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Abstract Global climate change has intensified flash droughts, which differ from traditional droughts, and
have significant ecological impacts. However, differences in ecosystem responses to normal and flash droughts
in China remain unclear, particularly in terms of vegetation vulnerability and resilience. Using a three‐
dimensional clustering method, we identified disparities between these drought types from 1982 to 2022 and
found that flash droughts developed 40% faster than normal droughts, but normal droughts caused more severe
vegetation damage. With the transition to flash droughts, vegetation sensitivity to droughts has increased. Using
Shapley's additive interpretation method, we assessed the role of each environmental factor in vegetation
recovery. The results show that in normal droughts, drought characteristics and vegetation sensitivity drive the
resilience of vegetation, whereas in flash droughts, temperature and vapor pressure deficit become more
significant. These insights provide a deeper understanding of vegetation resilience and drought tolerance under
changing climatic conditions.

Plain Language Summary Global warming has intensified the transition from normal droughts to
flash droughts, which are characterized by increased frequency and faster development. However, the impact of
this transition on vegetation vulnerability and resilience remains poorly understood. In this study, we analyzed
over 40 years of drought trends in China and found a significant increase in flash drought frequency, particularly
in humid regions. Vegetation sensitivity showed similar spatial patterns to drought changes. Using an
interpretable machine learning approach, we assessed the roles of drought characteristics, hydroclimatic factors,
vegetation sensitivity, and other environmental conditions in vegetation recovery. Our results indicate that the
drivers of vegetation restoration differ between normal and flash droughts, with drought duration having a
greater impact than the rate of development. For flash droughts, temperature and vapor pressure deficit are key
factors influencing recovery. These findings enhance our understanding of vegetation responses to climate
change.

1. Introduction
Drought disrupts terrestrial ecological balance, leading to reduced vegetation productivity and increased tree
mortality. As a key component of terrestrial ecosystems, vegetation is a crucial source of organic matter that plays
a vital role in maintaining biospheric functioning. Anomalies in temperature, precipitation (PRE), soil moisture
(SM), and vapor pressure deficits during drought can cause vegetation to experience water stress (T. Jiang
et al., 2023), which usually results in stomatal closure (Sato et al., 2024). This closure slows the rate of photo-
synthesis, consequently reducing gross primary productivity (GPP) (Deng et al., 2021). Therefore, timely and
accurate monitoring of widespread drought stress is essential to ensure food security and understand the responses
of vegetation to climate change.

With global warming, the geographic extent of droughts has expanded, while occurring more frequently and
shifting to wet areas (Ma & Yuan, 2024; Zheng et al., 2024). Droughts that occur frequently on subseasonal
timescales and rapidly exert water stress on vegetation within a few weeks are termed “flash droughts” (Otkin
et al., 2018; Yuan et al., 2023; Zhang & Yuan, 2020). Flash droughts primarily occur during the vegetation
growing season in southern China and are spatially concentrated (Chen et al., 2019; Zhao et al., 2024). Compared
to normal droughts, flash droughts not only shorten the warning time for mitigating the damage on vegetation

RESEARCH LETTER
10.1029/2024GL114321

Key Points:
• The spatial trends of negative

vegetation anomalies and drought
frequency were similar

• Normal droughts are more destructive
to vegetation health than flash droughts

• Flash droughts can rapidly induce
water stress and intensify the effects of
high temperatures within a short
timeframe

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
Y. Xu,
xuyy@nju.edu.cn

Citation:
Liao, J., Xu, Y., Pi, J., Li, Y., Ke, C., Zhan,
W., & Chen, J. (2025). Widespread
sensitivity of Vegetation to the transition
from Normal droughts to Flash droughts.
Geophysical Research Letters, 52,
e2024GL114321. https://doi.org/10.1029/
2024GL114321

Received 18 DEC 2024
Accepted 7 MAR 2025

Author Contributions:
Conceptualization: Jiangling Liao,
Yuyue Xu
Data curation: Jiangling Liao
Funding acquisition: Yuyue Xu
Methodology: Jiangling Liao, Yuyue Xu
Supervision: Yuyue Xu
Validation: Yuyue Xu
Writing – original draft: Jiangling Liao,
Yuyue Xu, Junzheng Pi, Yuchen Li,
Changqing Ke, Wenfeng Zhan, Jianli Chen
Writing – review & editing:
Jiangling Liao, Yuyue Xu, Junzheng Pi,
Yuchen Li, Changqing Ke, Wenfeng Zhan,
Jianli Chen

© 2025. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non‐commercial and no modifications or
adaptations are made.

LIAO ET AL. 1 of 11

https://orcid.org/0000-0002-5000-4232
https://orcid.org/0000-0003-0212-4069
https://orcid.org/0000-0001-7487-821X
https://orcid.org/0000-0001-5405-8441
mailto:xuyy@nju.edu.cn
https://doi.org/10.1029/2024GL114321
https://doi.org/10.1029/2024GL114321
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL114321&domain=pdf&date_stamp=2025-03-16


(Pendergrass et al., 2020), but are also often accompanied by other extreme weather events, including heat waves
and strong winds (Zeng et al., 2023), which may have serious ecological and agricultural impacts (Zhao
et al., 2024). For example, a flash drought outbreak in 2019 had a major impact on 2.35 million hectares of crops
in southern China (Wang & Yuan, 2021), and reduced the GPP of vegetation in the Haihe River Basin by 40%
(Yao, Liu, et al., 2022). Similarly, a mega‐summer flash drought in the Yangtze River Basin in China in 2022 led
to a notable reduction in GPP (Xi et al., 2024).

The response of vegetation to drought is influenced by various factors, including anomalies in climatic conditions,
drought‐tolerant properties of vegetation, and drought characteristics (Li, Zhang, et al., 2023c; Lu, Sun, Cheng,
et al., 2024; Sungmin & Park, 2024). Changes in factors such as increased temperature (Wang & Yuan, 2023),
excess radiation (Ford & Labosier, 2017), decreased SM (Li et al., 2022; Yao et al., 2023), and vapor pressure
deficit (VPD) (Xi et al., 2024) during drought can impair vegetation growth and health (Eamus et al., 2013). Some
of these factors determine the status of vegetation recovery from drought. Drought tolerance and vegetation
resilience are also influenced by ecosystem type and environmental conditions (Schwalm et al., 2017; Yao, Fu,
et al., 2022; Zhang et al., 2024). For example, vegetation in arid and semi‐arid regions exhibits greater drought
tolerance and resilience owing to long‐term adaptation to moisture‐limiting conditions (Cao et al., 2022; Xu
et al., 2018). Conversely, humid areas may face more pressing drought risks than water‐scarce areas because of
increasing drought frequency trends (Li, An, et al., 2024). Differences in the characteristics and accompanying
hydrometeorological conditions between normal and flash droughts can result in differences in vegetation
response (Corak et al., 2024). As flash droughts have emerged as a significant research hotspot, many studies have
focused on comparing them with normal droughts, and examining their characteristics and climate change im-
pacts (Guo et al., 2024; Ho et al., 2023). However, the distinct roles played by normal and flash droughts on
vegetation remain unclear. Further investigations are needed to understand how these drought types differentially
influence plant health and ecology, which are essential for effective management and resilience strategies.

In response to the above mentioned research gaps, we characterized normal and flash droughts using a three‐
dimensional clustering method (Xu et al., 2015) and explored the differential effects on vegetation using the
Standardized Soil Moisture Index (SSMI) and remotely sensed vegetation indices from 1982 to 2022 in China. To
analyze the sensitivity of various vegetation types to drought events, we quantified drought resistance (Relative
Frequency (RF) and lag (Relative Lag Time (RLT) indices (Jin et al., 2023). Then, we revealed the main drivers of
vegetation Recovery Duration (RD) from normal and flash droughts using Shapley's additive interpretation
(SHAP) method in random forest modeling and explored the spatial distribution of the dominant drivers of re-
covery time by applying partial correlation analysis.

2. Materials and Methods
2.1. Materials

2.1.1. Soil Moisture and Hydro‐Meteorological Data

SMwas calculated using root zone SM data averaged from three data sets, ERA5, GLDAS v2.0, v2.2/Catchment,
and Global Land Evaporation AmsterdamModel (GLEAM) v3.8a, covering depths from 0 to 100 cm. To mitigate
excessive fluctuations in surface SM data, we employed root zone SM data from depths of 0–100 cm (Ford &
Labosier, 2017). Soil moisture data of ERA5 were obtained from the European Centre for Medium‐Range
Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), which categorizes the soil into four layers:
layer 1 (0–7 cm), layer 2 (7–28 cm), layer 3 (28–100 cm), and layer 4 (100–289 cm). We used the first three layers
of SM data and interpolated them for the 0–100 cm data (Sungmin &Orth, 2021). The SM data of the Global Land
Data Assimilation System (GLDAS) include four depth layers, with the 0–100 cm layer being the most effective
for assessing SM in the root zone of vegetation. The GLEAM is another comprehensive global data set designed
to estimate land evaporation and root‐zone SM using satellite data.

The hydro‐meteorological elements analyzed in this study, included PRE, potential evapotranspiration, solar
radiation (RAD), maximum temperature (Tmax), VPD, sensible heat flux (SHF), and latent heat flux (LHF). The
PRE, RAD, and Tmax were obtained from the ERA5, and the SHF and LHF were obtained from the data of the
GLDAS model.

Geophysical Research Letters 10.1029/2024GL114321

LIAO ET AL. 2 of 11

 19448007, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
114321 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [20/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.1.2. Remote Sensing Vegetation Indices

We quantitatively analyzed vegetation growth during drought using three complementary vegetation growth
indices: the Normalized Vegetation Index (NDVI), Leaf Area Index (LAI), and Solar‐Induced Chlorophyll
Fluorescence (SIF). The NDVI is widely recognized as a measure of vegetation greenness. We used biweekly
NDVI data from the Peking University (PKU) Global Inventory Modeling andMapping Studies (GIMMS) NDVI
data set, which has a resolution of 0.25°, spanning 1982 to 2022 (Li et al., 2023a). The LAI effectively captures
structural changes in vegetation under drought stress. The data for this analysis were downloaded from the
GIMMS LAI4g data set (Cao et al., 2023), which provided biweekly global LAI data at a resolution of 1/12° from
1982 to 2020. Additionally, LAI data for 2021–2022, released by Pu et al. (2024), were used. The SIF provides
another perspective for examining the effects of drought on vegetation photosynthesis. Solar‐Induced Chloro-
phyll Fluorescence data were sourced from global “OCO‐2” SIF data set (GOSIF) (Li &Xiao, 2019), which offers
global chlorophyll fluorescence data at 0.05° over 8‐day intervals from 2002 to 2022.

2.2. Methods

2.2.1. Three‐Dimensional Drought Identification

We identified droughts using a three‐dimensional clustering method and distinguished flash droughts from
normal droughts in terms of rate of onset and duration (Ji & Yuan, 2024; Yuan et al., 2019). The method of
recognizing normal and flash drought events based on 3D clustering is described in detail in Ho et al. (2023) and
Li, Wang, et al. (2020) and is now summarized:

Drought Patch Identification: A drought patch was defined as a cluster of neighboring pixels with the SSMI less
than a specified drought threshold (SSMI ≤ − 1). The SSMI was calculated based on the methodology described
by Hao et al. (2017) on a pentad timescale, where a pentad is 5 days. Additionally, the area of these neighboring
clustered pixels must exceed a designated area threshold (area ≥ 50,000 km2, Text S3) (Lloyd‐Hughes, 2012; Su
et al., 2018; Wang et al., 2011).

Temporal Continuity of Drought Patches: Two drought patches were considered to be temporally part of the same
event if the area of overlap between a drought patch at the current time and a drought patch at a previous time step
exceeded 50% of the area of the smaller drought patch.

Drought Event Duration Limit: The minimum drought duration was set as greater than or equal to five pentads,
whereas the maximum duration was set as less than 165 pentads. Flash droughts were defined as those with
durations ranging from 5 to 18 pentads.

Drought Event Severity: Drought patch loss (Severityi) was defined as the cumulative SSMI value of all pixels
within a drought patch. The severity of a drought event was the sum of all drought patch losses during the event.
The intensity of the drought event was determined by the largest drought patch loss within the event using the
absolute maximum value of Severityi. The formulas are as follows:

Severityi =∑
N
j=1SSMIij (1)

Severity =∑M
i=1Severityi (2)

Intensity = maxMi=1 (
⃒
⃒Severityi

⃒
⃒) (3)

where Severityi represents the loss in the i‐th drought patch. SSMIij is the SSMI of the j‐th pixel in the i‐th drought
patch. Where N is the total number of pixels in the i‐th drought patch. M refers to the total number of drought
patches involved in a drought event.

Definition of Development and Recovery Phases: The recovery moment (p) was defined as the time at which the
drought event reached its peak intensity. Using recovery moment (p) as a dividing point, the drought was divided
into 2 phases, with the first half being the development phase and the second half being the recovery phase.

Limit of Development Speed of Flash Drought: The average rate of instantaneous intensification (AIIR) during the
development phase of a flash drought should be less than or equal to 45% of the cumulative distribution frequency
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of each instantaneous intensification rate (IIR) during that stage. To establish this, the IIR in the drought
development phase was first calculated, followed by computation of the AIIR for the development phase:

IIR(i,i+1) = Severityi+1 − Severityi (4)

AIIR =
∑p− 2
i=1 IIR
p − 2

(5)

where p is the recovery moment and i and i+1 are the time steps.

2.2.2. Vegetation Response to Drought

There are three features of vegetation response to drought, as illustrated in Figure S1 in Supporting Informa-
tion S1: (a) Frequency of Negative Vegetation Anomalies: A negative vegetation anomaly during a drought event
was defined as the remotely sensed vegetation index falling below − 0.5 standard deviations (z‐score≤ − 0.5). The
frequency of negative vegetation anomalies was calculated as the number of anomalies observed across all
drought events. (b) Lag Time of Vegetation Response to Drought (LT): This was defined as the duration from the
onset of the drought event (SSMI ≤ − 1) to the point when vegetation levels dropped below the specified negative
anomaly threshold (z‐score ≤ − 0.5). (c) Recovery Duration (RD): This duration lasted from the peak of vege-
tation loss until the vegetation returned to its normal levels. (z‐score > − 0.5).

Vegetation exhibits a degree of resistance to water stress, resulting in a lag time when the onset of vegetation
anomalies occurs after the onset of drought. We evaluated the sensitivity of vegetation to drought events by
examining the drought resistance and lag times. Drought resistance was quantified as the ratio of the frequency of
negative vegetation anomalies to the frequency of drought events. Additionally, we defined hysteresis as the ratio
of the lag time of vegetation response to drought to the duration of the drought. These metrics were termed RF and
RLT. A smaller RF indicates greater resistance of vegetation to drought, whereas a larger RLT signifies a longer
delay in the vegetation response to drought.

2.2.3. Attributional Analysis

To analyze the drivers of recovery time for different vegetation types under normal and flash drought conditions,
we applied a random forest model to assess the contributions of vegetation sensitivity, drought characteristics, and
a range of climatic, biological, and soil factors to vegetation recovery. Separate random forest models were
constructed for each of the following 10 groups: vegetation recovery patterns under two scenarios, normal
drought and flash drought, across five vegetation types (evergreen forests, deciduous forests, shrublands,
grasslands, and croplands, Figure S2 in Supporting Information S1). For vegetation sensitivity, we selected RF
and RLT as the key metrics. In terms of drought characteristics, we focused on the severity and duration of
drought events. We employed several indicators of climate, including PRE, temperature, VPD, and SHF.
Additionally, for biological and soil factors, we analyzed aboveground forest biomass, and soil sand and soil clay
contents.

Random forest regression and SHAP values were used to rank the importance of drivers influencing vegetation
recovery. To efficiently search for optimal hyperparameters, we used a “random search” strategy with 1,000
iterations and assessed model performance with 60/40 splitting and 10‐fold cross‐validation. SHAP values were
used to interpret the contribution of each feature to the prediction. We also employed partial dependent plots to
visualize the response functions associated with vegetation recovery time, offering a clearer picture of how
changes in predictor variables affect recovery. In addition, we used a partial correlation analysis to determine the
spatial patterns of dominant factors by calculating partial correlation coefficients within spatially shifted windows
of varying sizes to enhance the robustness of the results. This multifaceted approach provided a comprehensive
framework for analyzing the intricate relationships among drivers of vegetation recovery.
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3. Results
3.1. Characteristics of Normal and Flash Droughts

During the growing seasons from 1982 to 2022, 491 drought events were identified in China, comprising 327
normal droughts and 164 flash droughts. The average duration of normal droughts was 19.93 pentads with a
recovery time of 9.03 pentads. In contrast, flash droughts had an average duration of 9.04 pentads and an average
recovery time of 3.53 pentads. Normal droughts typically exhibit greater intensity and severity, leading to larger
affected areas and longer durations than flash droughts. However, the rate of development of flash droughts,
indicated by an AIIR of 140.39, was approximately 40% faster than that of normal droughts, which had an AIIR of
98.72 (Table S1 in Supporting Information S1).

From 1982 to 2022, there was a decline in the frequency of normal droughts and an increase in the frequency of
flash droughts (Figure S3 in Supporting Information S1). This finding aligns with those of previous studies (Lu,
Sun, Cheng, et al., 2024; Yuan et al., 2023). The increasing frequency of droughts was pronounced in humid
regions. In the lower reaches of the Yellow River, the North China Plain, and Southeast China, the increase in
frequency of flash droughts was substantial (Figure S4 in Supporting Information S1). The spatial distributions of
the duration and RD for normal and flash droughts varied significantly. Normal droughts exhibited longer du-
rations and recovery times in the semi‐arid and humid regions of China. The average duration ranged from 8 to 24
pentads, whereas the recovery time ranged from 6 to 15 pentads. The mean duration of the flash droughts was
primarily between 5 and 8 pentads, with recovery taking 2 to 3 pentads (Figure S5 in Supporting Information S1).

3.2. Characterization of Vegetation Response to Normal and Flash Droughts

To assess the response of vegetation to drought, we analyzed three key features: the frequency of negative
vegetation anomalies, vegetation lag time, and recovery time. The trend in the frequency of negative vegetation
anomalies during droughts was similar to that of drought frequency, with a significant increase in frequency in
humid areas (Figures S6 and S7 in Supporting Information S1). The lag time of vegetation in response to normal
drought was within 2 months, and the recovery time was within half a year. In contrast, the average lag time for
vegetation in response to flash droughts was approximately 1 month, and the recovery time was shorter than the
lag time, ranging from one‐half to 1 month (Figure S8 in Supporting Information S1). Ecosystems can maintain a
certain degree of stability during drought. We found that the RF during normal droughts was greater than that
during flash droughts, whereas the RLT was smaller for normal droughts than for flash droughts (Figure 1). The
combination of a smaller RF, longer RLT, and longer recovery time associated with normal droughts suggests that
normal droughts are more destructive to vegetation health than flash droughts.

The observed decrease in RF and increase in RLT from semi‐arid to humid regions indicate greater drought
tolerance in humid environments (L. L. Jiang et al., 2024). In humid areas, vegetation exhibited the highest RLT
in response to drought, particularly under flash drought conditions (Figure 1c). One reason for the lower RF in
hyper‐arid and arid regions is that extremely dry conditions hinder vegetation growth, making it challenging to
accurately characterize ecological changes during droughts using vegetation proxy indices. Drought resistance
and lag time varied among different vegetation types. Evergreen forests and shrublands demonstrated greater
drought resistance, characterized by smaller RF and larger RLT. In contrast, croplands showed greater sensitivity
to drought, exhibiting higher RF and lower RLT values. This indicates that the drought tolerance of croplands was
significantly weaker than that of other vegetation types, particularly to flash droughts. The smaller RLT for
croplands highlights the challenges of mitigating drought damage in agriculture (Figure 1f). Additionally, the
characteristics of vegetation responses to drought based on LAI and SIF calculations were similar to those based
on the NDVI. During normal droughts, NDVI and LAI slightly outperformed SIF, whereas SIF showed a larger
RF during flash droughts, likely due to the rapid restriction of photosynthesis in vegetation (Figure S9 in Sup-
porting Information S1).

3.3. Attribution of Recovery Duration for Normal and Flash Droughts

The random forest regression model demonstrated strong performance in capturing vegetation recovery,
explaining 72.22% of the out‐of‐bag variance in recovery time for normal droughts and 62.68% for flash droughts.
During normal droughts, the RD varied widely among vegetation types, with deciduous forests and shrublands
demonstrating the longest RD. Notably, deciduous forests required considerably longer recovery time than other
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vegetation types. Interestingly, a prolonged lag time for vegetation corresponded to a shorter recovery time
(Figure S10c in Supporting Information S1). Conversely, vegetation with high drought tolerance, as indicated by
smaller RF values, took longer to recover when experiencing drought (Figure S10e in Supporting Informa-
tion S1). The recovery time for vegetation from flash droughts typically ranged from 0.5 to 1 month. Vegetation
that exhibited a longer lag time recovered faster (Figure S11a in Supporting Information S1). As the severity
(Figure S11b in Supporting Information S1) and duration (Figure S11c in Supporting Information S1) of the flash
drought increased, the recovery time for vegetation increased. Temperature significantly influenced vegetation
recovery from flash drought, with a bimodal distribution, indicating that both low and high temperatures pro-
longed the recovery time (Figure S11d in Supporting Information S1). The relationship between recovery time
and RF was not monotonic. Each vegetation type exhibited optimal recovery at an RF between 0.3 and 0.5 (Figure
S11e in Supporting Information S1). Aboveground biomass exerted a considerable impact on croplands, and
increased biomass was correlated with longer recovery time. Conversely, for other vegetation types, increased
biomass was associated with shorter recovery time (Figure S11f in Supporting Information S1). This disparity
may be attributed to the influence of anthropogenic factors on croplands.

During a normal drought, the recovery time was primarily determined by drought characteristics and the
sensitivity of vegetation to drought. This underscores the significance of species composition and environmental
background conditions in drought recovery (Sungmin & Park, 2024). Conversely, during flash droughts, the
influence of drought characteristics on recovery time diminished, whereas the roles of PRE, temperature, and
VPD became more significant (Figure 2). This demonstrates how flash droughts can cause rapid water stress and
exacerbate high‐temperature effects within a short period (Yin et al., 2023). Therefore, the threat posed to
vegetation by flash droughts should not be underestimated.

3.4. Spatial Distribution of Dominant Factors of Vegetation Recovery

RLT, RF, temperature, VPD, and SM were significant factors influencing vegetation recovery. We conducted a
partial correlation analysis to assess the effects of these factors on vegetation recovery across different regions.

Figure 1. Drought resistance and hysteresis of vegetation in response to drought. (a) and (d) show the spatial distributions of Relative Frequency (RF) and Relative Lag
Time (RLT) of vegetation to normal drought; (b) and (e) show the spatial distributions of RF and RLT of vegetation to flash drought; (c) show the RF and RLT in
different climatic zones; and (f) show the RF and RLT of different vegetation types. Note: ND denotes normal drought, and FD denotes flash drought.
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Our analysis revealed that RLT was the dominant driver of vegetation recovery during normal droughts, exerting
an influence of 16.21%. This was followed by temperature, which had an influence of 5.47% (Figure 3c). A
negative correlation between recovery time and RLT was observed in 70% of areas dominated by RLT. This trend
was particularly pronounced in the middle and lower reaches of the Yangtze River and southwest China. In
contrast, vegetation recovery time was primarily positively correlated with conditions of high temperature, high
VPD, and low SM, accounting for 75%, 69%, and 82%, respectively (Figure S12 in Supporting Information S1).
The effect of temperature was mainly observed in the middle and lower reaches of the Yangtze River and northern
China. The impacts of VPD were concentrated in the upper reaches of the Yellow River and the middle and upper
reaches of the Yangtze River, while the effects of SM were most significant in inland areas of China (Figure 3a,
and Figure S12).

RLT also played a dominant role in flash droughts, primarily affecting areas in southwest China, the upper reaches
of the Yangtze River, and the middle reaches of the Yellow River. The areas where temperature was positively
correlated with recovery time were mainly located in the lower reaches of the Yangtze River and in parts of
northern and northeastern China. Positive correlations between VPD anomalies and recovery times were
concentrated in the middle and upper reaches of the Yangtze and Yellow Rivers. Additionally, areas showing
positive correlations between SM loss and vegetation recovery time were primarily located in northwestern
China. In contrast, RF had the smallest impact area, and its correlation with vegetation recovery time was not
significantly biased (Figures 3b, 3d, Figure S13).

Figure 2. Ranking of key drivers of vegetation recovery calculated from the mean of absolute Shapley's additive interpretation values. (a) Shows the importance ranking
of key variables for normal drought conditions, with the pie chart illustrating the normalized percentage contributions of the four variable categories; (b) shows the
importance ranking of key variables for flash drought conditions, with the pie chart depicting the normalized percentage contributions of the four variable categories.
The four variable categories include vegetation sensitivity, drought characteristics, hydro‐meteorological anomalies, and background climate.
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4. Discussion
In this study, we successfully identified most historical drought events, including the drought events that occurred
in 2010–2011 (Xu et al., 2015); and the mega‐flash drought in southern China in 2022 (Liang et al., 2023). We
concluded that the duration of a flash drought should range from 5 to 18 pentads and the average rate of the
development stage should exceed 45% of the cumulative distribution frequency of each rate of change, which
could be better applied to each region in China. For the area threshold of 3D drought identification, we tested four
different thresholds, ranging from 25,000 to 150,000 km2, and found that the number of drought events was
consistently in the hundreds (Table S2 in Supporting Information S1). While we identified droughts based on SM,
other definitions of flash drought exist, such as the standardized evapotranspiration stress ratio (Christian
et al., 2021). If accompanied by high temperatures and strong winds, some drought events may affect crop growth
despite their short duration (1 or 2 pentads); however, these scenarios are beyond the scope of our discussion. The
impact of increasing flash drought frequency on vegetation sensitivity remains debated, but it is clear that
vegetation in humid regions faces greater drought risk (Li, Yang, et al., 2024; Tang et al., 2024). Our findings
suggest that vegetation is more sensitive to normal droughts than flash droughts. This may be attributed to the
lower sensitivity of vegetation to drought on shorter timescales, as the anomalies shown by the SSMI may not
correspond to actual plant water deficits. Additionally, energy, rather than water, is the primary growth constraint
for vegetation in the initial stages of drought in humid regions, where sufficient SM is still available but tem-
perature and RAD can limit growth (Ho et al., 2023; Ma & Yuan, 2024). Grasslands and evergreen forests are
tolerant to drought, whereas croplands are particularly sensitive, especially with a short lag time, consistent with
the results of Deng et al. (2021).

Figure 3. Spatial distribution of dominant factors in vegetation recovery time from drought. (a) Shows the spatial distribution
of dominant factors during normal drought; (b) shows the spatial distribution of dominant factors during flash drought.
(c) Presents the percentage of each dominant factor under normal drought, while (d) shows the percentage of each dominant
factor under flash drought. Dominant factors include the RLT, temperature (Tmax), vapor pressure deficit, the RF, and soil
moisture.
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We focused on the effects of vegetation sensitivity, drought characteristics, climatic factors, and soil texture on
vegetative resilience. However, anthropogenic factors (Van Loon et al., 2016; Yin et al., 2023), such as irrigation,
as well as other potentially influencing elements, including canopy structure, vegetation phenology, and nutrient
availability, may also affect vegetation recovery processes. For instance, shallow‐rooted plants are susceptible to
climate change impacts and anthropogenic disturbances (Tariq et al., 2024), whereas the response time of
vegetation to drought is prolonged as plant rooting depth increases (Lu, Sun, Yang, et al., 2024). The loss of leaf
area and stored non‐structural carbohydrates during drought can impair growth in subsequent years (Mueller &
Bahn, 2022). Droughts associated with extremely high temperatures negatively affect carbon uptake (Gampe
et al., 2021), slowing the absorption of carbon dioxide and nitrogen fertilizers by vegetation in terrestrial eco-
systems. Additionally, the decline in vegetation cover is not only caused by the continued lack of water available
to ecosystems; wildfires (Xu et al., 2024), hail, and floods can also significantly impact vegetation greenness and
cover.

5. Conclusions
By analyzing drought events during the growing season in China from 1982 to 2022, we compared the responses
of vegetation under normal and flash drought conditions. The results showed that the sensitivity of vegetation to
drought has been widespread in China for more than 40 years. In the trend from normal drought to flash drought,
the duration and severity of drought affected vegetation more than the rate of drought development. However, the
extreme weather phenomena accompanying flash droughts can also damage vegetation within a few weeks.
Normal droughts caused more long‐term damage, leading to longer recovery times, whereas flash droughts had
lower frequencies and longer relative lag times. The response of vegetation to drought is similar to the spatial
pattern of drought trends, with good drought resistance of vegetation in humid areas. Anomalies in vegetation,
especially in croplands, caused by the frequency of flash droughts in humid areas, should not be ignored. In
addition, variations in drought tolerance were observed among different vegetation types, with evergreen forests
and grasslands showing strong drought tolerance and croplands demonstrating greater sensitivity. This study
provides valuable insights for understanding the effects of the rate of drought development on ecosystems and
serves as a basis for implementing appropriate drought‐resistant measures tailored to different vegetation types.

Data Availability Statement
The ERA5 hourly reanalysis data sets from the ECMWF Integrated Forecasting System (IFS) can be downloaded
from Sabater (2019). GLDAS Catchment Land Surface Model L4 daily data sets are available from Li, Beau-
doing, et al. (2020). The GLEAM v3.8a data set can be accessed via Martens et al. (2017). The PKU GIMMS
NDVI data set can be downloaded from Li et al. (2023b). The LAI data can be obtained from Pu et al. (2023) and
Yan et al. (2023). The GOSIF data can be downloaded from Li and Xiao (2019). The MODIS land cover data set
can be downloaded from Friedl and Sulla‐Menashe (2015).
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