respond to changes in carbon 

prices and emission levels. 

Second, from an algorithm design perspective, the study contributes a method to efficiently solve 

supply chain problems. Specifically, the proposed primal decomposition algorithm demonstrates high 

computational efficiency. It effectively solves large-scale and complex supply chain problems within 5 

minutes, whereas CPLEX fails to find a solution to these problems even after 1 hour of execution. 

Moreover, the optimality gap between the results obtained from our algorithm and those achieved by 

CPLEX is 0%, confirming the algorithm’s effectiveness. 

Third, from a managerial perspective, the extensive numerical experiments conducted in this study 

using data from SAIC provide valuable insights for decision-makers. Sensitivity analyses of customer 

demand, carbon quota ratios, and production capacity levels reveal that, under cap-and-trade regulations, 

blindly increasing production to meet uncertain demand can lead to higher costs. This finding challenges 

the conventional notion that increasing production to meet customer demand is always beneficial for 
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the supply chain. Instead, our study demonstrates that overproduction—without carefully managing 

carbon credit purchases—can result in unnecessary costs under the carbon trading system. This counter-

intuitive result highlights the need for manufacturing companies to strategically plan production 

capacity while accounting for carbon trading implications to avoid excessive expenses. Moreover, the 

study emphasizes the importance of strategically allocating carbon credits to minimize total costs. In 

addition, the stochastic model demonstrates a cost-saving potential of 8.10%, whereas the value of 

perfect information is 2.32%. The study also indicates that the benefits of blockchain become more 

pronounced as the scale of the supply chain grows, reducing overall costs. Our robustness tests show 

that the total cost estimated based on forecasted values deviates by less than 1% from the optimal cost 

obtained using actual parameters, confirming the model’s robustness to fluctuations in carbon credit 

prices. 

Nevertheless, the model has certain limitations. For example, the model assumes a uniform price for 

carbon credits, whereas distinguishing between the purchase and sale prices would better reflect market 

dynamics. The impact of supply chain disruptions, such as natural disasters or geopolitical events, is 

also not considered, which could affect the model’s robustness. Future research could explore how 

disruptions affect the stability and efficiency of supply chains, incorporating risk management strategies 

and contingency planning into the model. These limitations will guide our future research. 

Appendices 

Appendix A 

Table A provides an overview of the critical input parameters utilized in the mathematical model. 

Based on the historical sales data of SAIC, the random demand 𝑑̃𝜔𝑘 from different customers for the 

product is estimated to follow a uniform distribution U(30, 5000) . For the price of carbon credits 

related to carbon trading, we base our estimates on data provided by the National Carbon Trading 

Market Information Network. The total greenhouse gas emissions of SAIC in 2023 were estimated to 

be 2.03 million metric tons of CO₂ equivalent. The average estimates for 𝑒𝑠
𝐹 and 𝑒𝑙

𝑅 are 5,000 metric 

tons each. The fixed costs of the facilities are determined by both the emission control level and the 

capacity level. 

Table A: Key input parameters and setting 

Parameters Setting 

Cost of products from location 𝑚 to 𝑛 𝑔𝑚𝑛
𝐶 = 1.5km/RMB × 𝑙𝑚𝑛 ,  𝑙𝑚𝑛   denotes the 

distance between location 𝑚 to 𝑛 

CO2 emissions (in kg) of trucks from location 𝑚 to 𝑛 𝑔𝑚𝑛
𝐸 = 1𝑘𝑚/𝑘𝑔 × 𝑙𝑚𝑛 

Production capacity of producer 𝑠 with capacity level 𝑚𝑠𝑏
𝐹 = 𝑏𝑎𝑠𝑒𝑚𝑠𝑏

𝐹 × 𝑇𝐷 × 𝜂1, 𝜂1~𝑈(0.2, 0.5) 
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𝑏;  Processing capacity of logistics facility 𝑙  with 

capacity level 𝑏 

𝑚𝑙𝑏
𝑅 = 𝑏𝑎𝑠𝑒𝑚𝑙𝑏

𝑅 × 𝑇𝐷 × 𝜂2, 𝜂2~𝑈(0.2, 0.4) 

Unit production cost of producer 𝑠 with capacity level 

𝑏 

𝑘𝑠𝑏
𝐹 = (1 − 0.05 × 𝑏) ×

𝑏𝑎𝑠𝑒𝑘𝑠𝑏
𝐹 , 𝑏𝑎𝑠𝑒𝑘𝑠𝑏

𝐹 ~𝑈(50, 3000) 

Unit processing cost of logistics facility 𝑙 with capacity 

level 𝑏 

𝑛𝑙𝑏
𝑅 = (1 − 0.01 × 𝑏) ×

𝑏𝑎𝑠𝑒𝑛𝑙𝑏
𝑅 , 𝑏𝑎𝑠𝑒𝑛𝑙𝑏

𝑅 ~𝑈(10, 30) 

Fixed CO2 emissions (in kg) with emissions control 

level 𝑐  

when 𝑐  equals 1, 2, 3 respectively,  𝑞𝑐𝑠
𝐹 =

300, 250, 200  𝑞𝑐𝑙
𝑅 = 150, 125, 100 

The limited number of carbon credits 𝑜𝑠
𝐹 = 0.05 × 𝑒𝑠

𝐹, 𝑜𝑙
𝑅 = 0.05 × 𝑒𝑙

𝑅  

Market price of carbon credits (in RMB) 𝑐0~𝑈(65, 120)  

Penalty costs for not meeting customer needs (in RMB) 𝑐1 = 5 × 104  

Appendix B 

This appendix provides a detailed comparison between our proposed blockchain-integrated model 

and a model that does not include blockchain technology. In our proposed blockchain-integrated supply 

chain model, carbon emissions at each node are continuously monitored, and smart contracts 

automatically trigger carbon credit transactions when emissions exceed a set threshold. In contrast, non–

blockchain models lack the ability to make real–time adjustments, as decisions are limited to the initially 

set carbon quota without the option for carbon credit trading. The comparative model, denoted as [𝐌𝟑], 

is outlined below. 

[𝐌𝟑] Min 𝑇𝐶 = 𝐹𝐶 + 𝑃𝐿 + 𝐿𝐶 + ∑ 𝑝𝜔𝜔∈Ω 𝒬(𝜽, 𝜔)        (B1) 

where 𝐹𝐶 = ∑ ∑ ∑ 𝑓𝑠𝑐𝑏
𝐹

𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏𝑠∈𝑆 + ∑ ∑ ∑ 𝑓𝑙𝑐𝑏
𝑅

𝑏∈𝐵𝑙𝑐∈𝐶𝑙∈𝐿 𝛽𝑙𝑐𝑏; 

𝑃𝐿 = ∑ ∑ 𝜇𝑠𝑙(𝑔𝑠𝑙
𝐶 + ∑ ∑ 𝑘𝑠𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)𝑙∈𝐿𝑠∈𝑆 ; 

𝐿𝐶 = ∑ ∑ 𝜃𝑙𝑘𝑘∈𝐾𝑙∈𝐿 (𝑔𝑙𝑘
𝐶 + ∑ ∑ 𝑛𝑙𝑏

𝑅 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 ). 

𝒬(𝜽, 𝜔) = (𝑃𝐿̃ + 𝐿𝐶̃) + ∑ ∑ 𝑐1(∑ 𝜃𝑙𝑘𝑘∈𝐾 − ∑ 𝜃̃𝜔𝑙𝑘𝑘∈𝐾 )
+

𝑙∈𝐿𝜔∈Ω       (B2) 

where 𝑃𝐿̃ = ∑ ∑ ∑ 𝜇̃𝜔𝑠𝑙(𝑔𝑠𝑙
𝐶 + ∑ ∑ 𝑘𝑠𝑏

𝐹
𝑏∈𝐵𝑠𝑐∈𝐶 𝛼𝑠𝑐𝑏)𝑙∈𝐿𝑠∈𝑆𝜔∈Ω ; 

𝐿𝐶̃ = ∑ ∑ ∑ 𝜃̃𝜔𝑙𝑘(𝑔𝑙𝑘
𝐶 + ∑ ∑ 𝑛𝑙𝑏

𝑅
𝑏∈𝐵𝑙𝑐∈𝐶 𝛽𝑙𝑐𝑏)𝑘∈𝐾𝑙∈𝐿𝜔∈Ω . 

subject to Constraints (2)–(9), (11)–(14) 

∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 + ∑ 𝜇̃𝜔𝑠𝑙𝑔𝑠𝑙

𝐸
𝑙∈𝐿 = 𝑒𝑠

𝐹    ∀𝑠 ∈ 𝑆, 𝜔 ∈ Ω     (B3) 

∑ ∑ 𝛽𝑙𝑐𝑏𝑏∈𝐵𝑙𝑐∈𝐶 𝑞𝑐𝑙
𝑅 + ∑ 𝜃̃𝜔𝑙𝑘𝑔𝑙𝑘

𝐸
𝑘∈𝐾 = 𝑒𝑙

𝑅    ∀𝑙 ∈ 𝐿, 𝜔 ∈ Ω     (B4) 

𝜃̃𝜔𝑙𝑘, 𝜇̃𝜔𝑠𝑙 ≥ 0         ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω.  (B5) 

The model [𝐌𝟑] is characterized by the absence of real-time monitoring and automated decision–

making mechanisms for carbon trading. Consequently, it lacks the ability to respond instantly to 

emission fluctuations. The key differences between [𝐌𝟑]  and our proposed model include: The 
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constraint related to real-time monitoring of carbon emissions using smart contracts, such 

as  ∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 + ∑ 𝜇̃𝜔𝑠𝑙𝑔𝑠𝑙

𝐸
𝑙∈𝐿 − 𝜁𝜔𝑠

+ + 𝜁𝜔𝑠
− ≤ 𝑒𝑠

𝐹  is modified to: ∑ ∑ 𝛼𝑠𝑐𝑏𝑏∈𝐵𝑠𝑐∈𝐶 𝑞𝑐𝑠
𝐹 +

∑ 𝜇̃𝜔𝑠𝑙𝑔𝑠𝑙
𝐸

𝑙∈𝐿 = 𝑒𝑠
𝐹. Additionally, decision variables related to carbon trading, such as 𝜁𝜔𝑠

+ ，𝜁𝜔𝑠
− ，𝜂̃𝜔𝑙

+  

and 𝜂̃𝜔𝑙
−  are removed from the constraints and the objective function in the second stage. 
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