
Abstract  Atmospheric nitrate (NO3 −) pollution has become an obstacle to efforts to further reduce fine 
particulate (PM2.5) concentration in North China. However, there have been limited long-term measurements 
of NO3 − and isotopic knowledge (δ 15N, δ 18O) on the driving factors during NO3 − changes. Here, we report 
observations of 10 voyages from 2014 to 2019 conducted in the Bohai Sea, a typical background area in North 
China. The results show that the average proportion of NO3 − in PM2.5 increased from 0.08 to 0.16 over the 
study period. The δ 15N–NO3 − ranged from −4.1‰ to +20.5‰, with a significant annual decline (p < 0.01), 
especially in winter. The average δ 18O–NO3 − was +72.6 ± 13.5‰, and a Monte Carlo calculation revealed 
that the contribution of the •OH pathway in the NO3 − formation declined by 27.4% in winter, implying an 
increase in O3 pollution. Coal combustion remained the most important contributor to NO3 − (46.6 ± 15.9%), 
but its contribution showed a significant downward trend (p < 0.01), consistent with the control of disperse coal 
use in North China. Enhancement of atmospheric oxidation and the unexpected large increase in contribution 
of microbial processes were found to be the main causes of the increasingly serious NO3 − pollution in North 
China. In addition, a spike in the contribution of coal combustion in 2018 indicates that the coal-control policy 
needs to be reinforced.

Plain Language Summary  In North China where winter haze events still occur frequently, nitrate 
(NO3 −) has replaced sulfate (SO4 2−) as the most important component in particulate pollution. Therefore, it 
is very important to explore the sources and formation mechanisms of NO3 − and to evaluate their changes in 
recent years. In this study, multi-year offshore observations were conducted in the Bohai Sea that is surrounded 
by densely populated, industrialized, and agriculture-intensive land areas of North China. The sources and 
formation of NO3 − were apportioned based on the isotope technique (δ 15N and δ 18O) and Bayesian model. 
We find that the atmospheric NO3 − pollution was becoming serious, despite the decrease in fine particulate 
concentration. Coal combustion was the most important contributor of NO3 −, however, it has showed a 
significant downward trend (p < 0.01). The increase of atmospheric oxidation was the primary reason for the 
increasingly serious NO3 − pollution, which offsets the efforts of reducing nitrogen oxides (NOx) emissions. In 
addition, the unexpected large increase in contribution of microbial processes could be another important factor. 
This study highlights the importance to consider the increases in atmospheric oxidation and microbial NOx 
emission in formulating effective strategies to mitigate the serious NO3 − pollution in North China.
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1.  Introduction
With the implementation of strict air-pollution control policies in North 
China, the concentration of atmospheric fine particulate matter (PM2.5) has 
declined in recent years (Zhang & Geng,  2019). However, few studies on 
multiple-year observation data have shown that the composition of PM2.5 in 
Beijing and the several other cities in the North China Plain has undergone 
significant changes; the nitrate (NO3 −) concentration and its proportion in 
PM2.5 have increased despite reductions of nitrogen oxides (NOx) emissions 
(Fan et al., 2020; Fu et al., 2020; Li, Gao, et al., 2021; Li, Ma, et al., 2021; 
Li, Wu, et al., 2021). In fact, NO3 − has replaced sulfate (SO4 2−) as the most 
important component in particulate pollution in North China (Fu et al., 2020; 
Luo et al., 2019, 2021; Song et al., 2019). Therefore, the NO3 − has become a 
major obstacle to further reducing PM2.5 concentration in North China.

Atmospheric NO3 − is mainly produced from the secondary conversion of NOx, 
and is then removed from the atmosphere by deposition processes (Hastings 
et al., 2003; Li, Gao, et al., 2021; Li, Ma, et al., 2021; Li, Wu, et al., 2021; 
Zhao et al., 2015). Thus, the NO3 − concentration is closely related to the NOx 
emission intensity, NO3 − formation mechanisms, and NO3 − deposition. As 
reported, NOx emissions from anthropogenic sources have decreased since 

2011 (Liu et al., 2017). Regarding the NO3 − formation mechanisms, Fu et al. (2020) suggests that the increasing 
oxidants (i.e., O3 and •OH) was the main reason for the increasing level of winter NO3 − in the North China Plain 
based on Community Multiscale Air Quality (CMAQ) model. The ammonia-rich environment in North China 
could promote the conversion of nitric acid to NO3 − (Gu et al., 2022; Peng at al., 2021; Xu et al., 2019). In addi-
tion, another study using the GEOS-Chem atmospheric chemistry model has suggested that the high and increas-
ing NO3 − concentration in the North China Plain can be attributed to the weakening of deposition processes (Zhai 
et al., 2021). However, there have been few reports of long-term and regional measurements of NO3 − in North 
China, especially the investigations of the sources and formation of NO3 − based on the isotopic observation data. 
This greatly limits our understanding of the evolution of NO3 − in North China.

The Bohai Sea is adjacent to the Beijing-Tianjin-Hebei region, Shandong Peninsula, and Liaodong Peninsula 
(Figure 1), all of which are land areas with intense human activities (Zhang, Guan, et al., 2020). Influenced by the 
Asian monsoon, the Bohai Sea is a receiver of the mixed pollution from these areas (Zong et al., 2018). Further-
more, there is no obvious source of anthropogenic emissions of its own, except emissions from ships; the Bohai 
Sea can be considered a typical background area in North China. For example, a previous study suggests that ship 
emissions contributed less than 3% to the total PM2.5 in the Bohai Sea (Zhang et al., 2014).

In the present study, the Bohai Sea was selected as the study region to explore the evolutionary characteristics 
of NO3 − in North China. Specifically, multi-year offshore observations were conducted in this region, and the 
sources and formation of NO3 − were apportioned based on the stable isotope analysis (δ 15N and δ 18O; Text S1; 
Table S1 in Supporting Information S1). In addition, Bayesian model was adopted to further achieve the quanti-
tative apportionment. The main goals of this research were to (a) document the changes of NO3 − in PM2.5 from 
2014 to 2019; (b) understand the sources and formation of NO3 − based on δ 15N–NO3 −and δ 18O–NO3 −; (c) quan-
tify the annual variation of sources and formation of NO3 −; (d) identify the driving factors of the aggravation of 
NO3 − pollution in North China.

2.  Materials and Methods
2.1.  Sampling Campaign and Data Collection

The observations were made during 10 cruises in the Bohai Sea from 2014 to 2019 (Figure S1; Table S2 in 
Supporting Information S1), with the aim of exploring the regional evolution of NO3 − in North China. The obser-
vations were mainly concentrated in the summer (average temperature: 23.5 ± 1.8°C) and winter (3.8 ± 3.5°C), 
which are the seasons in which the characteristics of air pollution are typically studied. (Yang et al., 2021). A 
high-volume sampler (Tisch Environmental, Cleves, OH, USA) was operated at 1.13 m 3 min −1 to collect PM2.5 

Figure 1.  The geographical locations of the Bohai Sea and 10 representative 
cities selected to assess the average atmospheric NO2 and O3 concentrations 
during the sampling period.
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samples on quartz fiber filters (QM-A; Whatman, Maidstone, UK; preheated for 5 hr at 450°C). The sampler 
with temperature sensor was installed on the top tower of the ship, and a total of 98 PM2.5 samples and 12 blank 
samples were collected only when cruising against the wind to avoid contamination from the vessel's own emis-
sions (Luo et al., 2018). After collection, the filters were stored in a freezer at −20°C until analysis. Before and 
after each sampling, the filter was allowed to equilibrate at 25°C for 24 hr, at a relative humidity of 39%, and 
was then weighed using an MC5 electronic microbalance (±10 μg; Sartorius, Göttingen, Germany) to determine 
the PM2.5 concentration. Each weighing was repeated at least three times, with the difference being ≤10 μg for 
the blank filters (12 samples) and ≤20 μg for the sampled filters (98 samples). In addition, this study selected 
10 representative cities (Weihai, Yantai, Weifang, Dongying, Tianjin, Qinhuangdao, Huludao, Yingkou, Dalian, 
Dantong; Figure 1) around the Bohai Sea and counted their NO2 and O3 concentrations reported (https://www.
aqistudy.cn/historydata/) to represent the average feature of these pollutants in the Bohai Sea during the sampling 
period.

2.2.  Chemistry and Isotope Analysis

One 47-mm diameter punch was removed from the sampled filters and subjected to Milli-Q water extraction 
(three times) for ionic measurement. The major water-soluble ions (WSIs, including Na +, Mg 2+, K +, Ca 2+, NH4 +, 
Cl −, NO3 −, SO4 2−) were detected by ion chromatography (Dionex ICS3000; Dionex Ltd., Sunnyvale, CA, USA) 
(Zhang et al., 2014). In this study, the WSI detection limit was 10 ng mL −1, with an error of <5%. The δ 15N and 
δ 18O of NO3 − were determined using a nitrous oxide (N2O)-based isotopic procedure (McIlvin & Altabet, 2005; 
Tu et al., 2016). Briefly, NO3 − (15 nmol L −1 in 5 mL solution) was initially reduced to nitrite (NO2 −) by cadmium 
powder, and the intermediate NO2 − was further reduced to N2O using sodium azide in an acetic acid buffer (1:1 
ratio of 20% acetic acid and sodium azide). Finally, the N and O isotopes in N2O were analyzed using an isotope 
ratio mass spectrometer (MAT253; Thermo Fisher Scientific, Waltham, MA, USA). The δ 15N–NO3 − and δ 18O–
NO3 − were expressed in parts per thousand according to standard guidelines (IAEA-NO-3, USGS32, USGS34, 
and USGS35):

𝛿𝛿
15
𝑁𝑁 =

[

(15𝑁𝑁∕14𝑁𝑁)sample∕(
15
𝑁𝑁∕14𝑁𝑁)standard − 1

]

× 1000�

𝛿𝛿
18
𝑂𝑂 =

[

(18𝑂𝑂∕16𝑂𝑂)sample∕(
18
𝑂𝑂∕16𝑂𝑂)standard − 1

]

× 1000�

The detailed processing steps have been reported in our previous study (Zong et al., 2017). Here, the analytical 
precision was <0.5‰ for δ 15N–NO3 − and 0.6‰ for δ 18O–NO3 −. Because the NO2 − concentrations were mostly 
lower than the detection limit, and less than 0.3% of the NO3 − detected, they were ignored during the isotopic 
analyses (Zong, Tian, et al., 2020). In addition, the concentrations of species in blank samples were all <3.1% 
of the average concentration for the total samples. It suggests that the samples collected were not contaminated 
during the processes, such as transportation and chemical analysis. For PM2.5 and WSIs, their concentrations 
for each sample were recalculated by subtracting the average blank value. Of the 12 blank samples, 4 samples 
were below the detection line of isotopic measurement, and the remaining 8 samples averaged +1.9 ± 1.1‰ and 
+29.8 ± 28.2‰ for δ 15N–NO3 − and δ 18O–NO3 −, respectively. The isotope data (e.g., δ 15N–NO3 − and δ 18O–
NO3 −) was then determined for each sample by mass balance (Zong, Tian, et al., 2020):

𝛿𝛿
15
𝑁𝑁-𝑁𝑁𝑁𝑁3

− =
𝛿𝛿
15
𝑁𝑁sample [𝑁𝑁𝑁𝑁3

−]sample - 𝛿𝛿15𝑁𝑁blank [𝑁𝑁𝑁𝑁3
−]blank

[𝑁𝑁𝑁𝑁3
−]sample - [𝑁𝑁𝑁𝑁3

−]blank

�

𝛿𝛿
18
𝑂𝑂-𝑁𝑁𝑁𝑁3

− =
𝛿𝛿
18
𝑂𝑂sample [𝑁𝑁𝑁𝑁3

−]sample - 𝛿𝛿18𝑂𝑂blank [𝑁𝑁𝑁𝑁3
−]blank

[𝑁𝑁𝑁𝑁3
−]sample - [𝑁𝑁𝑁𝑁3

−]blank

�

2.3.  Bayesian Model

Bayesian model can estimate source contributions to a mixture, and shed light on the uncertainty associated with 
sources, fractionation, and isotopic signatures (Moore & Semmens, 2008). In its theorem, the contribution of 
each source can be assessed based on the mixed data and prior information:
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P (𝑓𝑓𝑞𝑞|𝑥𝑥) = 𝐿𝐿 (𝑥𝑥|𝑓𝑓𝑞𝑞) × 𝑝𝑝 (𝑓𝑓𝑞𝑞) ∕
∑

𝐿𝐿 (𝑥𝑥|𝑓𝑓𝑞𝑞) × 𝑝𝑝 (𝑓𝑓𝑞𝑞)�

where L(x|fq) is the likelihood of the proposed vectors (fq) representing possible source contributions, and p(fq) 
refers to the prior probability of a given state of nature being true based on prior information (Parnell et al., 2013). 
To calculate the likelihood, source isotope distributions and their associated fractionation distributions are 
combined based on the assumption that the data are normally distributed and the fi values comprising vector fq 
are randomly generated:

𝜇𝜇 =

n
∑

i=1

[fi × (𝜇𝜇i + 𝜇𝜇Δ)]�

𝜎𝜎 =

√

√

√

√

n
∑

i=1

[

fi
2 × (𝜎𝜎i

2 + 𝜎𝜎Δ
2)
]

�

where, μi and μ∆ represent the mean value and mean fractionation of an isotope of the ith source, respectively, and 
σi and σ∆ are the overall variance and variance in fractionation of an isotope of the ith source, respectively. Then 
the likelihood can be further expressed as:

𝐿𝐿(𝑥𝑥|𝜇𝜇𝜇 𝜇𝜇) =

𝑛𝑛
∏

𝑖𝑖=1

[

1

𝜎𝜎 ×
√

2𝜋𝜋
× exp

(

−
(𝑥𝑥i − 𝜇𝜇)2

2𝜎𝜎2

)

]

�

where xi is the ith isotopic value in the mixed data file. Based on the above principles, the Bayesian model has 
been widely used in quantitative studies of the sources of NO3 −, especially after it was improved by incorporating 
the isotopic fractionation [∆N (μ∆ ± σ∆)] of the equilibrium/Leighton reaction in the conversion of NOx to NO3 −. 
For the isotopic fractionation (∆N) between atmospheric δ 15N–NO3 − and δ 15N–NOx directly emitted by sources, 
please refer to Text S2, Table S3 in Supporting Information S1 and Zong et al. (2017) for details. According to 
the NOx emission inventory and NO3 − sources reported in North China, biomass burning (+0.3 ± 3.5‰), coal 
combustion (+13.7 ± 4.6‰), mobile sources including vehicle exhaust and ship emissions (−12.6 ± 2.2‰), and 
microbial processes (−33.8 ± 12.2‰) were considered to be end-members in the Bayesian simulations (Table 
S1 in Supporting Information S1) (Fan et al., 2020; Liu et al., 2017; Luo et al., 2019; Luo et al., 2021; Song 
et al., 2019; Zhang, Zheng, et al., 2020; Zong, Tian, et al., 2020).

2.4.  Procedure for Analyzing the Evolution of NO3 − Sources

The simulation results from Bayesian model represent the probability distribution of the contributions of vari-
ous sources (Jin et al., 2021). However, the assessment of the multi-year evolution of different sources may be 
uncertain in this model because it is affected by the communal variation in different sources. For example, the 
contribution of coal combustion to NO3 − may decrease when the contributions of other sources increase, but it 
is also possible that their emissions to NO3 − concentration will all decrease over the long term. In this study, a 
method for tracing the evolutionary trend of NO3 − sources was established, as follows:

𝜂𝜂ij =
𝐶𝐶ij

𝐶𝐶ir

=
𝑓𝑓ij × 𝐶𝐶𝑗𝑗

𝑓𝑓ir × 𝐶𝐶𝑟𝑟

�

where ηij is the rate of variation of source i in year j compared to the reference year, Cij and Cir refer to the distrib-
uting NO3 − concentrations of source i in year j and the reference year, respectively. fij and Cj are the contribution 
of source i to the NO3 − in year j (from Bayesian model), and the NO3 − concentration in year j, respectively, and 
fir and Cr refer to the contributions of source i to the NO3 − in the reference year, and the NO3 − concentration in 
the reference year, respectively. Because the observation period was 2014–2019, 2014 was used as the reference 
year in this study.
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3.  Results and Discussion
3.1.  Overview of the PM2.5 Concentration and Increasing NO3 − Regime

Figure S2 in Supporting Information S1 shows the variation in PM2.5 concentrations during the period 2014–
2019. It is obvious that the PM2.5 concentration observed was lower than that in the Beijing-Tianjin-Hebei region, 
reflecting the fact that the Bohai Sea is a background area of North China (Zong et al., 2018). The highest concen-
tration was found in 2014 (61.6 ± 28.0 μg m −3) and the lowest in 2019 (33.3 ± 12.9 μg m −3), indicating a signifi-
cant decline (p < 0.01). The decline confirms the effectiveness of China's particulate pollution control measures, 
although the measures need to be further strengthened based on the anomaly in 2018 (53.7 ± 29.0 μg m −3) (Li, 
Gao, et al., 2021; Li, Ma, et al., 2021; Li, Wu, et al., 2021).

In PM2.5, higher WSIs concentrations generally occurred in winter (Figure 2), and their proportions displayed an 
annual increase (Figure S3 in Supporting Information S1). WSIs contain important secondary inorganic compo-
nents (i.e., SO4 2−, NO3 −, and NH4 +). Although the concentrations of their precursors have been declining over 
time, the secondary components have not significantly decreased, which may be due to changes in reaction condi-
tions, such as increasing levels of atmospheric oxidation (Fu et al., 2020). Furthermore, the composition of WSIs 
has undergone significant changes. Since 2014, SO4 2− has been the most important component of WSIs in both 
summer and winter. However, as air pollution control in China has improved, the intensity of emission sources 
has changed greatly, especially coal combustion (Wang et al., 2020). In the winter of 2017, NO3 − (15.0 ± 5.3%) 
surpassed SO4 2− as the most important component, indicating that NO3 − pollution in North China has become 
serious during the sampling period (Luo et  al.,  2021). This was confirmed by the observed variation of the 
NO3 −/PM2.5 ratio (Figure 2). From 2014 to 2019, the ratio displayed a significant upward trend in both winter 
(0.09–0.19) and summer (0.06–0.14) (p < 0.01), suggesting that control of NO3 − is key to further reducing PM2.5 
concentration in North China (Text S3; Figure S4 in Supporting Information S1).

3.2.  Formation and Sources of NO3 − Inferred From Nitrogen and Oxygen Isotopes

The δ 15N–NO3 − values were distributed normally over a wide range (−4.1‰ to +20.5‰; Figure S5 in Support-
ing Information S1), with a mean value of +7.8 ± 5.0‰. Specially, the wintertime average δ 15N–NO3 − was 
+11.6 ± 4.3‰ (Figure 3), much higher than the summer value (+4.9 ± 3.2‰). According to the δ 15N–NOx 
distribution and the principle of isotope fractionation, the higher value in winter could be attributed to the 
increase in coal combustion seen during cold weather and enhancement of isotope fractionation. Based on the 
isotope fractionation theory (Walters & Michalski, 2015, 2016), the isotope fractionation caused by the temper-
ature difference between summer and winter was 2.4‰, which is much lower than the observed divergence 
(∼6.9‰). This suggests that the change in sources was the primary reason for the seasonal variation of δ 15N–

Figure 2.  Variation of water-soluble ions (histogram, first y-axis) and the NO3 −/PM2.5 ratio (dot plot, secondary y-axis) in the 
atmosphere of Bohai Sea from 2014 to 2019. Bold outline indicates the greatest fraction of the water-soluble ions.

 21698996, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

036567 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [21/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Atmospheres

ZONG ET AL.

10.1029/2022JD036567

6 of 13

NO3 − (Zhao et al., 2020; Zong, Tan, et al., 2020). From 2014 to 2019 (except for winter 2018 and summer 2019), 
the δ 15N–NO3 − in summer displayed a relatively steady downward trend, while the decrease in winter was more 
intense, especially in the winter of 2017. It indicates a decline in the amount of coal consumption, consistent with 
the reported changes in China's energy use (Figure S6 in Supporting Information S1) (Lu et al., 2020). While 
the sharp decline in the winter of 2017 compared to that of 2016 was consistent with China's residential coal 
use control policies at that time (Wang et al., 2020). Beginning in October 2016, the Ministry of Chinese Envi-
ronmental Protection issued “Technical Guidelines for the Comprehensive Treatment of Civil Coal Combustion 
Pollution” and “Technical Guidelines for the Compilation of Civil Coal Air Pollutant Emission Inventories,” 
with the aim of reducing emissions from residential coal combustion. The observed sharp decline demonstrates 
the effectiveness of these pollution control policies, but the anomaly in the winter of 2018 indicates that greater 
adherence is still required. The NO3 −/nss-SO4 2− ratio could reflect the ratio between mobile sources (e.g., vehicle 
exhaust) and stationary sources (e.g., coal combustion) (Itahashi et al., 2018; Zong et al., 2016). The annual vari-
ation of this ratio showed an overall upward trend with a few anomalies, indicating a decrease in coal combustion 
and an increase in the proportion of mobile sources. Especially in summer, a continuous increase was seen in 
the contribution of mobile sources in China, including vehicle exhaust and shipping emissions, to NOx (Zhang 
et al., 2018). The volatility in winter also reflects uncertainty in the effectiveness of controls on residential coal 
emissions.

The average value of δ 18O–NO3 − was +72.6 ± 13.5‰ (range: +31.3‰ to +100.0‰; Figure 4), which was well 
within the broad range of values previously reported (Fang et al., 2011; Michalski et al., 2012). Generally, the 
formation pathways of NO3 − in the atmosphere are relatively complicated (R1–R12), but the main ones are the 
O3 and •OH pathways (Zong et al., 2017). Studies have shown that the processes of NO converting into NO2 
through HO2 or ROO (R4–R5) and the HC pathway (R8, generally <5%) are limited (Alexander et al., 2020; Xiao 
et al., 2020), so they were ignored in this study. From 2014 to 2019, δ 18O–NO3 − oscillated in summer, with 
increases seen in winter. This indicates an increase in the contribution of the O3 pathway to the formation of 
NO3 −, consistent with the increasingly serious O3 pollution seen in this region (Li, Jacob, Liao, Zhu, et al., 2019). 
In the atmosphere, the oxygen atoms of NOx are rapidly exchanged with O3 in the NO/NO2 cycle (R1–R3), then the 
balanced NOx mainly reacts with •OH or O3 to form HNO3 (R6–R7, R9–R11), which is further converted to NO3 − 
on alkaline surfaces (R12) (Hastings et al., 2003). Therefore, it is assumed that two-thirds of the oxygen atoms in 
NO3 − are derived from O3 and one-third from •OH in the •OH generation pathway; correspondingly, five-sixths 
of the oxygen atoms are derived from O3 and one-sixth from •OH in the O3 pathway. Based on the ranges of 
δ 18O–O3 (90 ∼ 122‰) and δ 18O–H2O (−25 ∼ 0‰) values (Fang et al., 2011), the respective contributions of 
the two generation pathways were assessed by a Monte Carlo simulation (Zong et al., 2017), and the range and 
median of the contribution for the •OH generation pathway are shown in Figure 4. The average contributions of 
the •OH pathway in summer and winter were 61.8 ± 18.3% and 36.3 ± 20.6%, respectively. This indicates a tran-
sition of the dominant pathway of NO3 − formation from the •OH pathway in summer to the O3 pathway in winter 
(Xiao et al., 2020). The contribution of the •OH pathway was largest in the summer of 2017 (73.56 ± 13.24%), 

Figure 3.  Characteristics of δ 15N-NO3 − (box, first y-axis) and NO3 −/nss-SO4 2− (line + dot, secondary y-axis) in the Bohai 
Sea from 2014 to 2019.
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and smallest in the winter of 2017 (26.54 ± 13.63%). The highest value and the lowest value both appeared in this 
year, indicating a substantial change in the dominant species of atmospheric oxidants (e.g., •OH and O3). The 
main direct sources of O3 or •OH are volatile organic compounds (VOCs) and NOx; therefore, the changes in the 
levels of oxidants may have been caused by the variation of emission sources in 2017, which was consistent with 
the change of δ 15N–NO3 − with a sharp decline in the winter (Figure 3) (Tao et al., 2018). Compared to 2014, the 
contribution of the •OH pathway declined by 6.4% and 27.4% in the summer and winter of 2019, respectively, 
further indicating that O3 pollution in North China has increased.

NO + O3 → NO2 + O2� (R1)

NO2 + hv → NO + O� (R2)

O + O2 → O3� (R3)

H (or𝑅𝑅) + O2 → HO2 (or ROO)� (R4)

NO + HO2 (or ROO) → NO2 + ∙OH (or RO∙)� (R5)

NO2 + ∙OH + M → HNO3 + M� (R6)

NO2 + O3 → NO3 + O2� (R7)

NO3 + HC → HNO3 + R� (R8)

NO2 + NO3← → N2O5� (R9)

N2O5 + H2O + surface → 2HNO3� (R10)

N2O5 + H2O(𝑔𝑔) → 2HNO3� (R11)

HNO3 + alkaline surface → NO3
−� (R12)

Figure 4.  Characteristics of δ 18O–NO3 − and the corresponding contribution of •OH pathway in the formation of NO3 −.
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3.3.  Source Apportionment of NO3 − Based on the Bayesian Model

To further explore the source variations of NO3 −, Bayesian simulations of overall, annual, and seasonal patterns 
were conducted in this study. Results show that the average contributions of biomass burning, coal combustion, 
mobile sources, and microbial processes were 22.1 ± 5.8%, 46.6 ± 15.9%, 19.4 ± 6.2%, and 11.9 ± 6.0%, respec-
tively, in the two seasons from 2014 to 2019 (Table S4 in Supporting Information S1). These proportions indicate 
that coal combustion was still the primary source of NO3 − in North China, especially in winter (59.3 ± 14.2%) (Fan 
et al., 2020). However, the dominance of coal combustion as a source of NO3 − progressively decreased over the 
study period (Figure 5). In 2019, the contributions of coal combustion were 30.2% and 43.1% in summer and winter, 
representing decreases of 13.5% and 26.9% compared to 2014, respectively. Coal consumption can be roughly 
divided into industrial and civilian uses, with the latter mostly occurring in winter (i.e., for heating), especially in 
North China (Liu et al., 2016). Therefore, the greater reduction of coal combustion in winter may be attributed to the 
control of dispersed coal as a fuel source (Liang et al., 2021). If the decrease in summer can be regarded as part of 
the conventional decreasing trend in coal consumption (Figure S6 in Supporting Information S1), then the decrease 
due to control of residential use in winter was 13.4%. This coincided with the ∼14% reduction in the PM2.5 concen-
tration reported by a recent study in association with dispersed coal management (Wang et al., 2020). In 2017, the 
Beijing-Tianjin-Hebei region and surrounding areas completed a replacement program, of coal to gas and electricity, 
in nearly 6 million households. Among them, 4.75 million households were in one of the “2 + 26” pilot cities, and 
a “no burning” area for dispersed coal about 10,000 km 2 in extent was designated. As a result, it is estimated that 
about 18 million tons of coal burning has been avoided, with 70% being replaced by natural gas (Yan et al., 2020). 
However, this project still faces several difficulties: a clean energy supply (e.g., gas and electricity) is lacking in 
winter; the cost of renewable energy heating remains relatively high; and management of dispersed coal is still 
overly dependent on government subsidies, given the financial demands. Under the influence of these constraints, 
reburning of dispersed coal has occasionally occurred in North China, and differences in regional policies can 
also cause “pollution leakage.” While a relatively smooth and gradual downward trend of the contribution of coal 
combustion to NO3 − was seen in summer from 2014 to 2019, in winter there was a major anomaly in the winter of 
2018, which reflected the reburning of dispersed coal. Overall, the “coal replacement” program in North China has 
played a very positive role in the management of PM2.5 and NO3 − pollution, but more policies and technologies need 
to be developed to promote its implementation (Zhao et al., 2018).

The contributions of the other three sources of NO3 − were higher in summer than in winter, suggesting that the 
emission intensities of these sources were relatively high in summer. Generally, the microbial processes that 
produce NOx refer to the nitrification and denitrification, which mainly occur in soil and are affected by  temper-

Figure 5.  Multi-year variation of NO3 − sources (biomass burning, coal combustion, mobile sources, and microbial processes) inferred from the Bayesian model (the 
value expressed in the figure represents the average values in the distribution of the contributions).
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ature (Su et al., 2020). The summer season in North China is hot and wet, where the temperature and humidity 
are conducive to these microbial activities (Yu et al., 2021). Furthermore, North China has a large area of culti-
vated land, resulting that NOx emissions from microbial processes are intensive, especially after the fertilization 
in spring (Tian et  al.,  2017). In addition, multiple studies have shown that biomass burning in summer is a 
very important source of emissions, which is also in accordance with its large contribution in this study (Wang 
et al., 2014). During the 2014–2019 period, the contributions of these sources all displayed an upward trend in 
both summer and winter, in line with the changing characteristics of these sources. The increasing contributions 
of biomass burning and microbial processes may be related to the continuous expansion of cultivated land in 
North China. Although there is no direct data for North China, the area of cultivated land in China increased 
from 6.5 × 10 7 ha in 2014 to 6.9 × 10 7 ha in 2019. It increased the production of biomass wastes and the use of 
fertilizers in turn. For example, the amount of compound fertilizer used has increased by 1.2 million tons from 
2014 to 2019. As mentioned above, microbial processes in soil are important sources of NOx, especially after 
fertilization; the increase of biomass waste would inevitably lead to the increase of NOx from biomass burning 
(Su et al., 2011; Zong et al., 2016). These factors have contributed to the growth in contributions from the two 
sources. According to the China Vehicle Environmental Management Annual Report, the average annual growth 
rate of car ownership has exceeded 10% since 2011, and the total number of vehicles on the road reached 348 
million in 2020. Furthermore, the increase in the contribution of mobile sources is also related to the increase in 
shipping emissions in the Bohai Sea (Zhang et al., 2018). For example, the container throughput of Tianjin Port 
in 2020 reached 18.4 million twenty-foot equivalent units, a year-on-year increase of 6.1%, indicating an increase 
in shipping activities and, by extension, emissions. In addition, the increase of mobile sources was consistent with 
the variation of NO3 −/nss-SO4 2− ratio discussed above.

3.4.  Driving Factors of the Aggravation of NO3 − Pollution in North China

For exploring the evolutionary characteristics of NO3 − sources, the NO3 − concentrations were reanalyzed accord-
ing to the Bayesian results. Annual variation (η) was determined based on the reference value (2014). Surpris-
ingly, there was a trend toward an annual increase in summer values for coal combustion (Figure 6), contrary to 
the general decrease in emission intensity confirmed above (Lu et al., 2020). This can be ascribed to the increase 
in the rate of conversion from NOx to NO3 −. Following unprecedented campaigns to improve air quality in China, 
the average NOx concentration has decreased (Liu et al., 2017). This is most apparent in the Bohai Sea, where 
the NO2 concentration decreased from 38.8 ± 12.4 μg m −3 in 2014 to 27.7 ± 12.3 μg m −3 in 2019. However, 
due to changes in conversion conditions, especially increase in atmospheric oxidation (Li, Jacob, Liao, Shen, 
et al., 2019), the NOx conversion rate has increased (Figure S7 in Supporting Information S1). For example, the 

Figure 6.  Redistribution and annual variation (from 2014 to 2019) of NO3 − based on the Bayesian model results. The 
reference year for ratio calculations was 2014.
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nitrogen oxidation ratio, defined as the molar ratio of NO3 − to NO3 − + NOx, was 0.03 in the summer of 2014, 
while it reached 0.07 in the summer of 2019. This growth is consistent with the increase in O3 concentration in 
the Bohai Sea, which increased from 84.5 ± 48.6 μg m −3 in 2014 to 98.6 ± 42.9 μg m −3 in 2019. In addition, 
δ 18O–NO3 − from 2014 to 2019 oscillated in summer, with increases seen in winter (Figure 4). This indicates the 
increase in atmospheric oxidation in North China may be mainly caused by O3 pollution (Li, Jacob, Liao, Shen, 
et al., 2019; Zhang et al., 2021). Compared to 2014, the contribution of the •OH pathway in NO3 − formation 
declined by 6.4% and 27.4% in the summer and winter of 2019, respectively, further consistent with the increas-
ingly serious O3 pollution seen in this region. There is an urgent need to manage this situation, and a similar 
conclusion for the persistent heavy nitrate pollution in Northern China was also proposed by Fu et al.  (2020) 
based on CMAQ simulation.

As for other sources, biomass burning and mobile sources made similar contributions to atmospheric NO3 −, with 
a relatively consistent upward trend over the study period. However, the contribution of microbial processes to 
the NO3 − concentration increased even more. For example, the concentrations of NO3 − contributed by micro-
bial processes were 0.37 μg m −3 and 0.42 μg m −3, respectively, in the summer and winter of 2014; while they 
increased to 0.89 μg m −3 and 0.90 μg m −3, in 2019 with the η reaching 2.4 and 2.1, respectively (Figure 6). 
The η values were much higher than those of biomass burning (summer: 1.6; winter: 1.5) and mobile sources 
(summer: 1.8; winter 1.7), respectively. Microbial processes are typically neglected in air quality models and 
emission control strategy assessments in North China (Lu et al., 2021), however, our results indicate that more 
attention needs to be given to them. Wang et al. (2007) shows that the microbial source of NOx peaked in summer, 
accounting for as much as 43% of the combustion sources, while it was not important in winter. However, Fan 
et al. (2020) finds that the contribution of microbial processes to NOx increased significantly during the winter 
haze in Beijing, which could be doubled compared with the clean period. All these evidences illustrate the 
increasing importance of microbial processes to air pollution. As mentioned above, microbial processes mainly 
occur in soil, and the most important artificial source to control is nitrogen fertilizer (Liu et al., 2021). In fact, a 
huge amount of nitrogen fertilizer is used in the North China Plain, which is thus an important source of microbial 
pollution in China (Zong, Tan, et al., 2020). Especially, the use of a large amount of nitrogen fertilizer during the 
cultivation period could significantly increase the amounts of NO3 − precursors (e.g., NOx, O3) (Lu et al., 2021). 
Therefore, reasonable levels of fertilization during cultivation, and replacement of artificial fertilizers with more 
suitable organic ones, will be beneficial for alleviating the NO3 − pollution in this region. Overall, NO3 − pollution 
in the Bohai Sea and North China is increasing. To ensure effective pollution control, there needs to be greater 
focus on the control of O3 pollution; more comprehensive policies to reduce the emissions of VOCs, NOx, and 
other precursors of O3 are needed (Yuan et al., 2013). More attention should be focused on microbial processes, 
which have been largely neglected (Lu et al., 2021), in addition to the strict governance of significant emission 
sources (e.g., residential coal combustion).

4.  Conclusion
Exploring the evolution of atmospheric NO3 − is the key to further mitigating PM2.5 pollution in North China. In 
this study, multi-year offshore observations were conducted in the Bohai Sea, and the sources and formation of 
NO3 − were apportioned based on the isotope technique and Bayesian model. Results show that the proportion of 
NO3 − in PM2.5 increased significantly from 2014 (0.08) to 2019 (0.16), suggesting the increasing contribution 
of NO3 − to PM2.5 pollution in North China. Bayesian simulation indicates that coal combustion was the most 
important source of NO3 − (46.6 ± 15.9%), but it has displayed a significant inter-annual decline. The decline was 
consistent with the control of wintertime coal emissions in North China; however, a rebound in 2018 indicates 
the need for sustaining the coal control efforts. The ratio of NO3 − formed through the O3 pathway has increased 
greatly, especially in the winter. Therefore, our results suggest that the increase in O3 concentration could lead 
to an increase in atmospheric oxidation, thereby boosting the conversion rate of NOx to NO3 −. This increase can 
even offset China's efforts to reduce NOx emissions. Unexpectedly, the contribution of microbial processes has 
increased significantly. It indicates that the source, which is often overlooked, needs to be incorporated into future 
control measures. Overall, this study emphasizes the key roles of atmospheric oxidation and microbial processes 
in aggravating NO3 − pollution. Our results provide useful reference to alleviate the increasingly serious NO3 − 
pollution, and thereby further reduce the PM2.5 concentration in North China.
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Data Availability Statement
The data used in this study is available at: Zong et al. (2022), Data set of nitrate in North China: Isotopic infor-
mation from 10 offshore cruises in the Bohai Sea from 2014 to 2019 [Dataset], Zenodo, https://doi.org/10.5281/
zenodo.6420620.
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