
1. Introduction
Atmospheric inorganic nitrate (NO3 −) and its precursor NOx (=NO + NO2) play crucial roles in haze formation 
in China (R.-J. Huang et al., 2014; H. Li et al., 2018). Due to limited development of flue gas denitrification 
technology compared with desulfurization technology (Gao et al., 2018), excess emissions of NOx have become 
the most severe pollutant gas in China over the past decade (Zheng et al., 2018). Recently, nitrate has contrib-
uted a higher fraction in PM2.5 in haze events than in previous observations (Fan et al., 2019; Sun et al., 2015). 
Nitrogen chemistry is also important in atmospheric chemical processes, since it is involved in the formation of 
oxidants (e.g., ozone [O3] and hydroxyl radicals [OH]), which control the atmosphere’s self-cleansing capacity 
(Lu et al., 2019). Thus, the study of NOx emissions and the nitrate formation mechanism is critical in investigating 
the formation of haze pollution.
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δ 17O-NO3 −, and δ 15N-NO3 −) in PM2.5 were conducted in Hangzhou from 9 October 2015 to 24 August 2016. 
Our results showed that oxygen anomaly of nitrate (Δ 17O-NO3 −: 20.0‰–37.9‰) and nitrogen isotope of nitrate 
(δ 15N-NO3 −: −2.9‰ to 18.1‰) values were higher in winter and lower in summer. Based on Δ 17O-NO3 − 
observation and a Bayesian model, NO3 radical chemistry was found to dominate the nitrate formation in 
winter, while photochemical reaction (NO2 + OH) was the main pathway in summer. After considering the 
nitrogen isotopic fractionation in the NOx(g)-NO3 −(p) conversion, the average contributions of coal combustion, 
vehicle exhausts, biomass burning, and soil emission were 50% ± 9%, 19% ± 12%, 26% ± 15%, and 5% ± 4%, 
respectively, to nitrate aerosols during the whole sampling period. Coal combustion was the most important 
nitrate source in Hangzhou, especially in winter (∼56%). The contribution of soil emission increased 
significantly in summer due to active soil microbial processes under high temperature environment.
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Hangzhou, especially in winter (56%) and the contribution of soil emission increased significantly in summer 
under high temperature environment.
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Based on the global NOx emission inventories, fossil fuel combustion, biomass burning (BB), and agricultural 
activities are generally considered to be the dominant sources of tropospheric NOx (Jaeglé et al., 2005; Martin 
et al., 2003). However, NOx emission assessments conducted through satellite-based studies and emission inven-
tory methods usually cause misclassification of various sources, especially in urban areas. Stable isotope meth-
odology has shown significant advantages in recognizing different NOx sources since the δ 15N signatures are 
unique in various sources (Elliott et al., 2019). For instance, the δ 15N of NOx emitted from combustion processes, 
such as BB (1.8‰ ± 4.1‰) and fossil fuel combustion (0‰–20‰), have higher values comparing to other 
NOx emission sources (Elliott et al., 2009; Fibiger & Hastings, 2016). NOx is depleted in  15N when derived from 
natural sources such as nitrification/denitrification in soil (<−20‰; Felix & Elliott, 2014; D. Li & Wang, 2008; 
D. J. Miller et al., 2018; Su et al., 2020; Z. Yu & Elliott, 2017). However, nitrogen isotopic composition of nitrate 
is also depended on the nitrogen isotopic fractionation (Δ 15N) during the oxidation of NOx into atmospheric 
nitrate besides to the sources of NOx (Elliott et al., 2007; Vicars et al., 2013). Studies that considered the isotopic 
fractionation only focused on the equilibrium isotopic effect (EIE) in the NOx-HNO3 conversion, the kinetic 
isotopic effect (KIE) and the photochemical isotopic fractionation effect (PHIFE) in NOx cycle were neglected in 
the calculation of Δ 15N and the NOx source apportionment (J. Li et al., 2020). The nitrogen isotopic fractionates 
occurred in every step of NOx oxidation (Z. Li et al., 2019). Fang et al. (2021) pointed that  15N are more enriched 
in nitrate produced through N2O5 hydrolysis, whereas the NO2 + OH pathway produces nitrate with lower δ 15N 
values.

The transformation of NOx to NO3 − is a combination of the NOx cycle and the nitrate production processes 
(Text S1 in Supporting Information  S1). Briefly, nitrate production involves homogeneous reactions (e.g., 
NO2 + OH and NO3 + HC) and heterogeneous reactions (e.g., the hydrolysis of NO3 and N2O5) in urban areas. 
The oxidation of NO2 by OH radicals occurs during the day with sunlight. The reactions involving NO3 radi-
cals mainly take place at night, since NO3 radical can easily be photolyzed. Oxygen isotope (δ 18O and Δ 17O) 
analysis of atmospheric nitrate is a powerful technique used to identify nitrate formation pathways (Alexander 
et  al.,  2009,  2020; Michalski et  al.,  2003; Zong et  al.,  2020). However, the δ 18O of NO3 − (δ 18O-NO3 −) was 
affected by multiple factors, such as nitrate formation pathways, the variation of air temperature, atmospheric 
pressure, and isotopes of various atmospheric compounds (Elliott et al., 2009; Michalski et al., 2012; Walters & 
Michalski, 2016). Previous cases showed that the analysis of nitrate production using δ 18O-NO3 − was based on 
many assumptions, resulting in large uncertainties (Fan et al., 2020; Zong et al., 2020). Unlike δ 18O-NO3 −, the 
observation of Δ 17O of NO3 − (Δ 17O-NO3 −) has the advantage of nitrate production calculation, making it more 
convenient and accurate. Its principle is that the only exception to the mass-dependent oxygen isotopic fraction-
ation rule (δ 17O = 0.52 × δ 18O) occurs during O3 production (Thiemens, 1999). This isotopic fractionation that 
appears independent of relative mass differences is termed as mass-independent fractionation and is quantified 
by Δ 17O = δ 17O − 0.52 × δ 18O (Thiemens, 1999). The positive Δ 17O-NO3 − value is due to the transfer of O 
atoms from O3 (Alexander et al., 2009). Thus, the Δ 17O-NO3 − can directly reflect the different contributions of 
O3 oxidation in various nitrate formation pathways. In recent years, the use of Δ 17O-NO3 − has got considerable 
attention in revealing nitrogen chemistry in China. For instance, nocturnal chemistry was found to contribute 
equally with NO2 + OH/H2O to nitrate formation near ground surface but dominate the production of nitrate at 
high altitude (∼260 m) in winter (Fan et al., 2021). The hydrolysis of N2O5 was found to be an important mecha-
nism of nitrate formation over the Himalayan–Tibetan Plateau (Lin et al., 2021).

Yangtze River Delta (YRD) region, as one of the most economically developed zones in China, is experienc-
ing serious and complex air pollution problems due to the high energy consumption and the rapid growth of 
vehicles (Ming et al., 2017). Hangzhou is one of the largest cities in the YRD, which is a typical megacity with 
huge energy consumption and rapid growth in population and vehicles (Q. Zhang et al., 2008). However, long-
term observations of nitrate isotopes are still lack in the YRD, which are necessary for exploring the formation 
mechanisms of nitrate and the sources of NOx in different seasons and provide effective scientific basis for the 
government to develop emission reduction strategies under different emission backgrounds. Previously, field 
measurements have showed obvious seasonal variations in meteorology, tracer gases, and particulate pollutants 
in urban regions (Chen et al., 2020; K. Zhang et al., 2020; Y.-L. Zhang & Cao, 2015). Highest levels of PM2.5 
and its major chemical components (e.g., organic carbon and secondary ions) were normally observed in the 
cold seasons in the YRD (Feng et al., 2006; Ming et al., 2017). Clear seasonal trends for CO, SO2, and NO2 were 
observed with the maximum concentrations in winter and the minimum in summer, while O3 exhibited an oppo-
site trend (Ding et al., 2013; H. Zhang et al., 2015). Besides, previous studies found that the concentrations of OH, 
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HO2, and NO3 radicals were generally much lower in winter than those in summer (Asaf et al., 2010; Rohrer & 
Berresheim, 2006; Tan et al., 2018; Walker et al., 2015; H. Wang et al., 2017). These results implied that the NOx 
emission sources and chemical mechanisms producing nitrate aerosols might be different in different seasons, 
while the nitrate formation mechanisms and sources of NOx remain unclear in the YRD region.

In this study, field measurements of multiple isotopes in nitrate aerosols (δ 15N-NO3 −, δ 17O-NO3 −, and δ 18O-NO3 −) 
were conducted from 2015 to 2016 in Hangzhou, a megacity in the YRD. The relative importance of each nitrate 
formation pathway in Hangzhou was calculated using the observation of oxygen isotopic compositions. The 
seasonal variations of nitrate formation mechanisms and the possible factors were analyzed. The nitrogen isotopic 
fractionation was calculated based on the contribution of each nitrate formation pathway and then δ 15N-NOx was 
obtained accordingly. The values of δ 15N-NOx were applied in the nitrate source apportionment in Hangzhou 
using a Bayesian model.

2. Materials and Methods
2.1. Sampling Site and Atmospheric Observations

PM2.5 sample collection was conducted from 9 October 2015 to 24 August 2016, in Hangzhou (Figure S1 in 
Supporting Information S1). The aerosol sampling site was located at the top of Zhouyiqing building (about 
25 m above the ground) in the campus of Zhejiang University (30.23°N, 120.17°E), 500 m from a busy traffic 
road (Yugu Road), and 400 m from the largest area covered with vegetation in Hangzhou city (Hangzhou Botan-
ical Garden and scenic area of the West Lake). Aerosol samples were collected on precombusted quartz-fiber 
filters for 23.5 hr every week using a high-volume aerosol sampler (KC100, Qingdao, China) at a flow rate of 
1 m 3 min −1. After sampling, all filters were wrapped in aluminum foil, sealed in air-tight polyethylene bags, and 
stored at −26°C for later analysis. A field blank was obtained by placing the blank filter on the filter holder for 
10 min without sampling. The synchronized observation of the PM2.5 concentrations and the pollutant gases (e.g., 
NO2, O3, SO2, and CO) was conducted at the Wolongqiao Environmental Supervising Station (about 4 km from 
the sampling site). Meteorological data were from the meteorological observation station in Hangzhou (3 km 
from the sampling site).

2.2. Chemical Analysis

The concentrations of inorganic ions (including NO3 −, SO4 2−, NH4 +, Cl −, K +, Ca 2+, and Na +) were detected with 
an ion chromatography instrument (ICS 5000+, Thermo Fisher Scientific, USA). After sampling, one 2.54 cm 2 
piece of the sampled filter was extracted with 15 mL of Milli-Q water (18.2 Ω) for 30 min. The recovery of each 
ion was in the range of 90%–110%, and the precision was less than 2%. The method detection limit of NO3 −, a 
target species, was 0.08 ng m −3. The details of this method can be found elsewhere (Fan et al., 2019).

Nitrogen and oxygen isotopic compositions (δ 15N, δ 17O, and δ 18O) of NO3 − in the sampled filters were measured 
after conversion of NO3 − to nitrous oxide (N2O) by optimized bacterial denitrification process (H. Yu et al., 2021; 
Zhao et al., 2019). Briefly, a small piece of the sampled filter (at least containing 0.8 μgN) was extracted with 
5 mL Milli-Q water for 30 min. After extraction, the solution was then filtered by a membrane filter (0.22 μm) 
to remove the insoluble particles and was prepared to proceed chemical conversion procedure. In the conversion 
process for oxygen isotopes, NO3 − was initially transformed to N2O by denitrifying bacteria (ATCC13985, Pseu-
domonas chlororaphis). Subsequently, N2O was decomposed into N2 and O2 by carrying out in a platinum tube at 
650°C. The produced N2 and O2 was then analyzed δ 15N, δ 17O, and δ 18O by an isotope ratio mass spectrometer 
(MAT253, Thermo Fisher Scientific, USA), and Δ 17O (=δ 17O − 0.52 × δ 18O) was then calculated. The analyt-
ical accuracies of δ 15N, δ 18O, and Δ 17O were 0.08‰, 0.24‰, and 0.04‰, respectively. Detailed methods are 
described in H. Yu et al. (2021) and Zhao et al. (2019).

2.3. Calculation Method of Nitrate Formation Pathways

In this work, Δ 17O-NO3 − was used to identify nitrate formation pathways and three formation pathways (P1: 
NO2 + OH, P2: NO3 + HC/H2O, and P3: N2O5 + H2O) were considered as the potential formation mechanisms of 
nitrate aerosols. Based on isotope mass balance, the observed Δ 17O-NO3 − values can be expressed as (Alexander 
et al., 2009)
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Δ17O-NO−

3
= Δ17O-HNO3(P1) × 𝑓𝑓P1 + Δ17O-HNO3(P2) × 𝑓𝑓P2 + Δ17O-HNO3(P3) × 𝑓𝑓P3 (1)

where Δ 17O-HNO3(P1), Δ 17O-HNO3(P2), and Δ 17O-HNO3(P3) represent the Δ 17O values of HNO3 produced by 
the three pathways, respectively. ƒP1, ƒP2, and ƒP3 are the proportions of P1, P2, and P3 to nitrate production and 
ƒP1 + ƒP2 + ƒP3 = 1. The Δ 17O-HNO3 in each nitrate formation pathway can be calculated by Δ 17O of tropospheric 
O3 (Δ 17O-O3) and α (a notation of the fraction of NO2 oxidized from O3; Alexander et al., 2009):

Δ17O-HNO3(P1)(‰) = 2∕3𝛼𝛼 × Δ17O-O∗

3 (2)

Δ17O-HNO3(P2)(‰) = 2∕3𝛼𝛼 × Δ17O-O∗

3
+ 1∕3Δ17O-O∗

3 (3)

Δ17O-HNO3(P3)(‰) = 2∕3𝛼𝛼 × Δ17O-O∗

3
+ 1∕6Δ17O-O∗

3 (4)

where Δ 17O-O3* (=1.5 × Δ 17O-O3) value was ∼39‰ based on the previous observations of Δ 17O-O3 (∼26‰; 
Ishino et al., 2017; Vicars & Savarino, 2014). The α values were estimated by an iNRACM model (Text S2 
and Figure S2 in Supporting Information S1) and varied from 0.71 to 0.99 (Figure S3 in Supporting Informa-
tion S1), indicating that the oxidation of NO in NOx cycle was dominated by O3. This result was similar to those 
previously calculated in Beijing (0.66–0.96; Y. L. Wang et al., 2019) and Shanghai (0.86–0.96; He et al., 2020). 
Using the α, the endmembers of Δ 17O-HNO3(P1), Δ 17O-HNO3(P2), and Δ 17O-HNO3(P3) were calculated as 
18.4‰–25.6‰, 31.4‰–38.6‰, and 24.9‰–32.1‰ (Figure S3 in Supporting Information S1). Then, the rela-
tive contribution of each pathway in Equation 1 can be assessed with a Bayesian model (Text S3 in Supporting 
Information S1).

2.4. Calculation Method of Nitrogen Isotopic Fractionation Effects

The discrepancy of δ 15N between NOx(g) and NO3 −(p) (nitrogen isotopic fractionation effects, Δ 15N) can be 
expressed as (J. Li et al., 2020; Walters & Michalski, 2016):

Δ15N = Δ15N1 + Δ15N2 (5)

where Δ 15N1 and Δ 15N2 are the nitrogen isotopic fractionations occur in the NOx(g) cycle and NO2(g)-HNO3(g) 
conversion, respectively. According to a recent study of isotopic fractionation between NO and NO2 using an 
atmospheric simulation chamber at atmospheric relevant NOx levels, isotopic fractionation in the NOx cycle can 
be obtained by the following equation (J. Li et al., 2020):

𝜀𝜀NO2
= 𝛿𝛿15NO2 − 𝛿𝛿15NO𝑥𝑥 =

(𝛼𝛼2 − 𝛼𝛼1) × 𝐴𝐴 +

(

𝛼𝛼15

(

NO2

NO

)

− 1

)

𝐴𝐴 + 1
× (1 − 𝑓𝑓 (NO2)) × 1, 000‰

 (6)

where (α2 − α1) is the fractionation factor of the Leighton cycle isotope effect, a combination of KIE and PHIFE 
and was 0.990 ± 0.005 (J. Li et al., 2020). α 15(NO2/NO) factor represents EIE between NO and NO2 which was 
tested to be 1.0275 ± 0.0012. f(NO2) in this equation is the fraction of NO2 in NOx and A represents the NO2 
lifetime (calculation of A is described in Text S4 and Figure S4 in Supporting Information S1).

As for the subsequent of NO2-HNO3 conversion, the equilibrium isotope effect between NO2 and NO3 (NO2 and 
N2O5) can be calculated as (Walters & Michalski, 2016)

𝜀𝜀NO3
= 1, 000 ×

(

15𝛼𝛼NO3∕NO2
− 1

)

 (7)

𝜀𝜀N2O5
= 1, 000 ×

(

15𝛼𝛼N2O5∕NO2
− 1

)

 (8)

where 𝐴𝐴 𝐴𝐴NO3
 and 𝐴𝐴 𝐴𝐴N2O5

 represent the isotopic fractionation factor in NO2-NO3 equilibrium and NO2-N2O5 equilib-
rium, respectively.  15αX/Y is the nitrogen equilibrium isotopic fractionation factor between X and Y, which can be 
obtained by (Walters & Michalski, 2016)

1, 000 ×
(

15𝛼𝛼𝑋𝑋∕𝑌𝑌 − 1
)

=
𝐴𝐴

𝑇𝑇 4
× 10

10
+

𝐵𝐵

𝑇𝑇 3
× 10

8
+

𝐶𝐶

𝑇𝑇 2
× 10

6
+

𝐷𝐷

𝑇𝑇
× 10

4 (9)
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where T is the air temperature (K) and A, B, C, and D are constants (Table S1 in Supporting Information S1). In 
this way, 𝐴𝐴 𝐴𝐴NO2

 , 𝐴𝐴 𝐴𝐴NO3
 , and 𝐴𝐴 𝐴𝐴N2O5

 can be calculated, and then the Δ 15N1 and Δ 15N2 can be further calculated by the 
isotopic fractionation factor (𝐴𝐴 𝐴𝐴NO2

 , 𝐴𝐴 𝐴𝐴NO3
 , and 𝐴𝐴 𝐴𝐴N2O5

 ) and the contribution of each formation pathway:

Δ15N1 = 𝜀𝜀NO2
× 𝑓𝑓OH (10)

Δ15N2 = 𝜀𝜀NO3
× 𝑓𝑓NO3

+ 𝜀𝜀N2O5
× 𝑓𝑓N2O5 (11)

where fOH, 𝐴𝐴 𝐴𝐴NO3
 , and 𝐴𝐴 𝐴𝐴N2O5

 are the contributions of P1 (fP1), P2 (fP2), and P3 (fP3), respectively, which were esti-
mated in Section 2.3. Based on Equations 5–11, the nitrogen isotopic fractionation in NOx(g)-NO3 −(p) conversion 
(Δ 15N) was calculated.

3. Results
3.1. Seasonal Variations in Meteorological Conditions, Trace Gases, and Nitrate Isotopes

According to the report of the meteorological bureau in 2015–2016, four seasons in Hangzhou were divided as 
autumn (9 October to 30 November 2015), winter (1 December 2015 to 28 February 2016), spring (1 March to 30 
May 2016), and summer (1 June to 24 August 2016). The time series of meteorological conditions throughout the 
sampling period are shown in Figure S5 in Supporting Information S1. During the sampling period, PM2.5 varied 
from 12.5 to 188.0 μg m −3 with an average value of 46.8 ± 29.0 μg m −3 and showed higher concentrations in winter 
(129.4 ± 48.1 μg m −3) and lower concentrations in summer (32.9 ± 18.7 μg m −3). A large amount of precipitation 
was observed in all seasons except for autumn. Air temperature was lowest in winter (7.3°C ± 4.3°C) and highest 
in summer (29.3°C ± 2.7°C). Compared with northern cities in China (Qu et al., 2019), it showed relatively high 
RH (31%–96%, 75% ± 14%) in Hangzhou. Boundary layer height (BLH, calculated method is shown in Text S5 
in Supporting Information S1) was lower in winter (865 ± 280 m) and higher in summer (1,105 ± 295 m). Wind 
speed exhibited the highest value in spring and the average value throughout the year was 2.1 ± 0.8 m s −1. The 
wind from the northeast was dominant (45%) from January to October in 2016.

The observations of nitrate concentrations, isotopes of nitrate, and trace gases are shown in Figure 1. During 
the sampling period, the mass concentration of nitrate varied from 0.02 to 54.3 μg m −3 (Figure 1a) and showed 
similar variation with PM2.5 (r = 0.81, P < 0.01). NO3 − was highest in winter (21.0 ± 14.3 μg m −3) and lowest in 
summer (3.4 ± 6.6 μg m −3). NO2 was positively correlated with NO3 − (r = 0.69, P < 0.01; Table S2 in Support-
ing Information  S1), it showed the maximum value in winter and decreased to less than 10  ppb since 2016 
April. Hourly O3 concentrations varied from 1.5 to 52 ppb and was highest in summer and lowest in winter. The 
ratio of Ox (O3 + NO2) to CO was normally used to evaluate the oxidation capacity of the atmosphere (Cheng 
et al., 2008). The Ox/CO ratio varied from 21 to 157 and showed similar seasonal variation with O3 in this study. 
Nitrogen oxidation ratio (NOR) ranged from 0 to 0.57, which showed the highest value in winter and decreased 
to less than 0.1 during July–August in 2016.

The nitrogen isotope of nitrate (δ 15N-NO3 −) ranged from −2.9‰ to 18.1‰ with higher values in winter 
(9.8‰  ±  3.2‰) and lower values in summer (5.9‰  ±  6.0‰). The change of δ 15N-NO3 − depends on the 
seasonal variations of NOx sources and the nitrogen isotopic fractionation in nitrate production. Interestingly, 
in marine aerosols, the δ 15N-NO3 − reported by Savarino et al. (2013) (−8.8‰ to −2.9‰) was much lower than 
the values observed in this work, indicating a different story of nitrate sources in the marine boundary layer 
(MBL) compared with urban sites. The δ 15N of NOx in the emission of coal combustion was relatively higher 
(17.9‰ ± 3.1‰; Felix et al., 2012; Heaton, 1990; Zong et al., 2022). The NOx emitted from nitrification and 
denitrification normally has lower δ 15N values (−43.7‰ ± 15.9‰; Felix & Elliott, 2014; D. Li & Wang, 2008; 
D. J. Miller et al., 2018; Su et al., 2020; Z. Yu & Elliott, 2017). The nitrogen isotopic fractionation during the 
NOx(g)-NO3 −(p) conversion was associated with air temperature and the nitrate formation pathways, thus it varied 
a lot in different seasons (Walters & Michalski, 2016). Therefore, the higher values of δ 15N-NO3 − in winter were 
mainly derived by NOx sources with enriched isotope compositions and/or larger isotopic fractionation.

The oxygen isotopes of nitrate also showed significant seasonal variations. δ 18O-NO3 − changed from 47.8‰ 
to 95.0‰ during the sampling period, which was higher in winter (84.8‰  ±  6.1‰) and lower in summer 
(54.0‰  ±  6.4‰) and showed similar tendency with the observations in urban areas reported by Zong 
et al. (2020). However, the δ 18O-NO3 − values in Hangzhou were much higher than those observed in the MBL 
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(37.6‰–76.7‰, mean = 61.7‰; Y. Li et al., 2022), indicating different formation mechanisms of nitrate aerosols 
between urban and marine regions. In this study, δ 18O-NO3 − was positive correlated with Δ 17O-NO3 − (r = 0.59, 
P < 0.01). The oxygen isotope anomaly of nitrate (Δ 17O-NO3 −) ranged from 20.0‰ to 37.9‰, with an average of 
29.5‰ ± 4.4‰. Δ 17O-NO3 − showed similarly high values in winter (32.2‰ ± 4.0‰), spring (31.8‰ ± 3.1‰), 
and autumn (30.5‰  ±  3.2‰), while relatively lower values in summer (25.3‰  ±  3.3‰). Δ 17O-NO3 − was 
within the range of the observation in midlatitudes (Savarino et  al.,  2007), and similar with previous studies 
in Beijing (29.0‰ ± 4.0‰ during winter and 27.3‰ ± 2.4‰ during summer; Fan et al., 2021) and Shang-
hai (20.5‰–31.9‰; He et al., 2020). The discrepancy of meteorological conditions in different seasons could 
partially explain the variation of Δ 17O-NO3 −. For example, longer night hours in winter were in favor of night-
time reactions (e.g., NO3 reactions) to produce nitrate with higher Δ 17O-NO3 −. Δ 17O-NO3 − values were lower in 
summer might be due to the lower particle mass concentrations and therefore the surface area of particles, limit-
ing the heterogeneous uptake of N2O5 to produce nitrate (Cai et al., 2017; Zheng et al., 2015). The strong sunlight 
during the day in summer would accelerate photochemical oxidation reactions, producing nitrate particles with 
lower Δ 17O values through the reaction of NO2 with OH radicals.

3.2. Formation Pathways of Atmospheric Nitrate

Based on the observed Δ 17O-NO3 − values, the contribution of different pathways to nitrate formation were quan-
tified by combining a Bayesian model (Text S3 in Supporting Information S1). The results are shown in Figure 2. 
During the whole sampling period, the NO2 + OH, N2O5 + H2O, and NO3 + HC/H2O pathways contributed, 
on average, 25‰ ± 11‰, 35‰ ± 19‰, and 40‰ ± 10‰ to nitrate production, respectively (Figure 2a). The 

Figure 1. Time series of (a) nitrate (NO3 −) concentrations and nitrogen isotope of nitrate (δ 15N-NO3 −), (b) oxygen isotopes 
of nitrate (δ 18O-NO3 − and Δ 17O-NO3 −), (c) nitrogen dioxide (NO2) concentrations and NOR values, and (d) ozone (O3) 
concentrations and ratios of Ox to CO (Ox/CO). Blue shades represent the low Δ 17O-NO3 − cases in winter and gray shade 
represents the high Δ 17O-NO3 − case in summer.
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nocturnal chemistry (including NO3 + HC/H2O and N2O5 + H2O pathways) 
was predominant (annual mean value: 75%) in nitrate production through-
out the year and showed higher contributions in the autumn (81%), winter 
(76%), and spring (82%) than that in summer (59%). This result was similar 
to the previous studies in Beijing (Fan et al., 2021; Y. L. Wang et al., 2019). 
The contribution of daytime chemistry (NO2 + OH pathway) changed oppo-
sitely with nocturnal pathways, which averaged at 41% in summer and 
18%–24% in other three seasons. In addition, the formation mechanisms 
of nitrate aerosols were found to be different at different pollution levels 
(Figure 3a). Daytime chemistry dominated the nitrate production in clean air 
(NO3 − < 1 μg m −3). With the increase of pollution level, nocturnal chemistry 
became the major contributor of nitrate aerosols. Particularly, the NO3 + HC/
H2O pathway contributed ∼59% to nitrate production in the most polluted 
days (NO3 − > 35 μg m −3).

3.3. Nitrogen Isotopic Fractionation Effects

The Δ 15N between NOx(g) and NO3 −(p) ranged from −7.1‰ to 10.5‰ with 
an average of 2.9‰  ±  5.5‰ (Figure S6 in Supporting Information  S1). 
The Δ 15N in autumn, winter, spring, and summer was 0.5‰  ±  5.9‰, 
2.7‰ ± 5.0‰, 1.8‰ ± 4.7‰, and 5.5‰ ± 5.2‰, respectively. Our esti-
mated Δ 15N was similar with the previous result at a megacity in northern 
China (Z. Li et al., 2019). The discrepancy of Δ 15N in different seasons was 
caused by the seasonal variation of isotopic fractionation in each process 
from NOx(g) to NO3 −(p). In NOx cycle, the nitrogen isotopic fractionation 
between NOx and NO2 (𝐴𝐴 𝐴𝐴NO2

 ) varied from 0.4‰ to 6.7‰ with an average 
value of 3.1‰ ± 1.4‰, which was within the estimation (−5‰ to 20‰) of 
a previous study (J. Li et al., 2020). 𝐴𝐴 𝐴𝐴NO2

 was lower in winter (1.9‰ ± 1.2‰) 
and higher in summer (4.1‰ ± 1.3‰). 𝐴𝐴 𝐴𝐴NO2

 was affected by the variation of 
A and f(NO2) (Equation 6). A smaller A represents a more significant impact 
of the PHIFE and the KIE than the EIE on 𝐴𝐴 𝐴𝐴NO2

 (Michalski et al., 2004; C. E. 
Miller & Yung, 2000), which would be exhibited with high NO and low j(NO2) (controlled by the solar elevation 
angle; Equations S5 and S6 in Supporting Information S1) and resulted in higher values of 𝐴𝐴 𝐴𝐴NO2

 . And smaller 
f(NO2) would result in higher values of 𝐴𝐴 𝐴𝐴NO2

 . Since higher j(NO2) and lower NO were observed in summer, the 
lower f(NO2) was the main reason of the higher 𝐴𝐴 𝐴𝐴NO2

 in summer. When the mixing ratio of NOx increased to larger 
than 20 ppb, EIE was dominant in the nitrogen isotopic fractionation between NOx and NO2 (J. Li et al., 2020).

The average value of the EIE between NO2(g) and HNO3(g) (Δ 15N2) was calculated to be 2.0‰ ± 5.0‰ with the 
range of −7.3‰ to 9.6‰. Δ 15N2 was relatively higher in summer (3.8‰ ± 4.5‰) compared with the other 
seasons. Δ 15N2 was affected by the isotopic fractionation factors (i.e., 𝐴𝐴 𝐴𝐴NO3

 and 𝐴𝐴 𝐴𝐴N2O5
 ) and the contributions of 

nitrate formation pathways, both varied in different seasons. 𝐴𝐴 𝐴𝐴NO3
 was higher in summer (−18.0‰) and lower in 

winter (−18.9‰). 𝐴𝐴 𝐴𝐴N2O5
 changed oppositely with higher values in winter (28.6‰) and lower values in summer 

(25.2‰). Both isotopic fractionation factors were affected by the variation of air temperatures (Equation 9). 
Furthermore, the lower contribution of NO3 + HC pathways in summer (26%) than other seasons (41%–49%) 
finally resulted in the higher Δ 15N2 values. The seasonal variation of δ 15N-NOx was mainly affected by the 
composition of NOx sources in different seasons. The obtained δ 15N-NOx was then applied in the NOx source 
apportionment in following sections.

3.4. Source Contributions to Atmospheric Nitrate

Coal combustion, vehicle emissions, BB, and soil emissions (NOx emitted from nitrification/denitrification in 
farmland and soil) were taken as the possible sources in Hangzhou, due to the correlation of nitrate with various 
tracers of NOx sources (Text S6 and Table S2 in Supporting Information S1). The nitrate source apportionment 
was accomplished with a Bayesian model and typical nitrogen isotope values of NOx sources reported in previous 
studies (Text S3 and Table S3 in Supporting Information S1). Over the whole year, coal combustion was the 

Figure 2. (a) Relative contributions of NO2 + OH, N2O5 + H2O, and 
NO3 + HC/H2O pathways to nitrate production and (b) relative contributions 
of NOx sources to nitrate aerosols after considering the effect of nitrogen 
isotopic fractionation during the sampling period.
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largest contributor (50% ± 9%) of nitrate aerosols (Figure 2b), which agreed 
with the positive correlation between NO3 − and SO2 (r = 0.55, P < 0.001; 
Lang et  al.,  2012). In addition, mobile emissions, BB, and soil emissions 
contributed 19% ± 12%, 26% ± 15%, and 5% ± 4%, respectively, to nitrate 
aerosols (Figure 2b). Obvious seasonal variation of nitrate sources was found. 
The contribution of coal combustion was higher in winter (56% ± 9%), spring 
(53% ± 10%), and autumn (50% ± 13%) than in summer (36% ± 10%). In 
contrary, the contribution of soil emission was higher in summer (9% ± 5%) 
than in winter, spring, and autumn (∼5%).

4. Discussion
4.1. Influence Factors of Nitrate Production

Various reasons could influence the production of particulate nitrate. First, 
the atmospheric oxidation capacity would be different in various seasons or 
at different pollution levels. Nitrate production depends on the concentrations 
of oxidants in the atmosphere (e.g., O3 and OH radicals) which formation 
requires the existence of the sunlight. The mixing ratios of OH radicals and 
O3 represent the oxidation capacity of the atmosphere, which are normally 
higher in summer with longer daylight hours (Kumar & Sinha, 2021; Platt 
et al., 1980). In winter, the mixing ratio of O3 was much higher than OH and 
HO2/RO2 radicals (Fleming et al., 2006) and the reaction time (dark time) of 
NO3 and N2O5 reactions is much longer than summer (Figure S5 in Support-
ing Information S1), which made the nocturnal chemistry dominant in the 
nitrate production. In addition, the decline of daylight time was found along 
with the increase of nitrate pollution (Figure 3b), which provided favorable 
environment for the occurrence of nocturnal chemistry in haze days.

Second, heterogeneous chemistry would increase in polluted days. Accord-
ing to a previous study, particles collected in Beijing haze episodes turn into 
liquid state from semisolid, when RH increased to be more than 60%, such 
that the liquid particles might readily take up inorganic pollutants (Y. Liu 
et al., 2017). The aerosol surface could increase with the mass concentration 
of PM2.5, which would provide the interface and accelerate the heterogeneous 

reactions (Cai et al., 2017; Y. L. Wang et al., 2019). In this work, the increasing contributions of NO3 + HC/
H2O and N2O5 + H2O pathways were observed with aerosols liquid water content (ALWC, calculation method is 
shown in Text S7 in Supporting Information S1) and PM2.5 (Figure 3c). This suggested that the enhanced hydrol-
ysis reactions of NO3 and N2O5 on particle surface produced a large amount of nitrate aerosols in the humid and 
polluted atmosphere. In this work, O3 concentration decreased and NO2 concentration increased when nitrate 
≥15 μg m −3 (Figure 3d), which might be ascribed to the insufficient daylight restrained the photolysis of NO2 and 
NO3 radicals and promoted the formation of NO3 and N2O5 radicals in the polluted atmosphere.

Besides that, a few cases in winter (e.g., 15 and 21 February) with extremely low Δ 17O-NO3 − (22‰–25‰, 
Figure 1b) represent a large contribution of NO2 + OH reaction to nitrate formation. The case on 15 February 
was under the circumstances when the north wind was dominant, and the daily average wind speed increased to 
6 m s −1 (Figure S5 in Supporting Information S1). The results show that the mass concentration of PM2.5 was 
13.7 μg m −3, indicating the accumulated pollution was scavenged by the north wind. The low particles were not 
able to provide sufficient reaction sites for various heterogeneous reactions, especially with relatively low RH 
(36%; Figure S5 in Supporting Information S1). In addition, NO2 was extremely low (<1.5 ppb) with relatively 
high value of NOR (0.59; Figure 1c), which suggested fast nitrate formation through NO2 + OH reaction in the 
clean atmosphere during the day. As for the case on 21 February, the sample collection was conducted during 
the rainfall. As a result, the PM2.5 and NO3 − decreased to 65 and 13.1  μg  m −3. Meanwhile, O3 increased to 
20.7 ppb and the ALWC was extremely low (4.9 μg m −3; Figure 1d and Figure S5 in Supporting Information S1). 
This phenomenon revealed the enhanced photochemical capabilities of atmosphere and the less importance of 
heterogeneous reactions in the fresh nitrate production when the air pollutants were cleaned by the rain, which 
was supported by the previous study of oxygen isotopes of nitrate in precipitation (Y.-L. Zhang et al., 2022).

Figure 3. Changes of (a) relative contribution of each formation pathway, 
(b) Δ 17O-NO3 − and daylight time, (c) PM2.5 and ALWC, and (d) NO2 and O3 
under different nitrate levels.
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In summer, the high values of Δ 17O-NO3 − (>30‰) were found on 17 and 24 August (Figure 1b), indicating the 
high contribution of NO2 + HC/H2O pathway. This result was very different from others during the whole summer 
period, in which nitrate was mainly produced by the NO2 + OH pathway. On these 2 days, the wind both came 
from southeast direction, the average wind speed was around 4 m s −1, and the BLH was relatively low (∼720 m; 
Figure S5 in Supporting Information S1). These conditions were conducive to the stable state of the atmosphere. 
At the same time, high O3 concentrations were observed (Figure 1d), potentially resulting in the production of 
NO3 radicals and then the reaction of NO3 with hydrocarbons (Asaf et al., 2010; Vrekoussis et al., 2007).

4.2. Emission Sources of Atmospheric Nitrate in Hangzhou

The dominance of coal combustion to atmospheric nitrate agrees with the observation result in Shanghai reported 
by Zong et al. (2020) and the emission inventories that indicting coal to be the dominant source of NOx in China 
(F. Liu et al., 2016) as well as the YRD (C. Huang et al., 2011). Based on Multiresolution Emission Inventory 
for China (MEIC, http://www.meicmodel.org/), the coal-related emission sources, industry, and power plant were 
the major NOx emission sectors in the YRD (N. Wang et al., 2019). In addition, the footprint of aerosols during 
the sampling period suggested that air pollutants at the receptor site were not only from local emissions but also 
affected by regional transported pollution from neighboring provinces like Jiangsu, Anhui, as well as Jiangxi (Lin 
et al., 2022). The coal materials produced in these provinces could also contribute nitrate aerosols to the receptor 
site. Our result indicated that coal combustion was still a dominant source of atmospheric NO3 −. Strict control 
measures of reduction in NOx emissions from coal-fired power plants and industrial emissions in local Hangzhou 
and its neighboring provinces were still needed.

Our results also showed vehicle exhausts was a nonneglected NOx in urban cities (C. Huang et al., 2011), and 
BB was also an important source of nitrate aerosols in the YRD (Yang & Zhao, 2019). Previously, fossil fuel 
combustion was estimated to account for 96% of total NOx emission in China (Gu et al., 2012). The ratio of 
fossil-fuel-produced nitrate to non-fossil-fuel-derived nitrate in Hangzhou was approximately 2.2, which was 
much higher than those in megacities in southern China like Chengdu (∼1.4) and Guangzhou (∼1.6), but lower 
than the value in Changchun city (∼3.3) in northeast China (Zhao et al., 2021; Zong et al., 2020). This suggested 
that the fossil fuel consumption in southern and eastern China was lower than the northeast China.

The obvious seasonal variation of nitrate sources in this work was consistent with the results in an aerosol study 
in Shanghai (Zong et al., 2020) and a precipitation study in Ningbo (Shi et al., 2021). The higher contribution of 
coal combustion during cold seasons might be related to the coal-fired heating in rural areas in Hangzhou and 
surrounding regions. The increasing soil NOx emission in summer was due to the active microbial processes in 
soils under high air temperature condition, combining with the effects from a large garden (Hangzhou Botanical 
Garden, area = 2.85 km 2) locating less than 1 km away from the sampling site. In addition, the contribution of 
BB was almost constant (23%–28%) throughout the year, which was coincided with the intense open fire spots 
observed in Hangzhou in four seasons (Figure S7 in Supporting Information S1). To analyze the influence of 
fractionation effects on nitrate source apportionments, the nitrate sources were estimated without consideration of 
fractionation effects between NOx(g) and NO3 −(p). As shown in Figure S8 in Supporting Information S1, the contri-
butions of nitrate sources without considering the Δ 15N produced the same contribution pattern with the results 
with considering the fractionation effects for the entire year. However, when without considering the Δ 15N, the 
contribution of coal combustion was higher than that with considering the fractionation effects. The contributions 
of mobile and soil emissions in summer were lower than those with considering the Δ 15N. The results indicated 
that the ignorance of isotopic fractionation normally caused the overestimation or underestimation of the contri-
bution of NOx source.

5. Conclusions
Multiple isotope compositions of nitrate (δ 15N-NO3 −, δ 18O-NO3 −, and Δ 17O-NO3 −) in PM2.5 collected in Hang-
zhou from 2015 to 2016 were determined in this study. The contribution of each nitrate formation pathway was 
estimated using the Δ 17O-NO3 −observation. The nitrogen isotopic fractionation (Δ 15N) during the nitrate produc-
tion and the δ 15N-NOx were calculated based on the results of nitrate formation mechanisms. And the NOx source 
apportionment was conducted in various seasons with a Bayesian model. The results showed that NO2 + OH, 
N2O5 + H2O, and NO3 + HC/H2O pathways contributed 25‰ ± 11‰, 35‰ ± 19‰, and 40‰ ± 10‰ to nitrate 
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production, respectively. Nocturnal chemistry (including NO3 + HC/H2O and N2O5 + H2O pathways) showed 
higher contributions in cold seasons and contributed equally with NO2 + OH pathway to nitrate formation in 
summer. In addition, the contributions of NO3 + HC/H2O and N2O5 + H2O pathways increased obviously with 
ALWC and PM2.5, suggesting the enhanced hydrolysis reactions of NO3 and N2O5 on particle surface produced 
a large amount of nitrate aerosols in Hangzhou. Coal combustion (50% ± 9%) was the most important nitrate 
source in Hangzhou. Coal combustion and soil emission showed significant seasonal variation due to the coal 
consumption in cold seasons and active soil microbial processes in summer.

The uncertainties of NOx source apportionment in this study were mainly attributed to the neglect of difference 
between δ 15N-HNO3 and δ 15N-NO3 − and the lack of precise typical nitrogen isotopic values of NOx sources. 
Although the uncertainties are nonnegligible, it provides an easy and fast approach to characterize the NOx 
sources combined with observations in ambient environment. Consequently, the detection of dominant NOx 
sources in the YRD and the studies on the nitrogen isotopic fractionation between HNO3(g) and NO3 −(p) are 
required in the future for a better understanding of the composition of NOx sources in China.
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org/src/contrib/Archive/siar/ (Parnell & Jackson, 2011). Software: the back trajectories data were calculated with 
hybrid single-particle Lagrangian integrated trajectory model, developing by the United States National Oceanic 
and Atmospheric Administration (NOAA; https://www.ready.noaa.gov/HYSPLIT_hytrial.php; NOAA,  2022). 
Software: the aerosol liquid water content (ALWC) was calculated using the ISORROPIA-II model, which 
can be obtained at http://wiki.seas.harvard.edu/geos-chem/index.php?title=ISORROPIA_II (Fountoukis & 
Nenes, 2007).
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