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Abstract: High-voltage initial anode-free lithium metal batteries (AFLMBs) promise the maximized
energy densities of rechargeable lithium batteries. However, the reversibility of the high-voltage
cathode and lithium metal anode is unsatisfactory in sustaining their long lifespan. In this research,
a concentrated electrolyte comprising dual salts of LiTFSI and LiDFOB dissolved in mixing solvents of
dimethyl carbonate (DMC) and fluoroethylene carbonate (FEC) with a LiNO3 additive was formulated
to address this challenge. FEC and LiNO3 regulate the anion-rich solvation structure and help form
a LiF, Li3N-rich solid electrolyte interphase (SEI) with a high lithium plating/stripping Coulombic
efficiency of 98.3%. LiDFOB preferentially decomposes to effectively suppress the side reaction at
the high-voltage operation of the Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode. Moreover, the large
irreversible capacity during the initial charge/discharge cycle of the cathode provides supplementary
lithium sources for cycle life extension. Owing to these merits, the as-fabricated AFLMBs can operate
stably for 80 cycles even at an ultrahigh voltage of 4.6 V. This study sheds new insights on the
formulation of advanced electrolytes for highly reversible high-voltage cathodes and lithium metal
anodes and could facilitate the practical application of AFLMBs.

Keywords: lithium metal battery; anode free; high voltage; electrolyte; interphase

1. Introduction

Li-ion batteries (LIBs) have dominated the global market for electric vehicles, portable
electronics, and grid-scale energy storage because of their high-power output capability,
long cycle life, and environmental benignity [1–3]. However, the lithium intercalation/de-
intercalation electrochemistry of commercially available LIBs results in limited energy
densities of less than 300 Wh kg−1, which cannot satisfy the growing demand for high-
density energy storage systems [4–6]. Owing to the ultrahigh theoretical capacity of
3860 mAh g−1 and the lowest redox potential of −3.04 V vs. standard hydrogen electrode,
metallic lithium anodes have sparked a renewed interest in research towards energy-dense
batteries in recent years [7,8]. For instance, lithium metal batteries comprising a lithium
metal anode and NCM811 cathode can deliver a high energy density of 300 Wh kg−1 [9].
Initial anode-free lithium metal batteries (AFLMB) have been proposed in recent years and
comprise a lithium-containing cathode and a bare anode current collector [10,11]. During
the first charge process, lithium is plated from the cathode to the anode current collector
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and then serves as the lithium metal source for subsequent lithium plating/stripping cycles.
The electrode weight is minimized, resulting in optimal energy density for the battery.
Moreover, the removal of the highly active lithium metal upon cell fabrication makes it
much safer and compatible with the LIB production procedure [12].

However, the formation of unstable solid electrolyte interphase (SEI) leads to inevitable
lithium loss [13]. It also causes uneven lithium deposition and the generation of “dead”
lithium [14]. Both factors result in significant lithium plating/stripping irreversibility. Ad-
ditionally, lithium dendrites grow during cycling, which could allow them to penetrate the
separator and cause short circuits and severe safety concerns [15]. In AFLMBs, the limited
lithium source makes their cycle life highly dependent on the lithium plating/stripping
reversibility [16]. For instance, a high lithium plating/stripping Coulombic efficiency (CE)
of 99.9% sustains a cycle life of 223 cycles at 80% capacity retention of the AFLMBs, which
abruptly drops to 5 cycles when the CE decreases to 96%.

Very recently, there has been high demand for rechargeable batteries with super-high
energy densities. High-voltage AFLMBs promise maximized energy density [17,18]. Among
them, lithium-rich cathode-based AFLMBs could be very attractive since they deliver high
reversible capacities of over 220 mAh g−1 and a high working voltage of over 4.6 V [19].
Nonetheless, it is still quite challenging to formulate proper electrolytes that can sustain
such high-voltage operation while maintaining satisfactory compatibility with the lithium
metal anode. Conventional ether electrolytes are compatible with Li anodes but are highly
susceptible to oxidative decomposition at high voltages [20,21]. Carbonate electrolytes have
high oxidative stability, yet the Li plating/stripping reversibility is unsatisfactory [22,23].

In this study, a Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode was selected to construct
a 4.6 V AFLMB with proper electrolyte formulation. Li1.2Mn0.54Ni0.13Co0.13O2 typically
shows an irreversible capacity of over 60 mAh g−1 [24], which is disadvantageous in
conventional rechargeable batteries but could serve as a supplementary lithium source in
AFLMBs for extending the cycle life. A concentrated electrolyte comprising dual salts of
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium difluoro(oxalato)borate
(LiDFOB) dissolved in mixing solvents of dimethyl carbonate (DMC) and fluoroethylene
carbonate (FEC) has been formulated. Lithium nitrate (LiNO3) dissolved in sulfolane
was added to the as-formulated electrolyte. FEC and LiNO3 help form a LiF, Li3N-rich
solid electrolyte interphase (SEI), aiming for a high lithium plating/stripping CE of 98.3%.
LiDFOB preferentially decomposes to effectively suppress the side reaction at high-voltage
operation of the Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode (Figure 1). As a result, the as-
fabricated AFLMBs can operate stably for 80 cycles even at an ultrahigh voltage of 4.6 V.
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Figure 1. Schematic illustration of electrolyte design for AFLMBs with the Li-rich
Li1.2Mn0.54Ni0.13Co0.13O2 cathode. The blue curve represents the charge profile of AFLMBs
with a Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode, where the LiDFOB additive undergoes preferential
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decomposition during the charging process. The red curve illustrates the discharge profile, during
which the LiNO3 additive preferentially decomposes.

2. Results and Discussion

The long-term galvanostatic cyclability of the Li1.2Mn0.54Ni0.13Co0.13O2 cathode was
tested in the carbonated-based electrolyte of 3 M LiTFSI 0.2 M LiDFOB/DMC. The initial
charge/discharge cycle was performed in the voltage range of 2.0−4.7 V, and the subse-
quent cycles were conducted in the voltage range of 2.0−4.6 V. The upper voltage limit
for the first charge cycle was set to be 4.7 V. The Li2O phase from the Li2MnO3 compo-
nent of the Li1.2Mn0.54Ni0.13Co0.13O2 cathode was removed along with the release of O2
in the initial cycle [25]. As Figure 2a shows, the cell maintains a discharge-specific capac-
ity of over 200 mAh g−1 after 100 cycles at a current rate of 0.5 C. Figure 2b shows the
charge/discharge curves in the initial two cycles. It can be observed that the first cycle
exhibits a long charging plateau terminating at ~4.6 V, which disappears in the subse-
quent cycles. This results in a higher specific charge capacity and lower CE in the first
cycle. Consequently, the irreversible capacity corresponds to the plated lithium on the
anode current collector, which can serve as a supplementary lithium source for subsequent
charge/discharge cycles. It can effectively compensate for the active lithium loss at the
anode side, thereby extending the cycle life of AFLMBs.
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To ensure the long-term cycle life of high-voltage AFLMBs, the irreversible Li loss in
each cycle needs to be minimized, and the formation of a cathode electrolyte interphase
(CEI) and SEI with minimal electrochemical/mechanical properties is required. It has been
reported that Lithium difluoro(oxalate)borate (LiDFOB), as the hybridized form of lithium
bis(oxalato)borate (LiBOB) and lithium tetrafluoroborate (LiBF4), can be preferentially oxi-
dized at a low potential on the surface of high-voltage cathode materials to generate a dense
CEI [20,25,26]. Lithium nitrate (LiNO3), a functional additive widely used in ether-based
electrolytes for lithium–sulfur batteries, was previously reported to effectively modulate
the Li+ deposition behavior and form a nitrogen-containing (e.g., Li3N and LiNxOy) SEI
layer to stabilize the Li anode [27]. Therefore, LiNO3 and LiDFOB salts were introduced
into the carbonated-based electrolyte (0.2 M LiDFOB 3 M LiTFSI in FEC/DMC (v/v = 3:7)
with 2.5 wt% 2 M LiNO3 in sulfolane, designated as E-LiNO3-LiDFOB). Two reference
electrolytes of 0.2 M LiDFOB 3 M LiTFSI in FEC/DMC (v/v = 3:7) (defined as E-LiDFOB)
and 3 M LiTFSI in FEC/DMC (v/v = 3:7) with 2.5 wt% 2 M LiNO3 in sulfolane (designated
as E-LiNO3) were formulated to study the critical role of each component.

To study the solvation structures of three electrolytes, Raman spectra and nuclear mag-
netic resonance (NMR) measurements were conducted. Figure 3 shows the Raman spectra
of E-LiNO3-LiDFOB, E-LiDFOB, and E-LiNO3 electrolytes and the hybrid FEC/DMC sol-
vent. The peaks at 518 and 917 cm−1 are the characteristic peaks of free DMC solvent, and
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those at 731 and 866.6 cm−1 are the characteristic peaks of free FEC solvent. In the E-LiNO3
electrolyte, the peak at 731 cm−1 shows a blue shift by 14 cm−1, and that at 917 cm−1

shows a blue shift by 18 cm−1 because of the coordination of the FEC/DMC solvents
with Li+. In the E-LiNO3-LiDFOB electrolyte, the blue shift of these peaks is weakened,
suggesting that introducing LiDFOB reduces the coordination between FEC/DMC solvents
and Li+ ions [28].
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Figure 3. Raman spectra of E-LiNO3-LiDFOB, E-LiDFOB, E-LiNO3 electrolytes, and FEC/
DMC solvents.

Figure 4 illustrates the 13C and 1H NMR spectra of E-LiNO3-LiDFOB, E-LiDFOB,
and E-LiNO3 electrolytes and FEC/DMC solvents. When the lithium salts were added
to the solvent, the 13C and 1H chemical shifts of the FEC/DMC solvent changed obvi-
ously. In both the 13C and 1H NMR spectra, larger chemical shifts in the electrolyte are
indicative of stronger coordination between Li+ ions and the solvent. In comparison to the
E-LiNO3 electrolyte, the E-LiNO3-LiDFOB electrolyte exhibits smaller chemical shifts in
both 13C and 1H NMR spectra. This demonstrates that the addition of LiDFOB additive
into the E-LiNO3 electrolyte weakens the coordination between the solvent and the Li+ ions,
thereby altering the electrolyte’s coordination environment and potentially influencing its
electrochemical behavior.
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Highly reversible Li plating/stripping is the prerequisite to realizing high-voltage
AFLMBs [10,29]. Therefore, the CEs of three electrolytes were evaluated using Li||Cu
half-cells. The wettability of electrolytes was examined first. Figure S1 demonstrates that
the as-formulated E-LiNO3-LiDFOB electrolyte is capable of achieving rapid wetting on
aluminum foil and copper foil. As shown in Figure 5a, the Li||Cu half-cell with the
E-LiNO3-LiDFOB electrolyte shows an average CE of 98.1% over 40 cycles, while that with
E-LiDFOB and E-LiNO3 electrolytes show an average CE of 94.9% and 96.2%, respectively.
The charge/discharge curves of Li plating/stripping cycles in Li||Cu half-cells with
three electrolytes were further compared. The Li||Cu half-cells using LiNO3-containing
electrolytes show a plating/stripping overpotential of 25 mV, which was much lower than
70 mV for those without LiNO3 (Figure 5b–d). This indicates that introducing LiNO3 to the
electrolyte facilitates the kinetics and reversibility of Li plating/stripping. Furthermore,
introducing LiDFOB weakens the coordination between FEC/DMC solvents and Li+ ions
in the E-LiNO3-LiDFOB electrolyte, as discussed previously. This weaker coordination
facilitates the preferential decomposition of anions and promotes the formation of inorganic-
rich SEI, which facilitates higher Li plating/stripping reversibility.
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The morphology of Li metal deposited on Cu foil after Li plating/stripping cycles
in Li||Cu half-cells was studied using scanning electron microscopy (SEM). As shown
in Figure 6, the deposited Li metal in cells with E-LiNO3-LiDFOB electrolytes exhibited
a smooth and uniform morphology, showing large, closely packed grains with minimal
voids. In contrast, the deposited Li metal in cells with E-LiDFOB electrolytes revealed a
pronounced whisker morphology with many voids. For the E-LiNO3 system, no obvious
lithium dendrites can be observed. According to the above results, the LiNO3 component
effectively improves the compatibility between the carbonate-based electrolyte and the
Li metal anode, facilitating smooth Li metal deposition, suppressing the formation of Li
dendrites, and ensuring high Li plating/stripping reversibility [30–32].

Anode-free full cells with E-LiNO3-LiDFOB, E-LiDFOB, and E-LiNO3 electrolytes
were assembled to study the effects of LiNO3 and LiDFOB salts on the high-voltage Li-rich
Li1.2Mn0.54Ni0.13Co0.13O2 cathode. The long-term galvanostatic cyclability and correspond-
ing charge/discharge profiles of AFLMBs with three electrolytes at a current density of
0.5 C are shown in Figure 7. The cells with the E-LiNO3-LiDFOB electrolyte and E-LiDFOB
electrolyte exhibited a similar capacity decay trend during the first 40 cycles; however, the
cells with the E-LiDFOB electrolyte experienced a more rapid capacity decline compared to
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those with E-LiNO3-LiDFOB. The irreversible capacity allows residual lithium metal on the
anode to act as a supplementary lithium source for subsequent lithium plating/stripping
cycles, decelerating the capacity decay in AFLMBs. The LiNO3 component improves the Li
plating/stripping reversibility, allowing the limited lithium stored during the first cycle
to last over a longer cycling period. Consequently, the cells with the E-LiNO3-LiDFOB
electrolyte maintain a slower capacity decay over extended cycles than those with the
E-LiDFOB electrolyte. Ultimately, the cells with E-LiNO3-LiDFOB electrolyte achieve a
reversible specific capacity of 90 mAh g−1 after 80 cycles, while cells with the E-LiDFOB
electrolyte retain less than 50 mAh g−1 after 70 cycles. The E-LiNO3 system shows a faster
capacity decay throughout the charge/discharge cycles compared to those containing the
LiDFOB salt. This can be ascribed to LiDFOB decomposition-derived CEI with rich F,
B-containing components effectively suppressing the side reaction at the cathode side and
facilitating highly reversible lithium transfer between the cathode and anode.
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To further investigate the role of the LiDFOB salt, the compositions of CEI formed on Li-
rich Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with E-LiNO3-LiDFOB and E-LiNO3 electrolytes af-
ter cycling were analyzed using X-ray photoelectron spectroscopy (XPS). Figures 8a and S4
show the F1s spectra of CEI formed in two electrolytes. The CEI formed in the E-LiNO3-
LiDFOB electrolyte exhibits a dominant F–Li peak at 684.5 eV and a minor F–C peak at
687.5 eV, whereas the F–C peak is much more intense in the E-LiNO3 system. This indicates
that the LiF component, derived from salt decomposition, is the main constituent of the
CEI formed in the E-LiNO3-LiDFOB electrolyte. In contrast, the CEI formed in the E-LiNO3
electrolyte is primarily derived from the solvent decomposition. Figure 8b shows the B1s
spectra of CEI formed in the E-LiNO3-LiDFOB electrolyte, with the B–O peak at 192 eV
attributed to LixBOyFz, further confirming that the decomposition of LiDFOB contributes
to the formation of an inorganic-rich CEI in the E-LiNO3-LiDFOB system.
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3. Method
3.1. Materials

LiDFOB, LiNO3, FEC, DMC, and sulfolane were purchased from Sigma-Aldrich, and
LiTFSI was ordered from DodoChem. The lithium salts were dried overnight in an argon-
filled glovebox (MBRAUN, oxygen < 0.1 ppm, water < 0.1 ppm) before use, and the solvents
were treated with 4 Å molecular sieves. Then, 3M LiTFSI and 0.2 M LiDFOB were dissolved
in mixed solvents of DMC and FEC (7:3 v/v). Lithium nitrate LiNO3 was dissolved in
sulfolane and introduced into the above-prepared electrolyte at 2.5 wt%.

The Li1.2Mn0.54Ni0.13Co0.13O2 cathode material was purchased from Shenzhen Ke-
jing Co., Ltd. (Shenzhen, China), and used as received. To prepare the cathode film,
Li1.2Mn0.54Ni0.13Co0.13O2 powder, acetylene black (Alfa Aesar Co., Ltd., Shenzhen, China),
and polyvinylidene fluoride (PVDF, MTI Co., Ltd., Shenzhen, China) were mixed in the
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N-methyl pyrrolidinone (NMP, Sigma Aldrich, Shenzhen, China) solvent at a mass ratio
of 80:10:10 using a weighing bottle and homogenized by overnight magnetic stirring. The
resulting slurry was then spread onto carbon-coated aluminum foil (Al/C, MTI Co., Ltd.,
Shenzhen, China) using a doctor blade. The obtained cathode film was dried at 120 ◦C for
6 h in a blast oven and subsequently for 12 h at 120 ◦C in a vacuum oven. For coin cell
assembly, the cathode was prepared by punching discs (12 mm in diameter) and the typical
mass loading of the Li1.2Mn0.54Ni0.13Co0.13O2 active material was ~1.5–2 mg cm−2.

3.2. Material Characterization

A scanning electron microscope (SEM, HITACHI-SU8220) was used to observe the
microstructure and element distribution. Elemental analysis was performed on an energy
dispersive X-ray spectroscopy (EDX) spectrometer connected to a HITACHI-SU8220. The
electrodes were washed with 1,2-dimethoxyethane and transferred to the SEM chamber
using an Ar-filled container before observation. The phase composition was further deter-
mined by X-ray diffraction (XRD, SmartLab 9 kW). The X-ray photoelectron spectroscopy
(XPS) spectra were measured on a Thermo Scientific spectrometer with an Al-Kα X-ray
source. Raman spectra were collected on a Raman spectrum analyzer using a 532 nm laser.
23Na-nuclear magnetic resonance (NMR) analysis of the electrolytes was performed using a
Jeol ECZ500R 500 MHz Solid-State NMR spectrometer. Prior to the test, dimethyl sulfoxide
(DMSO-d6), as a deuterium reagent, was thoroughly mixed with the electrolyte.

3.3. Electrochemical Measurements

All electrochemical properties were measured using CR2032 coin cells, which were
assembled in an argon-filled glove box with both O2 and H2O below 0.1 ppm. To evalu-
ate Li plating/stripping efficiency, Li/Cu half cells were assembled using Cu foil as the
working electrode (φ16 mm) and Li foil (φ15.5 mm) as the counter/reference electrode.
The cells were first cycled five times at 50 µA in the voltage range of 0–1 V (vs. Li+/Li),
followed by a long-term cycling test at a current density of 0.5 mA cm−2 and a lithium
deposition capacity of 1 mAh cm−2. For the full cell test, anode-free cells comprising the
Li1.2Mn0.54Ni0.13Co0.13O2 cathode and copper current collector as the anode were assem-
bled. The working potential windows in the first charge/discharge cycle and subsequent
cycles were 2–4.7 V and 2–4.6 V, respectively.

4. Conclusions

In this research, a Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode was selected to fabricate a
4.6 V AFLMB with proper electrolyte formulation. A concentrated electrolyte comprising
dual salts of LiTFSI/LiDFOB dissolved in mixing solvents of DMC/FEC (7:3, v/v) was
formulated. Lithium nitrate (LiNO3) dissolved in sulfolane was introduced as a film-
forming agent. FEC and LiNO3 regulate the anion-rich solvation structure and facilitate the
formation of a LiF, Li3N-rich solid electrolyte interphase (SEI), aiming for high lithium plat-
ing/stripping CE of 98.3%. LiDFOB preferentially decomposes to effectively suppress the
side reaction at the high-voltage operation of the Li-rich cathode. Furthermore, the consider-
able irreversible capacity in the first charge/discharge cycle of the Li1.2Mn0.54Ni0.13Co0.13O2
cathode offers abundant supplementary lithium sources for cycle life extension. As a result,
the as-fabricated 4.6 V AFLMBs can operate stably for 80 cycles with a high specific capacity
of 90 mAh g−1 maintained.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29204831/s1. Figure S1: Demonstration of the as-formulated E-
LiNO3-LiDFOB electrolyte wetting the cathode aluminum (a) and anode copper (b) current collectors;
Figure S2: Energy dispersive spectroscopy (EDS) mapping of the Li1.2Mn0.54Ni0.13Co0.13O2 cathode
particle; Figure S3: X-ray diffraction (XRD) pattern of the Li1.2Mn0.54Ni0.13Co0.13O2 cathode and
α-NaFeO2 structure; Figure S4. F1s of CEI formed on Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode with
E-LiNO3 electrolyte; Figure S5. XPS survey scan of CEI formed on Li-rich Li1.2Mn0.54Ni0.13Co0.13O2
cathode with E-LiNO3-LiDFOB electrolyte.
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