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A B S T R A C T

The age of automation and intelligence requires upgrading conventional terminals (CTs) with 
automated ones in the port industry. This paper examines how to optimally decide the size and 
timing of this upgrade under demand and technological uncertainties. We use the real options 
approach to derive the optimal upgrade decisions for two options: the upgrade option when the 
port decision maker upgrades CT by building a new Automated Terminal (AT) without inter
rupting the operation of CT and the upgrade option when the port decision maker abandons the 
capacity of existing CT and replaces the exited capacity by investing in AT. We then conduct 
numerical experiments to analyze how uncertain technological improvement and demand affect 
the optimal solutions. The results suggest that in the additional replacement option, high tech
nological improvement and demand uncertainties will delay the AT investment but will not 
change the capacity investment choice for the AT. In the replacement upgrade option, high 
technological improvement will postpone the investment for AT and enlarge the exit capacity 
choice for the CT and the investment capacity choice for the AT. However, the exit capacity 
choice for the CT first increases and then decreases with increasing demand uncertainty. Finally, 
we extend our study to the public ownership of the port that adopts the upgrade option. Our study 
provides practical guidance for upgrading the CT and investing in the AT. It also contributes to 
the theoretical literature on automated technology adoption under uncertainty.

1. Introduction

Ports are critical interfaces that connect land and sea transport in the multimodal transport network, and they promote interna
tional trade and regional economies (Notteboom and Haralambides, 2020; Bai et al., 2022). Global trade has grown considerably in the 
past twenty years, and international merchandise trade values have increased from 645.2 billion US dollars in 2000 to 24.9 trillion US 
dollars in 2022 (UNCTAD, 2023). Moreover, since over 90 % of cargo volumes in international trade are transported by maritime 
shipping (Yang et al., 2019), the global container port throughput has also increased from 237 million TEUs in 2000 to 862 million 
TEUs in 2022 (Statista, 2024). To meet the rapidly growing demand for port service and expand the port hinterland, port with 
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conventional manual terminals and equipment has traditionally expanded its handling capacity to attract shippers (Balliauw et al., 
2019a). However, with the increased operating costs of manual terminals and equipment and the maturity of automation and intel
ligence technologies, the port with conventional terminals (CTs) have become less competitive in the multiport coastal regions (Guo 
et al., 2021; Guo and Jiang, 2022). As a result, the port becomes less attractive to shippers and shipping carriers and waste port re
sources. Furthermore, the shortage of labor and quarantine measures during the COVID-19 pandemic from 2020 to 2022 in the CTs 
also significantly reduced the port’s operational efficiency and productivity (Merk et al., 2022). Therefore, it is vital for port decision- 
maker to know how to upgrade its CTs and propose practical measures for CT upgrading.

Automated terminals (ATs), which use automated equipment and processes to replace conventional manual operations, have 
gained considerable attention in recent years due to the emergence and rapid application of Industry 4.0, automation technology, and 
digital technologies (such as the Internet of Things, cloud computing, and artificial intelligence (AI)) (Kon et al., 2021; Li et al., 2023). 
Adopting ATs is a vital development for upgrading CTs in the port, and a recent survey gathered from Navis’ (a top automated terminal 
operations system provider) 54 customers in 2020 indicates that 94 % of customers believe the AT is of great importance for keeping 
the port competitive in the next 3–5 years. AT offers many benefits to port agencies (Rodrigue and Notteboom, 2021), such as lowering 
overall terminal operating costs, enhancing operational efficiency and productivity in dealing with the increasing scale in ship size 
(which can increase by 25 to 50 percent compared with CTs), and attracting more shippers in the competitive overlapping hinterland 
by providing port services without delay and disruption.

Although AT plays a pivotal role in helping the port agency to pursue more efficient and resourceful operations, the share of ATs in 
all main terminals worldwide was still very low, and the total number of automated container terminals in the world was only 53 in 
2021 (ITF, 2021). The main reasons why decision-maker hesitates to invest in ATs are the high irreversible investment cost of 
automated terminal construction and the technological improvement uncertainty of automation technology (Rodrigue and Notte
boom, 2021). When a new port automation technology emerges, it usually entails a high cost of introducing the technology to construct 
the automated infrastructure. Therefore, port decision-maker face a technology adoption dilemma by considering the uncertainty of 
automation technological improvement: Should they adopt the high-cost new automation technology now or wait for future tech
nological improvement with cost reduction? Since technological improvement is typically hard to predict and quite uncertain, it plays 
a vital role in shaping the AT investment decision for upgrading the CT.

Demand uncertainty is another critical factor influencing AT adoption for CT replacement, besides the uncertainty of automation 
technological improvement. Port demand depends on trade volume, which may be affected by many uncertain factors (Xia and 
Lindsey, 2021), such as economic and trade fluctuations (e.g., the economic crisis in 2008), public health emergencies (e.g., the 
COVID-19 pandemic in 2020), military conflict and war (e.g., the Russia-Ukraine conflict in 2022), and natural disasters (e.g., the 
Hurricane Katrina in 2005). Uncertain port demand will influence the profit of both types of terminals and then further affect AT 
adoption for CT upgrade. Thus, we must also include the uncertainty of demand in the CT terminal upgrade decision. Nowadays, the 
port decision-maker has adopted two popular AT investment strategies for upgrading the CTs. The one is that the decision maker 
invests in new ATs within the port areas without interrupting the operation of existing CTs. The other one is that the decision-maker 
abandons existing CTs’ partial or full capacities and then upgrades the idle CT capacities by investing in ATs.1 Under the above two 
upgrade strategies, the port decision-maker will address different problems for CT upgrading in the context of technological 
improvement and demand uncertainties. In the case of investing in a new AT, the decision maker has to determine when and what size 
should the port decision-maker invest in an AT? However, when replacing the existing CT, the decision maker should address two 
crucial problems: (1) When and what size should an existing CT exit the port market? (2) When and what size should the port decision- 
maker invest in an AT for replacing CT?

In the above context, using real options theory, this study aims to investigate the optimal upgrade decisions from CT to AT within a 
port under technological improvement and demand uncertainties. To achieve this aim, we first derive the optimal investment decision 
in an additional investment upgrade option that the port decision maker invests in new AT without interrupting the operation of CT. 
We then derive optimal exit and investment decisions in a replacement upgrade option in which the port decision maker abandons the 
capacity of the existing CT and replaces the exited capacity by investing in AT. Finally, we present numerical examples to analyze the 
analytic solutions obtained from the two upgrade options and provide a sensitivity analysis to further discuss the impacts of several 
essential parameters on optimal upgrade decisions.

Our study makes the following main contributions: (1) Our research is one of the first to enrich the literature on conventional port 
upgrade decisions under uncertainty based on the real options model, in which the port demand uncertainty and technological 
improvement uncertainty are incorporated. (2) Our study addressed the exit decision of the CT and the investment decision of the AT 
under two upgrade options (i.e., the additional upgrade option and the replacement upgrade option). The interactions among terminal 
congestion, terminal substitution effect, exit timing and size for the CT, and the investment timing and size for the AT are explicitly 
disclosed. (3) The numerical experiments illustrate how demand and automation technological improvement uncertainties influence 
the two CT upgrade options under the given parameters based on the European and North American private ports data.

The remainder of this paper is organized as follows. Section 2 reviews the literature on port/terminal investment and technology 

1 Although the existing installed port capacities are not easy to abandon as the port assets have the characteristics of fixed heavy assets and long- 
term depreciation period, the exit of existing CT capacities is still a useful strategy to prepare for the challenges of trade or economic fluctuation. For 
example, the Dalian Port, a top seaport in mainland China in terms of port throughput, has gained substantial economic benefits by abandoning the 
terminals that are near the CBD of Dalian city. By developing the real estate and modern service industries with the idle land of abandoned ter
minals, the Dalian Port has earned enormous economic benefits facing the world economic crisis in 2009.
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adoption under uncertainty. Section 3 presents the basic models for measuring the uncertain port demand and investment cost. Section 
4 presents the optimal upgrade option for additional investment in new AT and gives the corresponding analytic solutions. Section 5
presents the optimal upgrade option for replacing the CT with a new AT and gives the corresponding analytic solutions. Section 6 gives 
numerical experiments to illustrate further the optimal decisions and the corresponding analytic solutions obtained from Sections 4 
and 5. Section 7 presents the extension of the upgrade options by considering the public ownership of the port. Section 8 concludes the 
study and gives the policy implications.

2. Literature review

Two streams of research are relevant to our study: the port/terminal investment and the technology adoption problem under 
uncertainty. In this section, we review the studies most relevant to our work regarding the two streams of research, based on which we 
also identify the contribution of this paper.

2.1. Port/terminal investment

This paper examines the AT investment problem for upgrading the CT, and the port/terminal investment problem is a longstanding 
topic in the port and maritime literature. This problem involves determining the optimal investment decision for ports in response to 
the increasing demand for international and regional trade and the rising threats of natural disasters and climate change (Musso et al., 
2006). The existing literature on port investment can be classified into two categories, based on the conditions that ports face when 
making the investment decision: deterministic and uncertain. Regarding the studies on port investment under deterministic conditions, 
Allahviranloo and Afandizadeh (2008) determined the optimal investment plan for port development from the perspective of national 
investment, using a fuzzy integer-programming model that considered the type of design ships and design berths. Wan et al. (2016)
focused on the investment decision of local governments on regional landside accessibility, taking into account two different port 
ownerships (i.e., public port aiming to maximize social welfare and private port aiming to maximize profit) and the impact of seaport 
competition. Wu et al. (2016) studied the final equilibrium for stopping the investment from the perspective of port companies and 
local governments, addressing the influence of local government on port investment. Guo et al. (2018) proposed a multiperiod port 
investment and exit strategy to cope with the oversupplied port capacity in a multi-port region in recent years, by maximizing the 
social welfare of the MPR. Yang et al. (2019) extended the work of Guo et al. (2018) to consider the industrial transformation and 
upgrading of oversupplied ports.

The studies on port investment under uncertainty can be further classified into two categories based on the type of uncertainty that 
ports face: demand and congestion uncertainties, and climate change and disaster uncertainties. Under demand and congestion un
certainties, previous studies have used game theory and real options theory to analyze port investment decisions. For example, Chen 
and Liu (2016) applied a two-stage game to address the problem of facility investment level and service prices for risk-averse ports 
under uncertain demand and congestion. Balliauw et al. (2019a) leveraged the Cournot competition and real options theory to 
investigate the two competing ports’ capacity investment decisions (including capacity investment scale and timing) under demand 
uncertainty and congestion. Balliauw et al. (2020) used the real options theory to study the optimal investment size and timing of 
individual port investment decisions under congestion and demand uncertainty. Moreover, Guo et al. (2021) and Guo and Jiang (2022)
also applied the real options theory to study how port investment under demand uncertainty affects the capacity integration for 
multiple ports in a given port cluster. The empirical results conducted in these papers indicate that the option value derived from 
investing under uncertainty accelerates the integration of port capacity. Under climate change and disaster uncertainties, previous 
studies have used integrated economic models and real options models to investigate port adaptation investment decisions. For 
instance, Xiao et al. (2015) used an integrated economic model to study the disaster-prevention investment, considering the uncer
tainty of disaster occurrence and the associated return of prevention investment. They found that the probability of disasters de
termines the timing of port investments. Wang and Zhang (2018) examined the effect of inter-and intra-port competition and 
cooperation on the port adaptation investment under the Knightian uncertainty regarding the emerging probability of a natural 
disaster. Randrianarisoa and Zhang (2019) developed a two-period real options game model to investigate the climate change 
adaptation investment size and timing with two “landlord” ports (consisting of a port authority and a downstream terminal operator 
company), facing the climate change impacts on the ports. Xia and Lindsey (2021) investigated the optimal timing and size of port 
capacity investment and the port charges under uncertain climate-related threats and demand. Zheng et al. (2021a, 2021b) compared 
the effects of subsidy policy and adaptation sharing under the minimum requirement on the seaport adaptation investment to climate 
change disasters. Moreover, Zheng et al. (2022) extended Zheng et al. (2021a, 2021b) by incorporating the asymmetric information 
regarding the actual disaster damage.

The above review reveals that mathematical programming models are commonly used to address port investment under deter
ministic conditions, while real options theory is widely adopted to address port investment under uncertainty. Real options theory is a 
powerful tool that can measure the option values of delaying or deferring investment under uncertainty (Sun et al., 2020; Guo et al., 
2023). Therefore, we choose to adopt the real option theory to investigate the AT investment problem for upgrading the CT.

2.2. Technology adoption under uncertainty

Our paper also relates to the literature on technology adoption under uncertainty, which examines when and how to switch from 
old to new technology under uncertain technological improvement. This problem has attracted increasing attention in recent years. 
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Murto (2007) analyzed how technological uncertainty with a Poisson form process affects the investment timing of irreversible in
vestment and how different types of uncertainty influence investment timing. Smith and Ulu (2012) modeled the uncertainty in quality 
and costs as a Markov process and studied how future innovation in quality and costs affects the consumers’ technology adoption 
decision. Flor and Hansen (2013) addressed the optimal investment decision of a firm under the case that uncertain technological 
advance reduces the investment cost and earnings. Hagspiel et al. (2015) extended the traditional technology adoption under un
certainty problem by assuming that the arrival rate in the Poisson process is uncertain. They showed that the uncertain arrival rate in 
the Poisson process changes the optimal technology time significantly. Nunes et al. (2021) applied real options theory to address the 
investment problem under two sources of uncertainty (i.e., prices and technology), where the uncertain price is simulated by a 
geometric Brownian motion and technology innovation is simulated by a Poisson process. Huang et al. (2021) used real options 
framework to address the investment timing problem of carbon emission reduction technology, where the technology investment cost 
is measured by a jump-diffusion process. Unlike the above studies that assume the uncertain technological improvement follows a 
Poisson process, Armerin (2023) modeled the reduction of investment cost as a non-decreasing Lévy process and then presented the 
general result of optimal investment timing in the investment problem.

Another stream of literature has incorporated the exit decision of the old technology into the technology adoption problem. For 
instance, Kwon (2010) used stochastic analysis to decide whether to continue investing or stop and exit the current project when facing 
an uncertain declining profit stream. Similarly, Hagspiel et al. (2016) studied both capacity investment decision (containing capacity 
size and timing) and exit timing decision for replacing the old established product with an innovative product in an uncertain declining 
profit stream. They showed that higher uncertainty of the profit stream would defer the new innovative product investment timing and 
call for a larger capacity investment size. Furthermore, Hagspiel et al. (2020) extended their replacement strategy by considering 
adding an innovative product to the product portfolio. That is, both products compete as the established product is not entirely 
replaced by the new product.

2.3. The contribution of this paper

Despite the efforts of previous literature on addressing the port investment and technology adoption under uncertainty problems, 
some issues are still not well addressed. First, most previous port investment studies only consider the optimal investment decision for 
a new port or terminal and neglect the exit decision for the existing port or terminal. However, the existing port or terminal can still 
affect the optimal investment decision for the new port or terminal, as it can earn a profit even in a declining profit stream. Therefore, 
we need to include the exit decision of the existing conventional terminal in the investment decision of the automated terminal. 
Second, our paper is related to Hagspiel et al. (2016, 2020), but they have some gaps that we fill. Hagspiel et al. (2016) did not account 
for the impact of technological improvement on the optimal replacement strategy, nor did they study the competition problem when 
both products coexist in the market. Hagspiel et al. (2020) analyzed the impact of technological improvement on the optimal 
replacement options, but they did not address the capacity decisions in the optimal replacement strategy. Third, most previous studies 
addressing the exit decisions only focus on the product replacement problem in a declining market for the old technology. However, in 
an increasing market for the old product, the decision-makers may also prefer to replace the old product, as it is less attractive to 
consumers. In other words, replacing old products with new products may be more beneficial for decision-makers even if the old 
product faces an increasing market.

To fill the above research gaps, this paper addresses the conventional port upgrade decisions under the demand and technological 
improvement uncertainties based on the real option theory. We derive the optimal exit decision of the CT and the optimal investment 
decision of the AT under two upgrade options (i.e., the additional upgrade option and the replacement upgrade option). We explicitly 
disclose the interactions among terminal congestion, terminal substitution effect, exit timing and size for the CT, and the investment 
timing and size for the AT. Based on the European and North American private ports data, we conduct numerical experiments to 
illustrate how demand and automation technological improvement uncertainties influence the two CT upgrade options under the given 
parameters. Furthermore, we extend our study to the case of public ownership of the port and then derive the optimal upgrade de
cisions for the CT.

3. Basic model

3.1. Uncertain port and terminal demand

As indicated by Balliauw et al. (2019a) and following Huisman and Kort (2015), we can use the multiplicative inverse demand 
function to simulate the relationship between the port price and the uncertain port demand. Since congestion can lead to potential loss 
of demand (Jansson and Shneerson, 1982), we thus have to include the congestion cost in the inverse demand function (Balliauw et al., 
2019b). If the port decision maker has not adopted the port upgrade decision, then the sole type of CT is located in the port. In this case 
(denoted as case s), the port demand function is expressed as follows: 

Pst = Xst

(

1 − ηqst − γ
qst

Kst

)

, (3.1) 

dXst = μsXstdt + σsXstdzt , (3.2) 
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where Pst is the port price at time t in case s; Xst is the demand shift parameter, which is assumed to be exogenous by considering the 
derived demand characteristics of port demand and satisfies the geometric Brownian motion (GBM) according to the popular setting in 
the literature on transport investment under uncertainty (Galera and Soliño, 2010; Chow and Regan, 2011); μs is the drift parameter in 
GBM in case s; σs is the volatility parameter in GBM in case s; dzt is the increment of a standard Wiener process; qst is the port 
throughput at time t in case s; η is a slope parameter; Kst is the port capacity at time t in case s. Following the congestion cost equations 
shown in Álvarez-SanJaime et al. (2015), Guo et al. (2018), and Yang et al. (2019), the term γq/K is used to measure the generalized 
port congestion cost, where q/K is used to capture the port capacity utilization level and γ reflect the port operating efficiency. Ac
cording to the term γq/K, we can find that both the capacity utilization level and port operating efficiency will determine the port 
congestion cost. If the port has a high operating efficiency, the port users may not have to pay a high congestion cost even if the port 
utilization level nears saturation. Moreover, the term γq/K can also effectively reflect the difference in congestion cost between CT and 
AT, and the terminal congestion costs of the two types of terminals may not be equal even though the two terminals have the same 
capacity utilization level, as the AT usually has a higher operating efficiency than the CT.

Furthermore, when the CT is upgraded by AT, then two types of terminals will be located in the port. In this case (denoted as case 
m), the exogenous port demand (denoted as Xm) is equal to the total demand of the types of terminals (i.e., Xm = Xm1 + Xm2), where 
subscripts 1 and 2 represent the CT and AT, respectively. Moreover, we have to simulate the competition relationship of the two types 
of terminals by applying a game-theoretic approach. Since the terminals are heterogeneous, the demand functions for the two types of 
terminal services are given by 

Pm1t = Xmt

(

1 − η1qm1t − εqm2t − γ1
qm1t

Km1t

)

, (3.3) 

Pm2t = Xmt

(

1 − η2qm2t − εqm1t − γ2
qm2t

Km2t

)

, (3.4) 

dXmt = μmXmtdt + σmXmtdzt , (3.5) 

where ε(∈ [0, 1]) is the differentiation parameter, taking the value of 1 representing the perfect substitution of two types of terminals 
and 0 representing the perfect complementarity. Moreover, the other notations in the two equations have the same definitions in the 
port demand function shown in Eqs. (3.1) and (3.2).

3.2. Uncertain investment cost

Furthermore, we must consider the impacts of uncertain technological improvement on the investment cost for AT construction. 
The investment cost for port automation technology adoption may be reduced due to technological improvement. Therefore, we use 
the compound Poisson process to simulate the evolution of the investment cost of ATs. Specifically, the investment cost that considers 
the uncertain impact of technological improvement is given by (Murto, 2007) 

It(Km2t, θt) = I0(Km2t)ϕθt , (3.6) 

where It(Km2t , θt) is the investment cost of AT at time t; I0(Km2t) is the investment cost at time t = 0; θt > 0 is a Poisson random variable 
with arrival rate λ > 0; and ϕ ∈ [0, 1) is a constant parameter reflecting the magnitude of technological improvement. With the above 
setting, the expected value of It(Km2t , θt) can be expressed by an exponentially declining function of time, and the detailed expression 
is as follows: 

E[It(Km2t, θt)] = I0(Km2t)e− λt(1− ϕ) = I0(Km2t)e− ξt, (3.7) 

where ξ ≡ λ(1 − ϕ). Moreover, as shown in Dekker (2005), Guo et al. (2018), and Yang et al. (2019), the port or terminal investment is 
characterized by the economies of scale, i.e., the port or terminal capacity increases with investment at a decreasing rate. Then, based 
on the popular setting in port investment studies for measuring economies of scale in port investment, we have: 

I0(Km2t) = w ⋅ (Km2t)
u
, (3.8) 

where ω is the scale parameter and u is the constant parameter reflecting the scale economics of terminal investment, 0 < u < 1. In the 
numerical experiments in Sections 6 and 7, we will give the specific values of w and u in Eq. (3.8) with the investment costs and 
capacities data of the studied ports. Unless otherwise specified, we will drop the subscript t for the variables and parameters in the 
following sections.

4. Additional investment option for upgrading the CT

As mentioned by Xia and Lindsey (2021), port may have different ownership structure with different levels of private and public 
authorities’ involvement. In the following Sections 4 and 5 for deriving the optimal upgrade options, we focus mainly on the private 
port owned by private authority. However, we will extend the optimal upgrade options to the case of public ownership of the port in 
Section 7.
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In the additional investment upgrade option without disturbing the operation of CT, the optimal strategies are to determine the 
optimal investment size and timing for the AT. In the following subsections, we derive the optimal investment threshold of the 
additional investment upgrade option and then give the analytic solutions in a special case.

4.1. Optimal investment decision

As shown in Eqs. (3.1), (3.3), and (3.4), the generalized port or terminal congestion cost has measured the impact of port or 
terminal operating efficiency on the port or terminal price. For simplicity, we thus do not propose an individual operating cost 
parameter to investigate the influence of operating efficiency on the port or terminal profit. Assuming that the port/terminal profit is 
denoted as π, we can then derive the following expressions for calculating the profits of the two types of terminals in case m with Eqs. 
(3.3) and (3.4): 

πm1(Xm) = Xm

(

1 − η1qm1 − εqm2 − γ1
qm1

Km1

)

qm1, (4.1) 

πm2(Xm) = Xm

(

1 − η2qm2 − εqm1 − γ2
qm2

Km2

)

qm2. (4.2) 

Furthermore, if the port decision-maker did not invest in the AT in case s, the port profit is equal to the profit of CT, i.e.: 

πs(Xs) = πs1(Xs) = Xs

(

1 − η1qs1 − γ1
qs1

Ks1

)

qs1. (4.3) 

With the above setting, if the port decision-maker adopts the additional investment option, the port decision maker will solve the 
following problem to determine the optimal investment strategy according to the real options theory: 

F(Xs,Xm, I) = sup
τ
E
[ ∫ τ

0
e− rtπs(Xs)dt +

∫ +∞

τ
e− rtπm(Xm)dt − e− rτI

]

, (4.4) 

where F(Xs,Xm, I) is the value function of the additional investment option; τ is the optimal investment timing of the AT; πm(Xm)(=

πm1(Xm) + πm2(Xm)) is the total profit of the two types of terminals in case m; and r is the discount rate. Suppose that r is a positive 
constant parameter and satisfies r > μs and r > μm.

To get the maximum value of F(Xs,Xm, I) in Eq. (4.4), πs(Xs) and πm(Xm) are then calculated as follows: 

πs(Xs) = πs1(Xs) = Xs(1 − γ1 − η1Ks1)Ks1,

πm(Xm) = Xm[(1 − γ1 − η1Km1)Km1 + (1 − γ2 − η2Km2)Km2 − 2εKm1Km2 ].

Therefore, if the sum future port profits in cases s and m are denoted as Ds(Xs) and Dm(Xm), respectively. Then, Ds(Xs) and Dm(Xm)

can be calculated as follows: 

Ds(Xs) =

∫ τ

0
πs(Xs)dt =

Xs(1 − γ1 − η1Ks1)Ks1

r − μs
,

Dm(Xm) =

∫ +∞

τ
πm(Xm)dt =

Xm[(1 − γ1 − η1Km1)Km1 + (1 − γ2 − η2Km2)Km2 − 2εKm1Km2 ]

r − μm
.

Then Eq. (4.4) can be rewritten as: 

F(Xs,Xm, I) = sup
τ
E
[

e− rτ
(

πs(Xs)

r − μs
+

πm(Xm)

r − μm
− I
)]

. (4.5) 

Since the investment of AT will increase the port competitiveness and then further attract more port users, we thus have Xm > Xs. 
Moreover, according to the derived demand characteristics of port demand, the port’s geographical location has been pointed out by 
many studies as a key determinant of port choice. The investment of AT in a sole port could not change the port’s geographical location, 
and we thus can assume that the exogenous port demand Xm in the two terminals’ case is linearly related to the port demand Xs in the 
sole CT case (i.e., Xm = υXs(υ > 1)). This assumption indicates that the port with two types of terminals has a larger attraction towards 
port users than the port with sole CT when considering the feedback effect of increased competitiveness. According to the linear 
relationship between Xm and Xs, the value of F(Xs,Xm, I) is then only determined by Xm and I.

Therefore, to determine the optimal investment decision for AT, we can divide the decision state space ϑ ≜ R+ × R+ into two parts: 
the stopping region (denoted as SA) SA := {(Xm, I) ∈ R+ × R+ : F(Xm, I) = I} and the continuation region (denoted as CA) CA :=

{(Xm, I) ∈ R+ × R+ : F(Xm, I) > I}. Let τ* be the time that the decision state variable first enters the stopping region, i.e., τ* =

inf{t⩾0; (Xmt , I) ∈ SA}, and thus τ* is the optimal timing for the AT investment.
Below, we give the property of the optimal investment decision based on F(Xm, I) in Eq. (4.5).
Proposition 4.1. The stopping region satisfies the following: 

L. Guo et al.                                                                                                                                                                                                             Transportation Research Part E 200 (2025) 104158 

6 



SA =

{

(Xm, I) ∈ ϑ
⃒
⃒
⃒
⃒
Xm

I
⩾x*

m

}

,

where x*
m is a constant to be determined.

Proof. The proof is shown in the Appendix.
According to Proposition 4.1 and the corresponding proof, we can conclude that the investment threshold x*

m is unique, and x*
m has 

divided the decision space into two parts, i.e., the stopping and continuation regions. As shown in Fig. 1, a ray starting from the origin 
divides the stopping and continuation regions. Moreover, according to Eq. (4.5), F(kXm, kI) = kF(Xm, I) (∀k > 0). Therefore, F(Xm, I)/
I = F(Xm/I,1), and F(Xm/I,1) is just a function of Xm/I. This property and Proposition 4.1 can transform the above two-dimensional 
optimal stopping problem (determined by Xm and I) into a one-dimensional problem (determined by Xm/I), realizing the aim of 
dimensionality reduction to further ensure that the optimal analytic solutions can be derived.

Let xm = Xm/I and g(xm) = F(xm, 1). If (Xm, I) ∈ S, g(xm) =
πs(xm)
υr− μm

+
πm(xm)
r− μm

− 1. If (Xm, I) ∕∈ S, i.e., whenever xm < x*
m, g(xm) should 

satisfy the following partial differential equation based on the Bellman equation and Ito’s Lemma in real options theory: 

∂g(xm)

∂xm
μmxm +

1
2

∂g2(xm)

∂x2
m

σ2
mx2

m − (r + λ)g(xm) + λϕg
(

xm

ϕ

)

= 0. (4.6) 

Moreover, when xm = x*
m, g(xm) must satisfy the following value matching and smooth-pasting conditions2 based on Dixit and 

Pindyck (1994): 

g
(
x*

m

)
=

πs
(
x*

m
)

υr − μm
+

πm
(
x*

m
)

r − μm
− 1, (4.7) 

∂g(xm)

∂xm

⃒
⃒

xm=x*
m
=

πs
(
x*

m
)

x*
m(υr − μm)

+
πm
(
x*

m
)

x*
m(r − μm)

. (4.8) 

Furthermore, if xm approaches zero, the value of g(xm) must approach zero, and thus, we have: 

lim
xm→0

g(xm) = 0. (4.9) 

With Eqs. (4.6) to (4.9), the problem of automated terminal investment is now well defined. We must find a specific function g(xm)

and positive x*
m such that g(xm) and x*

m satisfy Eqs. (4.6) to (4.9). Substituting Eqs. (4.7)–(4.9) into Eq. (4.6) yields the threshold x*
m: 

x*
m =

r + ξ
r− μm
υr− μm

[(1 − γ1 − η1Ks1)Ks1 ] + [(1 − γ1 − η1Km1)Km1 + (1 − γ2 − η2Km2)Km2 − 2εKm1Km2 ]
.

According to Eq. (3.5), the uncertain port demand is given by Xmt = Xm0 ⋅ exp((μm −
σ2

m
2 )t+ σmzt), where Xm0 is the port demand in 

the two terminals’ case at the initial time and E[zt ] = 0. Since xm = Xm/I, then E[xm] =
E[Xm ]

E[I] .Assume that the expected value of x*
m is 

denoted by x̂*
m. Then, we have x̂*

m =
E[Xmτ* ]

E[Iτ* ]
=

Xm0 ⋅exp((μm −
σ2
m
2 )τ*)

I0e− ξτ* , and thus τ* =
ln(̂x

*
mI0/Xm0)

μm − σ2
m/2+ξ .

After getting the expected investment threshold x̂*
m and τ*, we can derive the optimal capacity choice by solving the first-order 

condition ∂
(
g(x̂*

m) ⋅ Iτ*
)
/∂Km2 = 0, and the following equation determines the optimal capacity choice K*

m2: 

Iτ*
∂g
(
x̂*

m
)

∂K*
m2

++g
(
x̂*

m
)

⋅
∂Iτ*

∂K*
m2

= 0. (4.10) 

Since x̂*
m is equal to x̂*

m =
Xm0 ⋅exp((μm −

σ2
m
2 )τ*)

I0e− ξτ* , implying that x̂*
m is determined by the optimal investment timing τ* under the given 

parameters Xm0, I0, μm, and σm. Since τ* = inf{t⩾0; (Xmt, I) ∈ SA}, and if SA is empty, indicating that the port decision maker would 
never invest in AT, i.e., 

∫ +∞
τ πm(Xm)dt < I for all (Xmt , I) ∈ ϑ. However, the increased competitiveness of upgrading the CT with AT 

ensures that there exist (Xmt , I) ∈ ϑ which invalidates the inequality and results in a contradiction. Therefore, it is obvious that SA is not 
empty, and then there is obviously a unique solution for x̂*

m. Unfortunately, there is no analytic solution for g(x̂*
m) that satisfies the 

above all conditions as I is not unique under technological improvement uncertainty. Section 4.2 will show the analytic solutions for ̂x*
m 

and K*
m2 in the special case of deterministic technological improvement.

4.2. Analytic solutions

As shown above, we cannot obtain the specific function of g(x̂*
m) and then derive the expected thresholds x̂*

m and K*
m2 in the above 

2 For the detailed proofs of the value matching and smooth-pasting conditions, please refer to Dixit and Pindyck (1994).
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uncertain technological improvement setting. In this section, we solve the above free boundary problem to obtain the value of F(Xm, I)
and then derive the analytic solution in the deterministic technological improvement case by adjusting the parameters λ and ϕ.

We assume that the automated port technology has been dramatically improved and maintains a deterministic technological 
improvement progress, implying that the arrival rate of the Poisson random variable is increased (λ→ + ∞) and ϕ is increased (ϕ→1). 
Therefore, the investment cost experiences a deterministic exponential declining trend: 

It = I0e− λt(1− ϕ) = I0e− ξt ,

where ξ = λ(1 − ϕ) is always fixed as λ→+∞ and ϕ→1.
Assume that the expected investment threshold, optimal investment timing, and capacity choice for AT in this special case are xA

m, 
τA, and KA

m2. Since ϕ is close to 1, we can expand the term λϕg(xm
ϕ ) at point xm with the Taylor expansion method, and then we have 

λϕg
(

xm

ϕ

)

= λϕ
[

g(xm) +

(
xm

ϕ
− xm

)

g’(xm) +
1
2

(
xm

ϕ
− xm

)2

g’’(xm) + ...

]

. (4.11) 

As ϕ→1, the second-order term 12(
xm
ϕ − xm)

2gʹ́ (xm) is close to 0. Therefore, λϕg(xm
ϕ ) ≈ λϕg(xm) + λϕ(xm

ϕ − x2)gʹ(xm). Substituting this 
into Eq. (4.6) yields 

1
2

σ2
mg’’(xm)x2

m + (μm + ξ)xmg’(xm) − (r + ξ)g(xm) = 0. (4.12) 

Solving the above equation can derive the following general solution of g(xm): 

g(xm) = A1xβA
1

m + A2xβA
2

m , (4.13) 

where βA
1 (>0) and βA

2 (<0) are the two roots of 12σ2
mβ(β − 1) + (μm + ξ)β − (r+ ξ) = 0. Moreover, condition (4.9) indicates that A2 = 0. 

Then, based on Eqs. (4.7) and (4.8), we have 

A1(xm)
βA

1 =
πs(xm)

υr − μm
+

πm(xm)

r − μm
− 1, (4.14) 

βA
1 A1(xm)

βA
1 − 1

=
πs(xm)

xm(υr − μm)
+

πm(xm)

xm(r − μm)
. (4.15) 

With these two equations, we can derive the following Corollary 4.1 regarding the unknown threshold xA
m, τA, and KA

m2.
Corollary 4.1. xA

m is given by 

xA
m =

(
βA

1

βA
1 − 1

)[
(1 − γ1 − η1Ks1)Ks1

υr − μm
+
(1 − γ1 − η1Km1)Km1 + (1 − γ2 − η2Km2)Km2 − 2εKm1Km2

r − μm

]− 1

, (4.16) 

and KA
m2 is determined by the following equation: 

u
KA

m2
+ xA

m
(
1 − βA

1
)
[
1 − γ2 − 2η2KA

m2 − 2εKm1

r − μm

]

= 0, (4.17) 

where τA =
ln(xA

mI0/Xm0)

μm − σ2
m/2+ξ .

Fig. 1. The boundary of the stopping and continuation regions.
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5. Replacement investment option for upgrading the CT

Apart from the additional investment option for upgrading the CT, the port decision maker may also choose to abandon the capacity 
of the existing CT and replace the existing capacity by investing in AT. In this situation, the port decision maker not only has to 
determine the exit and investment timings for the CT and AT, respectively, but also needs to determine the optimal exit capacity choice 
for the CT. In the following subsections, we first derive the optimal exit and investment decisions in the replacement investment option 
and then also give the analytic solution in the deterministic technological improvement case.

5.1. Optimal exit and investment decisions

Unlike the additional investment option without considering the exit capacity choice of the CT, the decision maker must solve the 
following optimal stopping problem in the replacement investment option: 

H(Xs,Xm,Ke1, I) = sup
τ1

E

[∫ τ1

0
e− rtπB

s (Xs)dt + sup
τ2 :τ2⩾τ1 ,Ke1

E
[ ∫ τ2

τ1

e− rtπA
s (Xs,Ke1)dt +

∫ +∞

τ2

e− rtπm(Xm)dt − e− rτ2 I
]]

, (5.1) 

where τ1 denotes the exit timing for the CT; τ2 denotes the investment timing for the AT; and Ke1 denotes the optimal exit capacity 
choice of CT (Ke1⩽Ks1).πB

s (Xs), πA
s (Xs,Ke1), and πm(Xm) denote the profit of the CT before adopting the exit decision, the profit of the CT 

after adopting the exit decision but without investing in the AT, and the total profit of both types of terminals after adopting the exit 
and investment decisions, respectively.

To obtain the specific expression of H(Xs,Xm,Ke1, I) and derive the optimal replacement option, we first determine the optimal 
investment decision for the AT. Since the port decision maker chose to replace the existing CT with AT, the investment capacity Km2 of 
AT is determined by the exit capacity of CT as the AT is installed in the port area that was occupied by the CT. Thus, we can assume that 
the investment capacity Km2 of the AT is given by Km2 = δKe1, implying that Km2 is linearly related to the exited capacity Ke1. Moreover, 
we then have Km1 = Ks1 − Ke1. πB

s (Xs) and πA
s (Xs,Ke1) is thus calculated as follows: 

πB
s (Xs) = Xs(1 − γ1 − η1Ks1)Ks1,

πA
s (Xs,Ke1) = Xs(1 − γ1 − η1(Ks1 − Ke1) )(Ks1 − Ke1).

Assume that the value function after the CT adopts the exit decision in H(Xs,Xm,Ke1, I) is denoted by Q(Xs,Xm,I), and we thus have 

Q(Xs,Xm, I) = E
[ ∫ +∞

τ1

e− rtπA
s (Xs,Ke1)dt

]

+ sup
τ2 :τ2⩾τ1

E
[∫ +∞

τ2

e− rt
[

πA
s (Xs,Ke1)

(
Xm

Xs
− 1
)

+ πm2(Xm) − Xmε(Ks1 − Ke1)δKe1

]

dt − e− rτ2 I
]

.

(5.2) 

Assume that the total discounted sum profits of the two types of terminals after investing in the AT is denoted by L(Xs,Xm, I), i.e., 

L(Xs,Xm, I) = sup
τ2 ,Ke1

E
[ ∫ +∞

τ2

e− rt
[

πA
s (Xs,Ke1)

(
Xm

Xs
− 1
)

+ πm2(Xm) − Xmε(Ks1 − Ke1)δKe1

]

dt − e− rτ2 I
]

.

Since Xm = υXs, and thus L(Xs,Xm, I) is only determined by Xs and I. As in Eq. (4.5) in Section 4, L(Xs, I) can be rewritten as follows: 

L(Xs, I) = sup
τ2

E

⎡

⎢
⎢
⎣e− rτ2

⎛

⎜
⎜
⎝

πA
s (Xs,Ke1)

r − μs
+

υXs

(
πA

s (Xs ,Ke1)
Xs

+
πm2(υXs)

υXs
− ε(Ks1 − Ke1)δKe1

)

r − μm
− I

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦. (5.3) 

As in the additional investment option in Section 4, we also can divide the decision state space ψ ≜ R+ × R+ for determining the 
optimal upgrade decision into two parts, namely, the stopping region (denoted as SR)SR := {(Xs, I) ∈ R+ × R+ : L(Xs, I) = I} and the 
continuation region (denoted as CR)CR := {(Xs, I) ∈ R+ × R+ : L(Xs, I) > I}. Let τ*

2 be the time that the decision state variable first 
enters the stopping region, i.e., τ*

2 = inf{t⩾0; (Xst , It) ∈ SR}, and thus τ*
2 is the optimal timing for the AT investment. We can derive the 

following proposition regarding the optimal investment decision.
Proposition 5.1. The stopping region satisfies the following: 

SR =

{

(Xs, I) ∈ ψ
⃒
⃒
⃒
⃒
Xs

I
⩾x*

s

}

,

where x*
s is a constant to be determined.

Proof. The proof is shown in the Appendix.
As in the Proposition 4.1, Proposition 5.1 and the corresponding proof also indicate that the threshold x*

s is unique, and x*
s also 

divided the decision space into two parts, i.e., the stopping and continuation regions. Moreover, according to Eq. (5.3), we have L(kXs,

kI) = kL(Xs,I)(∀k > 0). Therefore, L(Xs,I)/I = L(Xs/I,1), and thus L(Xs/I,1) is just a function of Xs/I. This property and Proposition 5.1 
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can also transform the above two-dimensional optimal stopping problem into a one-dimensional problem. Let xs = Xs/I and l(xs) =

L(xs,1). If (Xs, I) ∈ SR, then 

l(xs) = xs

⎡

⎢
⎢
⎣

πA
3 (xs,Ke1)

xs(r − μs)
+

υ
(

πA
3 (xs ,Ke1)

xs
+

πm2(υxs)
υxs

− ε(Ks1 − Ke1)δKe1

)

r − υμs

⎤

⎥
⎥
⎦ − 1.

If (Xs,I) ∕∈ SR, i.e., whenever xs⩽x*
s , l(xs) should satisfy the following partial differential equation based on the Bellman equation and 

Ito’s Lemma in real options theory: 

∂l(xs)

∂xs
μsxs +

1
2

∂l2(xs)

∂x2
s

σ2
s x2

s − (r + λ)l(xs) + λϕl
(

xs

ϕ

)

= 0. (5.4) 

Moreover, when xs = x*
s , l(xs) must satisfy: 

l(xs)
⃒
⃒

xs=x*
s
= x*

s

⎡

⎢
⎢
⎣

πA
s
(
x*

s ,Ke1
)

x*
s (r − μs)

+

υ
(

πA
s (x*

s ,Ke1)
x*

s
+

πm2(υx*
s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r − υμs

⎤

⎥
⎥
⎦ − 1, (5.5) 

∂l(xs)

∂xs

⃒
⃒

xs=x*
s
=

πA
s
(
x*

s ,Ke1
)

x*
s (r − μs)

+

υ
(

πA
s (x*

s ,Ke1)
x*

s
+

πm2(υx*
s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r − υμs
. (5.6) 

Furthermore, the value of l(xs) will approach zero if xs approaches zero, and thus we have: 

lim
xs→0

l(xs) = 0. (5.7) 

With Eqs. (5.5)–(5.7), the AT investment problem under demand and technological improvement uncertainties is well defined. To 
obtain the optimal investment decision, we have to find a specific function l(xs) and positive x*

s such that l(xs) and x*
s satisfy Eqs. (5.5)– 

(5.7). Substituting Eqs. (5.5)–(5.7) into Eq. (5.4) yields the threshold x*
s : 

x*
s =

r + ξ

(r − μs)

[
M1(Ke1)
(r− μs)

+
υ(M1(Ke1)+M2(Ke1)− 2ε(Ks1 − Ke1)δKe1)

r− υμs

], (5.8) 

where M1(Ke1) = (1 − γ1)(Ks1 − Ke1) − η1(Ks1 − Ke1)
2 and M2(Ke1) = (1 − γ2)δKe1 − η2(δKe1)

2.
As in the expected investment timing for AT in Section 4, we assume that the expected investment threshold and the corresponding 

optimal investment timing for AT is denoted by x̂*
s and τ*

2. Then we have x̂*
s =

E
[

Xsτ*2

]

E
[

Iτ*2

] =
Xs0⋅exp((μs −

σ2
s
2 )τ

*
2)

I0e− ξτ*2
, and thus τ*

2 =
ln(̂x

*
s I0/Xs0)

μs − σ2
s /2+ξ . Section 

5.2 will show the analytic solutions of l(x̂s) and x̂*
s in the deterministic technological improvement case.

After obtaining the discounted sum profits of the CT and AT when choosing to exit, we have to derive the optimal exit decision for 
the CT. According to the derived expression of l(xs) and Eq. (5.2), Eq. (5.1) can be rewritten as follows: 

H(Xs,Ke1) = sup
τ1 ,Ke1

E
[ ∫ τ1

0
e− rtπB

s (Xs)dt +
∫ +∞

τ1

e− rtπA
s (Xs,Ke1)dt + Il

(
x*

s
)
]

. (5.9) 

According to the Bellman equation and Ito’s Lemma in real options theory, then H(Xs,Ke1) should satisfy the following partial 
differential equation: 

∂H(Xs,Ke1)

∂Xs
μsXs +

1
2

∂H2(Xs,Ke1)

∂X2
s

σ2
s X2

s − rH(Xs,Ke1) + πB
s (Xs) + πA

s (Xs,Ke1) + Il
(
x*

s
)
= 0. (5.10) 

Solving the above equation can derive the following specific expression of H(Xs,Ke1): 

H(Xs,Ke1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xs[(Ks1 − Ke1)(1 − γ1 − η1(Ks1 − Ke1))]

r − μs
+

Il(x*
s )

r
+ N(Ke1)Xβ3

s , 0⩽Xs < X*
s ,

Xs(1 − γ1 − η1Ks1)Ks1

r − μs
, Xs⩾X*

s .

(5.11) 

where X*
s is the demand threshold for the CT choosing to exit under the replacement investment option and N(Ke1) is a parameter to be 

determined. When 0⩽Xs < X*
s , it is optimal to choose the exit decision for the CT, and the first term of H(Xs,Ke1) represents the dis

counted expected profit of the conventional terminal after exiting from the port market; the second term of H(Xs,Ke1) represents the 
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discounted value of the AT investment; and the third term N(Ke1)X
β3
s represents the value of the option to exit. When Xs⩾X*

s , it is 
optimal to maintain the capacity for the CT as the demand for the CT is not extremely low. Therefore, τ*

1 = sup
{
t : 0⩽Xs < X*

s
}
. β3(> 0)

is the positive root of equation 12σ2
s β(β − 1) + μsβ − r = 0.

With the specific expression of H(Xs,Ke1), we can derive the optimal exit capacity choice by solving the first-order condition ∂H(Xs,

Ke1)/∂Ke1 = 0, and the following equation determines the optimal exit capacity choice K*
e1: 

2η1
(
Ks1 − K*

e1
)
+ γ1 − 1

r − μs
+

I
r

∂l
(
x*

s
)

∂Ke1
+ Xβ1

s
∂N(Ke1)

∂Ke1
= 0. (5.12) 

Knowing K*
e1, we can derive X*

s and N(Ke1) based on the following conditions: 

H
(
Xs,K*

e1
)
⃒
⃒
⃒
⃒ Xs=X*

s
=

X*
s (1 − γ1 − η1Ks1)Ks1

r − μs
, (5.13) 

∂H
(
Xs,K*

e1
)

∂Xs

⃒
⃒
⃒
⃒ Xs=X*

s
=

(1 − γ1 − η1Ks1)Ks1

r − μs
. (5.14) 

Solving the two equations (5.13) and (5.14) can derive the specific expressions of X*
s and N(Ke1): 

X*
s =

(
β3

β3 − 1

)
Il
(
x*

s
)
(r − μs)

rKs1(1 − γ1 − η1Ks1) − r(Ks1 − Ke1)(1 − γ1 − η1(Ks1 − Ke1))
, (5.15) 

N(Ke1) =
(
X*

s
)− β3

(
1

β3 − 1

)
Il
(
x*

s

)

r
. (5.16) 

5.2. Analytic solutions

We also assume that the automated port technology maintains a deterministic technological improvement progress and then derive 
the analytic solution. Assume that the expected investment threshold and the corresponding optimal investment timing for AT in this 
special case are denoted by xD

s and τD
2 , respectively. Moreover, let the expected exit demand threshold and the corresponding optimal 

exit capacity choice be XD
s and KD

e1, respectively.
As in the analytic solution in the additional investment option shown in Section 4.2, the solution of l(xs) will follow the below 

equation as ϕ→1: 

1
2

σ2
s l’’(xs)x2

s + (μs + ξ)xsl’(xs) − (r + ξ)l(xs) = 0. (5.17) 

Solving the above equation can derive the following general solution of l(xs): 

l(xs) = D1xβD
3

s + D2xβD
4

s , (5.18) 

where D1 and D2 are parameters to be determined; and βD
3 (>0) and βD

4 (<0) are the two roots of 12σ2
s β(β − 1) + (μs + ξ)β − (r+ ξ) = 0. 

Condition (5.7) indicates that D2 = 0, and thus l(xs) = D1xβD
3

s . Then, based on Eqs. (5.5) and (5.6), we have 

D1
(
xD

s
)βB

3 = xD
s

⎡

⎢
⎢
⎣

πA
s
(
xD

s ,Ke1
)

xD
s (r − μs)

+

υ
(

πA
s (xD

s ,Ke1)
xD

s
+

πm2(υxD
s )

υxD
s

− ε(Ks1 − Ke1)δKe1

)

r − υμs

⎤

⎥
⎥
⎦ − 1, (5.19) 

βD
3 D1

(
xD

s
)βD

3 − 1
=

πA
s
(
xD

s ,Ke1
)

xD
s (r − μs)

+

υ
(

πA
s (xD

s ,Ke1)
xD

s
+

πm2(υxD
s )

υxD
s

− ε(Ks1 − Ke1)δKe1

)

r − υμs
. (5.20) 

With these two equations, we can derive the unknown threshold xD
s and parameter D1: 

xD
s =

βD
3

(
βD

3 − 1
)
(

M1(Ke1)
(r− μs)

+
υ(M1(Ke1)+M2(Ke1)− 2ε(Ks1 − Ke1)δKe1)

r− υμs

), (5.21) 

D1 =

(
xD

s
)− βD

3

(
βD

3 − 1
). (5.22) 

According to Eqs. (5.12) and (5.15), we can derive the following Corollary 5.1 regarding the analytic solution of XD
s , τD

2 , and KD
e1.

Corollary 5.1. The exit demand threshold XD
s for the conventional terminal satisfies: 
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XD
s =

βD
3 IτD

2
(r − μ1)

(
βD

3 − 1
)2
[rKs1(1 − γ1 − η1Ks1) − r(Ks1 − Ke1)(1 − γ1 − η1(Ks1 − Ke1))]

, (5.23) 

τD
2 =

ln
(
xD

s I0
/
Xs0
)

υμs − σ2
s
/
2 + ξ

.

Moreover, KD
e1 is the positive root of the following equation: 

η
(
Ks1 − KD

e1
)2

+ (γ1 − 1)
(
Ks1 − KD

e1
)
−

βD
3 IτD

2
(r − μs)

r
(
βD

3 − 1
)2 + Ks1(1 − γ1 − η1Ks1) = 0. (5.24) 

6. Numerical experiments

This section will present numerical examples based on the European private port to illustrate how demand and automation 
technological improvement uncertainties influence the optimal upgrade decisions for the CT under the given parameters. The nu
merical examples can better show the analytic solutions and offer complementary findings that are not easily observed through the 
above results.

We first estimate the parameters w and u that determine the investment cost for the AT at the initial time shown in Eq. (3.8). With 
the public data in the annual reports regarding the investment costs and capacities of existing European and North American auto
mated terminals in the Rotterdam Port (Port of Rotterdam Authority, 2023), the Liverpool Port (Port of Liverpool, 2023), and the Long 
Beach Port (Port of Long Beach, 2023), we calibrate the log form of Eq. (3.8) and then obtain lnI0 = 6.32 + 0.91lnK . Therefore, w and 
u are equal to 80 million dollars/million tons and 0.91, respectively. Suppose that the initial capacity Ks1 of the CT is 0.3 billion tons. 
Moreover, the interest rate r is set to 10 % sourced from the European Central Bank (European Central Bank, 2024).

Table 1 shows the parameters for capturing the demand functions and the relationship between the demand and capacity with sole 
CT and the demand with two types of terminals. Rather than sourcing from any specific port case, the values of the parameters shown 
in Table 1 are used to produce reasonable demand elasticities with respect to the terminal operating efficiency, congestion effect, 
substitution effect, and spilling effect after investing in AT. Moreover, regarding the drift parameter μ and volatility parameter σ for 
measuring uncertain demand in two different upgrade options, we will specify the values in the following numerical experiments.

6.1. Additional investment option for upgrading CT

As mentioned in Section 4, the decision maker will choose an additional AT investment option for upgrading the CT without 
disturbing the operation of CT in the port. Therefore, we estimate the drift parameter μm(= 0.05) and σm(= 0.1) with the demand data 
(measured by port throughput) of the Port of Rotterdam from 2018 to 2023 that adopts the additional investment option (Port of 
Rotterdam Authority, 2023). Suppose that the initial capacity Ks1 of the CT is 0.3 billion tons and the initial demand Xm0 for the port 
that contains two kinds of terminals at the start time is 0.3 billion tons. With the above data and the optimal investment decision 
described in Section 4, we can obtain the following numerical results.

As mentioned in Section 4.1, we cannot obtain the analytic solutions of the investment decision under the uncertain technological 
improvement situation, as the parameter ξ for measuring the technological improvement is uncertain. Therefore, in this numerical 
experiment case, we assume that the parameter ϕ in ξ for measuring the uncertain technological improvement is set to 0.5. Then, we 
can analyze the impacts of the Poisson variable λ in ξ on the optimal investment decision, and the results of x̂*

m, τ*, and K*
m2 with 

increasing λ are shown in Fig. 2. With Fig. 2, we observe that both the expected investment threshold x̂*
m and optimal investment 

capacity choice K*
m2 are increasing in λ, while the optimal investment timing τ* is decreasing in λ. Moreover, as λ increases, both τ* and 

K*
m2 become stable and converge to a constant value. This trend implies that when the uncertain technological improvement ap

proaches deterministic technological improvement, i.e., λ→ + ∞, the optimal investment strategy for AT becomes stable.
As described in Section 4.2, when technological improvement for AT investment approaches a deterministic technological 

improvement process (i.e., λ→+∞ and ϕ→1), the optimal AT investment decision is only determined by the uncertain port demand. In 
this case, we can derive the analytic solutions for optimal AT investment decision, and the analytic solutions of xA

m, τA, and KA
m2 are 

equal to 2 billion tons/billion dollars, 12.7 years, and 0.49 billion tons.
Since uncertain port demand is the only factor that affects the optimal AT investment decision, we then further analyze the impacts 

of the demand uncertainty on the optimal investment decision for AT under deterministic technological improvement, as shown in 

Table 1 
Baseline values of the parameters used to capture the demand functions in two upgrade options.

Parameter Value Parameter Value

η1 0.1 γ1 0.5
η2 0.1 γ2 0.4
υ 1.5 δ 1.5
ε 0.1 /
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Fig. 3. The results presented in Fig. 3 indicate that both the expected investment threshold xA
m and the optimal investment timing τA for 

AT are increasing in σm, implying an increase in the uncertainty for port demand. However, the optimal investment capacity choice KA
m2 

for AT has not changed with the increasing σm, implying that the demand uncertainty cannot affect the investment size for AT. 
Furthermore, we also observe that higher σm will lead to a sharp increase in the expected investment threshold xA

m and investment 
timing τA. The above trend indicates that higher port demand uncertainty will postpone AT’s investment decision even though the AT 
investment size does not change when facing higher demand uncertainty.

6.2. Replacement investment option for upgrading the CT

Unlike the additional investment option shown in Section 6.1, which does not consider the exit decision for the CT, we have to 
determine the optimal exit and investment decisions for the two types of terminals in the replacement investment option. We also 
estimate the drift parameter μs(= 0.05) and volatility parameter σs(= 0.15) with the demand data of the Port of Long Beach from 2018 
to 2023, which adopts the replacement investment option (Port of Long Beach, 2023). Suppose that the initial capacity Ks1 of the CT in 
case s is also 0.3 billion tons and the initial demand Xs0 in case s at the start time is 0.1 billion tons. With the above data and settings, we 
then derive the following numerical results regarding the optimal exit and investment decisions for the types of terminals.

As mentioned in Section 6.1, in the case of demand and technological improvement uncertainties, we also can analyze the impacts 
of the Poisson variable λ on the optimal exit capacity K*

e1, expected investment threshold x̂*
s , optimal investment timing τ*

2 for the AT, 
and the exited demand threshold X*

s for the CT. The detailed results are illustrated in Fig. 4.
From Fig. 4, we can observe that λ does not have a significant impact on the optimal exit demand threshold X*

s , and X*
s is always 

Fig. 2. The results of (a)x̂*
m, (b)τ*, and (c)K*

m2 with increasing parameter λ.
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equal to 0.1 billion tons with the increasing λ. The results imply that uncertain automation technology for AT investment cannot 
influence the exit timing of the CT, and the decision maker can ignore the impact of technological improvement uncertainty on the exit 
timing decision for the CT. Nevertheless, regarding the impacts of λ on the optimal investment timing τ*

2 for AT, the expected in
vestment threshold x̂*

s , and the exit capacity choice K*
e1, they are quite different from that of the impact on X*

s . The investment 
threshold x̂*

s is increasing in λ, whereas the optimal investment timing τ*
2 and capacity choice K*

e1 are decreasing in λ. Moreover, as λ 
increases, the values of τ*

2 and K*
e1 become stable, so the optimal investment timing and exit capacity choice are convergent. We thus 

conclude that higher technological uncertainty of automated port technology will defer the investment timing of the AT and increase 
the exit capacity choice for the CT.

Furthermore, we also obtain the analytic solutions of the optimal exit and investment decisions under the deterministic techno
logical improvement process. Unlike the special case of the deterministic technological improvement process in the additional in
vestment option, both uncertain port demand and the exit capacity choice of the CT will affect the optimal investment threshold xD

s , 
optimal investment timing τD

2 , and optimal exit demand threshold XD
s in the case of deterministic technological improvement process in 

this replacement investment option. According to the analytic solutions shown in Section 5.2, we derive the optimal results of the exit 
and investment decisions in the replacement investment option. The optimal expected investment threshold xD

s , the optimal invest
ment timing τD

2 for the AT, the optimal exit capacity KD
e1 for the CT, and the optimal exit demand threshold XD

s for the CT are equal to 0.3 
billion tons/billion dollars, 28.7 years, 0.24 billion tons, and 0.2 billion tons.

Moreover, we also further analyzed the impacts of volatility parameter σs on the xD
s , τD

2 , KD
e1, and XD

s , and the results are illustrated in 
Fig. 5. As we can see from Fig. 5, the impacts of the volatility parameter σs on the above four variables are quite different. As σ in
creases, the expected investment threshold xD

s and optimal investment timing τD
2 gradually increase. In other words, higher demand 

uncertainty will notably defer the AT investment. Moreover, as in the special case in Section 6.2, the volatility parameter σs will also 
not affect the exit demand threshold XD

s based on the results shown in Fig. 5. Regarding the impact of σs on the exit capacity choice KD
e1, 

KD
e first increases but then decreases with the increasing σs. When σs is equal to 0.2, KD

e1 reaches the highest value of 0.249 billion tons. 
This nonlinear trend implies that there exist an optimal σs such that KD

e1 reaches the maximum value.

Fig. 3. The results of (a)xA
m, (b)τA, and (c)KA

m2 with increasing parameter σm.
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Fig. 4. The results of (a)x̂*
s , (b)τ*

2, (c)K*
e1, and (d)X*

s with increasing λ.

Fig. 5. The results of (a)xD
s , (b)τD

2 , (c)KD
e1, and (d)XD

s with increasing σs.
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6.3. Sensitivity analysis

As shown in Section 3, γ and ε are two important factors in terminal demand function reflecting the terminal operating efficiency 
and the substitution effect of the two types of terminals, respectively. Moreover, the discount rate r will also influence the discounted 
profits of the terminals. Therefore, we further conduct sensitivity analyses to investigate the impacts of these three parameters on the 
optimal upgrade decisions. 

(1) Impacts of parameter γ on the optimal upgrade decisions

In Table 1, parameters γ1 and γ2 are equal to 0.5 and 0.4, respectively, which means that the efficiency of the port with two types of 
terminals is 20 % percent higher than that of the port with sole CT. In this subsection, we assume that the parameter γ1 is always equal 
to 0.5, and then we derive the optimal upgrade decisions when parameter γ2 is equal to 0.3, 0.2, and 0.1 (i.e., the port efficiency with 
two types of terminals is 40 %, 60 %, and 80 % percents higher than that of the port with sole CT). According to the above sensitivity 
analysis, we can investigate how the AT efficiency affects optimal upgrade decisions.

Fig. 6 shows the optimal investment decision for the AT with increasing γ2 in the additional investment option. From Fig. 6, we 
observe that when γ2 decreases from 0.4 to 0.1, the expected investment thresholds (x̂*

m and xA
m) gradually decrease, but the investment 

capacity choices (K*
m2 and KA

m2) for the AT increase progressively. Moreover, as γ2 decreases, the optimal investment timing (τ* and τA) 
for the AT has not significantly changed. These results mean that the increasing efficiency of the AT within the port with two types of 
terminals will increase the investment size of the AT. That is, the decision-maker is more willing to invest in AT if the AT can 
significantly improve the port efficiency.

Fig. 6. Optimal investment decision for the AT with increasing γ2 in the additional investment option
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We also analyzed the optimal exit and investment decisions with increasing γ2 in the replacement investment option, as illustrated 
in Fig. 7. The results shown in Fig. 7 indicate that when γ2 decreases from 0.4 to 0.1, both the expected investment thresholds (x̂*

s and 
xD

s ) and investment timings (τ*
2 and τD

2 ) for the AT gradually decrease, but the exit demand thresholds (X*
s and XD

s ) for the CT have not 
changed. In addition, the optimal exit capacity choices (K*

e1 and KD
e1) for the CT do not have the same changing trends. As γ2 decrease, 

K*
e1 first increase but then decrease. When γ2 is equal to 0.2, K*

e1 reaches the highest value of 0.29 billion tons. Moreover, as γ2 de
creases, KD

e1 gradually increases. The above results imply that higher AT efficiency will accelerate the exit of the CT for realizing the AT 
transition and encourage the decision-maker to invest early in the AT. 

(2) Impacts of parameter ε on the optimal upgrade decisions

As shown in the demand functions in Section 3, the parameter ε is an important factor that reflects the substitution effect of the two 
kinds of terminals. In this sensitivity analysis subsection, we further investigate the impacts of the parameter ε on the optimal upgrade 
decisions, and the detailed results are presented in Figs. 8 and 9.

Fig. 8 shows the optimal investment decision for the AT with increasing ε in the additional investment option. As Fig. 8 shows, when ε 
increases from 0.1 to 0.4, the expected investment thresholds (x̂*

m and xA
m) gradually increase, while the investment capacities (K*

m2 and 
KA

m2) for the AT decrease progressively. Moreover, as ε increases, the investment timings (τ* and τA) of the AT have not significantly 
changed. These impacts imply that the high substitution between these two types of terminals will not affect the timing decisions for AT, 
but it will reduce the capacity investment size of the AT, as the AT did not have remarkable advantages in the high substitution situation.

Moreover, Fig. 9 presents the optimal exit and investment decisions with increasing ε in the replacement investment option. From 
Fig. 9, we observe that when ε increases from 0.1 to 0.4, the expected investment thresholds (x̂*

s and xD
s ) gradually increase, while the 

exit capacities (K*
e1 and KD

e1) for the CT decrease progressively. Moreover, as ε increases, both the investment timings (τ*
2 and τD

2 ) for the 
AT and the exit demand thresholds (X*

s and XD
s ) for the CT have not changed. These trends indicate that although high substitution 

between these two types of terminals will not affect the exit and investment timings for the CT and AT, respectively, it will enlarge the 
maintained capacity of the CT and also decrease the investment in the AT. 

Fig. 7. Optimal exit and investment decisions with increasing γ2 in the replacement investment option
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Fig. 8. Optimal investment decision for the AT with increasing ε in the additional investment option

Fig. 9. Optimal exit and investment decisions with increasing ε in the replacement investment option
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(3) Impacts of parameter r on the optimal upgrade decisions

Fig. 10 shows the optimal investment decision for the AT with increasing r in the additional investment option. As Fig. 10 shows, 
when r increases from 0.1 to 0.2, the expected investment threshold x̂*

m and investment timing τ* gradually decrease, while the in
vestment capacity K*

m2 has not changed significantly. Moreover, in the case of deterministic technology improvement, as r increases, 
xA

m, τA, and K*
m2 have not changed significantly. These impacts imply that although the high return of investment in AT resulting from 

the high discount rate cannot change the investment size for AT, it will speed up its investment. However, in the case of deterministic 
technology improvement, a high return of investment in AT cannot have a significant impact on the upgrade decision, as the existing 
CT can also obtain a high profit in the case of a high discount rate.

Fig. 11 presents the optimal exit and investment decisions with increasing r in the replacement investment option. From Fig. 11, we 
observe that when r increases from 0.1 to 0.2, the expected investment thresholds (x̂*

s and xD
s ) gradually increase, while the exit capacities 

(K*
e1 and KD

e1) for the CT, exit demand threshold X*
s , and the investment timing τD

2 in the case of deterministic technology improvement 
decrease progressively. Moreover, as r increases, both the investment timing τ*

2 for the AT and the exit demand thresholds XD
s for the CT in 

the case of deterministic technology improvement have not changed. These trends show that a high discount rate will decrease the 
capacity exit size of the CT, as the existing CT can also obtain a high profit in the case of a high discount rate.

7. Extension: Considering the public ownership of the port

In addition to the private port we studied in the above sections, many ports worldwide (e.g., mainland China) are also public ports, 
pursuing the maximum social welfare for serving the hinterland. Therefore, we decided to extend our work to the case of public 
ownership of the port. In this section, we first derive the propositions for determining the optimal upgrade decisions and then validate 
the solutions with a numerical experiment conducted based on the data of Chinese public ports.

7.1. Optimal upgrade decisions

The social welfare generated by the individual terminal is the sum of the terminal profit and shippers’ consumer surplus. Assume 
that the social welfare is denoted by SW, then the maximum social welfare generated by the two types of terminals in the additional 
investment option can be calculated as follows: 

Fig. 10. Optimal investment decision for the AT with increasing r in the additional investment option
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SWs(Xs) = Xs(1 − γ1 − η1Ks1)Ks1 +

[ ∫ Ks1

0
Xs(1 − γ1 − η1Ks1)dy − Xs(1 − γ1 − η1Ks1)Ks1

]

= πs(Xs) + Xsη1K2
s1

/

2,

SWm1(Xm) = πm1(Xm) + Xmη1K2
m1
/
2,

SWm2(Xm) = πm2(Xm) + Xmη2K2
m2
/
2.

Moreover, the social welfare of the two types of terminals in the replacement investment option can be expressed as follows: 

SWB
s (Xs) = πB

s (Xs) + Xsη1K2
s1
/
2,

SWA
s (Xs) = πA

s (Xs) + Xsη1(Ks1 − Ke1)
2/2.

Furthermore, the social welfare of each type of terminal after investing in the AT in the replacement investment option is the same 
as shown in the additional investment option. We then update the profit π with social welfare SW in the value functions in Sections 4 
and 5 to derive the optimal upgrade decision for the public port. Suppose that AT’s investment threshold and capacity investment 
choice in the additional investment option are denoted by xʹ

m and Kʹ
m2, respectively. Moreover, Let the optimal investment threshold for 

AT and the exit demand threshold and capacity choice for CT in the replacement investment option be xʹ
s, Xʹ

s, and Kʹ
e1. Then, we can 

derive the following two propositions.

Proposition 7.1. In the case of public port, the value function in the additional investment option is F(Xm, I) +
Xmη1K2

s1
2(υr− μm)

+
Xmη2K2

m2
2(r− μm)

; the 
investment threshold for AT is 

x’
m =

r + ξ
r− μm
υr− μm

[

(1 − γ1 − η1Ks1)Ks1 +
η1K2

s1
2

]

+

[

(1 − γ1 − η1Km1)Km1 + (1 − γ2 − η2Km2)Km2 − 2εKm1Km2 +
η2K2

m2
2

].

Moreover, the optimal capacity investment choice Kʹ
m2 is determined by the following equation: 

Fig. 11. Optimal exit and investment decisions with increasing r in the replacement investment option
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I
∂g
(
x’

m
)

∂Km2
++g

(
x’

m

)
⋅

∂I
∂Km2

= 0.

By comparing the values of xʹ
m and xm in the case of private port, we can obtain the following corollary.

Corollary 7.1. Public port prefers to adopt the earlier investment in AT compared to the private port in the additional investment option, as 
x́m is always lower than xm.

Proposition 7.2. In the case of public port, the value function of AT investment in the replacement investment decision is 

L(Xs, I)+υXsη1(Ks1 − Ke1)
2
+υXsη2(δKe1)

2

2(r− υμs)
; the investment threshold x́s is 

x’
s =

r + ξ

(r − μs)

⎡

⎢
⎢
⎣

M1(Ke1)
(r− μs)

+

υ

(

M1(Ke1)+M2(Ke1)− 2ε(Ks1 − Ke1)δKe1+
1
2η1(Ks1 − Ke1)

2+1
2η2(δKe1)

2

)

r− υμs

⎤

⎥
⎥
⎦

.

Moreover, the exit demand threshold Xʹ
s is 

X’
s =

(
β3

β3 − 1

)
I
[
l
(
x’

s
)
+
(
x’

sη1(Ks1 − Ke1)
2
+ x’

sη2(δKe1)
2)/

(2(r − υμs))
]
(r − μs)

rKs1(1 − γ1 + η1Ks1/2) − r(Ks1 − Ke1)(1 − γ1 + η1(Ks1 − Ke1)/2)
,

and the optimal exit capacity choice Kʹ
e1 is determined by the following equation: 

2η1
(
Ks1 − K’

e1
)
+ γ1 − 1

r − μs
+

I
r

∂
[
l
(
x’

s
)
+
(
x’

sη2
(
δK’

e1
)2)/

(2(r − υμs))
]

∂K’
e1

+ Xβ3
s

∂N
(
K’

e1
)

∂K’
e1

= 0.

As in the additional investment option, we also can derive the following corollary by comparing the values of xʹ
s and xs in the case of 

private port.
Corollary 7.2. Public port prefers to adopt the earlier investment in AT compared to the private port in the replacement investment option, 

as xś is always lower than xs.
Proof. The proofs are presented in the Appendix.

7.2. Numerical experiment with the data of Chinese public ports

As in the numerical experiments shown in Section 6, we further validate the solutions in the optimal upgrade decisions in the case of 

Fig. 12. The results of (a)x̂*
m, (b)τ*, and (c)K*

m2 with increasing parameter λ in the case of public ownership of the port.
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the public ownership of the port. Since most Chinese ports are public ports, we chose to conduct a numerical experiment using data 
from Chinese public ports. We also estimate the parameters w and u in Eq. (3.8) with the public data in the annual reports regarding the 
investment costs and capacities of existing Chinese automated terminals in the Shanghai Port (Shanghai International Port Group, 
2023), the Qingdao Port (Port of Qingdao, 2023), and the Shenzhen Port (Port of Shenzhen, 2023). We then obtain lnI0 = 5.84 +

0.45lnK , and thus w and u are equal to 345 million dollars/million tons and 0.45, respectively. Moreover, the other parameters are set 
as the same as shown in Section 6. We can obtain the following numerical results with the above data and the Propositions illustrated in 
Section 7.1.

Figs. 12 and 13 illustrate the optimal upgrade decisions of the two replacement options in the case of the public port. From Fig. 12, 
we find that the optimal upgrade decision in the case of the public port has the same changing trend compared with the case of the 
private port in the additional replacement option shown in Fig. 2. Both the expected investment threshold x̂*

m and optimal investment 
capacity choice K*

m2 are increasing in λ, while the optimal investment timing τ* is decreasing in λ. Moreover, as λ increases, both τ* and 
K*

m2 become stable and converge to a constant value. Furthermore, by comparing the results of τ* and K*
m2 in Figs. 2 and 12, we observe 

that the optimal investment timing for AT in the public port is lower than that of the private port. Still, the capacity investment size for 
AT in the public port is larger than that of the private port, implying that the decision maker in the public port prefers to adopt the 
earlier and larger investment in AT compared to the private port.

Fig. 13 presents the optimal upgrade decision in the replacement upgrade decision in the case of the public port, and the results in 
the Figure indicate that the results of the x̂*

s , τ*
2, and X*

s in the case of public port have the same changing trend compared with the case 
of the private port. However, the impact of λ on the K*

e1 in the public port is quite different from that of the private port. In the case of 
the public port, as λ increases, K*

e1 first increase but then decrease, whereas K*
e1 is decreasing in λ in the case of private port. Moreover, 

by comparing the results of τ*
2 in Figs. 4 and 13, we also observe that the optimal investment timing for AT in the public port is lower 

than that of the private port, implying that the decision maker in the public port prefers to adopt the earlier investment in AT compared 
to the private port.

8. Conclusions and policy implications

This paper examines the problem of upgrading CT with AT under technological improvement and demand uncertainties. We use the 
real options theory to derive the optimal AT investment decision (i.e., including the investment timing and capacity choice) in the 
additional upgrade option, where the decision-maker does not have to abandon the existing capacity of the CT. We also derive the 
optimal CT exit decision (i.e., including the exit timing and capacity choice) and the optimal AT investment decision in the 
replacement upgrade option, where the decision-maker chooses to abandon the partial or full capacity of existing CT and replace the 
idle capacity of the CT with the AT. We then derive the analytic solutions for the optimal upgrade decisions for each option under the 
deterministic technological improvement process. We also conduct numerical experiments to verify the optimal upgrade decisions and 
the corresponding analytical solutions based on the European and North American private ports data. The numerical results indicate 

Fig. 13. The results of (a)x̂*
s , (b)τ*

2, (c)K*
e1, and (d)X*

s with increasing λ in the case of public ownership of the port.
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that in the additional replacement option, the higher technological improvement and higher demand uncertainties will delay the AT 
investment but will not change the capacity investment choice for the AT. In the replacement upgrade option, higher technological 
improvement will postpone the investment for AT and enlarge the exit capacity choice for the CT and the investment capacity choice 
for the AT. However, the impacts of the demand uncertainty on the upgrade decision are pretty different from those impacts arising 
from the uncertainty of technological improvement. Although higher demand uncertainty will delay the AT investment, the exit ca
pacity choice for the CT first increases and then decreases with increasing demand uncertainty. We also perform sensitivity analyses 
regarding the impacts of the terminal operating efficiency, terminal substitution effect, and discount rate on the optimal upgrade 
options. The results suggest that higher AT efficiency will accelerate the exit of the CT for realizing the AT transition and encourage the 
decision-maker to make early investments in the AT. Moreover, high substitution between these two types of terminals will not change 
the exit and investment timings for the CT and AT, respectively; it will enlarge the CT’s maintained capacity and reduce the investment 
in the AT. Furthermore, a high discount rate will decrease the capacity exit size of the CT, as the existing CT can also obtain a high 
profit in the case of a high discount rate. Finally, we extend our model to account for the public ownership of the studied port and then 
derive the corresponding optimal upgrade decisions.

Possible policy implications for policymakers and industry are proposed to guide the implementation of CT upgrade decisions. First, 
although replacing CTs with ATs is an inevitable trend for developing the port industry, our results indicate that the uncertain demand 
and technological improvement greatly affect the investment timings and sizes for the upgrade decisions. Therefore, the port decision- 
maker should set up a specialized department to capture the evolution trends of port demand and technological improvement so that 
the decision-maker can formulate a scientific upgrade plan. Second, the results shown in the numerical experiments indicate that in the 
replacement upgrade option, the exit capacity choice for the CT first increases and then decreases with increasing demand uncertainty. 
This trend suggests that facing an extremely uncertain trade market, the decision-maker should maintain a relatively high port capacity 
to stay competitive when attracting shippers. Therefore, the decision-maker is suggested to propose some supportive polices to pro
mote the development of CT in the extreme uncertain environment. Third, the transition from CTs to ATs requires senior skilled 
workers to operate the automated equipment and machines in the ATs. Thus, training existing employees in CTs and recruiting new 
workers are also crucial to achieving a healthy replacement.

Along with offering conclusions and implications, this paper leaves research directions for future study. One possible direction is to 
use a general process to simulate the technological improvement under uncertainty and compare its results with those of the existing 
Poisson process, which is the model that this paper employs and derives the relevant results from. Another possible direction is to 
estimate the future values of important parameters and analyze how they influence the optimal replacement options. Meanwhile, the 
extension of our work by considering the competing ports in the multiport region should derive different optimal replacement de
cisions. Furthermore, the port labor unions will influence the port or terminal operating efficiency and further impact the upgrading 
decisions. Thus, future studies can quantify the relationship between port labor unions and port operating efficiency and incorporate 
the influence of labor unions on upgrading decisions into the model formulation.
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Appendix 

The mathematical proofs are presented as follows.
Proof of Proposition 4.1: Let Xm = kXm and I = kI(k > 0), and let τ be the optimal stopping time by solving the following 

maximization problem:  

sup
τ
E
[

e− rτ
(

πs(Xm/υ)
r − μs

+
πm(Xm)

r − μm
− I
)]

= ksupE
τ

[

e− rτ
(

πs(Xm/υ)
r − μs

+
πm(Xm)

r − μm
− I
)]

. (A.1) 

Let the corresponding stopping region be SA, then we have τ = inf{t⩾0; (Xmt , It) ∈ SA}. It is easy to confirm that the stopping time 
problem (A.1) has the same solution as that in problem (4.5); thus, the optimal stopping region in problem (A.1) is also SA and the 
optimal stopping time is equal, i.e., τ* = τ. This conclusion implies that the pairs (Xm, I) and (kXm, kI) hit simultaneously, i.e., when (Xm,
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I) ∈ SA, then (kXm,kI) ∈ SA. Since k is a positive constant parameter, the boundary of SA is a ray originating from origin, which divides 
the stopping and continuation regions. Let the ratio of Xm/I at the boundary of SA be x*

m. We next prove that there exists one and only 
one boundary ray.

Suppose that there exists another ray originating from the origin of the boundary of SA. Then we have xm = Xm
I
> x*

m =
X*

m
I* , implying 

that investing in the AT is not optimal. Thus, in the boundary rays of x*
m and xm, we have F(X*

m, I*) =
πs(X*

m/υ)
r− μs

+
πm(X*

m)

r− μm
− I* and F(Xm,

I) > πs(Xm/υ)
r− μs

+
πm(Xm)
r− μm

− I. That is, F(x*
m,1) =

πs(x*
m/υ)

r− μs
+

πm(x*
m)

r− μm
− 1 and F(xm,1) > πs(xm/υ)

r− μs
+

πm(xm)
r− μm

− 1. Multiplying F(xm,1) > πs(xm/υ)
r− μs

+
πm(xm)
r− μm

− 1 

by x
*
m

xm 
yields F(x*

m,
x*

m
xm
) >

πs(x*
m/υ)

r− μs
+

πm(x*
m)

r− μm
−

x*
m

xm
, indicating that it is not optimal invest in x

*
m

xm 
to get the profit πs(x*

m/υ)
r− μs

+
πm(x*

m)

r− μm
. Since F(x*

m,1) =

πs(x*
m/υ)

r− μs
+

πm(x*
m)

r− μm
− 1, then it is optimal to invest in 1 to get profit πs(x*

m/υ)
r− μs

+
πm(x*

m)

r− μm
. However, this is contradictory, as x*

m/xm < 1. So x*
m is 

unique and the stopping region satisfies SA =

{

(Xm, I) ∈ ϑ
⃒
⃒
⃒
⃒
Xm
I ⩾x*

m

}

.

Proof of Proposition 5.1: Let Xs = kXs and I = kI(k > 0), and let τ2 be the optimal stopping time by solving the following 
maximization problem: 

sup
τ2

E

⎡

⎢
⎢
⎣e− rτ2

⎛

⎜
⎜
⎝

πA
s (Xs,Ke1)

r − μs
+

υXs

(
πA

s (Xs,Ke1)

Xs
+

πm2(υXs)

υXs
− ε(Ks1 − Ke1)δKe1

)

r − μm
− I

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= ksup
τ2

E

⎡

⎢
⎢
⎣e− rτ2

⎛

⎜
⎜
⎝

πA
s (Xs,Ke1)

r − μs
+

υXs

(
πA

s (Xs,Ke1)

Xs
+

πm2(υXs)

υXs
− ε(Ks1 − Ke1)δKe1

)

r − μm
− I

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦.

(A.2) 

Let the corresponding stopping region be SR, then we have τ2 = inf{t⩾0; (Xst, It) ∈ SR}. It is easy to confirm that the stopping time 
problem (A.2) has the same solution as that in problem (5.3), thus, the optimal stopping region in problem (A.2) is also SR and the 
optimal stopping time is equal, i.e., τ*

2 = τ2. This conclusion implies that the pairs (Xs, I) and (kXs, kI) hit simultaneously, i.e., when (Xs,

I) ∈ SR, then (kXs,kI) ∈ SR. Since k is a positive constant parameter, then the boundary of SR is also a ray originating from origin. Let the 
ratio of Xs/I at the boundary of SR be x*

s . We next prove that the boundary ray x*
s is unique.

Suppose that there exists another ray originating from the origin of the boundary of SR. Then we have xs = Xs
I
> x*

s =
X*

s
I* , implying 

that investing in the AT is not optimal. Thus, in the boundary rays of x*
s and xs, we have 

L
(
X*

s , I
*) =

πA
s
(
X*

s ,Ke1
)

r − μs
+

υX*
s

(
πA

s (X*
s ,Ke1)

X*
s

+
πm2(υX*

s )
υX*

s
− ε(Ks1 − Ke1)δKe1

)

r − μm
− I*,

and 

L(Xs, I) >
πA

s (Xs,Ke1)

r − μs
+

υXs

(
πA

s (Xs ,Ke1)

Xs
+

πm2(υXs)

υXs
− ε(Ks1 − Ke1)δKe1

)

r − μm
− I.

That is, 

L
(
x*

s , 1
)
=

πA
s
(
x*

s ,Ke1
)

r − μs
+

υx*
s

(
πA

s (x*
s ,Ke1)
x*

s
+

πm2(υx*
s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r − μm
− 1,

and 

L(xs, 1) >
πA

s (xs,Ke1)

r − μs
+

υxs

(
πA

s (xs ,Ke1)

xs
+

πm2(υxs)
υxs

− ε(Ks1 − Ke1)δKe1

)

r − μm
− 1.

Multiplying L(xs,1) > πA
s (xs ,Ke1)

r− μs
+

υxs

(
πA
s (xs ,Ke1 )

xs
+

πm2 (υxs )
υxs

− ε(Ks1 − Ke1)δKe1

)

r− μm
− 1 by x

*
s

xs 
yields 

L
(

x*
s ,

x*
s

xs

)

>
πA

s
(
x*

s ,Ke1
)

r − μs
+

υx*
s

(
πA

s (x*
s ,Ke1)
x*

s
+

πm2(υx*
s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r − μm
−

x*
s

xs
,

indicating that it is not optimal invest in x
*
s

xs 
to get a profit πA

s (x*
s ,Ke1)

r− μs
+

υx*
s

(
πA
s (x*

s ,Ke1 )

x*
s

+
πm2 (υx*

s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r− μm
.
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Since L(x*
s , 1) =

πA
s (x*

s ,Ke1)

r− μs
+

υx*
s

(
πA
s (x*

s ,Ke1 )

x*
s

+
πm2(υx*

s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r− μm
− 1, then it is optimal to invest in 1 to get profit πA

s (x*
s ,Ke1)

r− μs
+

υx*
s

(
πA
s (x*

s ,Ke1 )

x*
s

+
πm2 (υx*

s )

υx*
s

− ε(Ks1 − Ke1)δKe1

)

r− μm
. However, this is contradictory, as x*

s
xs
< 1. So x*

s is unique and the stopping region satisfies SR =
{

(Xs, I) ∈ ψ
⃒
⃒
⃒
⃒
Xs
I ⩾x*

s

}

.

Proof of Proposition 7.1: In the case of public port, the value function in the additional investment option is 

sup
τ
E

⎡

⎢
⎣e− rτ

⎛

⎜
⎝

πs(Xs) +
1
2Xmη1K2

s1

r − μs
+

πm(Xm) +
1
2Xmη2K2

m2

r − μm
− I

⎞

⎟
⎠

⎤

⎥
⎦ = F(Xm, I) +

Xmη1K2
s1

2(υr − μm)
+

Xmη2K2
m2

2(r − μm)
.

Applying the Ito’s Lemma and the value matching and smooth pasting conditions, we can derive the following specific expression of 
xʹ

m: 

x’
m =

r + ξ
r− μm
υr− μm

[

(1 − γ1 − η1Ks1)Ks1 +
Xmη1K2

s1
2

]

+

[

(1 − γ1 − η1Km1)Km1 + (1 − γ2 − η2Km2)Km2 − 2εKm1Km2 +
Xmη2K2

m2
2

].

After getting the investment threshold xʹ
m, we can derive the optimal capacity choice by solving the first-order condition ∂

(
xʹ

m ⋅ I
)
/

∂Km2 = 0, and the following equation determines the optimal capacity choice Kʹ
m2: 

I
∂g
(
x’

m
)

∂Km2
++g

(
x’

m
)

⋅
∂I

∂Km2
= 0.

Proof of Proposition 7.2: In the case of the public port by maximizing the social welfare in the replacement investment option, the 
value function of AT investment is expressed as follows: 

sup
τ2

E

⎡

⎢
⎢
⎣e− rτ2

⎛

⎜
⎜
⎝

πA
s (Xs,Ke1)

r − μs
+

υXs

(
πA

s (Xs,Ke1)

Xs
+

πm2(υXs)

υXs
− ε(Ks1 − Ke1)δKe1

)

r − μm
+

υXsη1(Ks1 − Ke1)
2
+ υXsη2(δKe1)

2

2(r − υμs)
− I

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= L(Xs, I) +
υXsη1(Ks1 − Ke1)

2
+ υXsη2(δKe1)

2

2(r − υμs)

With the above value function of AT investment, the value function for CT exit decision can be expressed as follows: 

sup
τ1 ,Ke1

E
[ ∫ τ1

0
e− rtπB

s (Xs)dt +
∫ +∞

τ1

e− rtπA
s (Xs,Ke1)dt + Il

(
x*

s

)
+

υXsη1(Ks1 − Ke1)
2
+ υXsη2(δKe1)

2

2(r − υμs)

]

. (A.3) 

Applying the Ito’s Lemma and the value matching and smooth pasting conditions in problem (A.3), we can derive the following 
specific expressions of xʹ

s and Xʹ
s: 

x’
s =

r + ξ

(r − μs)

⎡

⎢
⎢
⎣

M1(Ke1)
(r− μs)

+

υ

(

M1(Ke1)+M2(Ke1)− 2ε(Ks1 − Ke1)δKe1+
1
2η1(Ks1 − Ke1)

2+1
2η2(δKe1)

2

)

r− υμs

⎤

⎥
⎥
⎦

,

X’
s =

(
β3

β3 − 1

)
I
[
l
(
x’

s
)
+
(
x’

sη1(Ks1 − Ke1)
2
+ x’

sη2(δKe1)
2)/

(2(r − υμs))
]
(r − μs)

rKs1(1 − γ1 + η1Ks1/2) − r(Ks1 − Ke1)(1 − γ1 + η1(Ks1 − Ke1)/2)
.

Moreover, according to the first-order condition of problem (A.3) where the capacity choice Ke1 is the decision variable, we can 
derive the following equation to determine the optimal capacity choice: 

2η1
(
Ks1 − K’

e1
)
+ γ1 − 1

r − μs
+

I
r

∂
[
l
(
x’

s
)
+
(
x’

sη2
(
δK’

e1
)2)/

(2(r − υμs))
]

∂K’
e1

+ Xβ3
s

∂N
(
K’

e1
)

∂K’
e1

= 0.
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