
1.  Introduction
A pair of crossed dipoles comprise two electric dipoles nominally orthogonal in orientation and nearly co-cen-
tered in space. Crossed dipoles have long facilitated beamforming, direction finding, and polarization estimation. 
Each dipole measures one distinct Cartesian component of the incident electric-field vector. A pair of crossed 
dipoles thus constitutes a diversely polarized array capable of distinguishing incident sources based on their 
polarizations, besides basing on their directions-of-arrival and frequency spectra. One pair of crossed dipoles 
can suffice to determine the incident electromagnetic wavefront's (bivariate) polarization and the azimuthal 
direction-of-arrival. For an extensive survey of the relevant literature, please refer to Yuan et al. (2012), Wong 
et al. (2017), Khan and Wong (2019).

If these two constituent dipoles are exactly perpendicular to each other, they would experience no electromag-
netic coupling between them. (The mutual coupling would be negligible across two perpendicular dipoles, if the 
dipoles are fed differentially at their central feed points, due to the symmetry in both the fields and the currents/
voltages of the feed structure. “Differential feeding” here refers to the signals fed to the dipoles' terminals in an 
opposite but equal way.) However, real-world implementations of the crossed dipoles may deviate from this ideal-
ized orthogonality, thereby resulting in mutual coupling between the two dipoles. Please refer to Figure 1, which 
defines the skew angle φ (i.e., the angular deviation from perpendicularity) between two identical dipoles—One 
on the z-axis and the other on the y′-z′ plane.

A dipole pair's impedance matrix Z is 2 × 2 in size, with entries complex in value. This impedance matrix is also 
symmetric, centro-symmetric, and persymmetric. Hence, there exist only two distinct complex-value scalars that 
need to be modeled, namely Z1,1 = Z2,2 and Z1,2 = Z2,1. Each above complex-valued scalar may be represented 
by its magnitude and its complex phase. Therefore, four real-valued scalars need to be modeled. (These mutu-
al-coupling coefficients, {Zi,j, ∀(i, j)}, are independent of the incident electromagnetic field's direction-of-arrival. 
However, the coupled voltages and the coupled currents depend on both the mutual-coupling coefficients and the 
incident electromagnetic field's direction-of-arrival, as illustrated in Section 6.)

1.1.  The “Phenomenological”/“Behavioral” Approach to Model Mutual Impedance

For such a pair of skewed or slanted dipoles of equal length: Previous analysis of the concerned antenna electro-
magnetics has led to knotty mathematical expressions for the mutual impedance: (a) As a six-page equation in 
Czyz (1957), (b) as an unsolved integral equation in Murray (1933), Baker and LaGrone (1962), Richmond (1970), 
Richmond and Geary (1975), Han and Myung (2012), Han et al. (2013), or (c) as nested summations in Richmond 
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and Geary  (1970), Schmidt  (1996), Han et al.  (2012), (2013). These highly complicated expressions in (a–c) 
could hardly yield any intuitive insight on how the mutual impedance varies with the non-orthogonal skew 
angle (φ), the dipole length (L), and the inter-dipole gap (Δ). Indeed, Baker and LaGrone (1962), Richmond and 
Geary (1970), Richmond (1970), Andersen et al. (1974), Amin and Cahill (2003), (2004), Best (2011), Han and 
Myung (2012), Han et al. (2012) resorted to only graphic plots of the mutual impedance for only a few scenarios.

Instead, this paper will take a different approach—A “phenomenological” or “behavioral” approach that takes 
mutual impedance data to fit them to a low-dimensional manifold. Such a “phenomenological” or “behavioral” 
approach is commonplace in modeling a wireless propagation fading channel or a nonlinear amplifier's input/
output relationship, though admittedly new to mutual coupling modeling. Despite the simplicity of this approach, 
subsequently presented results will demonstrate its success to yield simple rule-of-thumb relationships of how the 
mutual impedance varies with the non-orthogonal skew angle (φ), with the wavelength-normalized dipole length 

𝐴𝐴

(

𝐿𝐿

𝜆𝜆

)

 , and with the wavelength-normalized inter-dipole gap 𝐴𝐴

(

Δ

𝜆𝜆

)

 .

1.2.  “Method of Moment” Simulations of Mutual Impedance

The skewed dipole-pair's mutual impedance is approximated below by numerical simulations to solve the 
Maxwell equations, via the “method of moments” (MoM), a.k.a. the “boundary element method” (BEM). This 
“method of moments” is known for its reliable solution for the unknown current distributions on wire antennas. 
This simulation fidelity is critical here, because near-field mutual coupling is induced by a smooth current 
distribution on the dipoles and by rapid changes of the current distribution near the feed point, unlike far-zone 
radiation pattern evaluation. The specific software used is the “EMCoS Antenna VLab”. The “EMCoS Antenna 
VLab” simulations are conducted by simultaneously exciting each dipole with its own voltage source and while 
connecting each dipole to its own load. These “method of moments” results will be least-squares fit to mathemat-
ically simple phenomenological/behavioral models in Sections 2 to 5.

In all subsequently presented results: each dipole's diameter is maintained at 𝐴𝐴
𝜆𝜆

5×104
 ; each dipole's feeding gap 

equals 𝐴𝐴
𝜆𝜆

50
 ; and the voltage source's internal impedance is always matched to a half-wavelength dipole, regardless 

of the actual value of 𝐴𝐴
𝐿𝐿

𝜆𝜆
 .

The dipole-pair would be simulated for these ranges of values:

1.	 �The skewed angle φ ∈ [1°, 45°].
2.	 �Each dipole's electric length 𝐴𝐴

𝐿𝐿

𝜆𝜆
∈ [0.1, 1.0].

3.	 �Spatial separation between the two dipoles' feeding centers 𝐴𝐴
Δ

𝜆𝜆
∈ [0.01, 2.0].

Figure 1.  The spatial geometry between two cross dipoles of non-orthogonal orientation. Dipole 2 lies on the y′-z′ Cartesian 
plane. Here, the inter-dipole separation Δ is greatly exaggerated for visual clarity.
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Any model's goodness-of-fit to any data set may be measured by the “coefficient of determination”, R 2 ∈ [0, 1]. 
This R 2 value indicates what fraction of the data is predicted by the mathematical model.

Furthermore, the fewer the degrees-of-freedom (DoF) in the model, the better the model would be.

2.  Phenomenological Model Fitting of the Mutual Impedance's Magnitude 
|Z1,2| = |Z2,1|
For the mutual impedance magnitude, the proposed phenomenological model is

|𝑍𝑍1,2| = |𝑍𝑍2,1| ≈ 10
𝑎𝑎1

(

Δ

𝜆𝜆

)−𝑎𝑎2
(

𝐿𝐿

𝜆𝜆

)𝑎𝑎3

|sin(𝜑𝜑)| ,� (1)

where a1≔ 2.3018, a2≔ 0.5564, a3≔ 2.6230. The goodness-of-fit R 2 equals 0.8599, that is, 86% of the variation in 
the VLab-simulated data set of |Z1,2| and |Z2,1| cannot be predicted by the phenomenological model of Equation 1. 
Please see Figure 2.

A more elegant expression may be obtained by rounding the above three coefficients' values to 
a1 = 23/10 = log10(200), 𝐴𝐴 𝐴𝐴2 =

5

9
 , 𝐴𝐴 𝐴𝐴3 =

√

7 , resulting in an R 2 of 0.8598. The R 2 values are evaluated on the loga-
rithmic entities of

log
10
|𝑍𝑍1,2| = log

10
|𝑍𝑍2,1| ≈ 𝑎𝑎1 − 𝑎𝑎2log10

|

|

|

|

Δ

𝜆𝜆

|

|

|

|

+ 𝑎𝑎3log10

|

|

|

|

𝐿𝐿

𝜆𝜆

|

|

|

|

+ log
10
|sin(𝜑𝜑)|� (2)

instead of |Z1,2| = |Z2,1| itself as in Equation 1. This is because |Z1,2| = |Z2,1| has values across several orders of 
magnitude. Hence, the latter would overweight those support subregions of 𝐴𝐴

{

𝜑𝜑𝜑
𝐿𝐿

𝜆𝜆
,
Δ

𝜆𝜆

}

 where |Z1,2| =  |Z2,1| is 

very large, thereby poorly fitting other subregions of 𝐴𝐴

{

𝜑𝜑𝜑
𝐿𝐿

𝜆𝜆
,
Δ

𝜆𝜆

}

 where |Z1,2| =  |Z2,1| is small. Specifically, the 

would-be-underweighted support subregion is where 𝐴𝐴
𝐿𝐿

𝜆𝜆
 increases toward unity and where 𝐴𝐴

Δ

𝜆𝜆
 decreases toward zero.

The negative power of 𝐴𝐴
Δ

𝜆𝜆
 in Equation 1 indicates that |Z1,2| = |Z2,1| decreases monotonically with an increasing 

inter-dipole separation 𝐴𝐴
Δ

𝜆𝜆
 . Indeed, as 𝐴𝐴

Δ

𝜆𝜆
→ ∞ , the model gives |Z1,2| = |Z2,1| → 0. This trend is reasonable in terms 

Figure 2.  How |Z1,2 csc(φ)| = |Z2,1 csc(φ)| of Equation 1 varies with 𝐴𝐴
Δ

𝜆𝜆
 and 𝐴𝐴

𝐿𝐿

𝜆𝜆
 .
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of electromagnetics, because Z1,2 = Z2,1 is proportional to the induced electric field, whose magnitude is inversely 
related to the distance between the driving dipole and the induced dipole.

That |Z1,2| = |Z2,1| increases with 𝐴𝐴
𝐿𝐿

𝜆𝜆
 is reasonable: As 𝐴𝐴

𝐿𝐿

𝜆𝜆
 lengthens, the driving dipole's re-radiation strengthens. 

Hence, the coupled dipole's induced voltage rises, thereby increasing |Z1,2| = |Z2,1|.

The non-negative factor, | sin φ|, in the model of Equation 1 suggests that |Z1,2| = |Z2,1| would increase monotoni-
cally, as the two dipoles become less perpendicular with each other. This is reasonable in terms of electromagnet-
ics: This | sin φ| factor arises from the projection of the driving dipole's electric field on the induced dipole, which 
is skewed from the former dipole by a rotational angle of φ. As the skew angle |φ| increases from 0 toward 90°, 
the two dipoles would become more parallel, hence more mutual coupling between them. Under the special case 
where the two dipoles are perfectly orthogonal (i.e., φ = 0), |Z1,2| = |Z2,1| = 0 in Equation 1, as expected.

In more antennas-electromagnetics details: Consider the primary dipole's re-radiated electric field, using the 
notation of 𝐴𝐴

{

𝐄⃗𝐄𝑟𝑟, 𝐄⃗𝐄𝜙𝜙, 𝐄⃗𝐄𝜃𝜃

}

 , which is standard in the antenna-electromagnetics literature (e.g., please see Figure 4. 1 

of (Balanis, 2005)). Both 𝐴𝐴 𝐄⃗𝐄𝑟𝑟 and 𝐴𝐴 𝐄⃗𝐄𝜙𝜙 are effectively orthogonal to the secondary dipole's feeding gap regardless of 
the inter-dipole skew angle of φ, hence have no/little significance on the mutual impedance. Only 𝐴𝐴 𝐄⃗𝐄𝜃𝜃 has any note-
worthy effect upon the secondary dipole. This 𝐴𝐴 𝐄⃗𝐄𝜃𝜃 has a complex-valued amplitude related to the polar angle of 

θ and r as follows (according to pp. 133–136 of (Balanis, 2005)): 𝐴𝐴 𝐴𝐴sin(𝜃𝜃)
𝜆𝜆

2𝜋𝜋𝜋𝜋

[

1 − 𝑗𝑗
𝜆𝜆

2𝜋𝜋𝜋𝜋
+

(

𝜆𝜆

2𝜋𝜋𝜋𝜋

)2
]

exp

(

−𝑗𝑗
2𝜋𝜋𝜋𝜋

𝜆𝜆

)

 , 

where K denotes a constant scalar independent of both θ and r. In this discussion: θ ≈ φ (i.e., the inter-dipole 
skew angle), and r = Δ (i.e., the inter-dipole gap). For almost all practical dipole-pairs of interest: 𝐴𝐴

Δ

𝜆𝜆
≪

1

2𝜋𝜋
 , thereby 

approximating the above expression to

𝐾𝐾sin(𝜑𝜑)

(

𝜆𝜆

2𝜋𝜋Δ

)3

exp

(

−𝑗𝑗
2𝜋𝜋Δ

𝜆𝜆

)

.� (3)

The above sin(φ) factor appears in Equation 1.

3.  Phenomenological Model Fitting of the Mutual Impedance's Complex-Phase 
∠Z1,2 = ∠Z2,1

For the mutual impedance's phase, the proposed phenomenological model is.

∠𝑍𝑍1,2 = ∠𝑍𝑍2,1 ≈ 𝑏𝑏1
Δ

𝜆𝜆
+ 𝑏𝑏2

𝐿𝐿

𝜆𝜆
+ 𝑏𝑏3,� (4)

�1∶= − 5.5920,

�2∶= 0.5048�,

�3∶= − 0.2952.

� (5)

The goodness-of-fit R 2 equals 0.9655, that is, only 4% of the variation in the VLab-simulated data set of ∠Z1,2 and 
∠Z2,1 cannot be predicted by the phenomenological model of Equation 4.

A more elegant expression may be obtained by rounding the above three coefficients' values to b1 = −50/9, 
𝐴𝐴 𝐴𝐴2 =

𝜋𝜋

2
 , b3 = −log10(2), resulting in an R 2 of 0.9654.

This model of ∠Z1,2 = ∠Z2,1 decreases linearly with the inter-dipole separation 𝐴𝐴
Δ

𝜆𝜆
 . This is reasonable in terms of 

antenna electromagnetics: As the radiation propagates outward from the driving dipole, its phase will change 
linearly with the distance (Δ) traversed between the two dipoles, as evidenced by Equation 3 whose complex 
phase varies linearly with Δ.

This model of ∠Z1,2 = ∠Z2,1 is independent of the inter-dipole skew angle φ, in accordance with the VLab data. 
This is reasonable in terms of antenna electromagnetics: The phase ∠Z1,2 = ∠Z2,1 depends on the distance traveled 
by the driving dipole's radiated electric field to the induced dipole. If the induced dipole is rotated with respect 
to its feed center, the feed-center to feed-center separation would remain the same. Hence, the inter-dipole skew 
angle φ has no effect on ∠Z1,2.
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This model of ∠Z1,2 = ∠Z2,1 increases linearly with the dipoles' electric length 𝐴𝐴
𝐿𝐿

𝜆𝜆
 . This is reasonable in terms of 

dipole electromagnetics: The radiation is emitted from the driving dipole along that dipole's entire length, and is 
received by the induced dipole along the induced dipole's entire length. The inter-dipole separation thus involves 
the distance from any point on the driving dipole to any point on the induced dipole. Such point-to-point distances 
have an average that increases linearly with the two dipoles' length. Hence, the phase would change also linearly 
with 𝐴𝐴

𝐿𝐿

𝜆𝜆
 .

4.  Phenomenological Model Fitting of the Self-Impedance's Magnitude |Z1,1| = |Z2,2|
For the self-impedance magnitude, the proposed phenomenological model is

|𝑍𝑍1,1| = |𝑍𝑍2,2|

≈

𝑃𝑃1

(

Δ

𝜆𝜆
,𝜑𝜑

)

∶=

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

|

|

|

|

|

|

𝑝𝑝1 + 𝑝𝑝2cos

(

𝑝𝑝3
Δ

𝜆𝜆
+ 𝑝𝑝4

)

𝑒𝑒
−𝑝𝑝5

Δ

𝜆𝜆 sin
2
(𝜑𝜑)

|

|

|

|

|

|

𝑃𝑃2

(

𝐿𝐿

𝜆𝜆

)

∶=

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

(

𝐿𝐿

𝜆𝜆
− 𝑝𝑝6

)2

+ 𝑝𝑝7

]

,

� (6)

where p1 ≔ 20415.4041, p2 ≔ 98.3895, p3 ≔ 4.0412π, p4 ≔ 3.4539π, p5 ≔ 0.2782, p6 ≔ 0.4838, p7 ≔ 0.0057.

The goodness-of-fit R 2 equals 0.9808, that is, only 2% of the variation in the VLab-simulated datasets of |Z1,1| and 
|Z2,2| cannot be predicted by the phenomenological model of Equation 6. The R 2 is evaluated on the logarithmic 
entities of

log
10
|𝑍𝑍1,1| = log

10
|𝑍𝑍2,2|

≈ log
10

|

|

|

|

|

|

𝑝𝑝1 + 𝑝𝑝2cos

(

𝑝𝑝3
Δ

𝜆𝜆
+ 𝑝𝑝4

)

𝑒𝑒
−𝑝𝑝5

Δ

𝜆𝜆 sin
2
(𝜑𝜑)

|

|

|

|

|

|

+ log
10

|

|

|

|

(

𝐿𝐿

𝜆𝜆
− 𝑝𝑝6

)2

+ 𝑝𝑝7

|

|

|

|

,
� (7)

instead of |Z1,1| = |Z2,2| directly from Equation 6. This is because |Z1,1| = |Z2,2| takes on values spanning several 
orders of magnitude. Hence, any R 2 computation based on Equation 6 would overweight those support subre-
gions of 𝐴𝐴

{

𝜑𝜑𝜑
𝐿𝐿

𝜆𝜆
,
Δ

𝜆𝜆

}

 where |Z1,1| = |Z2,2| is very large, thereby poorly fitting other subregions of 𝐴𝐴

{

𝜑𝜑𝜑
𝐿𝐿

𝜆𝜆
,
Δ

𝜆𝜆

}

 where 
|Z1,1| = |Z2,2| is small. More explicitly, the would-be-overweighted subregion is where 𝐴𝐴

𝐿𝐿

𝜆𝜆
 increases toward unity 

and where 𝐴𝐴
Δ

𝜆𝜆
 decreases toward zero.

A more elegant expression may be obtained by rounding the above coefficients' values to p1 = 20000, p2 = 10π 2, 
p3 = 4π, 𝐴𝐴 𝐴𝐴4 =

5

9
𝜋𝜋 , p5 = e, 𝐴𝐴 𝐴𝐴6 =

97

200
 , 𝐴𝐴 𝐴𝐴7 =

6

1000
 , resulting in an R 2 of 0.9805.

The two dipoles' separation 𝐴𝐴
Δ

𝜆𝜆
 affects |Z1,1| = |Z2,2| only through 𝐴𝐴 𝐴𝐴1

(

Δ

𝜆𝜆

)

 . Please see Figure 3. If the two dipoles are 

very far apart (i.e., as 𝐴𝐴
Δ

𝜆𝜆
→ ∞ ): 𝐴𝐴 𝐴𝐴1

(

Δ

𝜆𝜆

)

→ 𝑝𝑝1 ; and the second term inside |⋅| approaches zero.

The two dipoles' skew angle φ affects |Z1,1| = |Z2,2| only through sin 2(φ). This sin 2(φ) multiplicative factor may be 
interpreted to arise from the round-trip propagation of the radiated electric field, from the excited dipole, to the 
induced dipole, then back to the excited dipole. Recalling that these two dipoles are skewed with respect to each 
other by φ, this induced electric field (as mentioned in Section 2) is proportional to | sin(φ)| for each one-way 
propagation. When the two dipoles are orthogonal (i.e., φ = 0), the second term inside |⋅| equals zero.

The two preceding paragraphs point out that the second term inside |⋅| approaches zero, if and only if either the 
two dipoles are orthogonal (i.e., φ = 0) or very far apart 𝐴𝐴

(

Δ

𝜆𝜆
→ ∞

)

 , such that the driving dipole would become 
effectively isolated from the induced dipole. Hence, that second term could be interpreted to correspond to 
re-radiation from the induced dipole. In other words, the driving dipole's self-impedance Z1,1 is (a) partly due to 
the driving dipole's isolated self-impedance, and (b) partly due to the electric field induced back to the driving 
dipole by the induced dipole. Effect (a), however, is at least 𝐴𝐴

𝑝𝑝1

𝑝𝑝2

≈ 207 times more significant than effect (b). This 
is reasonable in terms of antenna electromagnetics: The inter-dipole coupling's aforementioned round-trip effect 
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(i.e., round trip from the driving dipole to the induced dipole, then back to the driving dipole) would render effect 
(b) to be much smaller than the driving dipole's own isolated self-impedance.

When the two dipoles are either very widely separated or orthogonally oriented, the model in Equation 6 would 
degenerate to the mathematical form of 𝐴𝐴 𝐴𝐴1𝑃𝑃2

(

𝐿𝐿

𝜆𝜆

)

 , which is a reasonable representation of an isolated dipole's 

self-impedance. The dipoles' length 𝐴𝐴
𝐿𝐿

𝜆𝜆
 affects |Z1,1| = |Z2,2| only through the multiplicative factor 𝐴𝐴 𝐴𝐴2

(

𝐿𝐿

𝜆𝜆

)

 .

5.  Phenomenological Model Fitting of the Self-Impedance's Complex Phase 
∠Z1,1 = ∠Z2,2

For the self-impedance's phase, the proposed phenomenological model is

∠�1,1 = ∠�2,2 ≈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�1+

�

(Δ
�

)

∶=

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�2sin
(

�3
Δ
�

)

�
−�4

Δ
�

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

sin
(

�5
�
�

)

,� (8)

where q1 ≔ 1.7648, q2 ≔ 0.0103, q3 ≔ 0.7091π, q4 ≔ 5.0565, q5 ≔ −2.0758π.

The goodness-of-fit R 2 equals 0.9018; that is, over 90% of the variation in the VLab-simulated data set of ∠Z1,1 
and ∠Z2,2 can be predicted by phenomenological model of Equation 8.

Like |Z1,1| = |Z2,2| in Section 4, the phenomenological model here for ∠Z1,1 = ∠Z2,2 has two terms inside the curly 
brackets. The first term corresponds to each dipole's isolated self-impedance, whereas the second term arises 
due to the re-radiation from the induced dipole back to the driving dipole. Figure 4 plots 𝐴𝐴 𝐴𝐴

(

Δ

𝜆𝜆

)

 versus 𝐴𝐴
Δ

𝜆𝜆
 . The 

Figure 3.  How 𝐴𝐴 𝐴𝐴1

(

Δ

𝜆𝜆
, 𝜑𝜑

)

 varies with 𝐴𝐴
Δ

𝜆𝜆
 and φ.
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first term dominates the second term (by a ratio of 𝐴𝐴
𝑞𝑞1

𝑞𝑞2

≈ 171 multiples), as would be expected and as explained 
in Section 4.

To simplify Equation 8, remove Q(⋅) from Equation 8 to give

∠𝑍𝑍1,1 = ∠𝑍𝑍2,2 ≈ 𝑞𝑞1sin

(

𝑞𝑞2
𝐿𝐿

𝜆𝜆

)

.� (9)

This bivariate model still gives R 2 = 0.8800 at 𝐴𝐴 𝐴𝐴1 =

√

3 and q2 = −2π.

Like ∠Z1,2 = ∠Z2,1 in Section 3, the phenomenological model here for ∠Z1,1 = ∠Z2,2 is independent of φ, for 
reasons already explained in Section 3.

6.  Application to Direction Finding
To demonstrate the usefulness of the new phenomenological models in Equations 1, 4, 6 and 8—These models 
are utilized below for the estimation of an incident source's azimuth-elevation direction-of-arrival (DOA).

6.1.  The Skewed Dipole-Pair's Electromagnetic Measurement Model

Please recall the skewed dipoles' spatial geometry shown in Figure 1: The first dipole is aligned along the z-axis 
and is centered at the Cartesian origin. The second dipole lies on the x-y plane and is centered at the Cartesian 
point of (Δ, 0, 0). The second dipole's location incurs a spatial phase factor of 𝐴𝐴 𝐴𝐴

𝑗𝑗2𝜋𝜋
Δ

𝜆𝜆
sin(𝜃𝜃)cos(𝜙𝜙) , where θ ∈ [0°, 180°] 

symbolizes the incident source's polar angle of arrival, and 𝐴𝐴 𝐴𝐴 ∈ [0
◦
, 360

◦
) denotes the azimuth angle of arrival 

measured from the positive x-axis. The second dipole's skewed orientation on the y′-z′ plane implies that its volt-
age is affected by the incident electromagnetic wave's y-component and z-component.

If these dipoles have an electrical length 𝐴𝐴
𝐿𝐿

𝜆𝜆
>

1

10
 , the crossed-dipoles would have this 2 × 1 array manifold Wong 

et al. (2017):

Figure 4.  How 𝐴𝐴 𝐴𝐴

(

Δ

𝜆𝜆

)

 varies with 𝐴𝐴
Δ

𝜆𝜆
 .
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𝐚𝐚pair = 𝐂𝐂

⎡

⎢

⎢

⎣

1 0

0 𝑒𝑒
𝑗𝑗2𝜋𝜋

Δ

𝜆𝜆
sin(𝜃𝜃)cos(𝜙𝜙)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0 1

cos(𝜑𝜑) sin(𝜑𝜑)

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

−sin(𝜙𝜙) 0

cos(𝜃𝜃)sin(𝜙𝜙) cos(𝜙𝜙)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑒𝑒
𝑗𝑗𝑗𝑗
sin𝛾𝛾

cos𝛾𝛾

⎤

⎥

⎥

⎦

◦

⎡

⎢

⎢

⎣

𝓁𝓁𝜃𝜃

𝓁𝓁𝜓𝜓

⎤

⎥

⎥

⎦

◦

⎡

⎢

⎢

⎣

csc(𝜃𝜃)

csc(𝜓𝜓)

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

,

� (10)

with the “effective lengths” of

𝓁𝓁𝜃𝜃 = −
𝜆𝜆

𝜋𝜋

1

sin

(

𝜋𝜋
𝐿𝐿

𝜆𝜆

)

cos

(

𝜋𝜋
𝐿𝐿

𝜆𝜆
cos(𝜃𝜃)

)

− cos

(

𝜋𝜋
𝐿𝐿

𝜆𝜆

)

sin(𝜃𝜃)
,

𝓁𝓁𝜓𝜓 = −
𝜆𝜆

𝜋𝜋

1

sin

(

𝜋𝜋
𝐿𝐿

𝜆𝜆

)

cos

(

𝜋𝜋
𝐿𝐿

𝜆𝜆
cos(𝜓𝜓)

)

− cos

(

𝜋𝜋
𝐿𝐿

𝜆𝜆

)

sin(𝜓𝜓)
,

�

and

cos(�) = sin (�)sin (�)cos(�) + cos (�)sin(�),

sin(�) =
(

sin2 (�)sin2(�) + cos2 (�)cos2(�)

+ sin2 (�)cos2 (�)cos2(�) − 1
2
sin (2�)sin (2�)sin(�)

)

1
2

�

In the above, 𝐴𝐴 𝐴𝐴 ∈

[

0,
𝜋𝜋

2

]

 denotes the auxiliary polarization angle, η ∈ [ − π, π] refers to the polarization phase 
difference, ψ refers to the angle made between the slanted dipole and the unit vector along the direction of prop-
agation, and ◦ denotes element-wise multiplication. Furthermore, C symbolizes the dipoles' 2 × 2 electromag-
netic coupling matrix, which is related to the impedance matrix Z as follows [Gupta and Ksienski (1983), Yang 
and Ruan (1993), Svantesson (1998), (1999), Al-Kabi et al. (2006), Huang et al. (2006a), (2006b), Weber and 
Huang (2012), Akkar et al. (2013)]:

𝐂𝐂 =

(

𝐙𝐙

𝑍𝑍0

+ 𝐈𝐈

)−1

.�

The subsequent direction-finding study would consider three cases:

1.	 �The actual impedance matrix is exactly known to the direction-of-arrival estimation algorithm, a priori. Here, 
Z would equal the VLab output values. This case corresponds to the dotted black curve on the subsequent 
graphs.

2.	 �The actual impedance matrix is unknown to the direction-of-arrival estimation algorithm. Instead, the 
phenomenological models of Equation 1, 4, 6 and 8 are used to form Z for use in the estimation algorithm. 
This case corresponds to the solid red curve on the subsequent graphs.

3.	 �Mutual coupling is presumed erroneously by the direction-of-arrival estimation algorithm to be nonexistent. 
Here, Z equals a 2 × 2 matrix of all zeros. This case corresponds to the dash-dot blue curve on the subsequent 
graphs.

6.2.  The Data's Statistical Model

Let the receiver be equipped with a square array of four identical pairs of skewed-dipoles, each of which is as 
described above in Section 6.1. This square array's each side is 7λ in length—A separation long enough to render 
any inter-pair coupling to be negligible. This array's 8 × 1 array manifold may be represented as
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�array(�, �, �, �) = �pair ⊗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

exp{�7�sin(�)[+sin(�) + cos(�)]}

exp{�7�sin(�)[+sin(�) − cos(�)]}

exp{�7�sin(�)[−sin(�) + cos(�)]}

exp{�7�sin(�)[−sin(�) − cos(�)]}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,� (11)

where ⊗ symbolizes the Kronecker product.

To focus on the electromagnetic coupling among the dipoles and on the proposed phenomenological models, an 
admittedly simple statistical model will be used below for the incident signal and the noise. Suppose a pure tone 
signal s(t) = exp[j(ωt + φ)] impinges on the aforementioned receiver. At the mth time-instant, the collected data 
may be modeled as an 8 × 1 vector of

𝐱𝐱(𝑚𝑚) =
𝐚𝐚array(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)

‖𝐚𝐚array(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)‖
𝑠𝑠(𝑚𝑚) + 𝐧𝐧(𝑚𝑚).� (12)

In the above, 𝐴𝐴 ‖ ⋅ ‖ represents the Frobenius norm, and n(m) denotes an 8 × 1 vector of additive noise, modeled 
here as Gaussian, zero in mean, statistically uncorrelated over the time-instants and uncorrelated across all eight 
dipoles. The normalization in Equation 12 by 𝐴𝐴 ‖𝐚𝐚array(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)‖ is for a fair comparison across the three imped-
ance cases (A)–(C) in Section 6.1.

With M number of time samples, form an 8 × M data matrix of

�∶= [�(1), �(2),… , �(�)],�

Each subsequent Monte Carlo simulation has M = 50 number of time-samples.

6.3.  MUSIC-Based Direction Finding

“Direction finding” aims to estimate the incident source's incident direction-of-arrival (θ, ϕ), based on the obser-
vations of X.

The estimation algorithm has prior knowledge of the numerical values of 𝐴𝐴
𝐿𝐿

𝜆𝜆
 , 𝐴𝐴
Δ

𝜆𝜆
 , φ. All subsequent simulations will 

use these numerical settings: φ = 45°, 𝐴𝐴
𝐿𝐿

𝜆𝜆
=

1

2
 , and 𝐴𝐴

Δ

𝜆𝜆
=

1

100
 .

MUSIC Schmidt (1996) is a popular parameter estimator, based on a eigen-decomposition of the data correlation 
matrix, R ≔ X HX. Eigen-decompose this 8 × 8 matrix to obtain its null space, spanned by the columns of Unull. 
That is,

𝐑𝐑 = [𝐔𝐔𝑠𝑠,𝐔𝐔𝑛𝑛]
𝐻𝐻
𝚲𝚲 [𝐔𝐔𝑠𝑠,𝐔𝐔𝑛𝑛] .�

Then, the direction-of-arrival estimates and the polarization estimates are given by

(

𝜃̂𝜃𝜃 𝜙̂𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙
)

∶= arg
(𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃)

max
1

‖𝐔𝐔
𝐻𝐻
𝑛𝑛 𝐚𝐚array(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)𝐂𝐂‖

2
,� (13)

where ‖ ⋅ ‖ represents the Frobenius norm of the entity inside.

Figures 5 and 6 show the estimation root-mean-square error (RMSE) of 𝐴𝐴 𝜃̂𝜃 and 𝐴𝐴 𝜙̂𝜙 , versus the SNR, for the three 
cases (A)–(C) in Section 6.1. Each icon in Figures 5 and 6 represents 100 independent Monte Carlo trials. These 
figures verify the usefulness of the proposed phenomenological models—That these models offer estimation 
precisions almost as good as if the exact impedance were known, whereas ignoring mutual coupling causes a 
degradation that can be several orders of magnitude.
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7.  Conclusion
The open literature's earlier analysis of dipole electromagnetics has produced equations of such intractable 
complexity, that little intuitive rule-of-thumb qualitative insights are obtained on how the mutual impedance 
magnitude of a pair of skewed co-centered cross-dipoles of equal length would vary with the dipoles' skew angle, 

Figure 5.  Monte Carlo simulations showing the proposed phenomenological models allow the mutual coupling to be a priori 
unknown but still facilitate direction finding to perform as if the mutual coupling well prior known. Here, 𝐴𝐴

𝐿𝐿

𝜆𝜆
=

1

2
 , 𝐴𝐴
Δ

𝜆𝜆
= 0.02 , 

φ = 45°, θ = 12°, ϕ = 48°, γ = 16°, and η = 52°.

(a)

(b)

 1944799x, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021R

S007389 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [22/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Radio Science

ARADA ET AL.

10.1029/2021RS007389

11 of 12

the dipoles' common length, and the dipoles' separation. This work takes a “phenomenological” or “behavioral” 
approach of modeling, to least-squares-fit mutual impedance values to low-dimensional models. These new 
models are found useful in direction finding, despite these models' few degrees of freedom—Monte Carlo simu-
lations illustrate how the proposed phenomenological models allow the mutual coupling to be a priori unknown 
but still facilitate direction finding to perform as if the mutual coupling well prior known.

Figure 6.  Monte Carlo simulations showing the proposed phenomenological models allow the mutual coupling to be a priori 
unknown but still facilitate direction finding to perform as if the mutual coupling well prior known. Here, 𝐴𝐴

𝐿𝐿

𝜆𝜆
=

3

4
 , 𝐴𝐴
Δ

𝜆𝜆
= 0.04 , 

φ = 45°, θ = 48°, ϕ = 56°, γ = 14°, and η = −14°.

(a)

(b)

 1944799x, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021R

S007389 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [22/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Radio Science

ARADA ET AL.

10.1029/2021RS007389

12 of 12

Data Availability Statement
No data was created or used in this manuscript.

References
Akkar, S., Harabi, F., & Garsallah, A. (2013). Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling. 

International Journal of Electronics, 100(6), 818–836. https://doi.org/10.1080/00207217.2012.720956
Al-Kabi, A., Bialkowski, M. E., & Homer, J. (2006). Performance comparison between uniformly and nonuniformly spaced adaptive antennas 

with respect to tolerance to pointing errors. Microwave and Optical Technology Letters, 48(11). https://doi.org/10.1002/mop.21904
Amin, M., & Cahill, R. (2003). Mutual coupling effects between coplanar crossed skew dipoles. In High frequency postgraduate student 

colloquium.
Amin, M., & Cahill, R. (2004). Mutual impedance between two dipole antennas fed by single source. Microwave and Optical Technology Letters, 

42(3), 187–189. https://doi.org/10.1002/mop.20247
Andersen, J. B., Lessow, H. A., & Schjaer-Jacobsen, H. (1974). Coupling between minimum scattering antennas. IEEE Transactions on Antennas 

and Propagation, 22(6), 832–835. https://doi.org/10.1109/tap.1974.1140912
Baker, H. C., & LaGrone, A. H. (1962). Digital computation of the mutual impedance between thin dipoles. IRE Transactions on Antennas and 

Propagation, 10(2), 172–178. https://doi.org/10.1109/tap.1962.1137835
Balanis, C. A. (2005). Antenna theory (3rd edn). Wiley-Interscience.
Best, S. R. (2011). Mutual coupling between orthogonal electrically small dipole antennas. In European conference on antennas and propagation 

(pp. 1663–1666). https://doi.org/10.1109/EuCAP.2012.6206562
Czyz, J. (1957). Impedancje wzajemne w plaskich ukladach antenowych. Rozprawy Elektrotecltniczne, 3(1), 139–166.
Gupta, I., & Ksienski, A. (1983). Effect of mutual coupling on the performance of adaptive arrays. IEEE Transactions on Antennas and Propa-

gation, 31(5), 785–791. https://doi.org/10.1109/tap.1983.1143128
Han, J. H., & Myung, N. H. (2012). Exact and simple calculation of mutual impedance for coplanar-skew dipoles. Electronics Letters, 48(8), 

423–425. https://doi.org/10.1049/el.2012.0420
Han, J. H., Song, W. Y., Oh, K. S., & Myung, N. H. (2012). Simple formula and its exact analytic solution of mutual impedance for nonpla-

nar-skew dipoles. Progress in Electromagnetics Research, 132, 551–570. https://doi.org/10.2528/pier12083002
Han, J. H., Song, W. Y., Oh, K. S., & Myung, N. H. (2013). Analytical derivation of mutual impedance between two arbitrarily located and slanted 

dipoles using effective length vector. In Asia-pacific microwave conference.
Huang, Z., Balanis, C. A., & Birtcher, C. R. (2006a). Mutual coupling compensation in UCAs: Simulations and experiment. IEEE Transactions 

on Antennas and Propagation, 54(11), 3082–3086. https://doi.org/10.1109/TAP.2006.883989
Huang, Z., Balanis, C. A., & Birtcher, C. R. (2006b). Mutual coupling in beamforming with circular array. In IEEE antennas and propagation 

society international symposium (pp. 4785–4788). https://doi.org/10.1109/APS.2006.1711711
Khan, S., & Wong, K. T. (2019). Electrically long dipoles in a crossed pair for closed-form estimation of an incident source’s polarization. IEEE 

Transactions on Antennas and Propagation, 67(8), 5569–5581. https://doi.org/10.1109/tap.2019.2916581
Murray, F. H. (1933). Two skew antenna wires. Proceedings of the Institute of Radio Engineers, 21(1), 154–158. https://doi.org/10.1109/

jrproc.1933.227887
Richmond, J. H. (1970). Coupled linear antennas with skew orientation. IEEE Transactions on Antennas and Propagation, 18(5), 694–696. 

https://doi.org/10.1109/tap.1970.1139751
Richmond, J. H., & Geary, N. H. (1970). Mutual impedance between coplanar-skew dipoles. IEEE Transactions on Antennas and Propagation, 

18(3), 414–416. https://doi.org/10.1109/tap.1970.1139705
Richmond, J. H., & Geary, N. H. (1975). Mutual impedance of nonplanar-skew sinusoidal dipoles. IEEE Transactions on Antennas and Propa-

gation, 23(3), 412–414. https://doi.org/10.1109/tap.1975.1141083
Schmidt, K. E. (1996). Simplified mutual impedance of nonplanar skew dipoles. IEEE Transactions on Antennas and Propagation, 44(9). https://

doi.org/10.1109/8.535390
Svantesson, T. (1998). The effects of mutual coupling using a linear array of thin dipoles of finite length. In IEEE signal processing workshop 

on statistical signal and array processing.
Svantesson, T. (1999). Modeling and estimation of mutual coupling in a uniform linear array of dipoles. In IEEE international conference on 

acoustics, speech, and signal processing (Vol. 5), (pp. 2961–2964). https://doi.org/10.1109/icassp.1999.761384
Weber, R. J., & Huang, Y. (2012). Performance analysis of direction of arrival estimation with a uniform circular array. In IEEE aerospace 

conference.
Wong, K. T., Song, Y., Fulton, C. J., Khan, S., & Tam, W.-Y. (2017). Electrically “long” dipoles in a collocated/orthogonal triad—for direc-

tion finding or polarization estimation. IEEE Transactions on Antennas and Propagation, 65(11), 6057–6067. https://doi.org/10.1109/
tap.2017.2748183

Yang, C., & Ruan, Y. Z. (1993). Eigenvalues of covariance matrix of adaptive array with mutual coupling and two correlated sources present. In 
IEEE antennas and propagation society international symposium (pp. 706–709). IEEE.

Yuan, X., Wong, K. T., & Agrawal, K. (2012). Polarization estimation with a dipole-dipole pair, a dipole-loop pair, or a loop-loop pair of various 
orientations. IEEE Transactions on Antennas and Propagation, 60(5), 2442–2452. https://doi.org/10.1109/tap.2012.2189740

Acknowledgments
This work is supported by grant # 
62071018 from the National Natural 
Science Foundation of China. The authors 
would like to thank Professor Danilo 
Erricolo, Professor Wen-Jiao Liao, and 
Professor Malcolm Ng for discussions on 
background issues related to dipoles and 
mutual coupling. The authors would like 
to thank Professor Tsair-Chuan Lin for 
discussions on background issues related 
to R 2.

 1944799x, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021R

S007389 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [22/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1080/00207217.2012.720956
https://doi.org/10.1002/mop.21904
https://doi.org/10.1002/mop.20247
https://doi.org/10.1109/tap.1974.1140912
https://doi.org/10.1109/tap.1962.1137835
https://doi.org/10.1109/EuCAP.2012.6206562
https://doi.org/10.1109/tap.1983.1143128
https://doi.org/10.1049/el.2012.0420
https://doi.org/10.2528/pier12083002
https://doi.org/10.1109/TAP.2006.883989
https://doi.org/10.1109/APS.2006.1711711
https://doi.org/10.1109/tap.2019.2916581
https://doi.org/10.1109/jrproc.1933.227887
https://doi.org/10.1109/jrproc.1933.227887
https://doi.org/10.1109/tap.1970.1139751
https://doi.org/10.1109/tap.1970.1139705
https://doi.org/10.1109/tap.1975.1141083
https://doi.org/10.1109/8.535390
https://doi.org/10.1109/8.535390
https://doi.org/10.1109/icassp.1999.761384
https://doi.org/10.1109/tap.2017.2748183
https://doi.org/10.1109/tap.2017.2748183
https://doi.org/10.1109/tap.2012.2189740

	How Two Crossed Dipoles' Impedance Varies With Their Non-Orthogonality, Length & Separation
	Abstract
	1. Introduction
	1.1. The “Phenomenological”/“Behavioral” Approach to Model Mutual Impedance
	1.2. “Method of Moment” Simulations of Mutual Impedance

	2. Phenomenological Model Fitting of the Mutual Impedance's Magnitude |Z1,2| = |Z2,1|
	3. Phenomenological Model Fitting of the Mutual Impedance's Complex-Phase ∠Z1,2 = ∠Z2,1
	4. Phenomenological Model Fitting of the Self-Impedance's Magnitude |Z1,1| = |Z2,2|
	5. Phenomenological Model Fitting of the Self-Impedance's Complex Phase ∠Z1,1 = ∠Z2,2
	6. Application to Direction Finding
	6.1. The Skewed Dipole-Pair's Electromagnetic Measurement Model
	6.2. The Data's Statistical Model
	6.3. 
        MUSIC-Based Direction Finding

	7. Conclusion
	Data Availability Statement
	References


