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Abstract The South Slope of the Himalayas (SSH) is witnessing dynamic shifts in vegetation greenness
driven by climatic conditions across elevation variability. Here, we analyzed greening patterns of natural
vegetated surfaces along the elevational gradient and examined their connection to climate changes from 2000
to 2022. Over 50% area of SSH exhibited significant greening, with higher rates in Central Himalayas (CH) and
Western Himalayas (WH) compared to Eastern Himalayas (EH). The relative change rate (RCR) showed a
notable increasing vegetation greenness from ∼2,600 to ∼5,000 m, followed by a decreasing trend in all
subregions. Results showed that air temperature promoted the vegetation greening significantly in the high
mountains but caused heat stress in lowlands of CH and WH. Precipitation supported growth in the middle
mountains across the region except EH, which faced waterlogging stress. These findings are valuable for
understanding vegetation changes under future climate changes and advancing our knowledge of ecosystem
responses.

Plain Language Summary The South Slope of the Himalayas (SSH), known for its unique
biodiversity and complex role in climate regulation, is undergoing noticeable changes in vegetation due to
climate change. Due to diverse climatic environments and abrupt elevational variations, this region has different
vegetation zones. However, there remains a gap in comprehensive studies addressing these changes. To fill this
gap comprehensively, we utilized Normalized Vegetation Difference Index (NDVI) from 2000 to 2022 to
analyze variations in naturally vegetated surface across the elevation and their correlation with climate. Our
results revealed a significant increase in vegetation greenness across SSH and subregions (except Eastern
Himalaya (EH)). The relative change rate (RCR) of NDVI indicated stronger vegetation growth at higher
elevations from ∼2,600 to ∼5,000 m, followed by a decline in all subregions. Interestingly, further analyses
revealed a warming induced vegetation growth in highland areas across the region, while lowland region faced
heat stress in the Central Himalay (CH), and Western Himalaya (WH). Conversely, precipitation promoted
vegetation in the middle‐elevated areas, although EH faced waterlogging stress. These contrasting responses,
patterns, and trends in vegetation changes in the Himalayas highlight the need for a comprehensive
understanding of specific spatial variations when devising climate change adaptation strategies.

1. Introduction
Mountains at higher elevations are experiencing a faster rate of warming than lower elevations or in plain areas
(Nogués‐Bravo et al., 2007; Pepin et al., 2015; Yang et al., 2021). The Himalayas, as one of the largest mountain
ecosystems in the world, face a considerably high warming rate about three times greater than the global average
(Shrestha et al., 2012), and this ongoing warming intensifies the hydroclimate cycle, changes in snow cover,
leading to strong shifts in precipitation patterns (Deng et al., 2017; Palazzi et al., 2013; Shekhar et al., 2010).
Generally, the Indian summer monsoon and westerly winter belt are the major sources of precipitation in the
Himalayas mountains (Palazzi et al., 2013), but variations in their timing, frequency, and intensity have led to
more erratic distribution (He et al., 2022; Kapnick et al., 2014). These climatic shifts have a direct impact on
biodiversity, vegetation phenology, and vegetation cover (Chakraborty et al., 2018; Feldman et al., 2024; Gu
et al., 2020; Manish et al., 2016; Mishra & Chaudhuri, 2015; Wang & Sun, 2023).

In this context, the susceptibility of mountain vegetation to climate change has gained increasing attention over
the past few decades (Baker &Moseley, 2007; Liu et al., 2023; Pepin et al., 2015; Schickhoff et al., 2016). Studies
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have shown that northern high‐latitude regions experience more pronounced warming than low‐latitude regions,
resulting in increased vegetation growth in the northern high‐latitude regions (Chen et al., 2022; Park et al., 2020).
However, it is essential to recognize that other environmental limitations, such as water availability, may
modulate the impact of temperature on vegetation growth (Liu et al., 2019; Piao et al., 2014), and this process is
also influenced by other factors including biome type, hydraulic strategies, water use efficiency, and geographical
context (Anderegg et al., 2018; Jiao et al., 2021; Vicente‐Serrano et al., 2013). For instance, the faster warming
rates at higher elevations may be conducive to vegetation growth, but it might be constrained by limited water
availability (Jiao et al., 2021; Liu et al., 2019).

In the Himalayas, several studies have recently examined vegetation changes and their responses to climate
change across different elevation gradients at the local level (Kumari et al., 2021; Li et al., 2016; Qamer, Xi,
et al., 2016; Qamer, Shehzad, et al., 2016; Wu et al., 2020). For example, Mishra and Mainali (2017) observed
predominant greening at lower elevations and browning trends at higher elevations across the region. However,
there remains a big gap in understanding the elevation‐dependent patterns of long‐term vegetation changes across
the entire Himalayan region. Therefore, there is an urgent need for more comprehensive studies focused on the
long‐term monitoring of vegetation dynamics in response to climate change across different elevation zones
throughout the entire Himalayan region.

Satellite remote sensing is a powerful approach for monitoring large‐scale vegetation dynamics due to its global
coverage, long time series, and high spatial‐temporal resolution availability (de Jong et al., 2011; Wang, Xie,
et al., 2020). Normalized difference vegetation index (NDVI) is widely used vegetation indices, which exhibits a
high correlation with vegetation phenology, productivity, canopy area, and biomass (Shen et al., 2024; Sweet
et al., 2015; Tucker & Sellers, 1986). Although, several NDVI data sets have been produced, but due to sensor
shifts and variations among platforms (Tian et al., 2015; Zhang et al., 2017), most of them face uncertainties in
long‐term monitoring vegetation trends. Comparatively, the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Huete et al., 2002) products offer a long‐term and consistent measurements since 2000, showing good
performance for vegetation change monitoring.

Herein, based on the MODIS‐Terra NDVI product, this study selected the south slope of the Himalayas (SSH) to
perform trend analysis on vegetation greenness to detect its spatial variation across elevation gradients from 2000
to 2022 and to examine how these trends vary for different vegetation types within the same elevation gradients,
as well as the elevation‐dependent influence of temperature and precipitation on vegetation greenness patterns in
the SSH and its subregions. By addressing the gaps in existing research, this study contributes to a more
comprehensive understanding of how climate change is impacting vegetation dynamics across the Himalayas,
with implications for the conservation and sustainable management of these critical ecosystems.

2. Material and Methods
2.1. Study Area

The SSH, as a major part of the Greater Hindu‐Kush Himalayan region, is geographically located in the lower
middle part of this region with a range of 26° 22ʹ and 36° 0ʹ North and 72° 60ʹ and 97°40ʹ East (Figure S1a in
Supporting Information S1). It covers about 481,000 km2 area of five countries: China, Pakistan, Nepal, Bhutan,
and India, where the elevation ranges from 60 to >8,000 m, with an average elevation of 2,386 m (Figure 1b). The
region is divided into three subregions: EH, CH, and WH, which are drained by the Brahmaputra, Ganges, and
Indus River systems, respectively. Due to its large extent and physiographic modifications, the climate varies
from western to eastern and southern to northern. The SSH receives substantial rainfall, supporting dense
vegetation except at higher elevations. Due to diverse climatic environments, and abrupt elevational variation,
this region has tropical, subtropical, temperate, subalpine forests and alpine grasslands (Figure S1c in Supporting
Information S1).

2.2. Data Source and Processing

The study used the NDVI data set from the MODIS‐Terra vegetation index product MOD13A2 collection 6
(version 6.1) to conduct the analysis. The spatial and temporal resolutions of this data set are 1 km and 16 days,
respectively. The study period is from 2000 to 2022. To de‐noise impurities, we applied the Savitzky–Golay (SG)
filter approach to smooth the NDVI time series. For this purpose, the quality control band of MOD13A2 product
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was used to weight each pixel point of each image of the NDVI time series on the following conditions: pixel with
value 0 (good data) was assigned to full weight (1), pixel with values 1–2 (marginal data) was assigned to half
weight (0.5), and pixel with value 3 (cloudy) was assigned to minimal weight (0.1). The whole pre‐procedure was
done using the TIMESAT software package in the MATLAB environment (Jönsson & Eklundh, 2004).

To investigate the driving factors of vegetation dynamic changes across the elevational gradient, we selected near‐
surface air temperature and precipitation as the primary climatic drivers based on their significant spatiotemporal
changes and direct influence on vegetation dynamics, as highlighted in prior studies conducted in SSH (Abbas
et al., 2015; Baniya et al., 2018; Shrestha et al., 2012; Wang, Peng, et al., 2020; Wang, Xie, et al., 2020).
Additionally, vegetation cover types and surface elevation were included to capture spatial heterogeneity. Cli-
matic data with 1‐hr temporal and 0.1° spatial resolution were sourced from ERA5‐Land to ensure high accuracy
and reliability of the data (Muñoz‐Sabater et al., 2021). The MODIS 500‐m landcover type data set (MCD12Q1)
Version 6.1 was sourced from the Land Processes Distributed Active Archive Center (LP DAAC). The 30‐m
SRTM (Shuttle Radar Topography Mission) DEM (digital elevation model) data was also sourced from LP
DAAC. To match the spatial resolution, land cover data was resampled by the nearest neighbor interpolation
method, and the bilinear interpolation method was used to resample the climate data, and DEM data to a 1‐km

Figure 1. Spatial distribution of NDVIMA from 2000 to 2022 and areal proportion of each normalized difference vegetation
index level (a) Based on Theil‐Sen median trend analysis andMann‐Kendall test, trends of NDVIMA over the SSH from 2000
to 2022 with the areal percentage of each trend type (b) in the whole region and subregions.
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scale. To reduce the influence of seasonal variations and phenological differences across vegetation types, we
used the mean annual NDVI (NDVIMA) to highlight long‐term trends, which can avoid uncertainties from
vegetation growing season definitions at different elevations and latitudes. For climatic variables, we adopted
mean annual near‐surface air temperature and total annual precipitation to provide a more consistent represen-
tation of climatic influences. Further, NDVIMA values <0.1 were masked out to omit sparse and non‐vegetated
areas (Li et al., 2019). Additionally, to avoid the impact of human activities, land cover data was reclassified
into three major classes: grassland, savannas, and forest. Finally, DEM data was divided into 29 elevation zones
with an interval of 200 m.

2.3. Methods

2.3.1. Trend Analysis

To detect the changing pattern of the vegetation cover, the commonly used Mann‐Kendall (MK) test (Ken-
dall, 1975; Mann, 1945) was employed on 23‐year NDVIMA images. As a non‐parametric statistical test, the MK
test is often used in combination with the Theil‐Sen Slope Estimator (Sen, 1968; Theil, 1950) to evaluate the
significance of the time series trend (Fernandes & Leblanc, 2005; Neeti & Eastman, 2011).

For pixels with significant trends, the Theil‐Sen Slope Estimator was applied to derive the changing rate as shown
in Equation 1, this method is insensitive to measure errors and outliers in the time series data:

SNDVI = median(
NDVIj − NDVIi

j − i
), 2000 ≤ i < j≤ 2022 (1)

where, SNDVI denotes the Theil–Sen median which is also often recognized as the changing rate, while i and j
represent the number of time series, and NDVIi and NDVIj represent the NDVI values at moments i and j,
respectively. When SNDVI > 0, the NDVI exhibits an increasing trend in that period, and vice versa.

2.3.2. Partial Correlation Analysis

Correlation analysis is a useful statistical method to measure the influence of one variable on another. To measure
the comprehensive influence of multiple factors, partial correlation is a good option to measure the relationship
between two variables while eliminating the influence of other variables. The positive and negative coefficients
indicate whether the vegetation and climatic factors correlate positively or negatively. The format is shown
below:

Rxy =
∑n

i=1 [(xij − xj) ( yij − yj)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(xij − xj)2∑n

i=1 ( yij − yj)
2

√ (2)

Rxy,z =
Rxy − RxzRyz

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − R2
xz)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − R2
yz)

√ (3)

where Rxy is Pearson's correlation. n represents the period length (23), xij and yij denote the individual values of the
drivers and NDVI, respectively, in the ith year, while xj and yj are the mean values of the drivers and NDVI,
respectively, over the 23 years. While Rxy,z is the partial correlation coefficient between variable x and y after
eliminating the effect of z. Further, the T‐test method was used to test the significance of both correlation
coefficients.

3. Results and Discussion
3.1. Spatio‐Temporal Variation Pattern of Vegetation Cover

To understand the general distribution of vegetation cover across the study area, the average value of the NDVIMA

from 2000 to 2022 is shown in Figure 1a. NDVIMA values <0.1, along with cropland and urban land areas, are
masked to exclude non‐vegetated areas and human‐induced activities, thereby focusing exclusively on naturally
vegetated areas, as the complexity of the process and spatial variability of human activity creates significant
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uncertainty on their influence on vegetation greenness (Wang et al., 2016). Within the SSH, 77.21% of the area
exhibits high NDVIMA values ranging from 0.5 to 0.9, predominantly covered with forest types, indicating healthy
vegetation cover across the whole region. Further, a declining trend in NDVIMA values is observed from south
(lowlands) to north (highlands). Comparatively, the east‐to‐west gradient reveals a decline in highly vegetated
surfaces (NDVIMA >0.9), coinciding with an increase in areas with lower vegetation cover (NDVIMA <0.3).

Further analysis, employing the Theil‐Sen slope and MK test, confirmed that 51.19% of the total vegetation cover
exhibited a significantly increasing trend in vegetation greenness across the SSH (Figure 1b). Only 0.99% of the
area exhibited a significantly decreased trend. For the different subregions, the WH showed the highest increase
with a 52.72% area of significance increase, followed by the CH (51.19%) and EH (33.36%). The difference is
highly related to the original vegetation cover. Because the existing vegetation cover was already robust in the
EH, in turn, the vegetation changes were not significant compared to the WH, which had relatively worse
vegetation cover. Meanwhile, the vegetation greening percentage in the SSH surpasses previous findings, both
regionally (Mishra & Mainali, 2017), and within subregions of the EH (Kumar et al., 2022; Wang et al., 2022),
CH (Baniya et al., 2018; Wu et al., 2020) and WH (Abbas et al., 2015; Kumari et al., 2021), likely due to dif-
ferences in the study region selection. Additionally, previous studies used mean NDVI of multiple seasons to
calculate vegetation greenness. Conversely, we used NDVIMA to enhance the temporal representativeness and
reduce seasonal variation and short‐term fluctuations induced by the big climatic differences of this region due to
abrupt elevational changes (Sabin et al., 2020).

Regarding the greening rates, the SSH showed a significant increasing trend with a greening rate of 0.00169 yr− 1

(Figure S2 in Supporting Information S1), corresponding to a relative change (RC) of 9.56%, consistent with
previous studies (Baniya et al., 2018; Wang et al., 2022). Among the subregions, the WH exhibited the highest
rate of 0.00198 yr− 1, representing a RC of 11.35%, followed by the CH with a rate of 0.00180 yr− 1 and a RC of
9.08%. The EH showed the lowest rate of 0.00111 yr− 1, with a RC of 8.34%, only passing the 0.05 significant test.
These variations in the greening rates and RC percentages at different subregions align with the overall spatial
distribution of significant change areas shown in Figure 1b.

3.2. Elevation‐Dependent Variation Pattern

To analyze the distribution and variation of the greening rate along the elevation gradient, Figure 2 shows a
common decreasing trend for the NDVIMA with the increase in elevation. However, the starting points of the

Figure 2. Elevation‐dependent pattern of multi‐year average normalized difference vegetation index (NDVI) and the greening rate with the relative changing rate (RCR)
of NDVI at different elevation ranges. (a, b) In the whole region, (c, d) Eastern Himalaya, (e, f) Central Himalaya, and (g, h) Western Himalaya. The dashed line and
dash‐dot line indicate the decline of NDVIMA values and the rising range of the greening rate at high elevation ranges, respectively. The RCR was calculated by dividing
the slope of the greening rate by the NDVIMA at each elevation zone.
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decreasing trend in the whole region and subregions were quite similar (around 2,400 m), as shown by the purple
dashed line. In contrast, the greening rate revealed diverse features with the variation of surface elevation. At the
regional level, the greening rate fluctuated at lower elevations, stabilized at mid‐elevations, gradually increased
between 3,600 and 4,600 m, as shown by the green dash‐dot lines, and then sharply declined (Figure 2a). For the
EH, the changes were quite stable below 2,600 m, which gradually increased to 0.0037 yr− 1 at 4,800 m and then
sharply decreased to 0.0025 yr− 1 at 5,400 m (Figure 2c). Comparatively, the CH and WH showed somewhat
similar patterns, with a general decreasing trend in the greening rate, but both experienced an abrupt, a short
increase at the high elevations: 4,000–4,600 m for the CH and 4,200–4,600 m in theWH (Figures 2e and 2g). Both
regions shared a similar vegetation cover compared to the EH, resulting in different patterns. These differences
could be partly attributed to the varying responses of different vegetation types to the distinct climatic conditions
for different elevations across the region (see Figure S3 and Text S1 in Supporting Information S1).

In addition, relative changing rate (RCR) of the greening rate along the elevation gradient, showed an obvious
increasing trend from middle mountains to high mountains (Figure 2), which was a different pattern compared to
the greening trends. All parts of the SSH exhibit similar trends, with RCR rising around ∼2,600 m, peaking near
∼5,000 m, and then declining. These patterns highlight the elevation‐dependent features of vegetation, showing
that the high‐altitude vegetation is more responsive to climate change with faster RCR than the lowland vege-
tation. Recently similar increasing greening patterns in higher elevations have been reported at the global level
(Gao et al., 2019) and regional level (Tao et al., 2018; Wang, Peng, et al., 2020). However, the RCR statistics in
this study provide a more nuanced and clear greening at higher elevations, which offers a more comprehensive
understanding of changing features in a mountainous environment. Overall, the RCR value increases at a rate of
0.10% yr− 1/200 m in the higher elevation zones (2,600–5,200 m) (Figure 2b). Among the subregions, the EH
exhibits the fastest RCR increase at a value of 0.14% yr− 1/200 m, compared to the CH (0.08% yr− 1/200 m) and
WH (0.07% yr− 1/200 m) (Figures 2d, 2f, and 2h).

3.3. Diverse Responses Among Different Vegetation Cover Types

Based on Figures 5 and 6, NDVI changes varied at regional and subregional levels, likely due to differences in
vegetation cover types. To investigate this further, we compared the NDVIMA, greening rates, and RCR for three
vegetation types (forest, savannas, and grassland) (Table S1 in Supporting Information S1). Forest showed the
highest NDVIMA, followed by savannas and grassland. However, the greening rate was inversely ordered across
subregions, with grassland showing the highest RCR values, particularly in the EH (1.03% yr⁻1).

Furthermore, an elevation‐dependent analysis revealed that forests consistently had the highest mean NDVI
values, followed by savannas and grasslands across most elevation ranges, while grasslands only became
dominant at higher altitudes across the region and subregions. Interestingly, below 2,800 m elevation, savannas
and grassland exhibited decreasing greening rates, whereas forests remained stable; between 2,800 and 4,600 m,
the greening rate gradually increased for all types, where grassland eventually experienced a decline (Figure S4a
in Supporting Information S1). Previously, the weakest grassland productivity in the alpine zone was reported by
Qamer, Shehzad, et al. (2016) in Pakistan's Hindu Kush Karakoram area, where growth was influenced due to
temperature (Abbas et al., 2015). The EH showed similar greening patterns as shown in the entire region, with
some fluctuations (Figure S4b in Supporting Information S1), while in the CH and WH, greening rates decreased
across all vegetation types, with a slight increase at higher elevations (linked with grassland) (Figures S4c and S4d
in Supporting Information S1). A possible reason behind higher forest fluctuation (deforestation and reforesta-
tion) at lower elevations in the Himalayas (Gu et al., 2020), is peak human influences (Sandel & Svenning, 2013),
and increasing road infrastructure at intermediate elevations (Mann et al., 2019). In contrast, a stronger and faster
forest gain at higher elevations is highly influenced by warming temperatures (Wang et al., 2022). These varying
greening patterns of vegetation types underscore the crucial role of climate change in shaping vegetation dy-
namics across the elevations.

3.4. Driving Mechanism of the Elevation‐Dependent Changing Feature

Behind the vegetation changes, climate change has been revealed to be the main component in modulating
vegetation greenness along the elevation gradient (Gao et al., 2019; Jiang et al., 2017; Körner & Hilt-
brunner, 2018). Significantly increasing temperature and decreasing precipitation trends in higher elevated areas
of the SSH (Figure S3 and Text S1 in Supporting Information S1), which are dominated by grassland and highly
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sensitive to both variables (Sun et al., 2015), may offset the benefits of warming, and caused in reduced greening
of grassland (Figure S4 in Supporting Information S1) (Liu et al., 2019, 2021). In addition, partial correlation
analysis of the NDVIMAwith these climate factors revealed different patterns with elevation (Figure 3a). At lower
elevations, the NDVIMA showed a negative correlation with temperature and a positive at higher elevations,
suggesting warming‐induced vegetation greening in higher elevations. Specifically, the shift from negative to
positive effect of temperature on NDVI from lower to higher elevation was stronger in the CH andWH compared
to the EH, which mostly showed a positive correlation across elevations. This indicates that temperature takes
precedence once precipitation meets vegetation's water demand, whereas precipitation becomes more influential
when temperature hits the vegetation's tolerance limit (Cong et al., 2017; Guo et al., 2015). Conversely, a negative
relationship was observed across all elevations of the EH, indicating that water is not the constraining factor in the
EH (Kad & Ha, 2023). However, precipitation played a non‐significant positive role across all elevations of the
CH, except between 3,000 and 4,200 m, and in theWH. Both region's lowlands belong to the Siwalik Hills, which
experience dry conditions for most of the year (Ganjoo & Ota, 2012), where increased precipitation enhances

Figure 3. (a) Elevation‐dependent partial correlation coefficients of the NDVIMA with air temperature and total precipitation
in different subregions. *, **, *** indicate significance at p < 0.05, p < 0.01, and p < 0.0001, respectively. (b) Spatial and
temporal distributions of the partial correlation between NDVIMA and climate factors (air temperature and precipitation).
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vegetation growth and the expansion of the growing season (Du et al., 2019). In contrast, a negative correlation at
higher elevations indicates that water shortages are not strong.

To further examine key driving factors, partial correlation analysis was used to define nine categories based on
significance test at p < 0.05 and correlation values across the study area (Table S2 in Supporting Information S1).
Figure 3b shows the distribution of these categories. Clearly, (T+)* accounted for the highest area percentage
(15.39%), predominantly in highly elevated areas, indicating that the faster warming rate at higher elevations
(Dimri et al., 2018; Pepin et al., 2015) can directly promote vegetation growth by speeding up the breakdown of
plant debris, soil organic material, nitrogen conversion (Li et al., 2019), and increased water availability through
earlier snowmelt (Dye & Tucker, 2003; Harpold & Molotch, 2015). Conversely, (T− )* covered 8.52% area,
mainly distributed in lower elevated areas of the CH and WH, suggesting heat stress due to faster evaporation
(Piao et al., 2014) and causing a limit to vegetation growth (Guo et al., 2018; Xie et al., 2024) across all vegetation
types (Figure S4 in Supporting Information S1). Continued warming can lead to drought stress in the future
(Mastrotheodoros et al., 2020), which can partially offset the benefits of increased carbon sequestration due to
warming in higher elevations (B. He et al., 2023; Lian et al., 2020). This is further exacerbated by widespread heat
stress in lowland regions (van Oldenborgh et al., 2018), where human activities intensify the pressure on
vegetation. In lower and middle elevated areas, human activities like agricultural expansion and road construction
have led to deforestation and forest fragmentation, exacerbating heat stress by altering surface properties and
reducing evapotranspiration (Gu et al., 2020; Mann et al., 2019; Pandey et al., 2014). Additionally, in lowland
tropical regions, intensified land use changes and biodiversity loss further diminish vegetation resilience to
extreme heat, which amplifies heat stress by reducing ecosystem stability, disrupting water cycles, and limiting
the capacity of vegetation recovery from heatwaves (Mann et al., 2019; Munsi et al., 2010).

For precipitation, (P+)* pixels accounted for 6.37% area and contributed to vegetation growth due to suitable
water availability, primarily in middle elevated areas of the CH and WH. In contrast, (P− )* pixels represented
3.17% of the area, concentrated in the lowlands of the EH, highlighting the destructive effect of reduced solar
radiation caused by excessive moisture (Y. He et al., 2023), which likely leads to waterlogging stress on vege-
tation growth (Manghwar et al., 2024), due to extreme rainy monsoons in the EH (Kad & Ha, 2023), emphasizing
the need for suitable temperature conditions for vegetation resilience. Meanwhile, (T+ & P+)* pixels, covered
0.80% highlands of the region, indicating a synergistic effect of warmth and moisture in enhancing vegetation
growth (Maina et al., 2022). Conversely, the (T− & P− )* category, which covered 0.45% of the area, highlighted
combined stress from both factors, leading to unfavorable vegetation conditions in the lowlands where human
activities also exacerbate these stresses (Mann et al., 2019). Pixels with (T+ & P− )*, covered 0.82% area at
highlands, implying that a warmer and drier condition might have improved vegetation health due to earlier
snowmelt and enough water availability (Dye & Tucker, 2003). Lastly, (T− & P+)* pixels, covering 0.67% of the
lower WH area, underscored the importance of water in mitigating the effects of increasing temperature (Du
et al., 2019). These patterns revealed complex elevation‐specific interactions between climate and vegetation,
illustrating diverse impacts of temperature and precipitation on vegetation greenness in the SSH.

Though our study provides a more comprehensive analysis of vegetation change dynamics and their sensitivity to
climate changes across elevations in the SSH, future studies could improve the understanding of these effects by
incorporating additional factors such as extreme weather events, changes in snow cover, and soil moisture.
Meanwhile, the changes in the temporal patterns of precipitation frequency and intensity should be crucial for
further investigation (Feldman et al., 2024; Zhang et al., 2025; Zhou et al., 2021), especially for the elevation‐
dependent precipitation distribution feature in this region. Additionally, it would be particularly valuable to
examine vegetation conditions under projected climate change scenarios for exploring the carbon cycle and its
feedback mechanisms within the Earth's climate system. For the methodology, different machine learning
methods and high‐resolution data may offer a better understanding of the intricate relationships between climatic
factors and vegetation responses, helping to refine predictions and guide effective conservation strategies.

4. Conclusion
This study provides a detailed analysis of elevation‐dependent variation in the spatial pattern of vegetation
greenness, land cover types, and the influence of climatic factors in the Himalaya Mountains from 2000 to 2022.
Our findings indicate a significant increase in NDVIMA across all subregions. Temporal trends show significant
vegetation greening with an overall relative change of 9.56%. Vegetation greening trends exhibit distinct patterns
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along elevation gradients, with fluctuating greening rates across vegetation types. Notably, RCR highlights the
strongest change in vegetation greening at higher elevations.

Additionally, elevation‐dependent partial correlation between climatic variables and vegetation suggests that
higher warming promotes vegetation growth at higher elevations, while lower elevations experience heat stress
that limits vegetation growth. Conversely, precipitation shows diverse patterns, with positive correlations at lower
and middle elevations (except EH). The observed patterns underscore the complex interactions between climate
variables and elevation, suggesting that future ecological responses in the Himalayas will likely vary by region
and elevation. Future research should focus on long‐term monitoring and modeling to predict how these trends
may evolve, particularly in the context of ongoing climate change.

Data Availability Statement
The MODIS data sets for NDVI (Didan, 2021) and Land cover types (Friedl & Sulla‐Menashe, 2022), provided
by NASA, are accessed through the Application for Extracting and Exploring Analysis‐Ready Samples
(AppEEARS), hosted by the Land Processes Distributed Active Archive Center (LP DAAC, https://appeears.
earthdatacloud.nasa.gov/). The ERA5‐Land (Muñoz Sabater, 2019) reanalysis data are downloaded from the
Copernicus Climate Data Store (https://cds.climate.copernicus.eu/datasets/reanalysis‐era5‐land?tab=download).
The 30m‐SRTM data set, originally produced by NASA, is available for download from CGIAR‐CSI (http://srtm.
csi.cgiar.org).
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