
1. Introduction
Water-soluble humic-like substances (HULISWS) have been widely detected in clouds, fog, rainwater, and snow 
(Bao et  al.,  2022; Fan et  al.,  2018; Lin et  al.,  2010; Santos et  al.,  2012), which can be emitted by primary 
sources and formed from secondary processes (Arya et al., 2020; Bao et al., 2022; Fan, Song, & Peng, 2016; Li 
et al., 2019; Zhang et al., 2021). As an essential fraction of atmospheric brown carbon (BrC), HULISWS possess 
significant light-absorbing abilities at the ultraviolet to visible (UV-Vis) wave band, contributing 20%–40% of 
the direct radiative forcing to the atmosphere (Chung et al., 2012; Wang et al., 2018; Zhang et al., 2017, 2020). 
The light-absorbing abilities of HULISWS are predominantly governed by their molecular sub-structures (Fan 
et al., 2018), which depend on their atmospheric processes and emission sources (Baduel et al., 2010; Fan, Wei, 
et al., 2016). Many previous studies have investigated the light absorption coefficient (Abs) of individual species 
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(Bao et al., 2022; Guo et al., 2022; Jiang, Li, Sun, Liu, et al., 2021). However, the dominant chromophores of 
HULISWS at the micro level are still unknown since they are composed of a variety of chemical components 
(Laskin et al., 2018; Noziere et al., 2015).

The Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) coupled with electrospray 
ionization (ESI) ion source [ESI-FT-ICR-MS] is a feasible method for the detection of elements in multi-
component mixtures, which can provide high-accuracy molecular information (structural markers) and asso-
ciated relative abundance (molecular intensity) of mixed aerosols (Chen et  al.,  2016; Jiang, Li, Sun, Tian, 
et al., 2021; Jiang et al., 2020; Lin et al., 2012; Wang, Hu, Lin, et al., 2019; Zeng et al., 2020). For instance, 
Jiang, Li, Sun, Tian, et al. (2021) quantified the molecular compositions of dissolved organic aerosols using the 
ESI-FT-ICR-MS technique. Zeng et al. (2020) used ESI-FT-ICR-MS to quantify the molecular compositions 
of BrC, and further allocated the Abs of the mixtures into the individual molecular formula with the aid of the 
statistic method (Zeng et al., 2020). However, the mix of complex atmospheric aerosols and the interaction 
of their chromophores could cause some synergistic or antagonistic effects on the light-absorbing abilities 
(Li et al., 2022), leading to a more complex non-linear relationship between molecular composition and Abs 
value. Such a complex relationship might limit the application of traditional statistical methods in deciphering 
high-dimensional relationships.

Machine learning (ML) is an emerging tool that could build complex non-linear relationships between input 
and output variables, having been successfully used to reveal the complex relationships between mixtures and 
their molecular intensities (Jiang, Li, Sun, Tian, et al., 2021; Tapavicza et al., 2021). Although ML can easily 
fit the non-linear relationships between targets and variables, overfitting may occur when the training data set is 
insufficient. Based on this, some over-sampling techniques like the synthetic minority over-sampling technique 
(SMOTE) (Chawla et al., 2002) and other ML-based data augment methods (Mumuni & Mumuni, 2022) were 
provided to ensure good performance.

This work uses the ML approach combined with the SMOTE technique (described in Text S10 of the Supporting 
Information S1) to allocate the Abs values of HULISWS mixtures to each molecule level by the molecular marker 
using the ESI-FT-ICR-MS technique (Hong, Cao, Fan, Lin, Bao, et al., 2022; Jiang, Li, Tang, Cui, et al., 2022). 
Further, the molecular absorption was allocated to the functional groups by combining the molecular absorption 
data collected from the chemical database—Reaxys (Goodman, 2009). This ML approach enables to select the 
light-absorbing molecules and functional groups, which could be used to allocate the Abs value at the macro-level 
to the micro-level when the chemical structures of HULISWS and the interaction between each chromophore 
(Boyle et al., 2009; Yakimov et al., 2022), water-soluble metallic ions (Li et al., 2022), and solutions (Phillips 
et al., 2017) are not perfectly identified.

2. Methods and Data Analysis
2.1. Sample Collection and Chemical Analysis

PM2.5 samples were collected at an open urban site in Nanjing, China, using a high-volume air sampler (flow 
rate: 1 m 3 min −1, see details in Text S1 of the Supporting Information S1). As shown in the flow chart (Figure 1), 
HULISWS fractions were extracted from atmospheric samples and determined, following the protocol reported 
by Fan et al.  (2018) using hydrophile-lipophile balance (HLB) resin (Text S2 in Supporting Information S1). 
According to the concentration levels of HULISWS, 12 samples (with 2 high, 2 moderate, and 2 low concentra-
tions of HULISWS from winter and summer, Figure S1 and Table S1 in Supporting Information S1) were selected 
(Bao et al., 2023) from the whole samples for light absorption (Bao et al., 2022) (Text S3 in Supporting Informa-
tion S1) and ESI-FT-ICR-MS analyses (Bao et al., 2023; Jiang, Li, Sun, Tian, et al., 2021) (Texts S4 in Supporting 
Information S1). In addition, concentrations of water-soluble ions in PM2.5 samples were also determined follow-
ing the procedure described elsewhere (Bao et al., 2022).

During the sampling period, the gas pollutant data were obtained from the China National Environmental Moni-
toring Centre (www.cnemc.cn) while the meteorological parameters were acquired from the China Meteorologi-
cal Bureau (www.cma.gov.cn). In addition, fire-spot maps were obtained from the Fire Information for Resource 
Management System (firms.modaps.eosdis.nasa.gov) (Figure S2 in Supporting Information S1). Aerosol liquid 
water content (ALWC) and pH value were calculated by the ISORROPIA-II model (Text S5 in Supporting Infor-
mation S1) (Lin et al., 2020).
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2.2. Light Absorption From Individual Molecules to Bulk

For the molecular formula j detached from sample i using ESI-FT-ICR-MS, the molecular intensity (Iij) equals 
its concentration (cij) multiplied by the ionization efficiency (γj) (Iij = cij·γj). Combining with the Beer-Lambert 
law, the light absorption coefficient (Absi) of sample i could be calculated by Iij as follows (Zeng et al., 2020):

Abs𝑖𝑖 =

𝑛𝑛
∑

𝑖𝑖=0

(

𝐼𝐼𝑖𝑖𝑖𝑖 ×
𝜀𝜀𝑖𝑖

𝛾𝛾𝑖𝑖

)

+ Interactions, (1)

where εj represents the Abs value of each molecular formula and the Interactions represent the intermolecular 
effects on the Abs value. When the ML model fully learns the relationship of Equation 1, the relative contribution 
calculated by the ML-based attribution technique should equal k·εj/γj (k is the proportional coefficient). Then, the 
molecular light absorption could be calculated (see details in Text S6 of the Supporting Information S1).

2.3. Machine Learning Model

As the workflow shown in Figure 1, then, an approach using the few-shot learning (FSL) method (FSLAbs) was 
built to decipher the relationship from Abs value to the relative intensity of molecular markers in 12 samples 
determined by the ESI-FT-ICR-MS (see Text S6 in Supporting Information  S1) (Wright & Ziegler,  2017). 
FSL is an algorithm of the ML that is aimed to learn the underlying pattern from a few samples (Parnami & 
Lee, 2022), and has been widely used in previous object detection (Kisantal et al., 2019), cheminformatics (Chen 
et al., 2023),  and environmental studies (Huang et al., 2023). Here, we used the synthetic minority over-sampling 
technique (SMOTE) (Chawla et al., 2002) combined with the random forest (RF) algorithm provided by Ranger 

Figure 1. The flow chart of this work. The red squares represent the important technique used in this work; the cyan squares represent the important intermediate 
output of the research flow and their separated methods; the orange squares represent the important results on the molecular level; the purple squares represent the 
mixed samples.
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package (Fan et al., 2023; Hong, Cao, Fan, Lin, Bao, et al., 2022; Wright & Ziegler, 2017) to successfully build an 
FSL model without the risk of overfitting (has been proved in a 55 × 35799 ESI-FT-ICR-MS data set, see details 
in Text S8 of the Supporting Information S1) (Belgiu & Drăguţ, 2016; Cortes-Ciriano & Bender, 2015; Jablonka 
et al., 2020), and then proved by the validation data set and model outputs (Text S9 in Supporting Information S1) 
(Arulkumaran et al., 2017).

After that, the Abs365 of HULISWS (target variable) were allocated to each molecular marker (input variables) using 
the attribution technique combined with the FSLAbs (Davies et al., 2021; Hong, Cao, Fan, Lin, Bao, et al., 2022; 
Wei et al., 2015), and the main light-absorbing molecules were selected by the first-order difference of molecular 
absorption among each molecule (Text S7 in Supporting Information S1).

Meanwhile, the molecular information (i.e., UV-Vis spectra, molecular structures, and functional groups) of 5 
selected light-absorbing molecular markers were collected from Reaxys (www.reaxys.com) (Goodman, 2009). 
After that, as the flow showed in Figure 1, an RF model (RFMol) was built to learn the relationship between 
functional groups and the molecular absorption near 365 nm using the 296 selected chemical spectra and struc-
tures (Davies et al., 2021; Hong, Cao, Fan, Lin, Bao, et al., 2022; Wei et al., 2015), and validated by other 827 
light-absorbing molecules. Here, other influencing factors like the number of each element (i.e., C, H, O, N, and 
S), the solution (i.e., water, ethanol, etc.), and some UV-Vis spectra parameters were also considered (see Texts 
S11 and S12 in Supporting Information S1) and the relative contribution of each functional group was estimated 
by the attribution technique (Davies et al., 2021; Hong, Cao, Fan, Lin, Bao, et al., 2022; Wei et al., 2015).

3. Results and Discussion
3.1. Molecular Composition of HULISWS

The ESI-FT-ICR-MS analysis detected 8084 unique molecular formulas from HULISWS fractions in total (Figures S3 
and S4 in Supporting Information S1), and the number of chemical formulas ranged from 1,334 to 4,939 (Table S1 in 
Supporting Information S1) for each extracted solution. In general, a total of 6,121 molecules, which have molecular 
absorption at 365 nm, were determined by the FSLAbs model with a consideration of chromophores' interaction in 
solution. After that, the contributions of four subgroups to the molecular absorptions were apportioned using elemen-
tal composition (Zeng et al., 2020) (see Figure 2): CHO (molecules containing only C, H, and O), CHON (only C, H, 
O, and N), CHOS (only C, H, O, and S), and CHONS (only C, H, O, N, and S). The result showed that the relative 
intensity of CHON components dominated the Abs365 value in both summer and winter (42%–44%) (All contribu-
tions to mass concentration and Abs365 came from the relative intensity of subgroups). However, the contributions 

Figure 2. The contribution of CHO, CHON, CHOS, and CHONS subgroups to the molecular intensity (a) and Abs365 (b) of 
the HULISWS.
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of other subgroups to Abs365 varied in the summer and winter. For example, the contributions of CHO and CHOS 
to Abs365 in the summer (CHO∼29% and CHOS∼18%) were much higher than those in the winter. On the contrary, 
the contribution of CHONS to ABS365 in the winter was 33%, exceeding that (10%) in the summer by a factor of 3.

In the summer, the higher temperature (29.4 ± 1.9°C) and relative humidity (81.5% ± 6.0%) might promote the 
chemical reaction, leading to a photo-bleaching effect (Jiang, Li, et al., 2020; Lin et al., 2017; Song et al., 2018). In 
the atmosphere, NOx (NOx = NO + NO2) can be converted into nitrate (NO3 −) and organic nitrate (light-absorbing 
fractions) upon atmospheric oxidation (Zhang, Zhang, et al., 2022), and organic nitrate may further allocate into 
some smaller N-containing compounds (e.g., isocyanic acid) (Hems & Abbatt, 2018). Here, the higher contri-
bution (42%) of CHON species (carbon number > 3) and lower nitrate (NO3 −) concentration (3.2 μg m −3) in the 
summer indicated that more organic nitrates were formed through atmospheric oxidation. Such phenomena could 
be attributed to the favorable occurrence of liquid-liquid phase separation (LLPS) of summer aerosols, owing to 
their comparatively higher pH value of 4.2 and lower ALWC of 13.8 ± 8.8 μg m −3 in summer relative to those 
values in winter (pH of 3.6 and ALWC of 166.2 μg m −3) (Dallemagne et al., 2016; Schmedding et al., 2020). Since 
phase-separated aerosols typically exhibit an inorganic-rich core and an organic-rich shell with higher viscosity, 
the entry of gas species (i.e., NOx) could be hindered, thereby limiting the formation of secondary inorganic ions 
(NO3 −: 3.2 ± 2.9 μg m −3, SO4 2−: 7.6 ± 2.6 μg m −3) (Schmedding et al., 2020). In addition, the low oxidation 
extent of aerosols found in this work, where 84% of molecular formulas have an O/C ratio lower than 0.8 (Figure 
S5 in Supporting Information S1), provides further evidence for the occurrence of LLPS (Kucinski et al., 2021).

Compared to the O/C value, the (O-3S-2N)/C ratio is a better index to express the number of oxygen-containing 
functional groups of each carbon atom since each organo-sulfate/nitrate usually contains three/two more oxygen 
atoms than the common CHO species. 48 Previously, the distribution of the (O-3S-2N)/C combined with the 
H/C value could be used to roughly distinguish the chemical composition (Jiang, Li, Tang, Cui, et al., 2022). 
As shown in Figure 2, the molecular compositions of HULISWS were separated into six different groups using 
the Van-Krevelen diagrams (see details in Table S10 of the Supporting Information S1) (Jiang, Li, Sun, Tian, 
et al., 2021). Generally, highly unsaturated molecules dominated both molecular intensity (44.5%) and Abs365 
(39.0%) of HULISWS during the whole period, which could be attributed to the biomass burning (see Figure S2 in 
Supporting Information S1) and cooking (mainly the used of fuel) emissions (Jiang, Li, Tang, Cui, et al., 2022).

To further discuss the potential formation of organic nitrate, the molecular formulas with an O/N ratio equal to 
6 were selected as organic nitrate in the further discussion (Jiang, Li, Tang, Zhao, et al., 2022). Compared with 
summer, organic nitrate has lower O/C (0.77) and H/C (1.45) ratios based on the relative intensity weighted (Table 
S9 in Supporting Information S1). Winter organic nitrate showed a higher relative intensity weighted double-bond 
equivalent (DBE) and aromaticity index (AI) compared with spring (Table S9 in Supporting Information S1).

Here, the N-containing compounds (CHON and CHONS) contributed large proportions to light-absorbing 
ability (55% in the summer and 77% in the winter), highlighting the existence of nitro-aromatic compounds 
(NACs) (Wang, Hu, Wang, et  al.,  2019). Besides, the high observed RH (77.9% ± 12.8%) and NOx concen-
tration (109.8 ± 18.0 μg m −3), indicate that the secondary formations of NOx might be a formation pathway of 
HULISWS  (Wang, Hu, Wang, et al., 2019).

Previous studies have documented that NOx participated in atmospheric chemical reactions and produced 
light-absorbing N-containing compounds (Chow et al., 2016; Li et al., 2020). Based on the Van-Krevelen diagrams 
divided results in Figure 2 (Jiang, Li, Tang, Cui, et al., 2022), the organic nitrate in winter was mainly composed 
of polyphenolic aromatics, which formation was significantly affected by the NO2 concentration level (Wang, 
Hu, Wang, et al., 2019). Besides, the rising SO2 and SO4 2− abundance could also contribute to the formation of 
organic nitrate at nighttime (Chen et al., 2022). Here, HULISWS showed a well-positive correlation with NO3 − 
(R 2 = 0.81, p < 0.01), NO2 (R 2 = 0.76, p < 0.01), SO2 (R 2 = 0.57, p < 0.01), and SO4 2− (R 2 = 0.96, p < 0.01) in 
the winter (Figures S6 and S7 in Supporting Information S1), highlighting the NO2 and SO2 joint formation of 
organic nitrate in winter (Chen et al., 2022).

3.2. Possible Molecular Formulas of the Dominant Light-Absorbing Molecules of HULISWS

Here, 5 crucial molecular formulas (C4H6O4NS, C8H6O4NS, C11H15O3N2, C12H15O3N2, and C19H21O6) selected from 
6,121 molecules by the first-order differences of molecular absorption (Text S8 in Supporting Information S1) in the 
winter contributed ∼74% (±3%) to the Abs365, whereas no significant light-absorbing molecules were detected in 
the summer (all molecules contributed <1% to Abs365). Such results could be attributed to the higher emissions from 
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biomass burning and anthropogenic (e.g., coal combustion) activities that happened in winter (Bao et al., 2023). 
Such events could emit more highly unsaturated pollutants (i.e., C4H6O4NS, C8H6O4NS, C11H15O3N2, C12H15O3N2, 
and C19H21O6), contributing more light absorbing abilities in 365 nm (Text S9 in Supporting Information S1). In 
summer, however, the higher biogenic events emitted and the secondary reactions produced more saturated pollut-
ants under the higher temperature and RH conditions, which have limited light-absorbing abilities (Bao et al., 2023). 
Besides, compared to the CHO (0.45), CHON (0.49), and CHONS (0.26) species, the lower (0.08) relative intensity 
weighted aromaticity index (AIW) of CHOS subgroups in winter indicated that the CHOS species mainly comprised 
of aliphatic species, which contributed lower or no light-absorbing abilities near 365 nm (Bai et al., 2023; Jiang, Li, 
Sun, Tian, et al., 2021). Such results could be used to explain why no CHOS species were selected.

To further prove the dominant species could contribute larger light-absorbing abilities at the micro level, a total 
of 296 existing isomers of C8H6O4NS, C11H15O3N2, C12H15O3N2, and C19H21O6 (see details in Table S3 of the 
Supporting Information S1) were collected from previous literature using the Reaxys database. Among these four 
light-absorbing molecules, C8H6O4NS, C11H15O3N2, and C12H15O3N2 possessed lower (O-3S-2N)/C ratios, indi-
cating that these molecules mainly originated from the less oxidation state sulfur-containing molecules (Figure 3). 
On the contrary, C19H21O6 exhibited a higher (O-3S-2N)/C ratio, reflecting that this molecule was characterized 
by highly unsaturated structures (Jiang, Li, Tang, Cui, et  al., 2022). Using the Reaxys database, the possible 
isomer of these 4 critical light-absorbing molecules were identified as methyl trans-β-(5-nitro-2-thienyl)acrylate 
(C8H6O4NS), 2-(2-Phenoxy-ethylazo)-prop-2-yl-hydroperoxide (C11H15O3N2), syn-(1-hydroxyethyl,methyl) 
(ethyl,methyl)bimane (C12H15O3N2), and 6-(3-acetoxypropyl)-8-tert-butyl-2-oxo-2H-chromen-3-carboxylic 
acid  (C19H21O6), respectively. No spectra of C4H6O4NS have been identified till now and therefore we attempted 
to reconstruct the spectra of C4H6O4NS by the ML approach (Text S10 in Supporting Information  S1). The 
result showed that the isomers of C4H6O4NS might be 2-cyanoethylmethanesulfonate, 2-cyanopropane-1-sul-
fonate, etc., which their light-absorbing bands ranging from 230 to 497 nm with the major absorbed peak of 
287–409 nm (Table S4 of the Supporting Information S1). Such an ML model has been validated through another 
873 compounds within the light-absorbing molecules (Figure S11 in Supporting Information S1).

3.3. The Potential Light-Absorbing Chromophores of HULISWS

Section  3.2 discussed the possible structure of the main light-absorbing molecules. However, since 
ESI-FT-ICR-MS only provided the mass-to-charge ratio of molecular clusters derived from isobarically resolved 
ions, the molecules obtained from Reaxys might not reflect the real chemical composition in the atmosphere. 
Functional groups, as the composed unit of molecular absorption (Higashiguchi et al., 2005; Zhao et al., 2021), 
could be used to reflect the composition of light-absorbing chromophores. In this research, 18 functional groups 
that have been reported in previous atmospheric studies, such as C-N bound (mainly from vehicles) and -CO-NH- 
(primarily from biomass burnings, Table S5 in Supporting Information S1) were considered in the RFMol model 
(Table S5 in Supporting Information S1) (Cheng et  al.,  2006). Except for the kind and position of the func-
tional group (Higashiguchi et al., 2005; Zhao et al., 2021), some previous research reported that the molecular 
absorption spectra could also be affected by the properties and pH value of solutions (Phillips et al., 2017), the 
water-soluble metallic ions (e.g., Fe(III)) (Li et al., 2022), as well as the interaction of chromophores inside the 
mixture components in solution (Boyle et al., 2009; Yakimov et al., 2022).

To quantify the potential contribution of functional groups to the Abs365 value, another ML approach (RFMol) was 
built based on two important prediction variables, including the number of functional groups and the kind of solu-
tions. This model was trained by 296 compounds of the 5 main light-absorbing molecules selected by the FSLAbs 
in the winter and validated by other 873 molecular absorption spectra from Reaxys (Text S11 in Supporting 
Information S1). Note that although the position of substitution and water-soluble metallic ions was not consid-
ered here, the RFMol model could be used to predict molecular absorption beyond the training molecules with an 
acceptable error (R 2 = 0.77, MAE = 0.27, RMSE = 0.75). Therefore, even for the mixture of species with the same 
elements in the detached ions, this model could also predict its molecular absorption under an acceptable error.

Then, the contribution of functional groups to the molecular absorption coefficient in the winter could be esti-
mated using the ES3, and the results are shown in Figure 4. Our results indicated that the –C≡N, –CO–NH–, 
and phenyl radical (C6H5–) dominated the molecular absorption coefficient near the 365 nm of the spectrum 
(Figure 4), with average contributions of 31% (±4%), 30% (±4%), and 12% (±5%), respectively.

In all, the CHON and CHONS components, which mainly contained –C≡N and –CO–NH–groups, dominated 
the light-absorbing abilities of HULISWS near 365  nm in the winter (44%). Moreover, nitrogen-containing 
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light-absorbing functional groups (i.e., –C≡N and –CO–NH–) contributed 61% (±8%) to the Abs in the winter, while 
the oxygen-containing functional groups also contributed ∼27% (±5%) to the Abs. As the most light-absorbing 
group, the nitrogen-containing unsaturated bond was mainly contained by the aerosols emitted from fossil fuel 
combustion (including both vehicle (Lyu et al., 2019; Zhang, Ren, et al., 2022) and cooking (Lyu et al., 2019; Wang 
et al., 2020)). –CO–NH– was profoundly emitted from cooking and biomass burning (Cheng et al., 2006). The 
oxygen-containing functional groups widely came from the photochemical formation  (Chhantyal-Pun et al., 2018; 
Frossard et al., 2014; Millet et al., 2015), biomass and fossil fuel combustion (Chhantyal-Pun et al., 2018; Humes 
et al., 2022; Millet et al., 2015), and marine sources (Frossard et al., 2014).

4. Conclusion
In this study, we proposed a few-shot learning approach that can successfully allocate the light absorption of 
HULISWS into its functional groups. Our results indicated that the nitrogen-containing functional groups were 
a crucial contributor to HULISWS light absorption. This approach considers all the existing molecules and their 
functional groups which may influence the light absorption of HULISWS from chemical databases and may be 
helpful to allocate other aerosol properties (e.g., toxicology and pathology) into the molecular or even functional 

Figure 3. The Van-Krevelen diagrams of molecules detected by ESI-FT-ICR-MS analysis. The size of the circle represents the molecular intensity in the summer 
(a) and winter (b) and light absorption (Abs365) values in summer (c) and winter (d), respectively. In subfigure (d), the molecular formula with a higher contribution 
to Abs365 is labeled with its molecular formula. Lines separating compound categories here were for better visualization, and accurate categorization could be found 
elsewhere (Jiang, Li, Tang, Cui, et al., 2022). The categories I, II, III, IV, V, and VI represent the less oxidation state sulfur-containing, saturated or highly oxidized, 
unsaturated aliphatic, highly unsaturated, polyphenolic aromatics, and polycyclic aromatics molecules, respectively (Jiang, Li, Tang, Cui, et al., 2022). After removing 
the point with 0 molecular intensity and absorption, the number of exhibited chemical formulas in the figure was (a) n = 5,622 and (c) n = 2,250 in summer, (b) 
n = 6,121 and (d) n = 2,085 in winter, respectively.
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group levels. However, since some molecular structures have not been determined or listed in chemical data-
bases, the bias from isomerism was hard to remove. Although this is the most likely estimated result in mathe-
matics with 95% confidence, we do not rule out that other light-absorbing molecules may also contribute to the 
light-absorbing results in the real atmosphere. In the future, more chemical structures and their UV-Vis spectra 
were recommended to consider in this model to improve the accuracy of our results.
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in this work are available in Tables S8 and S9 of the Supporting Information S1 which can be found via the link 
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is available for public use at https://cran.r-project.org/web/packages/ranger/index.html (Wright et  al.,  2023). 
Software: The support vector regression (SVR) model was built by the e1071 model (version 1.7-13), which is 
available for public use at https://cran.r-project.org/web/packages/e1071/index.html (Meyer et al., 2023). Soft-
ware: The partial least squares regression (PLSR) was built by pls model (version 2.8-2), which is available for 
public use at https://cran.r-project.org/web/packages/pls/index.html (Liland et al., 2023). Software: The artificial 
neural network (ANN) was built by neuralnet model (version 1.44.2), which is available for public use at https://
cran.r-project.org/web/packages/neuralnet/index.html (Fritsch et al., 2019). Software: The aerosol liquid water 
content (ALWC) was calculated using the ISORROPIA-II model, which can be obtained at http://wiki.seas.
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