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A B S T R A C T

Laboratory experiments have shown that the proportional shearing of granular materials along arbitrary strain 
path directions will lead to stress states that converge asymptotically to proportional stress paths with constant 
stress ratios. The macro- and microscopic characteristics of this asymptotic behaviour, as well as the existence of 
asymptotic states exhibiting a constant stress ratio and a steady strain-rate direction, have been studied using the 
discrete element method (DEM). Proportional shearing along a wide range of strain-rate directions and from 
various initial stress/density states has been conducted. The simulation results suggest that general contractive 
asymptotic states (except for isotropic states) do exist but may be practically unattainable. Dilative strain path 
simulations, on the other hand, result in continuously changing stress ratios until static liquefaction occurs, 
indicating the absence of dilative asymptotic states. Despite this difference, a unique relationship between the 
stress increments and the current stress ratio gradually emerges from all strain path simulations, regardless of 
strain path direction and initial stress/density conditions. At the particle scale, the granular assembly sheared 
along proportional strain paths exhibits a constant partition ratio between strong and weak contacts. Although 
general proportional strain paths are associated with changing geometric and mechanical anisotropies, the rates 
of change in these anisotropies for contractive strain paths are synchronised to maintain a constant ratio of their 
contributions to the mobilised shear strength of the material, with a higher proportion being contributed by 
geometric anisotropy for more dilative strain paths.

1. Introduction

Granular materials have been found to attain unique proportional 
stress states after undergoing sufficient shearing along some specific 
loading paths. Notable examples of these paths include the constant- 
volume (undrained) shearing, oedometer and isotropic compression 
paths. After an initial complex response, these paths ultimately lead to 
critical state (CS), K0 state and isotropic stress state, respectively, all 
characterised by constant ratios between the effective principal stresses. 
Inspired by these observations, the geotechnical community has put 
forth a conjecture that granular materials subjected to sustained 
shearing along any arbitrary proportional strain path will ultimately 
attain a unique proportional stress state (Gudehus et al., 1977; Ibraim 
et al., 2010; Lensky, 1960). This behaviour was called ‘asymptotic 
behaviour’ by Gudehus et al. (1977) and was characterised in a formal 
manner by Goldscheider (1976) through two governing rules: 

Rule 1: Proportional strain paths starting from a stress-free state 
(p′=q = 0) are associated with proportional stress paths.
Rule 2: Proportional strain paths starting from an arbitrary stress 
state lead to stress paths that asymptotically converge to the corre-
sponding proportional stress path reached by the initially stress-free 
sample.

Laboratory strain path testing has been used to study the asymptotic 
behaviour of soils, with a greater number of studies focusing on sand as 
compared to clay (Topolnicki et al., 1990). These experiments covered a 
wide variety of testing conditions, including axisymmetric triaxial tests 
(Darve et al., 2007; Lancelot et al., 2004), plane-strain compression 
(Wanatowski, 2007; Wanatowski et al., 2008), biaxial shear with rota-
tion of principal axes (Ibraim et al., 2010), and true triaxial tests (Chu 
and Lo, 1994). The experiments have invariably pointed out a tendency 
of sand to approach asymptotic states and showed that both the initial 
and asymptotic behaviours depended on the imposed strain path 
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direction. As the strain path shifts from contractive to more dilative, the 
asymptotic stress ratio increases until the imposed dilatancy exceeds the 
peak dilatancy exhibited by a sample of the same relative density in a 
drained test (Chu and Lo, 1994; Ibraim et al., 2010; Wanatowski et al., 
2008). In such cases, the asymptotic stress ratio is bounded by the failure 
stress ratio. Besides, it has been shown that a mildly contractive strain 
path imposed on a loose granular material can lead to an initial decrease 
in the mean stress before reaching the asymptotic state with steadily 
increasing stresses (Darve et al., 2007; Lancelot et al., 2004).

One major limitation of existing experimental studies is that a fairly 
constant stress ratio has rarely been attained before reaching high strain 
levels where non-homogeneous deformations, such as shear bands, may 
develop (Chu et al., 1996). As a result, laboratory element tests can only 
provide reliable element responses up to a certain strain level where a 
well-defined asymptotic state may not have been reached, especially for 
samples subjected to dilative strain paths (Wanatowski, 2007). 
Furthermore, in axisymmetric, plane-strain and true triaxial tests, the 
strain path direction is typically indicated with dεv/dεa (dεv and dεa are 
the increments of volumetric strain εv and axial strain εa over the same 
time increment, respectively). The range of dεv/dεa achieved in existing 
experiments is limited between − 1.4 and 1.0 due to difficulties associ-
ated with precise strain control and the limited capacity of the stress 
measurement device.

The deficiencies identified above highlight the need to examine the 
attainability of asymptotic states across a wider range of strain path 
directions while preventing stress and deformation inhomogeneities. 
The difficulty associated with strain control and measuring capacity can 
be easily circumvented by simulating proportional shearing tests using 
DEM. In the literature, several DEM simulations have been reported that 
studied the response of granular materials to proportional shearing. 
However, strain path testing was used in several studies simply as a 
technique to apply partially drained conditions (Darve et al., 2007; Nicot 
et al., 2013) with no emphasis on the asymptotic behaviour. Besides, 
many existing DEM studies employed rigid wall boundaries (Deng et al., 
2021; Shi and Guo, 2017; Wu et al., 2024), leading to shear band for-
mation for dilative strain paths (dεv/dεa < 0). In fact, the stress and 
deformation inhomogeneities due to shear banding can be suppressed by 
applying periodic boundary conditions (Cundall, 1988; O’Sullivan, 
2011; Thornton, 2000). Mašín (2012) studied the asymptotic behaviour 
using DEM simulations along a wide spectrum of constant strain-rate 
directions with dεv/dεa ranging from − 1.0 to 3 by employing the peri-
odic boundary condition. However, this study focused exclusively on 
macroscopic behaviours without exploring the associated micro mech-
anisms. Zhou et al. (2016) investigated the material fabric variations 
along proportional paths using a DEM model that accounted for rolling 
resistance between particles. However, this study primarily focused on 
the effect of rolling resistance rather than the influence of strain path 
direction on fabric evolution. In addition, none of these existing studies 
have explicitly demonstrated that a constant stress ratio can be ulti-
mately attained for general proportional strain paths (i.e. dεv/dεa ∕=

0 and 3).
Although general asymptotic states are inherently embedded in 

many constitutive theories, including CS-based models and hypo-
plasticity (Bauer et al., 2020; Kolymbas, 2012; Mašín, 2012), many 
studies (Kolymbas, 2012; Luo et al., 2009; Mašín, 2013; Medicus et al., 
2016) showed that explicitly incorporating asymptotic behaviour into 
constitutive theories can simplify formulations and enhance predictive 
capabilities. Among these efforts, Kolymbas (2012) and Medicus et al. 
(2016) developed hypoplastic models relying on backbone R – D re-
lationships, i.e. the relationship between the direction of stress (R) and 
the direction of straining (D), that quantitatively satisfy only a limited 
number of specific asymptotic states. In comparison, Luo et al. (2009)
integrated a special R – D relationship, i.e. the empirical q/p’ – dεv/dεa 
relationship experimentally observed by Chu and Lo (1994), into an 
elastoplastic model, where q is the deviatoric stress and p’ is the mean 
effective stress. These studies emphasise the need for a more general and 

realistic R – D relationship to facilitate quantitative comparisons with 
experimental data. An improved understanding of asymptotic behaviour 
and the underlying micromechanics is essential for developing this 
relationship.

This study aims to examine the practical attainability of general 
asymptotic states and identify microstructural characteristics that are 
most representative of the asymptotic behaviour using DEM simulations. 
Here, the asymptotic behaviour is understood as the granular material 
response during the course of approaching the asymptotic states, 
meaning that such behaviour can exist even if general asymptotic states 
are practically unattainable. The simulation parameters were selected to 
mitigate the rate effects and nonnegligible interparticle overlap identi-
fied in previous studies (Mašín, 2012; Mašín and Jerman, 2015) so that 
physically sound and quasi-static processes of proportional shearing can 
be approached.

2. DEM simulations

2.1. DEM model details

The DEM simulations were performed using the commercial software 
PFC3D 6.0 on an assembly of 56,419 spherical particles within a 10 ×
10 × 10 mm3 cubic domain, as shown in Fig. 1. Periodic boundaries 
were used to ensure that an external strain field could be uniformly 
applied across the whole domain. With this boundary condition, parti-
cles leaving through one boundary would re-enter from the opposite side 
with the same speed, as if the model was surrounded along all edges by 
identical granular packings. As discussed earlier, the periodic boundary 
is capable of reducing the boundary effects and suppressing the occur-
rence of strain localisation (Cundall, 1988; O’Sullivan, 2011; Thornton 
and Antony, 2000) since it imposes kinematic constraints that ensure 
continuity of deformations across opposing boundaries. As a result, 
shear bands are kinematically permissible only at specific angles that are 
mechanically inadmissible in general.

The particles were generated randomly in a nonoverlapping state 
following the particle size distribution presented in Fig. 2. This distri-
bution is a modification of the Rosin-Rammler distribution, which has 
been widely used to describe the particle size distribution of granular 

Fig. 1. DEM model of a polydisperse granular assembly with 56,419 spher-
ical particles.
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materials (Kumar et al., 2020; Perfect et al., 1998). The characteristic 
sizes d0, d50 and d100 of this gradation are 0.2, 0.29 and 0.38, respec-
tively, where the subscript denotes the mass percentage of particles finer 
than the corresponding size. The non-overlapping state is considered the 
stress-free state from which the proportional stress path is expected to be 
attained following a prescribed proportional strain path. To facilitate 
comparison between the responses in different simulations, all subse-
quent DEM simulations were performed on different clones of this 
nonoverlapping sample. Thus, results from different simulations repre-
sent the behaviour of the same sample subjected to different loading 
paths.

The particle–particle interaction was simulated using the Hertz 
contact model provided in the software package, which simulates a 
contact response similar to that predicted by Mindlin and Deresiewicz’s 
theory (1953). The contact normal force (fn) in a Hertzian contact be-
tween two spheres with radii R1 and R2 is calculated as follows: 

fn =
4Gp

3
(
1 − νp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R1R2

R1 + R2

√

δα
n (1) 

where Gp and vp are the shear modulus and Poisson’s ratio of the par-
ticles, δn is the interparticle overlap, and α is a constant that takes a value 
of 1.5 according to Mindlin and Deresiewicz’s theory.

The contact shear force is calculated incrementally following Eq. (2), 
where f 0

s is the contact shear force at the beginning of the timestep, Δδs 
is the increment of relative shear displacement occurring during the 
current timestep, and ks is the contact shear stiffness which depends on 
the current contact normal force according to Eq. (3). 

fs = f0
s − ks⋅Δδs (2) 

ks =
8Gp

3
(
2 − νp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R1R2

R1 + R2

√

|Fn|
(α− 1)/α (3) 

In the Hertz contact model, the magnitude of the contact shear force is 
regulated by a maximum value given by μ

⃒
⃒fn

⃒
⃒ where μ is the coefficient 

of friction. In this study, Gp and vp took the typical values of 29 GPa and 
0.22, respectively, according to the measurements made on glass and 
quartz by Grabco et al. (2002) and Cavarretta (2009). The friction co-
efficient, μ, which varies with the surface roughness, was given a typical 
value of 0.4, considering that using μ ≥ 0.5 is shown by Huang et al. 
(2014) to result in unrealistic critical state behaviour.

2.2. Simulation program and procedures

To study the influence of initial conditions, the DEM sample was 
subjected to different proportional strain paths from different initial 
states. For simplicity, only axisymmetric strain paths were considered, 
and the major principal strain rate was always compressive (i.e. dεa > 0). 
Therefore, the accessible values of dεv/dεa range from negative infinity 
to 3, with dεv/dεa > 0 standing for compressive strain paths and dεv/dεa 
< 0 representing dilative strain paths. Specifically, dεv/dεa = 0, 1 and 3 
correspond to constant-volume (undrained) shearing, 1D compression 
and isotropic compression, respectively. According to the DEM study by 
Mašín (2012), the minimum dεv/dεa that can be practically attained in 
strain path testing is about − 1, as lower values of dεv/dεa will be asso-
ciated with very low stress levels (<0.5 kPa) and hence significantly 
scattered responses. Therefore, the range of dεv/dεa considered in this 
study is − 1 to 3.

The initial condition from which a proportional strain path is initi-
ated determines the length of shearing required for the asymptotic state 
to be attained or whether the asymptotic state can be obtained or not. 
Compressive strain paths (dεv/dεa > 0) can be imposed from arbitrary 
initial conditions whereas dilative strain paths (dεv/dεa < 0) starting 
from a stress-free sample cannot be considered. Therefore, four groups 
of proportional strain path simulations have been defined, as summar-
ised in Table 1. Starting from a stress-free state, the simulations in Group 
A are expected to reach the asymptotic state, thus providing benchmarks 
for examining the responses obtained from Group B where the propor-
tional strain path loading was imposed following an isotropic 
compression to σ1́=σ2́=σ3́ = 10 kPa from the stress-free state. Note that 
the interparticle friction used in the isotropic compression (μprep) takes 
the same value as the one in proportional strain path testing, producing 
a sample behaving like a loose sand.

The simulations in Group C consisted of proportional shearing tests 
along dilative and constant-volume strain paths. These simulations were 
initiated from an isotropic state with a high stress level of 10 MPa in 
order to achieve sufficient deformation before the stresses drop to 
negligible values, in the hope that the asymptotic state could be reached 
at stress levels high enough for the responses to be more reliable. In 
Group D, three additional strain path simulations were conducted for 
dεv/dεa = -0.5 on samples of different initial void ratios under the same 
initial stress state as in Group C. In the sample preparation process 
(isotropic compression from the stress-free state), the frictional coeffi-
cient used was 0.1, 0.2 or 0.3, producing samples with initial void ratios 
of 0.603, 0.64 and 0.648, respectively. Group D was designed to 
investigate the effect of sample density on the response to proportional 
strain path shearing.

To guarantee that the test conditions were quasi-static, the loading 
rate was determined to ensure that the associated inertial number (I) 
was below 0.001 (Cerfontaine et al., 2021; Mašín and Jerman, 2015). 
The inertial number (I) is defined as (Da Cruz et al., 2005; Jop et al., 
2006): 

I =
⃒
⃒
⃒
⃒γ̇s

⃒
⃒
⃒
⃒d

̅̅̅̅̅
Gs

ṕ

√

(4) 

Fig. 2. Particle size distribution of the DEM assembly.

Table 1 
Summary of the proportional strain path simulations.

Group Initial condition dεv/dεa of the tested path/s

A Nonoverlapping state; e = 1.555 1.0 / 1.5 / 2.0 / 2.5 / 3.0
B σ1 = σ2 = σ3 = 10 kPa; μprep = 0.4; e =

0.699
0.5 / 1.0 / 1.5 / 2.0 / 2.5

C σ1 = σ2 = σ3 = 10 MPa; μprep = 0.4; e =
0.664

− 1.0 / − 0.75 / − 0.5 / − 0.25 
/ 0

D σ1 = σ2 = σ3 = 10 MPa; μprep = 0.1, 0.2, 
0.3; 
e = 0.603, 0.640, 0.648

− 0.5
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where 
⃒
⃒
⃒
⃒γ̇s

⃒
⃒
⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅
2ε̇ijε̇ij

√
with ε̇ij being the stretching rate tensor, d is a 

characteristic particle size, and p’ is the mean effective stress.
According to Eq. (4), I is not a constant in a deformation process 

involving a changing mean stress. Fig. 3 shows the relationship between 

I and p’ for 
⃒
⃒
⃒
⃒γ̇s

⃒
⃒
⃒
⃒ = 2 s− 1 and d taking different characteristic particle 

sizes. The figure suggests that employing a stretching rate with 
⃒
⃒
⃒
⃒γ̇s

⃒
⃒
⃒
⃒ =

2s− 1 is able to maintain the condition of quasi-static loading for mean 
stresses as low as about 1 kPa. Consequently, the deformation rates 
imposed in all proportional strain simulations presented in this study 

were selected to satisfy 
⃒
⃒
⃒
⃒γ̇s

⃒
⃒
⃒
⃒ = 2s− 1.

Depending on the different strain paths followed, the final state 
reached in the simulations would involve either a monotonically 
increasing or decreasing stress level, except for the special case of un-
drained shearing (dεv/dεa = 0) which leads to either liquefaction or 
critical state, see e.g. Guo and Zhao (2013), Nguyen et al. (2018). The 
simulations leading to the vanishing of stresses were terminated when 
the mean stress, p′, decreased to 10 kPa, while the simulations with 
continuously increasing stresses were terminated once p′ reached 10 
MPa. As shown in Fig. 4, at p′=10 MPa, most interparticle contacts 
exhibit a relative overlap ratio, calculated as δn/(R1 + R2), smaller than 
1 %, which is about the threshold below which the interparticle overlap 
can be considered negligible (Alonso-Marroquín et al., 2005).

3. Macroscopic responses and analysis

3.1. Contractive strain paths

Fig. 5(a) presents the stress path response in the q – p′ plane obtained 
from simulations conducted along contractive proportional strain paths 
(dεv/dεa > 0) from the initial state with ṕ0 = 10 kPa (Group B). It can be 
seen from Fig. 5(a) that the stress path exhibits a nonlinear response at 
the beginning of the loading, followed by an almost linear increase. The 
initial nonlinear responses are better visualized in Fig. 5(b) where the 
stress paths are plotted on a double-logarithmic scale. Specifically, the 
simulation with dεv/dεa = 0.5 experienced an initial decrease in p′ before 
a steady increase of p′ and q. Such an initial decrease in p′ is typically 
observed in loose sand subjected to slightly contractive strain paths 
(Darve et al., 2007; Hicher, 1998; Lancelot et al., 2004). Besides, as the 
strain path becomes less contractive (i.e. dεv/dεa decreases), the slope of 

the stress paths increases, indicating an increasing level of strength 
mobilisation, in agreement with previous observations (Chu et al., 1993; 
Daouadji et al., 2017; Wanatowski et al., 2008).

Fig. 6(a) shows that the stress ratios for the same sample subjected to 
different contractive strain paths all increase with a decreasing rate to 
approach an asymptotic value. The behaviour confirms Goldscheider’s 
Rule 2. However, the corresponding simulations conducted on stress- 
free samples (Group A) do not yield a well-defined asymptotic stress 
ratio, as shown in Fig. 6(b). Instead, the stress ratios also continue to 
increase with further stretching as for Group B. One possible reason is 
that the level of strains applied in the simulations is insufficient, since 
the shearing was terminated once the mean stress reached 10 MPa.

To verify this hypothesis, an additional shearing up to a shear strain 
of 26.6 % was simulated in the case of dεv/dεa = 0.5 and ṕ0 = 10 kPa, 
and the results are shown in Fig. 7. Also shown in the figure is the co-
ordination number (CN) that quantifies the average number of contacts 
per particle (to be discussed in detail in Section 4.1). As expected, the 
stress ratio is seen to finally stabilise at q/p′ =0.88, indicating that an 
asymptotic state has been reached. However, this was achieved after p′ 
exceeds 90 MPa, well above the stress level required to trigger large- 
scale particle breakage in most sands (Hardin, 1985; Lade et al., 
1996). Moreover, the asymptotic stress ratio of 0.88 is greater than the 
CS stress ratio of M = 0.78 determined using conventional drained 
triaxial shear simulations with σ3́ = 50, 100 and 200 kPa. This unusual 
behaviour occurs because the interparticle overlaps are excessive at very 
high stress levels, leading to an unrealistic increase of CN that violates 
the geometric restrictions in real granular packings. The unrealistically 
high CN value spuriously increases the angularity of the particles and 
hence the strength of the material; Fei and Narsilio (2020), Cho et al. 
(2006), Santamarina and Cho (2004), among others, showed the ten-
dency of CN and shear strength to increase as particles become more 
angular. Because of this, the simulated responses at very high stress 
levels (> 10 MPa) must be interpreted with caution, and additional 
shearing to very large strains has not been conducted for other 
contractive strain paths.

Despite the large-strain response in Fig. 7 being questionable, it 
seems reasonable to speculate that general asymptotic states for arbi-
trary contractive strain paths do exist but may be practically unattain-
able as they are associated with excessive stresses and hence particle 
breakage.

Fig. 3. Relationship between inertial number and mean stress for 
⃒
⃒
⃒
⃒γ̇s

⃒
⃒
⃒
⃒ = 2s− 1

Fig. 4. The distribution of relative overlap at p′ = 10 and 20 MPa for the 
isotropic compression simulation (dεv/dεa = 3).
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3.2. Dilative strain paths

The stress path responses for Group C simulations are presented in 
Fig. 8. The stress paths show some differences during the initial stage of 
stretching, with a higher peak deviatoric stress reached for a less 
negative value of dεv/dεa. After the peak, the deviatoric stress starts to 
decrease, and the stress paths for negative values of dεv/dεa almost 
converge to a single straight line passing through the origin. All the 
simulations with dεv/dεa < 0 finally reached a liquefied state with p′=q 
= 0. In contrast, the undrained shearing (dεv/dεa = 0) exhibited a 
different response, with a phase transformation occurring as the stress 
path approached the CSL. Following this transformation, the stress path 
ascended nearly along the CSL. This simulation was halted after a shear 
strain of 43 %. The above behaviours are generally in line with those 
observed in existing laboratory experiments for loose sand (Lancelot 
et al., 2004; Nicot et al., 2013; Wanatowski et al., 2008) and DEM 
simulations (Deng et al., 2021; Sibille et al., 2015). In the following 
analysis, attention will be paid to the cases with dεv/dεa < 0 as un-
drained shearing has been extensively studied in the literature.

The simulation results for samples of different initial densities (e0) 
sheared along the same strain path direction of dεv/dεa = -0.5 are pre-
sented in Fig. 9. It is observed that the resulting stress paths all attained a 
seemingly linear trend after reaching the peak deviatoric stress that 
increases with the decrease of e0. However, as shown in Fig. 9(b), the 
stress ratio does not remain constant after reaching the peak but de-
creases as shearing proceeds. Specifically, the peak stress ratio reached 
for the sample with e0 = 0.603 surpasses the critical state line M at first 
and then drops below it as the stress state approaches the origin (static 
liquefaction).

From Fig. 9(b) and Fig. 8(b), it can be observed that there is no 
asymptotic state for negative values of dεv/dεa irrespective of initial 
sample density or strain path direction. This observation is different 
from the findings of existing laboratory tests (Chu and Lo, 1994; Jrad 
et al., 2012; Wanatowski et al., 2008) and DEM simulations (Darve et al., 
2007; Deng et al., 2021) where an asymptotic stress ratio was observed 
and appeared to be unaffected by the strain path direction. The current 
simulations differ from the existing studies in that the periodic bound-
aries were employed to suppress the development of shear bands, as 

Fig. 5. Stress path responses obtained from DEM simulations along contractive strain paths from an initial state with ṕ0 = 10 kPa, plotted on a) arithmetic scale and 
b) double-logarithmic scale.

Fig. 6. Stress ratio response from simulations stretching along contractive proportional strain paths from a) an isotropic state with ṕ0 = 10 kPa and b) the stress- 
free state.
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discussed earlier. Fig. 10 presents the stress ratio response from a set of 
dilative strain path simulations where all simulation parameters were 
the same as those from Group C simulations except that rigid wall 
boundaries were employed. Fig. 10 clearly shows that constant stress 
ratios were almost obtained in these simulations, indicating that the 
asymptotic stress ratios for dilative proportional strain paths observed in 
existing laboratory tests and DEM studies are likely to be the result of 
deformation inhomogeneity within the samples (Deng et al., 2021).

3.3. A common characteristic for all proportional strain paths

The above results suggest that Goldscheider’s two rules are generally 
satisfied for contractive strain paths although general asymptotic states 
may be practically unattainable. However, the stress ratios obtained 
from dilative strain path simulations do not exhibit any tendency to 
approach a constant value. It appears that the stress response along 
dilative proportional strain paths should be described differently from 
those along contractive proportional strain paths. However, upon a close 
examination of the data, it has been discovered that both contractive and 
dilative strain paths can be associated with the same incremental stress 

response.
Axisymmetric stress states can be simply characterised by q and p′, 

and the associated stress increment direction by dq/dp′. Fig. 11 presents 
the relationship between dq/dp′ and q/p′ derived from all the simula-
tions listed in Table 1. In Fig. 11(a), the response from the simulation 
with dεv/dεa = 0.5 is omitted since the general trend is the same but the 
large scattering renders data interpretation difficult. From the figures, it 
is observed that following an initial nonlinear response, the dq/dp′ – q/p′ 
curves for various dεv/dεa values and different initial conditions all 
converge to a straight line that can be represented by: 

dq
dpʹ = α q

ṕ
(5) 

where α is the slope of the line, which is found to be about 1.09 for 
simulations conducted from the stress-free state and 1.15 for the other 
simulations. Neglecting the small difference between the values of α 
derived from all these simulations, the behaviour presented in Fig. 11
suggests that the tendency to converge to a unique dq/dp′ – q/p′ rela-
tionship is a common characteristic of all proportional strain path sim-
ulations, irrespective of initial conditions and strain path directions.

Through rearranging and integrating Eq. (5), Eq. (6) can be obtained: 

q
pʹ = A

(
ṕ
Pa

)α− 1

(6) 

where A is a constant depending on the material type and strain path 
direction dεv/dεa; Pa is the atmospheric pressure (~101 kPa) used for 
normalisation.

From Eq. (6), it appears that for the stress ratio to attain a constant 
value after sufficient shearing, α cannot be a constant, but instead must 
decrease to 1 as shearing continues. In fact, in the simulation with 
prolonged shearing along dεv/dεa = 0.5 path, a clear decrease of α to-
wards 1 can be observed, as shown in Fig. 12 where the value of α was 
calculated as the ratio of dq/dp′ to q/p′ according to Eq. (5). In summary, 
during proportional shearing, an almost proportional dq/dp′ – q/p′ 
relationship described by Eq. (5) appears first. Accompanied by α 
decreasing to 1, this relationship recovers Goldscheider’s two rules.

The above analysis can explain why the value of α determined from 
the simulations on the stress-free sample is smaller: the value of α-1 
measures the distance between the current state and the anticipated 
asymptotic state. Loading from the stress-free state can approach the 
asymptotic state faster as it is easier to modify the fabric of a stress-free 

Fig. 7. Variation of stress ratio (q/p′) and coordination number (CN) during 
prolonged shearing up to a shear strain of 26.6 % in the simulation with dεv/ 
dεa = 0.5 and ṕ0 = 10 kPa

Fig. 8. DEM simulations of proportional stretching along dilative strain paths from an initial state with ṕ0 = 10 MPa: a) stress path response and b) stress ratio – 
shear strain response.
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sample than that of an initially loaded sample.
In previous DEM studies on proportional shearing, ‘pseudo’ asymp-

totic states with constant stress ratios have been attained using rigid wall 
boundaries, as discussed earlier. These constant stress ratio states appear 
as special cases of Eq. (6) with α ≡ 1, indicating that the unique rela-
tionship described by Eq. (6) can be ultimately attained regardless of the 
boundary condition employed. However, Deng et al. (2021) demon-
strated that the reason for constant stress ratios to emerge in their DEM 
simulations along dilative proportional strain paths is due to the 
occurrence of a shear band whose response closely follows the critical 
state line. This suggests that ‘pseudo’ asymptotic states are manifesta-
tions of the same critical state in the presence of nonhomogeneous de-
formations. In contrast, the observations shown in Fig. 11 illustrate the 
response of samples with uniform deformations since periodic bound-
aries were used, thereby representing the true asymptotic behaviour.

4. Analysis of responses at the micro scale

The microscopic responses were analysed to explain why constant 
stress ratios were not achieved and to explore the microscopic charac-
teristics of the granular material behaviour along proportional strain 
paths. Understanding the variation of material fabric along these paths 
offers insights into the changing mechanism governing material 
behaviour under varying shearing modes. The findings are also antici-
pated to inform the development of fabric evolution laws, as existing 
models (Gao and Zhao, 2013; Wang et al., 2020; Zhao and Kruyt, 2020) 
do not consider the anisotropy variations along general proportional 
paths.

In cohesionless granular materials, external stresses are transmitted 
through material packing via an inhomogeneous network of interpar-
ticle contacts. Radjai et al. (1998) revealed that this contact network has 
a prominent bimodal characteristic. The contacts bearing above-average 
contact forces (referred to as strong contacts) take the dominant role in 
transmitting the stress, while the contacts bearing under-average con-
tact forces (referred to as weak contacts) serve to prop the subnetwork of 
strong contacts and dissipate kinetic energy. The microscopic response 
analysis has been conducted based on this characteristic.

4.1. Coordination number (CN)

CN is the average number of contacts per particle in a granular as-
sembly and can be calculated as CN = 2Nc/Np where Nc and Np are the 
number of contacts and particles in the assembly, respectively. For the 
quasi-static processes simulated in this study, CN simply reflects the 
geometric connectivity of the granular packing and may be taken as a 
measure of packing density (Jia et al., 2021; O’Sullivan, 2011). 
Compared to CN, the mechanical coordination number (MCN) proposed 
by Thornton (2000) provides a more representative measure of the 
connectivity in the load-bearing structures in the assembly because the 
particles and contacts isolated from the stress transmission network are 
excluded from the calculation of MCN given by Eq. (7). 

MCN =
2
(

Nc − N1
p

)

Np − N0
p − N1

p
(7) 

where N1
p is the number of particles with only one contact and N0

p is the 
number of floating particles that do not contact others.

Fig. 13 shows the variation of CN and MCN with p′ along contractive 

Fig. 9. Effect of sample initial density (e0) on the proportional stretching response for dεv/dεa = -0.5: a) stress path response and b) stress ratio – shear 
strain response.

Fig. 10. Stress ratio response along contractive proportional strain paths 
simulated using rigid wall boundaries.
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strain path simulations from Group B and dilative strain path 

simulations from Group C. As expected, both CN and MCN increase with 
p′ along contractive strain paths where the density increases (dεv/dεa >

0), and they decrease with the decrease of p′ along dilative strain paths 
with dεv/dεa < 0. This demonstrates a positive correlation between 
packing density and CN/MCN across all strain path simulations. Fig. 13
(a) shows that when dεv/dεa < 2, both CN and MCN are higher for more 
contractive strain paths (greater dεv/dεa). However, for dεv/dεa ≥ 2, the 
response of CN and MCN appears almost unaffected by dεv/dεa. A similar 
observation can be found in Fig. 14 where the responses of CN and MCN 
are plotted against the void ratio (e) in the assembly for the same two 
sets of simulations. Fig. 14, on the one hand, shows that there is no 
unique relationship between CN/MCN and e, indicating the effect of 
fabric anisotropy on CN/MCN, as it has been revealed in various studies 
(Kozicki et al., 2014; Rothenburg and Kruyt, 2004; Thornton, 2000). 
More importantly, it is observed from Fig. 14(a) that both the CN – e and 
MCN – e relationships converge to single lines for dεv/dεa ≥ 2, just as the 
relationship with p′ shown in Fig. 13(a). The insensitivity of MCN and 
CN to the change of strain path direction for dεv/dεa ≥ 2 suggests that 
isotropic microstructural properties such as CN and MCN fail to char-
acterise the stress response of granular materials sheared along highly 
contractive strain paths.

For the variation of CN and MCN along dilative strain paths shown in 
Fig. 13(b) and 14(b), it is observed that there is a better agreement 
between the CN/MCN – p′ relationships for different values of dεv/dεa 

Fig. 11. Relationship between dq/dp′ and q/p′ for simulations along a) contractive strain paths initiated from the stress-free state, b) contractive strain paths initiated 
from ṕ0 = 10 kPa, c) dilative strain paths initiated from ṕ0 = 10 MPa, and d) dεv/dεa = -0.5 path on samples of different initial void ratio e0.

Fig. 12. Variation of α in the prolonged shearing simulation with dεv/dεa = 0.5 
and ṕ0 = 10 kPa
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than between the CN/MCN – e relationships. Specifically, the CN/MCN – 
p′ relationships for different dεv/dεa almost converge to a single line 
after p′ drops below 3000 kPa. Referring to Fig. 8(a), it is found that for p′ 
≤ 3000 kPa, the stress paths for different dεv/dεa almost overlapped. 
Additionally, when p′ decreases below about 3000 kPa, the trajectory of 
CN in Fig. 13(b) closely follows the CSL for CN obtained from drained 
triaxial shear simulations with σ3́ = 50, 100 and 200 kPa, while the MCN 
trajectory lies slightly above the corresponding CSL.

Comparing the findings from the contractive and dilative strain path 
simulations, it is found that CN and MCN exhibit a decreasing ability to 
characterise the stress response of a granular material as dεv/dεa in-
creases. As it will be shown later, this is because CN and MCN are 
geometric characteristics of the packing, and with the increase of dεv/ 
dεa, the contribution of geometric characteristics to material behaviour 
gradually decreases while mechanical characteristics become increas-
ingly more dominant.

4.2. Contact force distribution and contact partition

Complementary to the microstructural properties (CN and MCN) 
studied above, this subsection examines the micromechanical properties 
of the contact network in terms of contact force distribution and fraction 
of strong/weak contacts. According to the photoelastic experiments 

performed by Majmudar and Behringer (2005), while the distribution of 
contact normal forces evolves for different loading paths imposed onto 
the sample, the general form of the contact tangential force distribution 
does not appear to be sensitive to the loading condition. Therefore, only 
the distribution of contact normal forces (fn) will be examined.

Fig. 15 presents the distribution of contact normal forces at p′=10 
MPa in samples loaded along different contractive proportional strain 
paths with dεv/dεa ranging from 0.5 to 3 from p′=10 kPa (Group B). The 
normalised contact density shown in the figure was calculated as the 
number of contacts in each of 100 force groups, divided by the expected 
contact number in that group for a uniform distribution (i.e. Nc/100). 
The figure shows that with the decrease of dεv/dεa in the contractive 
range, there is a trend for the peak of the normal force distribution to 
shift towards lower contact forces. This agrees with the observation by 
Antony (2001) that at high levels of strength mobilisation (low values of 
dεv/dεa; see Fig. 6(a)), the contact density exhibits an exponential decay 
with the increase of fn throughout the entire distribution; close to the 
isotropic state (e.g. dεv/dεa = 3), the contact density decays exponen-
tially for fn greater than the average contact normal force < fn > and 
exhibits a half-Gaussian distribution for fn smaller than < fn > . The 
contact normal force distribution at p′=100 kPa along dilative strain 
paths, as shown in Fig. 15(b), clearly exhibits the trend typical of high 
mobilised strength and has no clear dependence on dεv/dεa. These 

Fig. 13. Variation of coordination number (CN) and mechanical coordination number (MCN) with mean effective stress (p′) in the simulations along a) contractive 
proportional strain paths initiated from ṕ0 = 10kPa and b) dilative strain paths.

Fig. 14. Variation of coordination number (CN) and mechanical coordination number (MCN) with void ratio (e) in the simulations along a) contractive proportional 
strain paths initiated from ṕ0 = 10kPa and b) dilative strain paths.
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distributions resemble that at the CS in the conventional drained triaxial 
shear simulation with σ3́ = 50 kPa, which is also presented in Fig. 15(b). 
Note that the contact normal force distribution at the CS remains almost 
unchanged for σ3́ spanning from 50 to 500 kPa.

To quantitatively evaluate the contact normal force distributions, 
the < fn>, coefficient of variation (COV) and maximum (fn,max) for 
different strain path simulations are calculated and presented in Fig. 16. 
The < fn > and fn,max are normalised with respective to p′•d2

50 since they 
were obtained at different p′ in dilative and contractive strain path 
simulations. The figure shows that the COV in the contact normal force 
distribution initially increases as dεv/dεa decreases, stabilising around 
the COV observed at the CS from the drained simulations. This suggests 
that, as the strain path deviates from the isotropic case (dεv/dεa = 3), the 
contact normal force distribution becomes increasingly more nonuni-
form. In contrast, the normalised < fn > remains almost unaffected by 
dεv/dεa, with the values obtained from dilative strain path simulations at 
p′ = 100 kPa being slightly greater than those from the contractive strain 
path simulation at p′ = 10 MPa. Additionally, the normalised fn,max in-
creases with the decrease of dεv/dεa. Both the normalised < fn > and fn, 

max do not show a tendency to approach a CS value, which contrasts with 
the response of the COV. This can be explained by the fact that the COV 
at CS is nearly independent of p′, while the CS values of < fn > and fn,max 
decrease with the increase of p′ (not shown for simplicity). The latter 
response is attributed to the increase of CN with p′.

To relate the contact force distribution to the load-bearing capacity 
of the granular packing, the fractions of strong and weak contacts in the 
proportional strain path simulations are presented in Fig. 17. The DEM 
simulation results reported by Guo and Zhao (2013) suggested that the 
variation in strong and weak contact fractions appears relatively 
insensitive to the state of sample or modes of shearing, but associates 
closely with the strength mobilisation levels in the material. In their 
simulations, the fraction of weak contacts increases with increasing 
stress ratio. This can be interpreted as a need for more lateral support 
(weak contacts) to stabilise the strong force chains (strong contacts) at 
elevated strength mobilisation levels.

In Fig. 17, as the distribution of contact normal forces becomes more 
nonuniform (i.e. dεv/dεa decreases), the fraction of strong contacts de-
creases and that of weak contacts increases. This observation aligns with 
the high COV values shown in Fig. 16, indicating that mobilising high 
strength in granular materials necessitates the formation of a non- 
homogeneous contact network where large contact forces are borne by 
a few strong contacts, while the majority of contacts provide support to 
stabilise these highly stressed force chains. Interestingly, Fig. 17 also 
shows that after an initial nonlinear behaviour, the fractions of strong 
and weak contacts in all these simulations reach a steady-state value. 
Besides, although not presented here, in the other simulations per-
formed in this study (simulations in Group A and D, and conventional 
triaxial tests), the ratios of strong and weak contacts also reach steady- 
state values that are independent of the confining pressure or initial 
conditions. Overall, it can be concluded that proportional strain paths 
are characterised by a constant partition ratio between strong and weak 
contacts. The variation of these steady-state values of strong and weak 
contact fractions with dεv/dεa is illustrated in Fig. 18 where the steady- 
state values for the simulations with dεv/dεa > 0 and dεv/dεa < 0 were 
taken at p′=10 MPa and 100 kPa, respectively. The CS values indicated 
in the figure were obtained from the drained triaxial simulations. From 
Fig. 18, it is observed that the steady-state fraction of strong contacts 
reduces as dεv/dεa decreases until it stabilises at the CS value for dεv/dεa 
≤ 0. The strong contact fraction at CS appears to be a limiting value for 
all proportional strain paths.

Combining the observations from Fig. 13(b), Fig. 15(b) and Fig. 17
(b), it can be concluded that the micro-structure of the samples under 

Fig. 15. Distribution of normalised contact density with normalised normal force fn/<fn > at a) p′=10 MPa in contractive strain path simulations initiated from ṕ0 =

10 kPa and b) p′=100 kPa in dilative strain path simulations.

Fig. 16. Effect of dεv/dεa on the normalised average and maximum contact 
normal force (<fn > and fn,max) and on the coefficient of variance (COV) of the 
contact normal forces.
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various dilative strain paths is statistically similar to that at the CS in 
terms of CN, contact force distribution, and contact partition ratios. The 
reason for this similarity is that the CS is a limiting state where shearing 
can continue without increasing the stress or altering the packing vol-
ume. Therefore, the CS fabric reflects the minimal requirement to 
maintain the stability of a granular packing at a limiting state. Thus, the 
results shown in Fig. 13(b), Fig. 15(b) and Fig. 17(b) actually indicate 
that the granular packing also attains a limiting state when subjected to 
dilative strain path shearing. It is noted that CN, contact force distri-
bution and contact partition ratios studied above are isotropic measures 
of material fabric. The orientational distribution of contact and contact 
forces will be studied in the next section.

4.3. Geometric and mechanical anisotropies

A key aspect of granular material behaviour is their ability to develop 
anisotropic fabric and contact force distribution that memorise the 
previous loading history and affect the subsequent response to external 
loading (Chaudhary et al., 2002; Gutierrez and Ishihara, 2000; Kruyt 
and Rothenburg, 2016; Liu et al., 2024, among others). The anisotropy 

in relation to the spatial arrangement of particles and associated voids is 
referred to as geometric anisotropy, whereas that reflecting the aniso-
tropic distribution of contact forces is called mechanical anisotropy 
(Cambou et al., 2004). There are different ways to measure the geo-
metric and mechanical anisotropies (Guo and Zhao, 2013; Kanatani, 
1984; Li and Li, 2009; Oda and Iwashita, 1999; Sitharam et al., 2009). In 
this study, the geometric anisotropy is characterised by the orientational 
distributions of contact normal vectors and branch vectors given by 
tensors ac

ij and ad
ij , which can be calculated from Eqs. (8) and (9), 

respectively (Ouadfel and Rothenburg, 2001). 

ac
ij =

15
2

Φʹ
ij (8) 

ad
ij =

15
2

dʹ
ij

d
0 (9) 

where Φʹ
ij is the deviatoric part of the contact orientation fabric tensor 

Φij defined by Oda (1982) as: 

Φij =
1
Nc

∑

c∈Nc

ninj (10) 

where ni and nj are the i and j components of the unit contact normal 
vector; díj is the deviatoric part of the branch vector fabric tensor dij 

given by Eq. (11) and d0 is the trace of dij. 

dij =
1
Nc

∑

c∈Nc

dcninj

1 + ac
klnknl

(11) 

where dc is the length of the branch vector, and Einstein’s summation 
convention applies.

The mechanical anisotropy is studied separately for the contact 
normal and tangential forces using the anisotropy tensors an

ij and at
ij, 

which can be calculated with Eqs. (12) and (13) respectively. 

an
ij =

15
2

f ń
ij

f
0 (12) 

at
ij =

15
3

f ʹt
ij

f
0 (13) 

where f ń
ij and f t́

ij are the deviatoric parts of the contact normal and 
tangential force anisotropy tensors fn

ij and f t
ij given by Eqs. (14) and (15)

Fig. 17. Variation of the fraction of strong and weak contacts in the simulations along a) contractive strain paths initiated from ṕ0 = 10 kPa and b) dilative 
strain paths.

Fig. 18. Variation of steady-state values of strong and weak contact fractions 
with strain path directions.
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respectively, and f0 is the trace of fn
ij . 

fn
ij =

1
Nc

∑

c∈Nc

fnninj

1 + ac
klnknl

(14) 

f t
ij =

1
Nc

∑

c∈Nc

fstinj

1 + ac
klnknl

(15) 

where fn and fs are the contact normal and tangential forces, and ti is the i 
component of the unit contact tangential vector.

The reason to select these four anisotropy tensors as indicators is that 
there exists a stress–force–fabric relationship that correlates the stress 
ratio in a granular assembly to the invariant of these tensors according to 
(Chantawarungal, 1993; Guo and Zhao, 2013; Rothenburg and Bathurst, 
1989): 

q
pʹ =

2
5

(

ac + ad + an +
3
2
at

)

(16) 

where ac, ad, an and at are the signed deviatoric invariants of tensors ac
ij, 

ad
ij, an

ij and at
ij respectively, calculated using: 

a* = sign(J*)

̅̅̅̅̅̅̅̅̅̅̅̅
3
2
a*

ija*
ij

√

(17) 

where a* represents ac, ad, an or at when the sub/superscript * is c, d, n or 
t; J* is the joint invariant of a*

ij with the deviatoric stress tensor Sij given 
by: 

J* =
Sija*

ij
̅̅̅̅̅̅̅̅̅
SijSij

√ ̅̅̅̅̅̅̅̅̅
a*

ija*
ij

√ (18) 

As explained by Rothenburg and Bathurst (1989), Equation (16) sug-
gests that the ability of a non-cohesive granular material to bear 
deviatoric loads arises from its ability to develop an anisotropic contact 
network (reflected by ac and ad) and contact forces (reflected by an and 
at). In this sense, the four selected tensors provide a complete and 
complementary description of anisotropies relevant to the stress ratio 
response of the material.

Fig. 19 presents the variation of ac, ad, an and at along contractive 
(dεv/dεa = 0.5) and dilative (dεv/dεa = -0.75) proportional strain paths. 
For both simulations, the branch vector anisotropy ad is found to be 
much smaller than the others, in agreement with existing studies where 
ad is found to be negligible in narrowly graded packings of spherical 
particles (Guo and Zhao, 2013; Khakpour and Mirghasemi, 2023). 

Furthermore, the results also suggest that Eq. (16) is applicable to pro-
portional strain paths, as demonstrated in Fig. 20 where the stress ratio 
responses obtained with Eq. (16) are found to agree well with those 
directly recorded in the simulations. As already discussed earlier, the 
stress ratios in the two simulations with dεv/dεa = 0.5 and 0.75 do not 
attain constant values but instead continue to evolve with further 
shearing. This can be explained by the stress–force–fabric relationship 
and the fact that the anisotropies have not attained constant values, as 
seen in Fig. 19. Combining these results with the variation of CN and 
MCN presented in Fig. 13, it can be concluded that general proportional 
paths (except for dεv/dεa = 3 and 0) are associated with continuously 
evolving fabric isotropic factors (CN and MCN), fabric anisotropy (ac 
and ad) and mechanical anisotropy (an and at).

On the other hand, Eq. (16) allows the contribution from each 
anisotropy to the stress ratio within the material to be calculated, 
making it possible to evaluate the relative significance of mechanical 
and geometric anisotropies. Fig. 21 shows the contributing weight of the 
different anisotropies on the stress ratio, calculated according to Eq. 
(16). In the dεv/dεa ≥ 0 cases, the contributing weight reached almost 
constant values, as illustrated in Fig. 21(a). This suggests that the rates of 
change in various anisotropies are synchronised to maintain a constant 

Fig. 19. Typical responses of different anisotropies in proportional strain path simulations.

Fig. 20. Validation of the stress–force–fabric relationship for proportional 
strain paths.
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ratio of their contributions to the mobilised shear strength of the ma-
terial. As CN increases in contractive strain path simulations, this further 
indicates that the newly generated contacts contribute similarly to the 
geometric and mechanical anisotropies. However, when dεv/dεa < 0, 
such as the case shown in Fig. 21(b), the contributing weight of ac 
increased as proportional stretching continued while the weight of an 
and at decreased. This suggests that as the stress state approaches zero, 
the geometric anisotropy becomes increasingly more important in the 
mobilised strength of the material. Despite this trend, it should be 
pointed out that in all simulations conducted in this study, the me-
chanical anisotropy (an and at) is found to be the major source of shear 
strength in the granular assembly, even for dilative strain path simula-
tions at stress levels as low as p′ = 1 kPa. This phenomenon is linked to 
the fact that spherical particles are used in the simulations.

To understand how strain path direction affects the relative impor-
tance of geometric and mechanical anisotropies to the load-bearing 
capacity of the granular packing, the steady-state contributing weights 
of various anisotropy terms in the stress ratio q/p′ are plotted against 
dεv/dεa in Fig. 22. The steady-state value was calculated as the average 
over the last 1 % shear strain in each simulation. The dilative strain path 

simulations were excluded from this analysis as the weights did not 
exhibit a steady state, as shown earlier.

Fig. 22 shows that, as the strain path becomes less contractive (lower 
dεv/dεa), the steady-state contributing weight of the mechanical 
anisotropy (an and at) in the mobilised shear strength decreases while 
the weight of the geometric anisotropy (ac and ad) increases. Because a 
lower dεv/dεa means a more deviatoric straining mode, the above 
observation can be alternatively understood as that the significance of 
the geometric anisotropy increases as the straining mode becomes more 
deviatoric. This is most effectively demonstrated by the asymptotic state 
associated with isotropic compression (dεv/dεa = 3) where the geo-
metric characteristics of particles have no influence on the stress ratio 
response. In addition, the evolution of the geometric anisotropy with the 
strain path direction agrees with the decreasing ability of CN/MCN to 
characterise the mechanical behaviour of granular material as dεv/dεa 
increases, as observed in Section 4.1.

5. Summary

This study has presented the results of DEM simulations to investi-
gate the asymptotic behaviour of granular materials under proportional 
shearing along different strain path directions and from different initial 
stress/density conditions. The simulation conditions/parameters were 
carefully selected to ensure realistic and quasi-static modelling of a 
granular assembly consisting of spherical particles along a wide spec-
trum of proportional strain paths while suppressing shear band 
formation.

The simulation results suggest that for contractive strain paths, 
Goldscheider’s two rules regarding the asymptotic behaviour are 
generally valid, although general asymptotic states may not be practi-
cally attainable. The effect of particle breakage on the asymptotic 
behaviour should be clarified in the future. On the other hand, the two 
rules appear invalid for dilative proportional strain paths because 
granular materials under such paths will ultimately liquefy and the 
stress ratio does not exhibit any tendency to stabilise. Despite this dif-
ference, a proportional dq/dp′ – q/p′ relationship has been identified as a 
common characteristic for both dilative and contractive proportional 
strain paths, and the slope of this relationship appears insensitive to 
strain path direction and initial stress/density conditions.

At the particle scale, the asymptotic behaviour is characterised by a 
contact network with varying topological structures, indicated by 
changes in CN and MCN values, and a constant partition ratio between 
strong and weak contacts. The steady-state fraction of strong contacts 
decreases as the strain path becomes more dilative, eventually 

Fig. 21. Contributing weight of anisotropies of the distribution of contact orientation (ac), branch vector (ad), contact normal force (an) and contact shear force (at) 
in the mobilised shear strength of the sample, calculated according to Eq. (16).

Fig. 22. Effect of strain path direction on the contributing weight of various 
anisotropy terms to q/p′ at the steady state.
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stabilising at the CS value for constant-volume and dilative strain paths. 
The micro-structure of samples under dilative strain paths is statistically 
similar to that at the CS in terms of CN, contact force distribution, and 
contact partition ratios since the CS fabric represents the minimal 
requirement to maintain the stability of the granular packing at a 
limiting state.

The capacity of a non-cohesive granular material to carry deviatoric 
stresses is due to its ability to develop non-uniform, anisotropic distri-
butions of contacts and contact forces. The current simulations show 
that along proportional strain paths, except for the cases with dεv/dεa =

0 and 3, the geometric isotropy (CN and MCN) and anisotropy (ac and 
ad) and the mechanical anisotropy (an and at) all continue to evolve. 
However, for contractive proportional strain paths, the rates of change 
in different anisotropies are synchronised to maintain a constant ratio of 
their contributions to the mobilised shear strength of the material. The 
ratio of the contribution of geometric anisotropy increases as the strain 
path becomes more dilative. Nevertheless, the mechanical anisotropy 
remains the major source of mobilised shear strength in all the simula-
tions for granular materials with spherical particles.

This study only considered a narrowly graded assembly of un-
breakable spherical particles. Further investigations into the effect of 
particle strength, particle shape and size distribution on the asymptotic 
behaviour of granular materials could provide important insights into 
how particle-scale characteristics and their evolution can affect the 
attainability of an asymptotic state.
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multi-axial testing. Géotechnique 46, 63–82. https://doi.org/10.1680/ 
geot.1996.46.1.63.

Chu, J., Lo, S.C.R., Lee, I.K., 1993. Instability of granular soils under strain path testing. 
Journal of Geotechnical Engineering 119, 874–892. https://doi.org/10.1061/ 
(ASCE)0733-9410(1993)119:5(874).

Cundall, P.A., 1988. Computer simulations of dense sphere assemblies. In: Satake, M., 
Jenkins, J.T.B.T.-S. (Eds.), Micromechanics of Granular Materials. Elsevier, 
Amsterdam, the Netherlands, pp. 113–123.

Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F., 2005. Rheophysics of dense 
granular materials: Discrete simulation of plane shear flows. Phys Rev. E Stat. 
Nonlin. Soft Matter Phys. 72, 1–17. https://doi.org/10.1103/PhysRevE.72.021309.

Daouadji, A., Jrad, M., Robin, G., Brara, A., Daya, E.M., 2017. Phase transformation 
states of loose and dense granular materials under proportional strain loading. 
J. Eng. Mech. 143, 1–7. https://doi.org/10.1061/(asce)em.1943-7889.0001056.

Darve, F., Sibille, L., Daouadji, A., Nicot, F., 2007. Bifurcations in granular media: macro- 
and micro-mechanics approaches. Comptes Rendus - Mecanique 335, 496–515. 
https://doi.org/10.1016/j.crme.2007.08.005.

Deng, N., Wautier, A., Thiery, Y., Yin, Z.Y., Hicher, P.Y., Nicot, F., 2021. On the 
attraction power of critical state in granular materials. J. Mech. Phys. Solids 149, 
104300. https://doi.org/10.1016/j.jmps.2021.104300.

Fei, W., Narsilio, G.A., 2020. Impact of three-dimensional sphericity and roundness on 
coordination number. J. Geotech. Geoenviron. 146, 1–7. https://doi.org/10.1061/ 
(asce)gt.1943-5606.0002389.

Gao, Z., Zhao, J., 2013. Strain localization and fabric evolution in sand. Int. J. Solids 
Struct. 50, 3634–3648. https://doi.org/10.1016/j.ijsolstr.2013.07.005.

Goldscheider, M., 1976. Grenzbedingung und fliessregel von sand. Mech. Res. Commun. 
3, 463–468. https://doi.org/10.1016/0093-6413(76)90037-9.

Grabco, D., Palistrant, M., Shikimaka, R., Zhitaru, R., Rahvalov, V., Zugravescu, D., 2002. 
Hardness and brittleness of rocks studied by microindentation method in 
combination with the registration of acoustic emission signals. 8th European 
Conference on Non-Destructive Testing.

Gudehus, G., Goldscheider, M., Winter, H., 1977. Mechanical properties of sand and clay 
and numerical integration methods: some sources of errors and bounds of accuracy. 
In: Gudhehus, G. (Ed.), Finite Elements in Geomechanics. Wiley-Interscience, 
pp. 121–150.

Guo, N., Zhao, J., 2013. The signature of shear-induced anisotropy in granular media. 
Comput. Geotech. 47, 1–15.

Gutierrez, M., Ishihara, K., 2000. Non-coaxiality and energy dissipation in granular 
materials. Soils Found. 40, 49–59. https://doi.org/10.3208/sandf.40.2_49.

Hardin, B.O., 1985. Crushing of soil particles. J. Geotechnical Eng. 111, 1177–1192. 
https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).

Hicher, P.Y., 1998. Experimental behaviour of granular materials. In: Cambou, B. (Ed.), 
Behaviour of Granular Materials. Springer, Wien, Austria, pp. 1–97.

Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y., 2014. Exploring the influence of 
interparticle friction on critical state behaviour using DEM. Int. J. Numer. Anal. 
Methods Geomech. 38, 1276–1297. https://doi.org/10.1002/nag.2259.

Ibraim, E., Lanier, J., Wood, D.M., Viggiani, G., 2010. Strain path controlled shear tests 
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739–749. https://doi.org/10.1680/geot.7.00040.

Thornton, C., 2000. Numerical simulations of deviatoric shear deformation of granular 
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