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Abstract: The increasing pressure on global supply chains to reduce carbon emissions has driven the
need for sustainable supply chain network design (SSCND). This paper proposes an innovative
framework for SSCND that optimizes facility location and scale decisions under uncertainty using
blockchain technology. By incorporating cap-and-trade regulations and carbon trading into a mixed-
integer linear programming model, the study addresses both the economic and environmental objectives
of supply chains. A two-stage stochastic programming approach is employed to optimize the SSCND.
The first stage focuses on facility location decisions and the second stage on production adjustment,
transportation, and carbon trading under demand uncertainty. The carbon trading decisions are
integrated into the model by assigning a monetary value to carbon dioxide emissions and allowing for
dynamic adjustments to real-time environmental impacts. A primal decomposition algorithm is
introduced to address the computational challenges involved in solving the two-stage stochastic
programming model. Numerical experiments based on data derived from SAIC Motor Corporation’s
supply chain demonstrate the effectiveness of the model and algorithm. This study provides an efficient
approach for integrating environmental sustainability into supply chain management, offering valuable

insights for industries aiming to achieve carbon neutrality.

Keywords: Sustainable supply chain network design; blockchain; smart contract; cap-and-trade

regulation; primal decomposition algorithm.

Managerial relevance statement: This study provides valuable insights for manufacturing managers
and policymakers seeking to optimize sustainable supply chains. By integrating blockchain technology
and carbon trading mechanisms, the proposed model enables more efficient facility location decisions,
production adjustments, and transportation strategies under demand uncertainty. Managers in
manufacturing companies can use this framework to enhance the transparency and traceability of carbon
emissions while making cost-effective, data-driven decisions that align with sustainability goals. The
research highlights that accurately forecasting demand fluctuations and strategically allocating carbon
quotas—particularly by allocating sufficient quotas to logistics centers—can significantly reduce

carbon credit purchasing costs. Policymakers can leverage these insights to adjust carbon quota policies
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and promote the adoption of green transportation and low-carbon technologies. An unexpected finding
is that, under the regulatory pressure of cap-and-trade policies, blindly increasing production to meet
uncertain demand results in higher costs. This suggests that manufacturing companies should carefully
align production capacity with actual demand, avoiding overproduction that may result in additional
costs under the carbon trading system. They should also assess demand fluctuations thoroughly and
avoid excessive reliance on unstable market demands.

1. Introduction

Supply chain operations significantly contribute to global CO- emissions. At the supplier stage, raw
material transformation into semi-finished goods generates substantial hydrocarbons and acidic
compounds, including sulfur oxides. For instance, steel manufacturing alone accounts for
approximately 7% of global CO: emissions. The logistics phase further exacerbates emissions, varying
with transportation methods, fuel types, and distances [1]. For example, Perez-Martinez et al. [2] report
emission factors of 2.3 km/L for 40-ton class 8 trucks and 8.2 km/L for diesel vans, translating to about
3,800 g CO: per kg of fuel. These emissions collectively drive global warming, intensifying climate-
related disasters. To mitigate these impacts, governments worldwide have adopted various carbon
policies and mechanisms [3]. Among these, cap-and-trade regulations are acknowledged as one of the
most successful market-based approaches for controlling corporate emissions. Under cap-and-trade
schemes, firms exceeding quotas must purchase credits, while those with surplus credits can sell them
for profit, fostering accountability and incentivizing sustainability [4].

Cap-and-trade regulations make it crucial for businesses to achieve specific sustainability objectives
[5]- In response to pressures to prioritize environmental sustainability, businesses increasingly
incorporate blockchain technology into their supply chain networks. Blockchain offers transparency,
immutability, and decentralization [6],[7],[8], enabling real-time sharing of carbon emission data,
streamlining carbon trading, and enhancing the credibility of transactions. By ensuring transparency,
enhancing data security, and providing immutable transaction records, blockchain can optimize carbon
emission tracking and simplify verifying sustainability practices across the supply chain. This is
particularly crucial in carbon trading and regulatory compliance, where accountability and trust are
essential. Therefore, by integrating blockchain with supply chain management (SCM), businesses not
only enhance the efficiency of their operations but also contribute to their sustainability goals [9],[10].

However, integrating blockchain into supply chain management presents several key challenges, such
as ensuring data integrity, creating efficient and scalable smart contract mechanisms, and ensuring the
traceability of transactions in dynamic environments. Motivated by SAIC Motor Corporation’s need for

sustainable, low-carbon strategies, this study proposes a blockchain-based decision framework inspired



by Manupati et al. [9]. Our framework integrates smart contracts with real-time operational decisions,
enabling automatic execution of carbon trading and production adjustments under predefined
blockchain protocols. Unlike Manupati et al. [9], who focus solely on production allocation under
carbon tax policies, our approach incorporates demand uncertainty and carbon trading, expanding the
scope of decision-making and enhancing the adaptability of supply chains to real-world complexities.
This dynamic interaction between blockchain and SCM ensures compliance, flexibility, and scalability,
addressing the challenges of modern supply chain operations.

Specifically, our model addresses demand uncertainty in supply chains through a two-stage stochastic
programming approach. The first stage involves making strategic facility location decisions. In contrast,
the second stage focuses on operational adjustments, such as modifying production quantities, altering
transportation plans, and making carbon trading decisions in response to demand fluctuations. The
academic literature shows that the two-stage framework, where the first stage involves strategic
planning and the second stage focuses on tactical adjustments to real-world uncertainties, is widely used
and effective in addressing uncertainty and multi-level decision-making problems across various
domains [11],[12],[13]. Furthermore, to address the increased complexity introduced by integer
decision variables in the two-stage stochastic model, we propose a primal decomposition algorithm.
Similar to Benders decomposition, our algorithm differs in that it transmits primal columns from the
second-stage subproblem to the first-stage master problem, whereas Benders uses dual-based cuts
(rows). Our algorithm is particularly effective when the second-stage subproblem involves integer
variables, a scenario where traditional Benders decomposition is not applicable.

To summarize, the contribution of this work is twofold. From a practical perspective, this study
responds to the need for sustainable supply chains under cap-and-trade regulations and the challenges
posed by demand uncertainty in manufacturing enterprises. By integrating blockchain technology, the
model addresses key issues such as inefficiency, lack of trust, and insufficient data security in traditional
supply chains, ensuring transparency and secure data sharing. Additionally, incorporating carbon
trading mechanisms offers a cost-effective approach to achieving both environmental and economic
goals, enabling manufacturers to optimize facility location, production, and transportation strategies
under uncertainty. From an academic perspective, while numerous studies have explored blockchain
technology in supply chain management [14],[15],[16],[17],[ 18], most have focused on the conceptual
and functional characteristics of blockchain, with limited attention given to its integration within mixed-
integer mathematical models for supply chain optimization. To our knowledge, this study is the first to
combine blockchain technology with carbon trading mechanisms in the context of sustainable supply

chain network design under demand uncertainty. By employing a mathematical modeling approach, this



research contributes to supply chain optimization and environmental sustainability, enriching and
extending the current literature.

This paper is structured as follows. Section 2 reviews the related literature. Section 3 provides a
comprehensive explanation of the problem. Section 4 presents a mixed-integer linear programming
(MILP) model for the two-stage decision-making process. Section 5 introduces the algorithm for
solving the model. Section 6 presents the numerical experiments conducted to validate the model and

algorithm. The final section concludes the paper with a summary of the study’s key insights.

2. Related works

The main contribution of this study lies in applying blockchain technology to address the challenge
of sustainable supply chain network designs (SSCND). We provide a framework for making decisions
regarding facility location and scaling under uncertainty utilizing blockchain to enhance the
management of sustainable supply chains. The literature on this topic focuses on two key areas: SSCND

under uncertainty and the application of blockchain and smart contract technologies in SCM.

2.1 SSCND under uncertainty

Supply chain network design (SCND), or strategic supply chain planning, involves critical long-term
decisions shaping a business’s success [19]. It focuses on defining supply chains’ infrastructure and
physical layout, including facility locations, capacities, production processes, technologies, regional
distribution, and supplier selection, all requiring significant investment. [20]. Recently, sustainable
supply chains have garnered increasing attention due to pressure from various stakeholders, such as
consumers, management, government regulators, and community activists, and global competition
[21],[22]. This emphasis on sustainability has driven research on SSCND, in which initial investments
in introducing facilities across various locations and capacity allocation are crucial as they significantly
influence environmental outcomes during the operational phase [23]. However, SSCND is further
complicated by market uncertainty and limited resources in real-world scenarios [24]. Addressing these
uncertainties has thus become a central focus of academic researchers and industry practitioners. To
successfully do so, a thorough grasp of the challenges and opportunities in this domain is crucial, as
emphasized by key studies on SSCND [20],[25],[26].

The primary approach to modeling sustainable supply chain networks under uncertainty is to use
carbon emissions as an environmental indicator while addressing various uncertainties specific to the
problem at hand. For instance, Pishvaee et al. [27] introduce a bi-objective fuzzy mathematical
programming model to design green logistics networks under uncertain conditions, employing the CO-

equivalent index to evaluate environmental impacts. Zhen et al. [28] present a comprehensive



methodology for designing a green and sustainable closed-loop supply chain network in the face of
uncertain demand. They propose a bi-objective optimization model that minimizes CO: emissions and
total operational costs, incorporating environmental standards and the factors influencing facility
capacity in the decision-making process. Kaur et al. [29] further enhance the understanding of
sustainable supply chain modeling by proposing an elastic, sustainable framework that integrates
production and procurement through fuzzy theory. This approach addresses market demand and
machine capacity uncertainties while accounting for carbon emissions. Similarly, Hasani et al. [30]
contribute a robust multi-objective optimization model for configuring a green global supply chain
network amidst disruptions and uncertainties. Their model simultaneously optimizes three objectives:
maximizing expected profit, minimizing facility centralization to mitigate disruptions, and reducing
CO: emissions related to material shipments within the sustainable network. Furthermore, Kumar et al.
[31] propose an MILP model for designing uncertain supply chain networks, considering both carbon
emissions and social factors and utilizing chance-constrained programming to address uncertainty.
Based on the aforementioned research trends, this study evaluates a sustainable supply chain using
two key environmental indicators: the fixed CO, emissions of facilities at various emission control
levels and the CO; emissions due to transportation. Additionally, it considers demand uncertainty, an
important factor in realistic scenarios, to further extend research on the design of sustainable supply

chain networks.

2.2 Modeling supply chains using blockchain and smart contracts

Blockchain technology provides a shared, distributed database with unique features such as
cryptographic security, immutability, traceability, and intelligent execution [32],[33]. These
characteristics help address the complexity and critical challenges involved in SCM, particularly in
ensuring transparency, reliability, and efficiency [34],[35]. Blockchain technology is being increasingly
adopted in low-carbon supply chains, enabling consumers to oversee the processes of producing low-
carbon products. This enhanced transparency improves brands’ reputations and presents new market
opportunities [36]. With growing environmental awareness among the public, an increasing number of
consumers are willing to pay a premium for sustainable products [37], and sustainability has become a
key factor in corporate performance [38]. In response, major corporations such as Walmart, Alibaba
[39], De Beers, UPS, and FedEx have adopted blockchain to enhance transparency and monitor their
carbon footprints, promoting sustainable practices.

Research consistently shows that sustainable supply chains can greatly benefit from the adoption of

blockchain technology [40]. In the context of fashion supply chains, Choi et al. [41] emphasize the



advantages of blockchain, particularly in emerging markets such as China and India, where transparency
and traceability are increasingly important. Building on their study, Guo et al. [42] find that blockchain
facilitates environmental transparency and increases consumers’ willingness to spend on sustainable
fashion products. In addition to its impact on the fashion industry, blockchain has proven effective in
other sectors. For instance, El Hathat et al. [43] demonstrate its utility in tracing greenhouse gas
emissions in the palm oil supply chain, ultimately enhancing sustainability and competitiveness.
Similarly, Xu et al. [44] illustrate how blockchain can optimize remanufacturing operations, particularly
for high-emission industries, by integrating manufacturers, third-party companies, and online platforms
into a more efficient system. Further advancing this understanding, Yousefi et al. [45] develop a systems
analysis approach to assess the broader impact of blockchain on sustainable supply chains. Their
findings suggest that the appropriate adoption of blockchain can significantly improve environmental
sustainability and increase the traceability of products. Blockchain’s potential also extends to
agricultural supply chains, in which it helps address sustainability challenges [46] and advances the
adoption of circular economy principles [47].

Smart contracts, a crucial application of blockchain technology [48], are computer programs that
automatically execute, control or document the terms of a contract. In a system that uses smart contracts,
participants create their contracts by specifying the code and implementing it on the blockchain. When
predefined conditions are met, the contract’s terms are automatically executed. In SCM, this technology
can significantly enhance efficiency, transparency, and traceability while reducing disputes and the risk
of fraud. The effective implementation of blockchain technology across different industries requires the
definition and execution of smart contracts using various mathematical models and algorithms [49]. For
instance, Li et al. [50] design an innovative and practical framework for emissions trading in the road
transport sector utilizing cutting-edge blockchain technology. In their system, all transactions related to
emission permits are efficiently managed and recorded through smart contracts on a decentralized
blockchain. This approach results in a significant reduction in management costs. Similarly, Agrawal et
al. [51] propose a traceability framework based on blockchain technology, incorporating customized
smart contracts and transaction protocols. Using the example of an organic cotton supply chain, they
demonstrate how a blockchain-based, traceable, multi-layer textile and apparel supply chain system can
enhance sustainability and ensure transparency for all stakeholders. Expanding on this, Sadawi et al.
[52] introduce a multi-layered blockchain framework within the Blockchain of Things (BoT),
incorporating smart contracts to design a refined carbon emissions trading system characterized by
transparency and automated trading and control processes. Building further on the integration of

blockchain in supply chains, Ismail et al. [53] combine blockchain technology with emerging



technologies such as artificial intelligence (Al) and the Internet of Things (IoT) to propose a blockchain-
based fish supply chain framework. By utilizing the core functions of blockchain and smart contracts
deployed on the Ethereum platform, their approach ensures the integrity and security of fish supply
chain data.

In conclusion, the rise of blockchain technology has established smart contracts as a leading
technology, enhancing the customization of traditional transactions in carbon trading markets. This
study uses smart contracts to integrate carbon trading decisions into SCND problems and designs smart
contract rules to implement carbon trading decisions. The proposed approach balances economic and

environmental considerations in the supply chain and thus enriches the literature in this field.

2.3 Summary of related works

A review of the literature reveals that although significant advancements have been made in the
domain of SSCND, several critical research gaps remain to be addressed.

First, previous studies, such as those by Zhen et al. [28] and Hasani et al. [48], primarily focus on
minimizing CO: emissions and optimizing costs under uncertainty but do not effectively integrate
market-based carbon trading mechanisms into the design of supply chain networks. Their models
optimize supply chain performance based on emission reductions, but they overlook the dynamic role
that carbon trading plays in facility location and scaling decisions. This study differs by incorporating
carbon trading as a pivotal factor in the decision-making process, accounting for environmental goals
and market-driven carbon management strategies.

Second, although blockchain and smart contracts are heralded for their potential to improve supply
chains’ transparency and operational efficiency, challenges to their widespread implementation still
exist [54]. Most research focuses on blockchain’s role in operational processes such as transaction
tracking and verification. Few studies explore its application to decision-making in SSCND, particularly
concerning facility locations and carbon trading. This study bridges this gap by integrating blockchain
technology and a two-stage stochastic programming model into SSCND to facilitate facility location,
scaling, and carbon trading decisions under uncertainty. This approach represents a novel application
of blockchain to SSCND beyond its traditional use to achieve operational improvements.

Finally, although uncertainties in demand, costs, and environmental factors are widely acknowledged
as challenging to SSCND, existing models addressing these uncertainties using fuzzy or stochastic
approaches fall short when applied to large-scale supply chains. In this study, the proposed primal
decomposition algorithm improves the computational efficiency of the stochastic model and provides a

robust solution to large-scale SCND problems. Unlike those used in earlier models, this algorithm



effectively handles the complexities of integrating blockchain, smart contracts, and carbon trading into

a sustainable supply chain, making it a significant methodological contribution to the study.

3. Problem description

This paper focuses on using blockchain and smart contract technologies to optimize decision-making
regarding facility locations and scale in a sustainable supply chain network. In this section, we introduce
the proposed blockchain decision-making framework and describe the first and second stages of the

decision-making process outlined in the framework.

3.1 Decision-making process framework under blockchain

To address the challenge of uncertain demand, we develop a two-stage stochastic programming
model to optimize sustainable supply chain networks for manufacturing enterprises facing increasing
pressure due to carbon cap-and-trade regulations. Our objective is to minimize overall carbon emissions
and supply chain costs. By integrating blockchain technology, our model enhances operational
efficiency, transparency, and trust in the supply chain network while reducing human intervention and
improving decision-making accuracy. The decision-making process consists of two stages: the first
stage focuses on strategic planning to establish a baseline schedule that meets specific demands,
whereas the second stage concentrates on operational adjustments based on demand fluctuations in
realistic scenarios.

The decision-making process and the key decision-making characteristics of the two stages under the
framework of the blockchain mechanism are shown in Figure 1. The first step involves deploying smart
contracts throughout a sustainable supply chain, ensuring their presence across nodes. By utilizing
distributed ledger technology in the form of smart contracts, we can effectively capture and transmit
real-time transaction data and carbon emission information from every node within the supply chain.
This valuable data is then securely added to the blockchain for seamless stakeholder sharing.
Subsequently, leveraging this blockchain-based information alongside smart contracts enables us to
provide decision support through a two-stage stochastic programming model and primal decomposition
algorithm integrated into our decision support system. Smart contracts play a key role by establishing
predefined rules based on carbon threshold conditions. Once activated, they enable continuous
monitoring of carbon emissions at each node in real-time. In instances where carbon emissions exceed
allocated limits (in Figure 1, ef and el represent the carbon quotas of the producers and logistics
centers, respectively), an alert is triggered by the smart contract, prompting necessary adjustments to
be made within the current plan or facilitating carbon trading activities maintain emissions levels within

acceptable thresholds.



The details of the decision-making framework, such as the optimal location with the consideration of

facility scales and the carbon trading decision, are detailed in Sections 3.2 and 3.3, respectively.
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Figure 1: Supply chain network optimization framework based on blockchain

3.2 The first stage of decision-making under the blockchain

The primary objective of the first stage of the decision-making process is to determine the optimal
locations and scales of producers and logistics centers given specific capacity and emission control
levels while minimizing the total cost of meeting customer demand. This stage establishes an initial
baseline plan at the strategic level. Specifically, we determine a set of producers and logistics centers
with constraints on capacity and emission control levels. Emission control levels are quantified by CO,
emissions, such that lower emissions correspond to higher control levels. Following the methodology
of Zhen et al. [28], we categorize the levels of capacity and emission control into discrete values, “1,”
“2,” and “3,” with higher numbers representing higher levels of capacity and environmental
performance, respectively, but also higher costs. The supply chain must select producers (denoted by
ascp) and logistics centers (denoted by S;.5) with suitable capacity levels (indexed by b) and emission
control levels (indexed by c) from the candidate sets of producer sites S and logistics center sites L
to satisfy customer demand (denoted by d). The total production and processing volume at each node
(denoted by ug and 6;,) must not exceed the node’s capacity level. The products produced by
producers are first transported to various logistics centers for processing and then delivered to customers.
Product flow between producers and logistics centers must be balanced during transportation.
Blockchain’s distributed ledger technology plays a crucial role in this stage by recording the
initialization of multi-layer supply chain data variables and enabling information sharing among
stakeholders. The ledger collects and records transaction and emissions data, which are passed on as
goods move through the supply chain. Our model uses this data to preprocess and calculate the

quantities of products processed and transported at each node and the initial optimal cost, thereby



establishing an initial baseline plan for the optimal locations and scales of facilities.

3.3 The second stage of decision-making under the blockchain framework

Building on the selection of locations and scales from the first stage, the second stage addresses the
challenge of uncertain demand (denoted by d,,;) by adjusting the production and transportation plans
and ensuring that the carbon emission of each node (for example, denoted by gf; and q& for producers
and logistics centers, respectively, with emission control level c; this value is the sum of the node’s
fixed CO, emissions) does not exceed the specified carbon quota (denoted by ef and ef) of the node.
Through this process, we aim to optimize overall supply chain costs and effectively reduce carbon
emissions, achieving an optimal operational decision plan.

Blockchain’s smart contract technology plays a crucial role in this stage. Smart contracts can record
and track carbon emissions and goods transfer data in real-time, treating carbon emissions as tradable
carbon credits (one carbon credit equals the right to emit 1000 kg of CO: equivalent) and sharing this
data on a distributed ledger. Using the blockchain-enabled system, each supply chain node initializes a
smart contract, which triggers an alert when emissions exceed a threshold, indicating that they surpass
the carbon quota. This real-time monitoring and automatic alert system significantly enhances the
transparency and responsiveness of SCM.

Specifically, in the second stage of the decision-making process, our model simulates the threshold
constraints encoded in smart contracts by setting carbon quota limits (i.e., e/ and ef) for producers
and logistics centers. After the smart contract is activated, it monitors the carbon emissions of each node
in the supply chain in real-time and transmits this information on the blockchain. This enables our
decision support system to readjust decisions based on the actual needs of each node in a real-world
scenario. For example, demand uncertainty may cause the actual processing and transportation of goods
by supply chain nodes (denoted by 0,,, and [, ) to deviate from the baseline plan (i.e., ug and
0;1), resulting in the total CO2 emissions at each node exceeding or falling below its specified carbon
quota. Enterprises can offset the excess or shortfall in carbon emissions by purchasing or selling carbon
credits (denoted by {}s or (g for producers and 7, or 7, for logistics sites, respectively) in the
carbon trading market, keeping emissions within set thresholds and minimizing penalties. Thus, in the
second stage, we innovatively incorporate carbon trading into the total supply chain cost, assigning a
monetary value to carbon emissions and integrating environmental impact into the economic analysis
of the supply chain. Note that in this process, some customer demand may be abandoned due to the
consideration of emission reduction, and the unmet demand may result in certain losses to the supply

chain. Therefore, we penalize logistics centers for unmet customer demand to reflect the potential losses
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to the entire supply chain.

By calculating the total cost of the current supply chain and incorporating it into the two-stage
decision-making process, our decision support system addresses different demand scenarios to ensure
the best overall operation in each scenario. The iterative data sharing and optimization process is
executed until the optimal solution is found. Therefore, in the second stage, in which demand
uncertainty is addressed, our framework minimizes the expected operating and carbon trading costs in
each scenario to determine the volume of goods produced and transported and the carbon credits
purchased and sold by each supply chain node. This process results in the actual plan for scheduling

decisions (at the operational level) across various demand scenarios.

4. Two-stage model

Our two-stage stochastic programming model addresses the SSCND problem under demand
uncertainty. The model accounts for each facility’s capacity and carbon emission levels, uncertain
customer demand, production or processing costs, transportation costs, delivery and holding costs, and
carbon credit transaction costs. The overall cost consists of two components: fixed costs and estimated
operating expenses. As scenario-based programming is typically adopted to address parameter
uncertainties, we represent uncertainties in our model parameters through a set of scenarios. Our

objective is to reduce the total cost across the various scenarios.

4.1 Notations

In this subsection, we list the names of the variables used in the mathematical model. For ease of
comprehension, the parameters and decision variables in the mathematical model are represented by
Roman and Greek letters, respectively.

Indices and sets

S set of candidate producer sites indexed by s;
L set of candidate logistics center sites indexed by [;
K set of customers indexed by k;
B set of capacity level options of producer sites indexed by b;
C set of emissions control level options of facilities indexed by c;
Q set of uncertain demand scenarios, indexed by w.
Parameters
dy demand of customer k;

d,r demand of customer k under scenario w;

gS%n  cost of one truckload products from location m to n, including vehicle transportation cost

11
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and product holding cost (RMB),m € SUL,n € L UK,

CO; emissions (in kg) of trucks from location m to n, me SUL,n€ LUK;

fixed cost (RMB) of opening a producer at location s with capacity level b and emissions
control level c;

fixed cost (RMB) of opening a logistics center at location ! with capacity level b and
emissions control level c;

production capacity of producer s with capacity level b;

processing capacity of logistics facility [ with capacity level b;

unit production cost (RMB) of producer s with capacity level b;

unit processing cost (RMB) of logistics facility [ with capacity level b;

fixed CO, emissions (in kg) with emissions control level ¢ from opening production point
s, for example, when ¢ is equal to 1,2,3, respectively, g5, = 300,250,200 kg;

fixed CO; emissions (in kg) with emissions control level ¢ from opening logistics facility [,
for example, when c¢ is equal to 1,23, respectively, qfl = 150,125,100 kg;

carbon quota (in kg) to producer s;

carbon quota (in kg) to logistics center [;

limited number of carbon credits purchased by producer s;

limited number of carbon credits purchased by logistics center [;

market price of carbon credits (RMB);

penalty costs (RMB) for not meeting customer needs;

probability of scenario w with uncertain demand, Y,ecq P, = 1.

variables

binary, equals one if a producer is built at location s with emissions control level ¢ and
capacity level b, ¢ € C, b € B, otherwise, equals zero;

binary, equals one if a logistics center is built at location ! with emissions control level ¢
and capacity level b, c € C, b € B, otherwise, equals zero;

quantity of product transported from producer s to logistics center [;

the demand of customer k that is satisfied by logistics center L.

Variables denoted with a tilde (“~”) and parameter “w” correspond to the actual values in scenario

w. For example, the above two variables when denoted with a tilde (

9y

) and parameter “w”, namely

O and i, refer to the actual values in scenario w. In addition, decision variables related to carbon

trading corresponding to scenario w are defined as follows.
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{ts  carbon credits purchased by producer s under scenario w;
{ps  carbon credits sold by producer s under scenario w;
fif,  carbon credits purchased by logistics center [ under scenario w;

o1 carbon credits sold by logistics center [ under scenario w.

4.2 Mathematical model

Using the definition provided above, M1 is formulated as follows.
4.2.1 Model’s objective

The model aims to minimize the total supply chain cost, with the objective function comprising four
main components.

(1) The total fixed cost of establishing the producers and logistics centers, FC, is expressed as
follows: FC = Yses Ycec Xbes, foeh Xsch + Lier Leec e, fieb Bich:

(2) The cost of transferring goods from producers to logistics centers, which includes production,
transportation, and holding costs, PL , is expressed as follows: PL = Y sesDier Us (gscl +
Yecec ZbeBs k.fb ascb);

(3) The cost of delivering goods from logistics centers to customers, including transportation,

handling, and holding costs, LC , is expressed as follows: LC = Y;e; Xrek Ok (gfk+

Ycec Zbem nfbﬁlcb);

(4) The objective of the subproblem in the second stage, which represents the expected cost of
managing uncertain demand across all scenarios, is denoted by Q(0, w).

Given the above components of the model, the formulation of the model’s objective function is
expressed as follows.

[M1] Min TC = FC + PL+ LC + ) ,cqPw 2(0, w) (1)

4.2.2 The constraints of the first stage

dicec Lbepy Asch < 1 Vs€ES (2)
Yicec Xves, Pien < 1 vielL (3)
Dier O = dy Vk €K 4)
Yises st = Lkek Ok vieL (5)
ek Ok < Ycec Xves, mgy Bieo VIEL (6)
YieL st < Yeec Lbes, Mepsch Vs€eS (7
Buier sy = 0 vseSleLkek ®)
®s.cps Prep € 10,1} vseS,leL,ceC,beEB. 9)
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Constraints (2) and (3) ensure that the producer or logistics center has only one possible capacity
level and one possible emission control level. Constraints (4) ensure that the logistics center meets all
demands generated by the customer. Constraints (5) ensure the conservation of product flow between
the logistics center and the producer. Constraints (6) limit the total volume of products transported to
the logistics center to not exceed the volume specified by the capacity level of the center. Constraints
(7) limit the capacity of the producer. Constraints (8) and (9) establish the allowable range for the
decision variables in the first stage.

4.2.3 The second-stage subproblem’s objective
The objective of the subproblem in the second stage consists of three parts: expected operating costs,

expected carbon trading costs, and expected penalty costs for unmet demand.

9(8,w) = (PL + LC) + c°[Yoea(Zses($hs — {aos) + Zier iy — o)) +
Yowea Xier ¢ (Zkex Ok — Tkex éwlk)+ (10)
where PL = ¥ ,cq Yses 2ier Awsi (95 + 2eec YibeB, k&b Asep);

LC =Y e Yier Yrek Owin (9l + Zeec YbeB, g Biew)-

The first part (i.e., PL and LC) represents the actual operating cost in scenario w, which is similar
to the operating cost in the first stage. The second part is the carbon trading cost in scenario w,
represented by c°[Yopea(Tses(Cs — Cos) + Zier(fih — fiz))]. Note that the unit of the decision

variable (i.e., (s, (s i, OF ;) is carbon credit, and one carbon credit equals 1,000 kg of CO,. The

last part of the expression Y., cq XeL € (ZkEK 01k — Ykex gwlk)+ is the penalty cost. It represents the
difference between the customer demand handled by a logistics center in the first stage and the customer
demand actually handled by the logistics center in scenario w in the second stage. When the demand
handled in the second stage is less than that in the first stage, we penalize the logistics center using a
penalty cost cl.

4.2.4 The constraints of the second stage

Yier Ok < Aok VkeK,w€EQ (11)
Yoes fwst = Skek Owik vVieL weQ (12)
Yrek Owire < Ycec Zves, Mip Bicw VIEL weEQ (13)
Yier flwst < Xeec Lben, Mipsch VseS, we (14)
Ycec Xve, Usch Aos + Lier Awsidsi — Covs + Cws < €8 VSES,w €Q (15)
Yeec Zoen, Bieb A& + Zkex Owiedli — Ty + iy < € VIEL w €Q (16)
(s < 0f Vs €S ,we€EQ (17)
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fios < o VIEL wEQ (18)

Cavsr Saoss Taoto Moo, Ouo s s 2 0 VseS,leLkeK, we. (19)

Constraints (11) ensure that the demand processed by the logistics center is less than or equal to the
customer’s demand. Constraints (12)—(14) are similar to the constraints (5)—(7). Constraints (15) and
(16), respectively, calculate the carbon credits transacted (purchased and sold) by producers and
logistics centers by leveraging blockchain technology in scenario w. Constraints (17) and (18) limit the
carbon credits purchased by producers and logistics centers in scenario w, respectively. Constraints (19)

define the decision variables involved in the second stage.

4.3 Linearization of the objective
The nonlinear components like Yses Xier|tor(Xcec Loen, ksp @scp)] can be linearized by

introducing additional variables, denoted as &43;, and Constraints (20)—(23).

Espt S M Ycec Asep Vs€S,beB;lEL (20)
Espt < Ugg Vs€S,beEB;,lEL (21)
Espl = pst — M(1 — Xeec Asep) Vs€S,beEBglEL (22)
€spr = 0 Vs€S,b€B,le€L. (23)

Then, the above part in the objective can be reformulated as YsesXpep, Zier espikl,, PL =
Yses Yier Hsider + Lses YibeB, DleL Espikep-
The second nonlinear term in the objective function Y.;¢; Yxex Ok (ZCEC YbeB; nk Blcb) is handled

similarly. We introduce additional variables, denoted as k;py, and the following constraints.

Kipk <M Ycec Bien VieL beB,keK (24)
Kink < O VieLbeB,keEK (25)
Kipke = O — M(1 — Zeec Bicn) vielbeB,kekK (26)
Kipr = 0 VlieLbe€EB,keK. 27)

The new cost function can then be expressed as: LC' = Ye; Yrek Okg +
YleL LbeB; Lkek Kibk nfb-

Similarly, we linearize the nonlinear part of the objective function of scenario w in the same way.
Such as YyeqYses 2ier|Awst(Teec Yve, ke @scp )|, we define the additional variables &, and

Constraints (28)—(31).

Epsbl =M Xeec Asen Vw€E€NsESbEB,IEL (28)
Ewsbl = Hawst Vo €EQ,sE€S,bEB;lEL (29)
gwsbl = ﬂwsl - M(l - ZCEC ascb) Vw €,s €S, b e Bsrl €L (30)
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Epspr = 0 VoEQsESbEB,LEL (31
. . . ~ F
Then, the above part in the objective can be reformulated as Y.,eq Xises Zven, 2ier Ewsbt Ksps
PL' = ¥ yeq Xses Dier, Awsigs1 + Lwea Xses Lben, Diel Ewsvl Kip-
The second nonlinear term in the objective function Y,eq Xier Lrek Owix (Zeec YbeB, ng Biep) is

handled similarly. We introduce additional variables, denoted as Kk, and the following constraints.

Rk <M Y.cec Biep Vw€eQLELbEB,kEK (32)
Rk < Ouu Vw € Q,l€LDbEB,kEK (33)
Rowk = 0w — M — Y cec Bicw) Vo EQLELbEB,kEK (34)
ﬁwlkaO VwEQ,lEL,bEBl,kEK. (35)

The new cost function can then be expressed as LC' =Y, cqYier Yrek Owidse +
Y wea DieL Loep, Lkek Rotbk Mip-

The objective function contains nonlinear terms such as (ZleL Ok — Dieel éwlk)+, To linearize
these expressions, we introduce additional variables 52,;,(, 62 1., and impose the following constraints.
Ouc — Ooorie = 0075 — 021 Vo eQleLkeK (36)
607,09, =0 Vo €l €L kEK. (37)

Then, the objective function (10) is modified as follows.
9(8,w) = (PL' + LC") + c°[Buwea(Tses(Cds — Cos) + Zier (it — flo))] +
YoweaZrek € Lier 52’;;{- (38)
Model M1 has been reformulated into an MILP model, denoted as M2.
[M2] Min TC = FC' + PL' + LC" + Y, ,eq P 2(0, w) (39)
subject to Constraints (2)—(9), (11)—(37).

5. Primal decomposition algorithm
A primal decomposition algorithm is designed to solve the model. Section 5.1 discusses the
algorithm’s framework. Sections 5.2 and 5.3 provide detailed information on how the algorithm is

applied within the two-stage stochastic programming model.

5.1 Algorithmic framework

A primal decomposition algorithm decomposes a problem into a master problem and a subproblem
that are generally easier to solve than the original problem. In this context, the master problem and
subproblem correspond to the problems in the first and second stages.

Figure 2 shows the algorithm’s framework. The algorithm employs an iterative approach, solving the
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relaxation of the set-partitioning formulation for the second stage using the second-stage column
generation (CG) process, detailed in Section 5.2. Concurrently, the first-stage equivalent model is

solved using a first-stage CG-based algorithm, as explained in Section 5.3.

MStagel
MStageZ

StageZ
MRMP

Obtain an initial first-stage solution s-column pools for all scenario nodes

= - =
Decide selection of|s-columns
Obtain an initial second-stage solution . . .
Obtain an initial equivalent
solution
Equ i

LR-RMP

f-columns
baseline plan

Pool of s-columns

Pool of f-columns

add
add f-columns

s-columns
S—

l dual lvariab]es
Stage2 Stage2
PP PP
PP, PP;

T
YES y
| | YES 4@@!-— Legend j a model solved in program

v_ NO
Obtain integer solution A, on f-columns selection
Calculate each baseline plan’s A value; make selections

¥
Decide baseline plans (based on M1:2% and M153") in an

iterative process for each logistics center

Pass s-columns from M328¢Z ¢o pjqFau v
PP . Stage2 Stage2, .
Decide s-columns (based on Mpyp " and M ° ") in an

iterative process for each logistics center
Figure 2: The overall framework of the primal decomposition algorithm

The second-stage CG procedure generates columns based on various scenarios, which are then
incorporated into the first stage. Based on these generated columns, model M1 is converted into
M1EA4U  The first-stage CG-based algorithm is used to solve the first-stage integer programming
problem, producing a feasible integer solution for the first stage. The first-stage problem is also
formulated as a set-partitioning problem. To differentiate between the columns from the two stages of
the problem, the columns from the first stage are referred to as f-columns, whereas those from the
second stage are called s-columns. Specifically, the s-columns approximate the decisions of the second
stage and are passed to the first-stage master problem. The f-columns are the columns generated in the
first stage, which not only include the decisions of the first stage but also contain the selection decisions

for the sub-columns corresponding to all scenarios in the second stage.

5.2 The CG for the second stage
Given any initial first-stage solution, we obtain a scenario-dependent model for each scenario ®. For

simplicity and to enhance readability, we will omit the scenario index w in the following discussion.

[MStageZ] Min Y, eaPo [ZSES DieL .ﬁwsl(g.gl + Leec ZDEBS kgb aSCb) + Yier Xkex gwlk (gle +

Yicec LbeB, iy Bien) + €°(Tses Sws + Lier Al — o)) + Lrex ¢ (Zier O — Zier gwlk)+] (40)
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subject to Constraints (11)—(19).

Then the model is expressed as the master problem (MP), denoted as Mf,[tsgez, and the subproblems

(PPs), denoted as Mf,;agez, following standard column generation practices. For each logistics center [

in the given scenario, we define the set P, to include all feasible assignment plans. Each planin P, is
indexed by p, with the associated cost denoted by ¢,,. We introduce a binary variable Z;,, pEP,
where Z;, equals one if plan p is selected for logistics center [, and zero otherwise. The parameter
/Tf is defined to denote demand from customer k assigned to logistics center [ for processing in
assignment plan p. A parameter B is defined to denote the number of products transported from
producer s to logistics center [ in assignment plan p. A parameter C~f is defined to denote the
carbon credits purchased by producer s to meet the requirements of logistics center [ in assignment
plan p. A parameter D? is defined to denote the carbon credits sold by producer s to meet the

requirements of logistics center [ in assignment plan p.

[Mpme 1 Min Y, ¥ pep, Epldp (41)
subject to
Ypep, Zﬂ’ =1 vieL (42)
YieL X per, A dp < duk Vk € K (43)
YieL Xpep, BE Ay < eec Lven, Mép Xscn VsES (44)
Yicec LbeBg sch qés + Dier Zpejjl Bsﬁgfliﬁ — DleL Zpeﬁl éfip + XleL Z;aey'ﬂl 5537/1;7 <el
VSES (45)
YierL Xpep, Cd Ay < Of Vs€S (46)
A, 20 VIEL p € P, (47)

Objective (41) aims to minimize the total cost associated with the selected feasible plans (s-columns).
Constraints (42) ensure that each logistics center [ is assigned at most one feasible plan. Constraints
(43) guarantee that the demand processed by logistics center [ does not exceed its total demand.
Constraints (44) and (45) restrict the quantity of products shipped from producer s to logistics center
[ that it remains within the producer’s production capacity and carbon emission limits. Constraints (46)

limit the maximum amount of carbon credits purchased by producer s. During each iteration, dual

. Stage2 . Stage2
variables from MMPg are used in the Mpp 8°° to generate new s-columns. Here, T, Py, Os, Ts,

and ¢, are dual variables for Constraints (42)—(46), respectively.

The CG procedure involves breaking down the Mg;agez into |L| distinct subproblems, each
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corresponding to a particular logistics center. The following describes the formulation of the pricing

subproblem, designed to generate feasible plans (s-columns) for each logistics center.
Stage2] ps: ~ 5 N N s 5
[Mpﬁlge ] Min C;v - [T[l + ZkeK pkgwk + ZSES QsUws + ZSES Ts (gsEl.uws - {JS + Zws) +

+ ZSGS Ps 555] (48)
subject to Constraints (12)—(13), (16), and (18) in-which the logistics center index [ is omitted in the

subscripts of the related parameters and the-variables.
5;7 = ZSES ﬁws (gg + ZCEC ZbEBS kfb ascb) + ZkeK éwk [gl(é + ZCEC ZbeBl n§ ﬁcb] +

~ z_ ~ ~— ~ +
CO[ZSES(({:S - Cws) + (772-) - 77@)] + C1 ZkeK(Gk - ewk) (49)
Objective (48) aims to minimize the reduced cost associated with the optimal assignment plan.

Constraint (49) calculates the total cost of the logistics center plan.

5.3 The CG for the first stage

We developed a model M1E4Y equivalent to the original model M1, and defined the Restricted
Master Problem (RMP) and Pricing Problem (PP) for this model. Note that each column of the
equivalent model consists of a series of sub-columns (i.e., columns from the first-stage CG), with the
number of sub-columns corresponding to the number of second-stage scenarios. Additionally, new
parameters and decision variables were defined.
Newly defined parameters and sets:

P, represent the collection of all sub-columns for logistics center [ in scenario w, indexed by

P

Twikp 10 the sub-column indexed by p within scenario w, the demand of customer k handled by

logistics center [;w € Q, p € P,;

Jwstp in the sub-column indexed by p within scenario w, the number of products transported

from producer s to logistics center [, w € Q, p € P,;;

5+

wsip 1N the sub-column indexed by p within scenario w, the carbon credits purchased by

producer s to meet the transportation needs of logistics center [, w € Q, p € P,;;

Zysip 10 the sub-column indexed by p within scenario w, the carbon credits sold by producer s

to meet the transportation needs of logistics center [, w € Q, p € P,;;

Wy in the sub-column indexed by p within scenario w, the carbon credits purchased by

logistics center [, w € Q, p € P ;

~—

wlp Within the sub-column p within scenario w, the carbon credits sold by logistics center [,

(A)EQ,WEijl.
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Newly defined variables:

Xwip binary; equals one when sub-column p is chosen for logistics center [ in scenario w, w €

Q, P € “ﬁwl'

Uu1p costassociated with sub-column p for logistics center [ in scenario w,

Then, we formulate M1E9" as follows. Note that in order to adapt the CG algorithm, a new

parameter a..p; is defined in the M1E9¥ to the decision variable a.p.
[M1P9%] Min FC + PL + LC + Ewea Lier Epes P DootpTotp (50)

subject to Constraints (2)—(9).

Y ey Xotp = 1 VIEL wEN (51)
YieL Zpep,, FotpTop < dok VkeK,weQ (52)
ZlEL Zpef’wljwslp)?wlp =< ZCEC ZbEBS m?bascb VSES,w€Q (53)

F - Esy st
dicec ZbEBS Ascp Ges + LieL Z;aePw,]wslpglewlp DleL Z;pe?wl Zysip Xwlp T

DieL Z;aef’wl Z;slpiwlp < e.f VsES,w€E (54)
DleL Zﬁeﬁwl Zcﬁslp)zwlp < OSF VsES,w€E (55)
Aiept = Aseh VseS,ceC,beB,leL (56)

19~wl;a = Zsesjwslp(gscl + ZCEC ZbEBS k?b a;cbl) + ZkEK fwlkp (glc;c + ZCEC EbeBl ng Blcb) +

O Xses(Zhstp = Zasip) + Webip — Waip )| + Zkex ¢ (Oue — f’wlkp)+

Vw €EQIEL pEP, (57)
Fotpr Uscor Xsepis Biey € {0,1} VwEQIELpeEP,,sEScECDHER (58)
Opr it = 0 VseS,leELkEK. (59)

The nonlinear components like Xyeq Xier Xpep,, Po 190)139 Xwip can be linearized by introducing

additional variables, denoted as ;. To achieve this, we impose a new set of constraints.

Vorp < Dwip Vo€EQIELpPEP (60)
Vorp < MToip Vo eEQIlELpEP (61)
Yoip = iy — M1 = Foip) Vo EQIELPEP (62)

With the newly introduced variables and constraints, model M1E9" is reformulated into an MILP

model.

[M1E9"] Min FC + PL + LC + Ywea ZieL Z;;eﬁwl Pw Ywip (63)

subject to Constraints (2)—9), (51)—~59), (60)—(62).

By utilizing the sub-columns from the sets P,;, second-stage decisions across all scenarios are
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incorporated into the first-stage master problem via Constraints (56) to (64). We then restructure the
equivalent model M1E9" into a set covering model. In our approach, the algorithm iterates between
solving M1E9" to obtain a valid first-stage solution (i.e., a baseline schedule), and generating new s-
columns from the second stage by applying the second-stage column generation process in MSt38€2,
The complete set of all feasible assignment plans for logistics center [ is represented as I, where each
individual assignment plan, indexed by #;, corresponds to a column. A binary decision variable A,, is
assigned to each column, taking the value of one if column #; is selected for logistics center [, and
zero otherwise. The cost for each column #; is denoted by c,,. A parameter agp,; is defined to denote
producer s sited in a location with a level of emission control ¢ and a level of production capacity b
for the logistics center [. A parameter G,f ! is defined to denote demand from customer k assigned to

logistics center [ in column #;. A parameter Uf ! is defined to denote the number of products

transported from producer s to logistics center ! in column #;. A parameter Lﬁp is set to one when

plan p € P, is chosen in column #,. A parameter chlb is defined to equals one if producer s sited

in a location with a level of emission control ¢ and a level of production capacity b for the logistics

center [ in column #;.

[M159% ] Min Yie, Yoer, Co, e, (64)
subject to
Yoer, Ao, =1 VIEL (65)
Yicec LveBy Uscy < 17 Vs€S (66)
Sier Teper, Ao, Gt = de vk € K (67)
Sier Teer, Ao, Ust < Teec Tpen, My e VSES (68)
DieL Xpep,, fwlkaﬁp Yeer, e, < dok Vk €K, w € (69)
Sier T pe  Jwsivlep Terer, Aoy < Eeec Tves, Mhpscy VS € S, € Q (70)

F 5 E gt . s+ gt
Ycec ZbeBs Asch Ges + Diel Zp&?wl]wslpgsll'wp Zﬁerl /1{’1 — YleL Zpe?wl Zgsp Lop E{’lerl A{’l +

Sier L ey, Zasplop Deer, Ao, < €F Vs €S, w€EQ (71)
Sier Lpepy, ZbspLlep Lever, Ao, < 0F Vs €S, w€EQ (72)
H, Soer, e, = sep VseS,ceCbeBIEL (73)
agqp € {0,1} VseS,ceC,beB (74)
Ay 20 ViEL. (75)
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During each iteration, the dual variables from Mlﬁ? are passed to the subproblem (PP) to generate
new columns. Here, y;, Uy, @, Cwk> Twss Sws> lws and Og.p; are dual variables for Constraints
(65) and Constraints (67)—(73), respectively.

The PP is split into |L| separate pricing subproblems, with each one assigned to a specific logistics
center. The subproblem for generating f-columns for logistics center [ is denoted as PP, and
formulated as the Mlgzu. The new variables defined for the PP are as follows.

Xwp  binary; equals one when sub-column p is chosen for logistics center [ in scenario w, w €

QLpe ﬁwl;

) cost associated with sub-column p for logistics center [ in scenario w, w € Q, p € P,,.

wp
Since the variables mentioned are utilized in the pricing subproblem for a single logistics center, the

index [ is omitted from the variable subscripts for simplicity.

[M153" Min e, — (V1 + Zkek Ok Ui + Lses Hs Ts + Lwea Lpep,,, Lkek TwkpXwpSwk T
Y0ea Xpep,, Lses JospXopTos + Lwea Lpes , Lses Sws Twspds Xop = ZbspXap + ZaspTwp) +
Ywea Zﬁeﬁwl Yses lws Z$sp)?wp + Yses Xicec 2ibes, Osch Agep) (76)
subject to Constraints (3), (5), (6), (51), (57) and (58)—(59) in-which the logistics center index [ is
omitted in the subscripts of the related parameters and the-variables.

Co, = Yses Leec Lbeb, foeb /LUscr + Xeec Tvep, fob Ben + Lses s (95 + Teec Tven, kip Xsep) +
Ykek Ok (9% + Xcec Zves, b Bep) + Dwea X pep,, Po DupXop (77)

The objective (76) aims to minimize the cost of the assignment plan. Constraint (77) calculates the

cost of the assignment plan for the logistics center.

6. Numerical experiments

To assess the effectiveness of the proposed model and the efficiency of the primal decomposition
algorithm, numerical experiments were performed on a workstation equipped with an Intel Xeon Gold
5218R CPU running at 2.10 GHz and 32 GB of RAM. The models and algorithms were implemented
using C# in Visual Studio 2022, utilizing the ILOG CPLEX 22.1.0 solver. Each instance was allocated

a maximum of 3,600 seconds for computation.

6.1 Experimental settings
We use SAIC as a case study, utilizing data from the organization to conduct numerical experiments
to validate our model and algorithm. SAIC is one of the largest automobile manufacturers in China. It

is headquartered in Shanghai and has multiple production bases and logistics centers in provinces such
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as Shanghai, Shandong, Hubei, Fujian, and Liaoning. These facilities include various automobile
manufacturing and assembly plants, forming a complex and extensive supply chain network. In recent
years, SAIC has actively promoted green manufacturing and sustainable development by implementing
measures to reduce carbon emissions and achieve environmentally friendly production practices. Figure
3 illustrates the geographic distribution of SAIC’s customer segments and the potential candidate sites
for their production facilities and logistics centers. In the figure, larger circular icons (representing
customer segments) indicate higher local customer demand. The test data are extrapolated from
historical operational records. Appendix A comprehensively describes the primary input parameters

used in the mathematical model.

[F -/~ - - - Shenyang Production Site

K /’]} - - Yantai Production Site
@ [CF---Qingdao Production Site
|
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@ Nanjing
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Changsha % &' n-g-bz) -Wuhan Production Site
.A ‘EI-;S - - -:Ningde Production Site
Liughou V.0
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Legend: & P
O Potential Production Sites o
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® Customer Segments / i
" /v

Figure 3: Layout of potential facility locations and customer positions

We create 4 experimental groups, and the largest ISG has 100 uncertain scenarios. Table 1 details the
specific settings for the set of instances.

Table 1: Scale of instance groups employed in the experiments

Group ID  No. of producers  No. of logistics centers  No. of customers No. of scenarios
ISG1 2 3 3 5
ISG2 5 7 7 25
ISG3 6 8 8 50
ISG4 6 8 8 100

6.2 Solution quality
We begin by evaluating small—scale instances to compare the optimal performance of CPLEX, our
proposed primal decomposition algorithm, and a lower bound (LB) that relaxes the binary variables

Bicp- The results from testing randomly generated instances in the ISG1 and ISG2 groups, detailed in
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Table 2, show that CPLEX can only handle the initial set of small-scale instances, ISG1, which consists
of five scenarios. The computation time the solver requires for ISGI is slightly less than our algorithm
requires. However, as the problem size increases, the computation time required by CPLEX rises
sharply. As indicated by the gap value (GAP,) in Table 2, our approach achieves optimal solutions
consistently (with an average deviation of 0 from the optimal solutions), demonstrating its reliability.

Table 2: Performance of the algorithm on small-scale instances

Instances CPLEX LB Primal decomposition algorithm
Group 1D Feprex  teprex Fip Fpcg tpce GAPy GAP,
1-1 70632 0.33 63,252 70,632 9.06 11.67% 0.00%
ISG1 1-2 65504 0.25 55,608 65,504  6.67 17.80% 0.00%
1-3 62702 0.25 53,639 62,702  7.06 16.90% 0.00%
1-4 80977 0.47 68,217 80,977  9.19 18.70% 0.00%
1-5 67581 0.25 52,813 67,582  8.50 27.96% 0.00%
2-1 — — 185,153 206,832  50.70 11.71% —
2-2 — — 170,759 179,058 32.58 4.86% —
ISG2 2-3 — — 170,211 190,536 48.78 11.94% —
2-4 — — 139,192 169,600 39.83 21.85% —
2-5 — — 128,427 150,624  60.02 17.28% —
Average 16.07%  0.00%

Notes: (1) Feprgx, Fip and Fpe denote the objective values of the solutions obtained from CPLEX, the LB,
and the primal decomposition algorithm, respectively. The units of these objective values are in ten thousand
RMB. (2) tcprpx and tpeq represent the computation times, in seconds, for the CPLEX solver and the primal
decomposition algorithm, respectively. (3) Gap; = (Fpee — Fig)/Fig; Gap, = (Feprgx — Foce)/Fepixe- (4)
The symbol “—” indicates that CPLEX was unable to solve the instances within the 3600-second time limit.
The CPLEX solver is not effective at solving large-scale instances. To further demonstrate the
efficacy of our algorithm, we perform tests on large-scale instances and compare the results of the
primal decomposition algorithm against those of the LB. As shown in Table 3, the average deviation
(GAP3) between the results of our algorithm and the LB is around 11.10%, similar to the average
deviation of 16.07% observed for smaller instances. CPLEX fails to solve any test cases in ISG2, ISG3,
and ISG4 within 1 hour. In contrast, the primal decomposition algorithm obtains solutions for each

instance within 5 minutes, demonstrating its effectiveness in large-scale instances.

Table 3: Performance of the algorithm on large-scale instances

Instances LB Primal decomposition algorithm

Group ID Fip Fpce thce GAP,
3-1 203,301 231,616 116.65 13.93%
3-2 192,416 221,088 96.10 14.90%

ISG3 3-3 185,317 215,006 77.78 16.02%
3-4 194,579 225,643 72.63 15.96%
3-5 187,398 217,529 88.89 16.08%
4-1 327,690 347,617 186.47 6.08%

SG4 4-2 236,647 257,420 266.78 8.78%
4-3 279,510 300,284 236.87 7.43%
4-4 387,364 412,762 299.85 6.56%
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4-5 330,424 347,738 245.64 5.24%

Average 11.10%
Notes: (1) F;p and Fpc; denote the objective values of the solutions obtained from LB and primal
decomposition algorithm, respectively. The units of these objective values are in ten thousand RMB. (2) tpq¢
represents the computation times, in seconds, for primal decomposition algorithm. (3) Gap; = (Fpce — Fig)/Fi5-

6.3 Benefits of stochastic programming

In this paper, we adopt a stochastic programming approach to address uncertainty in customer
demand in supply chains. To demonstrate the advantages of this method, we define three distinct
decision-making approaches and conduct a series of experiments to compare them.

Method 1: This method employs a stochastic model (i.e., the proposed model M1) to optimize the
problem under various uncertainty scenarios. The resulting objective value is denoted by Z;.

Method 2: This method uses a deterministic model. The model is constructed based on the original
model but operates under a single scenario. In this scenario, each random parameter (such as customer
demand) is replaced with its expected value, the average across all scenarios. The first stage of the
problem is solved under this deterministic setup, and the second stage is then solved based on the
solution from the first stage. The objective value of this method is denoted as Z,.

Method 3: This approach addresses the problem by solving a set of deterministic models, each
representing a specific scenario derived from actual customer demand. Following the resolution of these
models, the average of their objective values is calculated and referred to as Z;.

Table 4: Experimental results on the benefits of stochastic programming

Instances Zy Zy Z3 9QPstocha 9aPinfo
Group ID

ISG2 2-6 380,048 396,792 377,350 4.41% 0.71%

2-7 297,297 312,561 294,245 5.13% 1.03%

2-8 559,387 588,776 548,485 5.25% 1.95%

2-9 345,116 366,580 339,801 6.22% 1.54%

2-10 441,107 470,506 428,758 6.67% 2.80%

2-11 211,091 226,844 201,898 7.46% 4.35%

2-12 341,569 368,120 334,157 7.77% 2.17%

2-13 107,596 120,786 104,115 12.26% 3.24%

2-14 233,204 262,167 226,351 12.42% 2.94%

2-15 126,630 143,646 123,514 13.44% 2.46%

Average 8.10% 2.32%

Notes: (1) The units of these objective values are in ten thousand RMB. (2) gapstocha = (Z, —Z1)/Z; and
9Pinfo = (Z3—21)/Z,.

Z, 1is generally less than or equal to Z,, and the disparity between these two values represents the
cost associated with disregarding uncertainty in the decision-making process. This difference is referred
to as the value of the stochastic solution, Valsocna = Z» — Z4, and it quantifies the impact of ignoring
stochastic factors. Method 3 is often impractical in real-world scenarios due to the challenges inherent

in accurately predicting customer demand. In such cases, Z3 is often considered as a lower bound for
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Zy. The disparity between Z; and Z3 is referred to as the value of perfect information,Vali,r, =
Z3 — Z4, and it quantifies the impact of uncertainty and the potential benefits of accurate information.
Therefore, it is critical to incorporate stochastic factors into the initial stages of scheduling methods.
The results of the comparative experiments are summarized in Table 4. In the table, the percentages of
Valsocha and Valyg, relative to the target value of the original model are represented by gapstocha
and gapinf,, respectively. These results underscore the importance of considering uncertainty during

the optimization process.

6.4 Managerial insights from sensitivity analysis

We conduct several experiments to obtain insights for managing sustainability in supply chains.
(1) Sensitivity analysis of customer demand

We perform a series of sensitivity analyses to assess how various levels of certain and uncertain
demand affect the overall cost of the supply chain. These analyses are conducted using the ISG3 scale,

and the findings are illustrated in Figure 4.
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Figure 4: Sensitivity analysis of customer demand
Figure 4(a) illustrates that total supply chain costs increase as the average certain customer demand
(dy) grows along the horizontal axis when the average uncertain customer demand across all uncertainty
scenarios (d ) is fixed at 220. The term “average customer demand” refers to “expected customer
demand”, typically derived from historical data or forecasts that provide a consistent value. In our model,
this demand represents a scenario where uncertainty is not considered. “Average uncertain customer
demand” refers to the average demand across all uncertain scenarios. Considering potential variations
or fluctuations in customer demand, we use the average value to represent the unpredictability of
demand under such conditions. Notably, when certain demand reaches the same level as uncertain
demand (i.e., d,) = 220), the increase in costs becomes more pronounced. Our mathematical model
and real-world observations can explain this phenomenon: certain demand represents information

known to supply chain members and primarily influences first-stage decisions, such as facility location

and capacity planning. An increase in demand leads to higher production and transportation
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requirements, and existing capacity may become insufficient, necessitating additional facilities and
increasing costs. When first-stage certain demand surpasses second-stage uncertain demand, the actual
uncertain demand handled by the supply chain is less than initially planned, a scenario commonly
observed in real-world supply chains. For example, due to market fluctuations and emission reduction
requirements, the actual customer demand handled by the supply chain may be lower than previously
estimated. In such cases, the unmet demand causes the supply chain to incur penalties, which are
reflected as additional costs in our model, resulting in a more significant increase in cost. Therefore,
supply chain members should strive to accurately forecast uncertain demand and mitigate the impact of
demand fluctuations on the supply chain to minimize costs.

Figure 4(b) shows that when the average certain customer demand (dy,) is fixed at 80, the total supply
chain costs decrease as the average uncertain customer demand across all scenarios of uncertainty (d,,)
increases along the horizontal axis, eventually stabilizing. Consistent with the analysis depicted in
Figure 4(a), when uncertain demand is lower than certain demand (in the 60-80 range on the horizontal
axis of Figure 4(b)), the total supply chain costs fluctuate significantly. The total supply chain costs
decline most sharply when uncertain demand is less than and approaches certain demand (d;, = 80).
As uncertain demand exceeds certain demand, the cost decreases, but at a slower rate, until it stabilizes.
This is because handling higher uncertain demand reduces penalty costs. Still, carbon quotas and carbon
credit limits prevent the supply chain from meeting demand indefinitely, causing costs to reach a lower
bound. Therefore, supply chain members should strive to meet demand as much as possible while
considering emission reduction requirements to avoid overproduction.

(2) Sensitivity analysis on the ratio of carbon quota for producers and logistics center

Secondly, the influence of the ratio of the carbon quota of producers to that of logistics centers on the
total cost of the supply chain is investigated. To explore differences in the decision-making outcomes
at different scales, we conduct experiments using examples of both small-scale and large-scale supply

chains. The results are shown in Figure 5.
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Figure 5: Sensitivity analysis of the ratio of the carbon quota of producers to that of logistics centers

As shown in Figure 5, total supply chain costs decrease as the carbon quota ratio between producers
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and logistics centers decreases in both small-scale and large-scale scenarios. In both cases, the most
significant cost reduction occurs when the ratio is 1.4, after which the cost reduction trend gradually
slows as the ratio continues to decrease. This is because a smaller ratio implies a relatively larger carbon
quota for logistics centers than producers, allowing logistics centers to sell more carbon credits, thereby
reducing costs.

In practical terms, logistics centers, which serve as transportation hubs connecting producers and
customers, tend to emit more carbon dioxide during transportation than producers. Moreover,
transportation-related carbon emissions constitute a significant portion of the total emissions across the
supply chain. This highlights the importance of strategically allocating carbon quotas, ensuring that
logistics centers, often the largest emitters, have sufficient quotas to avoid excessive carbon credit costs.

Therefore, supply chain managers should prioritize minimizing distances between supply chain nodes
to reduce transportation-related emissions in real-world scenarios. Additionally, efforts should be made
to allocate more carbon quota to logistics centers to optimize cost-efficiency and carbon management.
(3) Sensitivity analysis of minimum production capacity

Finally, we examine the impact of producers’ minimum production capacity levels on the total supply
chain costs. To explore differences in the decision-making outcomes across different scales, we conduct

experiments using examples of both small-scale and large-scale supply chains. The results are shown

in Figure 6.
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Figure 6: Sensitivity analysis of the minimum level of producers’ capacity

As shown in the figure, regardless of scale, total supply chain costs decrease as producers’ minimum
production capacity increases, eventually reaching a lower bound. This is because higher minimum
production capacity reduces the number of producers required to meet fixed demand, thereby lowering
initial facility location and operational costs. Additionally, as more demand is satisfied, penalty costs
decrease, leading to a corresponding reduction in total costs.

However, when the minimum production capacity reaches a certain threshold (e.g., 640 in Figure 6),
further capacity increases no longer reduce costs. This is because the existing capacity is sufficient to

meet demand, and additional production would only result in increased inventory and transportation
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costs. In our model, increased production also raises the processing volume at logistics centers, thereby
increasing carbon emissions. Producers and logistics centers may limit production to reduce carbon
emissions and related trading costs, leading to idle capacity and stabilized costs.

From a managerial perspective, this indicates the importance of evaluating appropriate capacity
levels when selecting production equipment. Blindly pursuing higher capacity is not advisable. Instead,
producers should invest in energy-efficient and environmentally friendly equipment to avoid the waste
and cost increases associated with overcapacity, which could impact the sustainability and profitability

of the supply chain.

6.5 Benefits of blockchain

A key contribution of this study is integrating blockchain technology into the design of sustainable
supply chain networks, along with the formulation of smart contract rules to limit carbon emissions and
optimize carbon trading decisions. The advantages of blockchain are evaluated by comparing the
proposed model to one that does not incorporate blockchain technology. This evaluation is detailed in
Appendix B. The results, illustrated in Figure 7, indicate that blockchain technology reduces the total
cost of the supply chain, as quantified by the gap (%) values. The results also demonstrate that when
demand (d;, in Figure 7) is higher, the benefits of blockchain, as indicated by the gap (%) values, are
greater. The benefits become more pronounced as the supply chain’s scale grows. These findings
demonstrate that the blockchain-enabled model offers substantial advantages in carbon emission control,
cost efficiency, and operational flexibility. Specifically, the blockchain-enabled model more effectively
maintains emissions within allocated limits, achieves lower overall costs through automated carbon

trading, and responds more efficiently to demand fluctuations than the conventional model.
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Figure 7: Benefits of considering blockchain

6.6 Robustness of the model against carbon credit price deviations
The carbon credit prices in this study are estimated based on data from the National Carbon Trading
Market Information Network (https://www.cets.org.cn/). However, carbon credit prices fluctuate

significantly daily, and market volatility may lead to inaccuracies in the estimates. We thus conduct a
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robustness test to evaluate the model’s robustness against carbon credit price fluctuations. As shown in
Figure 8, when carbon credit prices exceed the estimated values by 10%, 15%, and up to 30%, the total
cost (i.e., OBJ) calculated based on the estimates differs by no more than 1% from the optimal results
obtained using actual parameters. This confirms the robustness of the proposed model under carbon

credit price fluctuations.
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Figure 8: Robustness test of the price of carbon credits

7. Conclusions

This study contributes to the literature in three key respects by integrating blockchain and smart
contract technologies into the design of sustainable supply chains.

First, from a modeling perspective, the study introduces a blockchain-enabled two-stage stochastic
model to optimize sustainable supply chain operations. The model optimizes facility location and scale
decisions under uncertainty and incorporates market-driven carbon management, enabling real-time
carbon trading decisions at the operational level. This integration of market mechanisms ensures that
carbon credits are dynamically managed, allowing firms to effectively respond to changes in carbon
prices and emission levels.

Second, from an algorithm design perspective, the study contributes a method to efficiently solve
supply chain problems. Specifically, the proposed primal decomposition algorithm demonstrates high
computational efficiency. It effectively solves large-scale and complex supply chain problems within 5
minutes, whereas CPLEX fails to find a solution to these problems even after 1 hour of execution.
Moreover, the optimality gap between the results obtained from our algorithm and those achieved by
CPLEX is 0%, confirming the algorithm’s effectiveness.

Third, from a managerial perspective, the extensive numerical experiments conducted in this study
using data from SAIC provide valuable insights for decision-makers. Sensitivity analyses of customer
demand, carbon quota ratios, and production capacity levels reveal that, under cap-and-trade regulations,
blindly increasing production to meet uncertain demand can lead to higher costs. This finding challenges

the conventional notion that increasing production to meet customer demand is always beneficial for
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the supply chain. Instead, our study demonstrates that overproduction—without carefully managing
carbon credit purchases—can result in unnecessary costs under the carbon trading system. This counter-
intuitive result highlights the need for manufacturing companies to strategically plan production
capacity while accounting for carbon trading implications to avoid excessive expenses. Moreover, the
study emphasizes the importance of strategically allocating carbon credits to minimize total costs. In
addition, the stochastic model demonstrates a cost-saving potential of 8.10%, whereas the value of
perfect information is 2.32%. The study also indicates that the benefits of blockchain become more
pronounced as the scale of the supply chain grows, reducing overall costs. Our robustness tests show
that the total cost estimated based on forecasted values deviates by less than 1% from the optimal cost
obtained using actual parameters, confirming the model’s robustness to fluctuations in carbon credit
prices.

Nevertheless, the model has certain limitations. For example, the model assumes a uniform price for
carbon credits, whereas distinguishing between the purchase and sale prices would better reflect market
dynamics. The impact of supply chain disruptions, such as natural disasters or geopolitical events, is
also not considered, which could affect the model’s robustness. Future research could explore how
disruptions affect the stability and efficiency of supply chains, incorporating risk management strategies

and contingency planning into the model. These limitations will guide our future research.

Appendices

Appendix A

Table A provides an overview of the critical input parameters utilized in the mathematical model.
Based on the historical sales data of SAIC, the random demand d ), from different customers for the
product is estimated to follow a uniform distribution U(30,5000). For the price of carbon credits
related to carbon trading, we base our estimates on data provided by the National Carbon Trading
Market Information Network. The total greenhouse gas emissions of SAIC in 2023 were estimated to
be 2.03 million metric tons of CO. equivalent. The average estimates for ef and ef are 5,000 metric
tons each. The fixed costs of the facilities are determined by both the emission control level and the
capacity level.

Table A: Key input parameters and setting

Parameters Setting

Cost of products from location m to n 9% = 1.5km/RMB X L., , L, denotes the
distance between location m to n

CO; emissions (in kg) of trucks from location m to n g, = 1km/kg X L,

Production capacity of producer s with capacity level mf, = basemf, x TD x n,,1,~U(0.2,0.5)
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b; Processing capacity of logistics facility [ with mE = basem® x TD x n,,1,~U(0.2,0.4)
capacity level b

Unit production cost of producer s with capacity level k%, = (1 — 0.05 X b) x

b basek?,, basekf, ~U(50,3000)

Unit processing cost of logistics facility ! with capacity nf = (1 —0.01 X b) x

level b basen®, basenk ~U(10,30)

Fixed CO, emissions (in kg) with emissions control when ¢ equals 1, 2, 3 respectively, gf, =
level ¢ 300,250,200 ¢f =150,125,100

The limited number of carbon credits of =0.05 x ef,o0R =0.05 x ef

Market price of carbon credits (in RMB) c%~U(65,120)

Penalty costs for not meeting customer needs (in RMB) ¢! =5 x 10*

Appendix B

This appendix provides a detailed comparison between our proposed blockchain-integrated model
and a model that does not include blockchain technology. In our proposed blockchain-integrated supply
chain model, carbon emissions at each node are continuously monitored, and smart contracts
automatically trigger carbon credit transactions when emissions exceed a set threshold. In contrast, non—
blockchain models lack the ability to make real-time adjustments, as decisions are limited to the initially
set carbon quota without the option for carbon credit trading. The comparative model, denoted as [M3],
is outlined below.

[M3] Min TC = FC + PL+ LC + Y ,eq P, 2(0, w) (B1)
where FC = YsesXcec ZbEBS stZb Asep + DieL Lcec ZbEBl fl?b Bicws

PL = ZSES ZZEL .usl(ggl + ZCEC ZbEBS kgb ascb);

LC = Yier, Ykex Ok (9ii + Zeec Lver, iy Bicn)-

(6, w) = (PL+LC) + Yea Xier ¢ (Zrex Ok — Zek Owi) (B2)
where PL = Zweﬂ ZSES ZlEL Huwst (ggl + ZCEC ZbEBS kgb ascb);

LC =Y e Yier Yrek Owin (9l + Zeec YibeB; g Bicn)-

subject to Constraints (2)—(9), (11)—(14)

Ycec ZbeBs Asch qgs + 2ieL .awslgfl = 65 VseES, we (B3)
Ycec Xber, Bieb 48 + Zkek Owirdii = e VIELwEQ (B4)
i flwst = 0 VseS,leELk€EK, weEQ. (B3)

The model [M3] is characterized by the absence of real-time monitoring and automated decision—
making mechanisms for carbon trading. Consequently, it lacks the ability to respond instantly to

emission fluctuations. The key differences between [M3] and our proposed model include: The
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constraint related to real-time monitoring of carbon emissions using smart contracts, such
F ~ E_7 5— Foos . . F

as Ycec ZbEBS Ascp Ges + Xier Bwsigst — {os T los < e5 is modified to: Ycec ZbEBS Qscp Ges T

Yien flwsigh = ef . Additionally, decision variables related to carbon trading, such as {}s, {ogr i,

and 7], are removed from the constraints and the objective function in the second stage.
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