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Nonasymptotic Bounds for Adversarial Excess Risk under Misspecified Models\ast 
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Abstract. We propose a general approach to evaluating the performance of robust estimators based on adver-
sarial losses under misspecified models. We first show that adversarial risk is equivalent to the risk
induced by a distributional adversarial attack under certain smoothness conditions. This ensures
that the adversarial training procedure is well-defined. To evaluate the generalization performance
of the adversarial estimator, we study the adversarial excess risk. Our proposed analysis method
includes investigations on both generalization error and approximation error. We then establish
nonasymptotic upper bounds for the adversarial excess risk associated with Lipschitz loss functions.
In addition, we apply our general results to adversarial training for classification and regression
problems. For the quadratic loss in nonparametric regression, we show that the adversarial excess
risk bound can be improved over that for a general loss.
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1. Introduction. Deep learning methods are known to be vulnerable to adversarial ex-
amples, which are formed by applying an imperceptible perturbation to the input such that
the perturbed input causes the model to make a highly confident but erroneous prediction
[43, 17]. The problem gained widespread attention in recent years. Methods for finding ad-
versarial attacks [17, 32, 30, 11, 8, 1, 42] and developing adversarial defense [33, 28, 53, 13]
have been extensively studied. Among the adversarial defense methods, adversarial training
[28] has been empirically proven to be successful.

Although there has been significant progress in developing methods for defending adversar-
ial attacks, theoretical understanding of adversarial robustness remains limited. [34, 35] con-
sidered the classification loss under the adversarial binary classification setting and obtained
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848 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

Table 1
Comparison of recent methods for studying generalization performance of an adversarial estimator. The

\ell r attack refers to general \ell r adversarial attacks for r\geq 1, the error \scrE gen refers to the generalization error, and
\scrE app refers to the approximation error.

\ell r attack FNNs \scrE gen \scrE app

[52] \ding{55} \ding{55} \checkmark \ding{55}

[23] \checkmark \checkmark \checkmark \ding{55}

[3] \checkmark \ding{55} \checkmark \ding{55}

[31] \checkmark \checkmark \checkmark \ding{55}

[46] \checkmark \checkmark \checkmark \ding{55}

This paper \checkmark \checkmark \checkmark \checkmark 

the optimal adversarial classification risk. [35, 4] and [10] proved the existence and min-
imax properties for the adversarial classification risk. The results were later extended by
[16] to the setting where surrogate functions were used. Another series of work investi-
gated the calibration and consistency of the surrogate loss functions under adversarial attacks
[6, 2, 5, 29].

Several authors have considered the generalization errors of adversarial estimators in re-
cent years. Examples include [52, 23, 3, 31], who analyzed the Rademacher complexity of
adversarial loss function class. [46] transformed the adversarial learning into a distributional
robustness optimization (DRO) problem and studied its generalization properties. However,
the above work only considered well-specified models, i.e., the underlying target function is
assumed to belong to a class of neural network functions. As is well known, in the classi-
cal nonparametric method for classification and regression, the underlying target is the link
function defined as \BbbE [Y | X = x], which is not a neural network function in general. There-
fore, a natural question would be, what are the properties of an adversarial estimator under
misspecified models, i.e., when the underlying target function is not an exact neural network
function, but can only be approximated by neural networks? Under this more general setting,
it is necessary to consider both the generalization error and the approximation error caused by
model misspecification. In this paper, we study this problem systematically. We first provide
a summary of the main features of our result and the related ones in Table 1 below.

While adversarial training improves the robustness of an estimator on adversarially per-
turbed data, this benefit often comes at the cost of more resource consumption and leads
to a reduction of accuracy on natural unperturbed data [44]. Some recent works have
tried to gain theoretical understanding of the trade-offs between accuracy and robustness
[28, 38, 36, 44, 37, 15, 27, 53, 20, 19]. However, none of the above-mentioned works studied
the setting of deep adversarial training with misspecified models.

In this work, we provide theoretical guarantees for deep adversarial training with mis-
specified models by establishing nonasymptotic error bounds for the adversarial excess risk,
defined as the difference between the adversarial risk of an adversarial estimator and the
optimal adversarial risk. The adversarial excess risk can be decomposed as

Adversarial excess risk \leq \scrE gen + \scrE app,
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BOUNDS FOR ADVERSARIAL EXCESS RISK 849

Table 2
Summary of error bounds (up to a logarithmic factor) in the paper, where \varepsilon represents the adversarial

attack level, r1 = \alpha /(2d + 3\alpha ), r2 = 2\alpha /(2d + 5\alpha ), r3 = (d + 3\alpha  - 1)/(2d + 3\alpha ), r4 = (d + 1)/(2d + 3\alpha ), and
r5 = (d+ 1)/(2d+ 5\alpha ).

Loss function Measurement Error bound

Lipschitz adversarial excess risk n - r1 + n - r3\varepsilon 

excess risk n - r1 + \varepsilon 

local worst-case excess risk n - r1 + nr4\varepsilon 

Classification adversarial excess risk n - r1 + \varepsilon 

Quadratic L2-norm n - r2 + nr5\varepsilon 

where \scrE gen represents the generalization error and \scrE app represents the approximation error.
The explicit expressions of \scrE gen and \scrE app are given in Theorem 3.1. The adversarial setting
poses significant challenges, particularly in analyzing supremum-type loss functions. These
functions may lack measurability, even when considering measurable loss and estimation func-
tions, and their analysis introduces complexities in assessing generalization and approximation
errors. To address these challenges, we leverage the Lipschitz property of the loss and estima-
tion functions and derive explicitly upper bounds for both generalization error and approxima-
tion error. These bounds reflect how the neural network’s structure and the adversarial attack
level influence the adversarial excess risk. Additionally, in cases where Lipschitzness of the
loss function cannot be guaranteed, as for the quadratic loss function discussed in section 4.2,
we provide a nonasymptotic error bound for the expectation of the adversarial excess risk.

Our main contributions are summarized as follows:
\bullet We establish nonasymptotic error bounds for the adversarial excess risks under mis-

specified models and use the feedforward neural networks (FNNs) with constraints
on the Lipschitz property. The error bounds explicitly illustrate the influence of the
adversarial attack level and can achieve the rate O(n - \alpha /(2d+3\alpha )) up to a logarithmic
factor, where \alpha represents the smoothness level of the underlying target function and
d is the dimension of input. The structure of the neural network is specified to show
when the error rate can be achieved.

\bullet We also evaluate the adversarial estimator under natural risk and local worst-case risk.
\bullet We apply our general results to the classification and nonparametric regression prob-

lems in an adversarial setting and establish nonasymptotic error bounds for the adver-
sarial estimators under the adversarial classification risk and L2-norm, respectively.

The results for error bounds for the adversarial estimator in different settings and mea-
surements are summarized in Table 2.

The rest of the paper is organized as follows. Section 2 introduces the notation and problem
setup. Section 3 contains the main results of the paper. Section 4 presents applications of
the results to classification and regression problems. In section 5, discussion on some related
works is given. Concluding remarks are given in section 6. The proof of the main theorem is
given in the appendix, and the remaining proofs are relegated to the supplementary material
(supplement.pdf [local/web 358KB]).
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850 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

Notation. Let the set of positive integers be denoted by \BbbN = \{ 1,2, ...\} and let \BbbN 0 =\BbbN \cup \{ 0\} .
If a and b are two quantities, we use a \lesssim b or b \gtrsim a to denote the statement that a \leq Cb for
some constant C > 0. We denote a \asymp b when a \lesssim b \lesssim a. Let \lceil a\rceil denote the smallest integer
larger than or equal to quantity a. For a vector \bfitx and p \in [1,\infty ], we use \| \bfitx \| p to denote the
p-norm of \bfitx . For a function f , we use \| f\| \infty to denote the supremum norm of f .

2. Problem setup. In this section, we introduce the definition of adversarial risk and
present a basic setup of adversarial training. We also lay the foundation for the theoretical
analysis of adversarial training and establish some basic properties of adversarial risk.

2.1. Adversarial risk. Suppose that (X,Y ) follows an unknown distribution P over \scrZ =
\scrX \times \scrY , where \scrX \subseteq \BbbR d and \scrY \subseteq \BbbR . For a loss function \ell : \BbbR \times \scrY \mapsto \rightarrow [0,\infty ) and a measurable
function f :\scrX \mapsto \rightarrow \BbbR , the (population) natural risk is defined by

\scrR P (f) =\BbbE (X,Y )\sim P [\ell (f(X), Y )].

To evaluate the performance of function f in the presence of adversarial attacks, the (popu-
lation) adversarial risk is defined by

\widetilde \scrR P (f, \varepsilon ) =\BbbE (X,Y )\sim P

\Biggl[ 
sup

X\prime \in B\varepsilon (X)
\ell (f(X \prime ), Y )

\Biggr] 
,

where B\varepsilon (\bfitx ) = \{ \bfitx \prime \in \scrX : \| \bfitx \prime  - \bfitx \| \infty \leq \varepsilon \} . Here we focus on \ell \infty attack. In section 3, we will
show that the proposed analysis method can be easily extended to a general \ell r attack.

2.2. Properties of adversarial risk. Adversarial risk has been widely considered in recent
years for the goal of deriving adversarial robust estimators. To facilitate the analysis, we make
the following assumptions.

Assumption 2.1. \scrZ \subseteq [0,1]d \times [ - 1,1] and \cup \bfitx \in \scrX B\varepsilon (\bfitx )\subseteq [0,1]d hold for \varepsilon > 0.

The assumption \cup \bfitx \in \scrX B\varepsilon (\bfitx ) \subseteq [0,1]d is to guarantee that the estimation function class
is well-defined under the adversarial setting. Our analysis can be easily extended to a more
general setting, where \scrZ is bounded. For a loss function \ell :\BbbR \times \scrY \mapsto \rightarrow [0,\infty ), we define

Lip1(\ell ) = sup
y\in \scrY 

sup
u1 \not =u2

| \ell (u1, y)  - \ell (u2, y)| 
| u1  - u2| 

.

Assumption 2.2. The loss function is continuous and satisfies Lip1(\ell )<\infty .

The assumption Lip1(\ell ) < \infty is weaker than the Lipschitz continuity condition, since it
only imposes restriction on the Lipschitz constant of \ell (\cdot , y) for every y \in \scrY . The assumption
is satisfied by many commonly used loss functions, such as the hinge loss and \rho -margin loss.

We first show that the adversarial risk is well-defined in our setting. This is necessary
since the adversarial risk may not be well-defined in general [35]. Specifically, we show that
the adversarial risk for a function f can be represented by a natural risk with the expectation
taken over a shifted distribution. Moreover, the distance between the shifted distribution and
the data generating distribution can be measured by the \infty th Wasserstein distance.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BOUNDS FOR ADVERSARIAL EXCESS RISK 851

Let d\scrZ denote a metric over \scrZ satisfying d\scrZ (\bfitz 1,\bfitz 2) = \| \bfitx 1  - \bfitx 2\| \infty + | y1  - y2| for any
\bfitz 1 = (\bfitx 1, y1) and \bfitz 2 = (\bfitx 2, y2) \in \scrZ . Let \scrP (\scrZ ) denote the space of Borel probability measures on
\scrZ . For p\in [1,\infty ), the pth Wasserstein distance between two probability measures P,Q\in \scrP (\scrZ )
is defined as

Wp(P,Q) =

\biggl\{ 
inf

\pi \in \Pi (P,Q)
\BbbE (Z1,Z2)\sim \pi [d\scrZ (Z1,Z2)

p]

\biggr\} 1/p

,

where Π(P,Q) denotes the collection of all probability measures on \scrZ \times \scrZ with marginals
P and Q. The \infty th Wasserstein distance is defined to be the limit of the pth Wasserstein
distances, which can also be characterized by

W\infty (P,Q) = inf
\pi \in \Pi (P,Q)

ess sup
(Z1,Z2)\sim \pi 

d\scrZ (Z1,Z2).

Since Wp(P,Q) \leq Wq(P,Q) for any 1 \leq p\leq q \leq \infty , the \infty th Wasserstein distance is stronger
than any pth Wasserstein distance. Similarly, for p \in [1,\infty ], we define the pth Wasserstein
distance over \scrP (\scrX ) based on the supremum norm, where \scrP (\scrX ) denotes the space of Borel
probability measures on \scrX .

Lemma 2.3. Suppose Assumption 2.1 holds, \ell and f are continuous, and there exists a mea-
surable function T  \star satisfying T  \star (\bfitz ) \in B\varepsilon (\bfitx ) such that sup\bfitx \prime \in B\varepsilon (\bfitx ) \ell (f(\bfitx \prime ), y) = \ell (f(T  \star (\bfitz )), y).
Let the joint distribution of (T  \star (Z), Y ) be denoted by P  \star ; we have W\infty (P  \star , P ) \leq \varepsilon and\widetilde \scrR P (f, \varepsilon ) = \scrR P  \star (f).

Lemma 2.3 shows that the adversarial risk is well-defined with respect to the shifted
distribution P  \star . With further analysis of this shifted distribution, we construct an equivalent
relationship between the adversarial risk and the risk induced by the distribution-perturbing
adversary [34, 35]. The result is given in section 2.3 below.

To state the next lemma, we denote the Lipschitz constant for a function f by

Lip(f) = sup
\bfitx 1 \not =\bfitx 2

| f(\bfitx 1) - f(\bfitx 2)| 
\| \bfitx 1  - \bfitx 2\| \infty 

.

Lemma 2.4. Suppose Assumptions 2.1--2.2 hold and Lip(f) <\infty . Then

\scrR P (f) \leq \widetilde \scrR P (f, \varepsilon ) \leq \scrR P (f) + Lip1(\ell )Lip(f)\varepsilon .

Lemma 2.4 shows that adversarial robustness is closely related to the Lipschitz constraints.
This connection between robustness and Lipschitz constraints has been the subject of several
studies. For instance, [9] identified a relationship between these two aspects in scenarios where
the data distribution satisfies isoperimetric conditions. Studies such as [12] and [45] have
utilized Lipschitz constraints to devise novel regularization techniques and training strategies
for deep neural networks. While their empirical findings have underscored the effectiveness
and robustness of these methodologies across well-established image classification datasets,
a theoretical analysis of adversarial estimators was not within their scope. In contrast, our
research is framed within a more general context, without specific distributional assumptions
or task-related limitations, thereby broadening its relevance to a variety of problem settings.
Moreover, our emphasis is on the theoretical examination of the estimator’s properties, aiming
to furnish a more comprehensive understanding of its behavior.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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852 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

2.3. Relationship between adversarial risk and distribution-perturbing risk. We further
study the shifted distribution in Lemma 2.3 and construct a relationship between the ad-
versarial risk and another kind of risk induced by a distributional adversarial attack defined
below.

For any distribution Q \in \scrP (\scrZ ), we denote its corresponding pair of variables by ( \widetilde X, \widetilde Y ),
and let the conditional distribution of \widetilde X given \widetilde Y = y be denoted by Qy for every y \in \scrY . The
collection of distributions Γ\varepsilon is defined by

Γ\varepsilon =
\Bigl\{ 
Q\in \scrP (\scrZ ) : when ( \widetilde X, \widetilde Y )\sim Q, then \widetilde Y \sim PY and W\infty (Qy, Py) \leq \varepsilon \forall y \in \scrY 

\Bigr\} 
,

where Py is the conditional distribution of X given Y = y and PY is the distribution of Y.
Intuitively, it is helpful to think of Γ\varepsilon as a collection of distributional adversarial attacks.
For every Q \in Γ\varepsilon , by observing sample (X,Y ), with y denoting the value of Y , it perturbs
X to \widetilde X such that \widetilde X \sim Qy and lets Qy lie in an uncertainty set around Py. This kind of
adversarial attack strategy is also known as a distribution-perturbing adversary [34, 35]. The
corresponding distribution-perturbing risk is defined as supQ\in \Gamma \varepsilon 

\scrR Q(f).

Theorem 2.5. Suppose Assumption 2.1 holds, and \ell and f are continuous. Then we have\widetilde \scrR P (f, \varepsilon ) = supQ\in \Gamma \varepsilon 
\scrR Q(f).

This theorem shows that the risks induced by the two different types of adversarial attack
are equivalent under the smoothness condition. Similar results were constructed in [35, 34],
where [35] focused on the binary classification setting and [34] considered the case when \scrY is
a discrete set of labels. From the proof of Theorem 2.5, we also show that P  \star \in Γ\varepsilon , which
directly implies W\infty (P  \star , P ) \leq \varepsilon . Hence, this shows a stronger relationship with P .

2.4. Adversarial training. Adversarial training aims to learn a target function f \star that
minimizes the adversarial risk. In this work, we assume that f \star belongs to a Hölder class.

Definition 2.6 (H\"older class). Let d\in \BbbN and \alpha = r+\beta > 0, where r \in \BbbN 0 and \beta \in (0,1]. Let
\bfits \in \BbbN d

0 denote the multi-index. The H\"older class \scrH \alpha (\BbbR d) is defined as

\scrH \alpha (\BbbR d) =

\biggl\{ 
f :\BbbR d \rightarrow \BbbR , max

\| \bfits \| 1\leq r
sup
\bfitx \in \BbbR d

| \partial \bfits f(\bfitx )| \leq 1,

max
\| \bfits \| 1=r

sup
\bfitx 1 \not =\bfitx 2

| \partial \bfits f(\bfitx 1) - \partial \bfits f(\bfitx 2)| 
\| \bfitx 1  - \bfitx 2\| \beta \infty 

\leq 1

\biggr\} 
.

We let \scrH \alpha =
\bigl\{ 
f : [0,1]d \rightarrow \BbbR , f \in \scrH \alpha (\BbbR d)

\bigr\} 
denote the restriction of \scrH \alpha (\BbbR d) to [0,1]d.

Our target function f \star is defined by

f \star \in argmin
f\in \scrH \alpha 

\widetilde \scrR P (f, \varepsilon ).(2.1)

When only a finite sample \{ (Xi, Yi), i = 1, . . . , n\} is available, we estimate f \star by minimizing
the empirical adversarial risk over a space of estimation functions \scrF n, which can vary with n.
Specifically, we aim to find an estimator \widehat fn \in \scrF n that solves

\widehat fn \in argmin
f\in \scrF n

\widetilde \scrR Pn
(f, \varepsilon ), where \widetilde \scrR Pn

(f, \varepsilon ) =
1

n

n\sum 
i=1

\Biggl[ 
sup

X\prime 
i\in B\varepsilon (Xi)

\ell (f(X \prime 
i), Yi)

\Biggr] 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BOUNDS FOR ADVERSARIAL EXCESS RISK 853

Here Pn denotes the empirical distribution induced by the samples. The function \widehat fn is called an
adversarial estimator. Based on the relationship between Lipschitz constraints and adversarial
robustness, we focus on the feedforward neural network with constraints on Lipschitz property.

2.5. Feedforward neural networks with norm constraints. A feedforward neural network
(FNN) can be represented in the form of

g = gL \circ gL - 1 \circ \cdot \cdot \cdot \circ g0,

where gi(\bfitx ) = \sigma (Ai\bfitx + \bfitb i) and gL(\bfitx ) = AL\bfitx , with Ai \in \BbbR di+1\times di and \bfitb i \in \BbbR di+1\times 1 for
i = 0, . . . ,L  - 1, AL \in \BbbR dL+1\times dL , and \sigma (x) = max\{ x,0\} being the ReLU activation func-
tion (applied componentwise). For simplicity of notation, we use g\theta to emphasis that the
FNN is parameterized by \theta = (A0, . . . ,AL,\bfitb 0, . . . ,\bfitb L - 1). The numbers W = max\{ d1, . . . , dL\} 
and L are called the width and depth of the FNN, respectively. We let \scrN \scrN (W,L) denote
the class of FNNs with width W and depth L. Additionally, we define \scrN \scrN (W,L,K) as the
subset of functions in \scrN \scrN (W,L) which satisfies the following norm constraint on the weight:

\kappa (\theta ) := \| AL\| 
L - 1\prod 
i=0

max\{ \| (Ai,\bfitb i)\| ,1\} \leq K,

where the norm satisfies \| A\| = sup\| \bfitx \| \infty \leq 1 \| A\bfitx \| \infty . Then for any g\theta \in \scrN \scrN (W,L,K), we have

Lip(g\theta )\leq \kappa (\theta ) \leq K.

Therefore, the Lipschitz constants of the functions in \scrN \scrN (W,L,K) have an uniform upper
bound.

3. Nonasymptotic error bounds. In this section, we present our main results of nonasymp-
totic bounds for the adversarial excess risk. We also discuss the relationship between accuracy
and adversarial robustness in the sense that more robustness can lead to less accurate upper
bounds for the excess risk.

3.1. Nonasymptotic error bounds for adversarial excess risk. The adversarial estimator
based on FNNs with norm constraints is defined by\widehat fn \in argmin

f\in \scrN \scrN (W,L,K)

\widetilde \scrR Pn
(f, \varepsilon ).(3.1)

We evaluate its performance via the adversarial excess risk\widetilde \scrE ( \widehat fn, \varepsilon ) = \widetilde \scrR P ( \widehat fn, \varepsilon )  - inf
f\in \scrH \alpha \cup \scrN \scrN (W,L,K)

\widetilde \scrR P (f, \varepsilon ).

The adversarial excess risk is nonnegative. It is a measure for evaluating the performance
of an adversarial estimator for future data using the optimal population adversarial risk as a
benchmark.

To investigate the adversarial excess risk, we show it can be decomposed into (3.2), where
\scrE gen represents the generalization error, which is the difference between the population ad-
versarial risk and empirical adversarial risk, and \scrE app represents the approximation error due
to model misspecification, which measures the distance between the target function and the
space of estimation functions that may not contain the target function. By investigating both
\scrE gen and \scrE app, we establish a nonasymptotic error bound on the adversarial excess risk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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854 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

Theorem 3.1. Consider a H\"older space \scrH \alpha with \alpha = r + \beta \geq 1, where r \in \BbbN 0 and
\beta \in (0,1]. Let \gamma = \lceil log2(d + r)\rceil . Suppose Assumptions 2.1--2.2 hold. Suppose W \geq 
c(K/ log\gamma K)(2d+\alpha )/(2d+2) for a constant c > 0, and L \geq 4\gamma + 2. Then for any adversarial
estimator \widehat fn in (3.1) and adversarial attack level \varepsilon > 0, we have

\widetilde \scrE ( \widehat fn, \varepsilon )\lesssim \scrE gen + \scrE app,(3.2)

where

\scrE gen =K\varepsilon n - 1 +WL
\sqrt{} 

log(W 2L)n - 1/2
\sqrt{} 

logn + n - \mathrm{m}\mathrm{i}\mathrm{n}\{ 1/2,\alpha /d\} logc(\alpha ,d) n,

\scrE app = (K/ log\gamma K) - \alpha /(d+1).

Here c(\alpha ,d) = 1 when d = 2\alpha , and c(\alpha ,d) = 0 otherwise. If we further select K \asymp n(d+1)/(2d+3\alpha )

and WL\asymp n(2d+\alpha )/(4d+6\alpha ), then we have

\widetilde \scrE ( \widehat fn, \varepsilon )\lesssim n - (d+3\alpha  - 1)/(2d+3\alpha )\varepsilon + n - \alpha /(2d+3\alpha ) logn\xi ,(3.3)

where \xi = max\{ 1, \gamma \alpha /(d+ 1)\} .
The upper bound (3.2) is determined by the smoothness property of the Hölder space, the

structure of the estimation function class \scrN \scrN (W,L,K), the adversarial attack level \varepsilon , and
sample size n. There is a trade-off between the two errors. Specifically, \scrE gen increases with
the complexity of \scrN \scrN (W,L,K), with larger W,L, and K leading to a larger upper bound.
On the other hand, as K becomes larger, the error \scrE app decreases. To achieve the best error
rate, we balance the trade-off between the two errors and show the rate can reach n - \alpha /(2d+3\alpha )

up to a logarithmic factor for suitable chosen \varepsilon .
The proposed analysis method is applicable to the settings with different models, loss

functions, estimation function classes, and adversarial attacks. For example, we can apply
the method to the setting where a general \ell r adversarial attack is used. The upper bounds
on the corresponding generalization error and approximation error can be obtained based
on the results on Rademacher complexity of general adversarial loss function classes [3, 31]
and the results on approximation power of different estimation function classes such as deep
neural networks [51, 26, 22]. In Theorem 3.1, we employ the approximation error theory as
established in [22], specifically developed for norm-constrained FNNs.

The result (3.3) shows how the bounds for the adversarial excess risk depends on the
adversarial attack level \varepsilon , where \varepsilon is allowed to vary with n. Let en = n(d+2\alpha  - 1)/(2d+3\alpha ). When
\varepsilon = O(en), the error rate can reach n - \alpha /(2d+3\alpha ) up to a logarithmic factor. However, if \varepsilon 
grows faster than en, the error rate of \widetilde \scrE ( \widehat fn, \varepsilon ) is dominated by the rate of \varepsilon . Moreover, the
convergence of \widetilde \scrE ( \widehat fn, \varepsilon ) cannot be guaranteed when \varepsilon grows faster than n(d+3\alpha  - 1)/(2d+3\alpha ).

As mentioned above, the error rate of the adversarial excess risk can reach n - \alpha /(2d+3\alpha ) up
to a logarithmic factor when \varepsilon is appropriately selected. Here we only require the Lipschitz
property of the loss function. We will further show in section 4.2 that the error rate can be
improved to n - 2\alpha /(2d+5\alpha ) up to a logarithmic factor when using the quadratic loss, where the
improvement is due to an improved approximation error bound.

Some recent papers have studied the convergence properties of deep neural network under
the excess risk (3.4), where the data are naturally unperturbed [39, 7, 21]. The results are
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BOUNDS FOR ADVERSARIAL EXCESS RISK 855

Table 3
Comparison of nonasymptotic error bounds between our result and some related results (up to a logarithmic

factor).

Setup Estimation function class Error bound

[39, 7, 21] natural FNNs n - 2\alpha /(d+2\alpha )

[22] natural FNNs with norm constraints n - \alpha /(d+2\alpha +1)

This paper adversarial FNNs with norm constraints n - 2\alpha /(2d+5\alpha )

generally established under a certain smoothness assumption on the target function. And it
is typically assumed that the target function is in a Hölder class with a smoothness index \alpha .
The results show that the deep neural network estimation could achieve the optimal minimax
rate n - 2\alpha /(d+2\alpha ) established by [41]. Though the structures of neural networks vary in these
works, which include different choices of width, depth, and activation functions, they make no
constraint on the Lipschitz property of neural networks. [22] investigated the approximation
properties of FNNs with norm constraints. Intuitively, a norm-constrained neural network
class would be smaller in size compared to an unconstrained neural network class with the
same structure. Therefore, the benefit of the Lipschitz property comes at the cost of losing the
approximation power, which would lead to larger approximation errors. This is demonstrated
in [22], where the error rate of the excess risk only reaches the rate n - \alpha /(d+2\alpha +1) up to a
logarithmic factor. The above discussion is summarized in Table 3.

To date, existing precise lower bound results for the adversarial settings have been estab-
lished based on strong assumptions, where the parametric model and Gaussian distribution
are commonly assumed. Specifically, [19, 20] derived expressions of the adversarial risks in the
linear regression and parametric binary classification problems under the Gaussian assump-
tion. However, for the general nonparametric adversarial setting, there is no established lower
minimax bound result, and the problem becomes much harder as precise expression of adver-
sarial risk is not available. Since the natural risk is upper bounded by the adversarial risk,
the minimax optimal rate for the natural risk naturally becomes applicable to establishing a
lower bound of adversarial risk. Therefore, n - 2\alpha /(d+2\alpha ) is a valid but trivial lower bound for
nonparametric adversarial settings. However, the lower minimax bound of adversarial risk is
likely to depend on the adversarial attack level \varepsilon . Moreover, the class of norm-constrained
FNNs is smaller than the class of FNNs used to establish the rate n - 2\alpha /(d+2\alpha ) of natural risk.
Therefore, it seems reasonable to conjecture that the lower minimax bound for the adversarial
risk cannot reach n - 2\alpha /(d+2\alpha ) and will vary with \varepsilon . In [22], a lower bound for the approxima-
tion error of norm-constrained FNNs was established. However, after much work, it appears
that this result does not lead to a lower minimax bound of adversarial risk. Consequently,
the tightness of our established upper bound and a rigorous derivation of the lower minimax
bound still need to be explored. This is an interesting and challenging problem that deserves
further study in the future.

3.2. Evaluation of adversarial estimator under some other risks. We also evaluate the
performance of the adversarial estimator under some other risks. We first consider the natural
risk and study the excess risk defined by
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856 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

\scrE ( \widehat fn) = \scrR P ( \widehat fn)  - inf
f\in \scrH \alpha 

\scrR P (f).(3.4)

Corollary 3.2. Suppose the conditions of Theorem 3.1 are satisfied and \alpha \geq 1. Then for
any adversarial estimator \widehat fn in (3.1), we have

\scrE ( \widehat fn)\lesssim n - \alpha /(2d+3\alpha ) logn\xi + \varepsilon ,

where \xi = max\{ 1, \gamma \alpha /(d+ 1)\} .
Corollary 3.2 shows that the upper bound for the excess risk of the adversarial estimator

is not guaranteed to converge. The increase in the upper bound for the excess risk becomes
significant when the adversarial robustness reaches a certain level. Previous studies have
mostly focused on specific scenarios and made certain assumptions on the data distribution.
For instance, [19, 20] analyzed the trade-offs in linear regression and binary classification
with linear classifier, assuming the data was normally distributed. However, a comprehensive
analysis of this problem is still lacking. We provide an upper bound for the excess risk
that increases with the adversarial robustness level. Our result sheds light on the theoretical
understanding of the trade-offs, but a complete analysis requires lower bounds for the excess
risk.

We now consider the local worst-case risk. Specifically, the local worst-case risk with 1st
Wasserstein distance is defined by

\scrR P,1(f, \varepsilon ) = sup
Q:W1(Q,P )\leq \varepsilon 

\scrR Q(f),

where the distribution Q runs over an uncertainty set around the data generating distribution
P . The excess risk with respect to the local worst-case risk is defined by

\scrE 1( \widehat fn, \varepsilon ) = \scrR P,1( \widehat fn, \varepsilon ) - inf
f\in \scrH \alpha \cup \scrN \scrN (W,L,K)

\scrR P,1(f, \varepsilon ).

Corollary 3.3. Suppose the conditions of Theorem 3.1 are satisfied and Lip(\ell ) <\infty . Then
for any adversarial estimator \widehat fn in (3.1), we have

\scrE 1( \widehat fn, \varepsilon )\lesssim n - \alpha /(2d+3\alpha ) logn\xi +K\varepsilon ,

where \xi = max\{ 1, \gamma \alpha /(d+ 1)\} .

4. Examples. In this section, we consider the more specific settings of classification and
regression and apply Theorem 3.1 to classification and regression problems.

4.1. Classification. Suppose that (X,Y ) follows an unknown distribution P on \scrX \times 
\{  - 1,1\} . A basic goal of binary classification is to predict the label Y, when we only ob-
serve a predictor X in a random pair (X,Y ) \sim P . A commonly used loss function is the
classification loss \ell \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s} : \BbbR \times \{  - 1,1\} \mapsto \rightarrow [0,\infty ), defined by \ell \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}(u, y) = \bfone \{ sign(u)y \leq 0\} , where
sign(u) = 1 when u \geq 0, and sign(u) =  - 1 otherwise. Let f : \scrX \mapsto \rightarrow \BbbR be a score function,
and let the associated binary classifier be signf(\cdot ). The natural classification risk and the
adversarial classification risk of the score function f are
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BOUNDS FOR ADVERSARIAL EXCESS RISK 857

\scrR \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P (f) =\BbbE (X,Y )\sim P\bfone \{ signf(X) \not = Y \} ,

\widetilde \scrR \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P (f, \varepsilon ) =\BbbE (X,Y )\sim P

\Biggl[ 
sup

X\prime \in B\varepsilon (X)
\bfone 
\bigl\{ 

signf(X \prime ) \not = Y
\bigr\} \Biggr] 

.

Let \eta (\bfitx ) = P (Y = 1| X = \bfitx ). Define c\varepsilon (\bfitx ,\bfitx 
\prime ) = \bfone \{ \| \bfitx  - \bfitx \prime \| \infty > 2\varepsilon \} and let the corresponding

optimal transport cost D\varepsilon be defined by

D\varepsilon (P,Q) = inf
\pi \in \Pi (P,Q)

\BbbE (X1,X2)\sim \pi [c\varepsilon (X1,X2)].

The minimum value of the natural classification risk is given by

\scrR  \star 
\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P = inf

f \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}
\scrR \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P (f) =\BbbE [ min\{ \eta (X),1 - \eta (X)\} ],

which is reached when f is the Bayes classifier, i.e., f(\bfitx ) = sign(2\eta (\bfitx ) - 1) [40]. The minimum
value of the adversarial classification risk can be expressed as

\widetilde \scrR  \star 
\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P (\varepsilon ) = inf

f \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}

\widetilde \scrR \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P (f, \varepsilon ) =
1

T + 1

\biggl[ 
1 - inf

Q\in \scrP (\scrX ):Q\preceq TP0

D\varepsilon (Q,P1)

\biggr] 
,

where P1 = PX| Y=1, P0 = PX| Y= - 1, and T = P (Y = - 1)/P (Y = 1) [35, Theorem 6.2].
The natural classification loss and its adversarial counterpart are nonsmooth and noncon-

vex. Many surrogate losses have been considered in the context of standard classification. We
specifically focus on margin-based loss, where a margin loss function \phi exists such that the loss
function satisfies \ell (u, y) = \phi (uy), (u, y) \in \BbbR \times \{  - 1,1\} . In general, the margin loss is selected
to have a property called consistency, which is satisfied by a large family of convex losses [40].
However, the adversarial version of these margin losses may not show the same consistency
properties with respect to the adversarial classification loss. Moreover, [29] showed that no
convex margin loss can be calibrated in the adversarial setting. Consequently, it is challenging
to study consistency in the general adversarial setting.

Let C\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}(\eta ,\bfitx , f) = \bfone \{ f(\bfitx ) < 0\} \eta + \bfone \{ f(\bfitx ) \geq 0\} (1  - \eta ) and C \star 
\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}(\eta ,\bfitx ) = min\{ \eta ,1  - \eta \} .

Let C\phi (\eta ,\bfitx , f) = \phi (f(\bfitx ))\eta +\phi ( - f(\bfitx ))(1 - \eta ) and C \star 
\phi (\eta ,\bfitx ) = inf\alpha \phi (\alpha )\eta +\phi ( - \alpha )(1 - \eta ). Define

\scrR  \star 
P = inff \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\scrR P (f).

Assumption 4.1. For any \eta \in [0,1], \bfitx \in \scrX and measurable function f ,

C\phi (\eta ,\bfitx , f)  - C \star 
\phi (\eta ,\bfitx ) \geq a(C\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}(\eta ,\bfitx , f) - C \star 

\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}(\eta ,\bfitx ))

holds for a positive constant a.

Assumption 4.2. There exist positive constants c and b such that

\phi (0)  - C \star 
\phi (\eta ,\bfitx ) \geq b(1 - C \star 

\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}(\eta ,\bfitx ))

when | \eta  - 1/2| > c.

Assumptions 4.1 and 4.2 can be satisfied by some common margin losses, such as the hinge
loss.
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858 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

Corollary 4.3. Suppose the conditions of Theorem 3.1 are satisfied and \phi is a continuous
decreasing margin function satisfying Assumptions 4.1 and 4.2. Assume | \eta (\bfitx )  - 1/2| > c for
any \bfitx \in \scrX and inff\in \scrH \alpha \scrR P (f) = \scrR  \star 

P . Then\widetilde \scrR \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P ( \widehat fn, \varepsilon )  - \widetilde \scrR  \star 
\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P (\varepsilon )\lesssim n - \alpha /(2d+3\alpha ) logn\xi + \varepsilon .

For the case where there might be \eta (\bfitx ) = 1/2, we show that the natural classification risk
of the adversarial estimator converges to \scrR  \star 

\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P when \varepsilon goes to 0.

Corollary 4.4. Suppose the conditions of Theorem 3.1 are satisfied and \phi is a margin func-
tion satisfying Assumptions 4.1. Assume inff\in \scrH \alpha \scrR P (f) = \scrR  \star 

P . Then

\scrR \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P ( \widehat fn) - \scrR  \star 
\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s},P \lesssim n - \alpha /(2d+3\alpha ) logn\xi + \varepsilon .

4.2. Regression. Consider a nonparametric regression model

Y = f0(X) + \eta ,(4.1)

where Y is a response, X \in \scrX \subseteq [0,1]d is a d-dimensional covariate vector, f0 \in \scrH \alpha is
an unknown regression function, and \eta is an unobservable error satisfying \BbbE (\eta | X) = 0 and
\BbbE (\eta 2) < \infty . Under model (4.1) and the quadratic loss \ell (u, y) = (u  - y)2, we denote the
corresponding adversarial estimator (3.1) by \widehat f ls

n . We measure the distance between \widehat f ls
n and f0

using the L2(P )-norm \| \cdot \| 2 := \| \cdot \| L2(PX), that is, \| f\| 2 =
\sqrt{} 
\BbbE | f(X)| 2. To relax the boundedness

requirement for Y , we assume that Y follows a subexponential distribution.

Assumption 4.5. There exists a constant \sigma Y > 0 such that \BbbE [exp\{ \sigma Y | Y | \} ]<\infty .

First, we establish a new error bound for the adversarial excess risk when utilizing the
quadratic loss.

Theorem 4.6. Consider a H\"older class \scrH \alpha with \alpha = r + \beta \geq 1, where r \in \BbbN 0 and
\beta \in (0,1]. Let \gamma = \lceil log2(d + r)\rceil . Suppose Assumptions 2.1 and 4.5 hold. Suppose W \geq 
c(K/ log\gamma K)(2d+\alpha )/(2d+2) for a constant c > 0 and L\geq 4\gamma + 2. If we select K \asymp n(d+1)/(2d+5\alpha )

and WL \asymp n(2d+\alpha )/(4d+10\alpha ), then for any adversarial estimator \widehat f ls
n satisfying \| \widehat f ls

n \| \infty \leq Mn

with Mn growing at rate logn, we have

\BbbE [\widetilde \scrE ( \widehat f ls
n , \varepsilon )]\lesssim n - 2\alpha /(2d+5\alpha ) logn\lambda + n(d+1)/(2d+5\alpha ) logn\varepsilon ,

where \lambda = max\{ 4,2\gamma \alpha /(d+ 1)\} .
Theorem 4.6 shows that the error rate of the adversarial excess risk of \widehat f ls

n can reach
n - 2\alpha /(2d+5\alpha ) up to a logarithmic factor when \varepsilon = O(n - (d+2\alpha +1)/(2d+5\alpha )). This improves the
rate n - \alpha /(2d+3\alpha ) given by Theorem 3.1. This is because a better control of the approximation
error can be obtained with the quadratic loss function. We also obtain the convergence rate
of \| \widehat f ls

n  - f0\| 2.
Corollary 4.7. Suppose the conditions of Theorem 4.6 are satisfied. Then

\BbbE \| \widehat f ls
n  - f0\| 22 \lesssim n - 2\alpha /(2d+5\alpha ) logn\lambda + n(d+1)/(2d+5\alpha ) logn\varepsilon .

If further \varepsilon =O(n - (d+2\alpha +1)/(2d+5\alpha )), then

\BbbE \| \widehat f ls
n  - f0\| 22 \lesssim n - 2\alpha /(2d+5\alpha ) logn\lambda .
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5. Related work. There is a line of work focusing on the analysis of the Rademacher
complexity of adversarial loss function class [52, 23, 3, 31]. Specifically, [52] investigated the
adversarial Rademacher complexity of the linear models under perturbations measured in the
\ell \infty -norm. The result was later generalized by [23] and [3] to the cases where the perturbations
were measured in a general \ell r-norm. For neural network models, [52, 3] investigated adversar-
ial training when the model was a neural network with a single hidden layer. In [23] and [31],
deep neural networks were studied. [23] proposed a tree transformation to upper bound the
adversarial loss function. In [31], the covering number of the adversarial loss function class
was shown to be upper bounded by the covering number of a newly defined loss function class
over an extended training set. The Rademacher complexity of the adversarial loss function
class can then be obtained by analyzing the covering number of the new loss function class.
[25] and [46] transformed the adversarial learning problem into a DRO problem. However, in
all the aforementioned works, the authors did not consider the approximation error and only
focused on the generalization error; see Table 1.

The problem of the trade-offs between accuracy and adversarial robustness has been stud-
ied recently [28, 38, 44, 37, 15, 27, 49, 14]. The works [19] and [20] gave a precise theoretical
characterization of the trade-offs in the linear regression and parametric binary classification
problems under the Gaussian assumption. For the adversarial training, [20] characterized its
trade-off curve by calculating the natural risk and adversarial risk of the adversarial estimator
that was derived from different adversarial attack levels. They found that the adversarial
training hurt the accuracy if robustness is pursued. However, there is still a lack of systematic
theoretical understanding of the trade-offs in general nonparametric settings.

The vulnerability of typical neural networks to attack often stems from their lack of
Lipschitzness, where small adversarial perturbations in the input can result in significant
perturbations in the output [43]. While the Lipschitz condition has been extensively studied in
adversarial training, several relaxations of this assumption have been explored in the literature.
These include local Lipschitzness [50] and the local cross-Lipschitz condition [18, 48]. However,
it’s important to note that these works did not consider theoretical analyses regarding the
generalization property.

6. Conclusions. In this paper, we have proposed a general approach to evaluating the
generalization performance of the estimators based on adversarial training under misspecified
models. The adversarial risk is shown to be equivalent to the risk induced by a distribu-
tional adversarial attack under certain smoothness conditions. This shows that the adversarial
training procedure is well-defined. We have established nonasymptotic error bounds on the
adversarial excess risk, which achieve the rate O(n - \alpha /(2d+3\alpha )) up to a logarithmic factor for
a Lipschitz loss function and can be improved to O(n - 2\alpha /(2d+5\alpha )) up to a logarithmic factor
when using the quadratic loss.

There are several interesting problems that deserve further study. First, the Lipschitz-
type condition (e.g., Assumption 2.2) plays an important role in our analysis. However, this
assumption is not satisfied in many practical cases. It would be interesting to relax this as-
sumption in the future. Also, we have only considered robustness against adversarial examples
in X. How to generalize the results to the case when there are also adversarial examples in
both X and Y is an important problem for future work. Finally, a complete analysis of the
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trade-offs between accuracy and adversarial robustness requires the establishment of lower
bounds for the adversarial excess risk.

Appendix. In this appendix, we give the proof of our main result, Theorem 3.1. Proofs
of the other results and additional technical details are given in the supplementary material
(supplement.pdf [local/web 358KB]).

Appendix A. Proof of Theorem 3.1. Let f0 \in argminf\in \scrN \scrN (W,L,K)
\widetilde \scrR P (f, \varepsilon ). Then we

have \widetilde \scrE ( \widehat fn, \varepsilon ) = \widetilde \scrR P ( \widehat fn, \varepsilon )  - inf
f\in \scrH \alpha \cup \scrN \scrN (W,L,K)

\widetilde \scrR P (f, \varepsilon )

= \widetilde \scrR P ( \widehat fn, \varepsilon )  - min\{ \widetilde \scrR P (f \star , \varepsilon ), \widetilde \scrR P (f0, \varepsilon )\} 
= max\{ \scrE 1,\scrE 2\} ,

where \scrE 1 = \widetilde \scrR P ( \widehat fn, \varepsilon )  - \widetilde \scrR P (f \star , \varepsilon ) and \scrE 2 = \widetilde \scrR P ( \widehat fn, \varepsilon )  - \widetilde \scrR P (f0, \varepsilon ). For the error \scrE 1, we have
the decomposition

\scrE 1 = \widetilde \scrR P ( \widehat fn, \varepsilon ) - \widetilde \scrR Pn
( \widehat fn, \varepsilon ) + \widetilde \scrR Pn

( \widehat fn, \varepsilon ) - \widetilde \scrR Pn
(f \star , \varepsilon )

+ \widetilde \scrR Pn
(f \star , \varepsilon ) - \widetilde \scrR P (f \star , \varepsilon )

= I1 + I2 + I3,

where the errors are I1 = \widetilde \scrR P ( \widehat fn, \varepsilon )  - \widetilde \scrR Pn
( \widehat fn, \varepsilon ), I2 = \widetilde \scrR Pn

( \widehat fn, \varepsilon )  - \widetilde \scrR Pn
(f \star , \varepsilon ), and I3 =\widetilde \scrR Pn

(f \star , \varepsilon )  - \widetilde \scrR P (f \star , \varepsilon ). For the error \scrE 2, based on \widetilde \scrR Pn
( \widehat fn, \varepsilon ) \leq \widetilde \scrR Pn

(f0, \varepsilon ), we have the de-
composition

\scrE 2 = \widetilde \scrR P ( \widehat fn, \varepsilon ) - \widetilde \scrR Pn
( \widehat fn, \varepsilon ) + \widetilde \scrR Pn

( \widehat fn, \varepsilon ) - \widetilde \scrR Pn
(f0, \varepsilon )

+ \widetilde \scrR Pn
(f0, \varepsilon ) - \widetilde \scrR P (f0, \varepsilon )

\leq I1 + I4,

where I4 = \widetilde \scrR Pn
(f0, \varepsilon ) - \widetilde \scrR P (f0, \varepsilon ). We show the nonasymptotic upper bound for the adversarial

excess risk by deriving N upper bounds for each error term.

A.1. Bounds for \bfitI \bfone and \bfitI \bffour . For any f \in \scrN \scrN (W,L,K) and \bfitz = (\bfitx , y)\in \scrZ , define

\ell (f,\bfitz ) = sup
\bfitx \prime \in B\varepsilon (\bfitx )

\ell (f(\bfitx \prime ), y) = sup
\bfitdelta \in B\varepsilon (0)

\ell (f(\bfitx + \bfitdelta ), y).

Since \widehat fn and f0 belong to the class \scrN \scrN (W,L,K), we have

I1 = \widetilde \scrR P ( \widehat fn, \varepsilon )  - \widetilde \scrR Pn
( \widehat fn, \varepsilon ) \leq sup

f\in \scrN \scrN (W,L,K)
\{ \BbbE Z\sim P \ell (f,Z)  - \BbbE Z\sim Pn

\ell (f,Z)\} 

and

I4 = \widetilde \scrR Pn
(f0, \varepsilon ) - \widetilde \scrR P (f0, \varepsilon ) \leq sup

f\in \scrN \scrN (W,L,K)
\{ \BbbE Z\sim Pn

\ell (f,Z) - \BbbE Z\sim P \ell (f,Z)\} .

Let the random vector \bfitsigma = (\sigma 1, . . . , \sigma n) consist of i.i.d. Rademacher variables that are
independent of the data. The Rademacher variable takes equal probability of being 1 or  - 1.
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Denote the samples by Z1:n = \{ Zi\} ni=1, with Zi = (Xi, Yi). Let Z \prime 
i = (X \prime 

i, Y
\prime 
i ), i = 1, . . . , n, be

generated i.i.d. from P and be independent of Z1:n. The sample Z \prime 
1:n = \{ Z \prime 

i\} ni=1 is called as
the ghost sample of Z1:n. Then

sup
f\in \scrN \scrN (W,L,K)

\{ \BbbE P [\ell (f,Z)] - \BbbE Pn
[\ell (f,Z)]\} 

= sup
f\in \scrN \scrN (W,L,K)

\BbbE \bfitsigma \{ \BbbE P [\ell (f,Z)] - \BbbE Pn
[\ell (f,Z)]\} 

= sup
f\in \scrN \scrN (W,L,K)

\BbbE \bfitsigma 

\Biggl\{ 
\BbbE Z\prime 

1:n

\Biggl[ 
1

n

n\sum 
i=1

\ell (f,Z \prime 
i)

\Biggr] 
 - 1

n

n\sum 
i=1

\ell (f,Zi)

\Biggr\} 

= sup
f\in \scrN \scrN (W,L,K)

\BbbE Z\prime 
1:n

\Biggl\{ 
\BbbE \bfitsigma 

\Biggl[ 
1

n

n\sum 
i=1

\ell (f,Z \prime 
i) - \ell (f,Zi)

\Biggr] \Biggr\} 

\leq \BbbE Z\prime 
1:n
\BbbE \bfitsigma 

\Biggl\{ 
sup

f\in \scrN \scrN (W,L,K)

\Biggl[ 
1

n

n\sum 
i=1

\ell (f,Z \prime 
i)  - \ell (f,Zi)

\Biggr] \Biggr\} 

=\BbbE Z\prime 
1:n
\BbbE \bfitsigma 

\Biggl\{ 
sup

f\in \scrN \scrN (W,L,K)

1

n

n\sum 
i=1

\sigma i

\Bigl[ 
\ell (f,Z \prime 

i) - \ell (f,Zi)
\Bigr] \Biggr\} 

,

(A.1)

where the last equality holds since \ell (f,Z \prime 
i)  - \ell (f,Zi) are symmetric random variables, for

which they have the same distribution as \sigma i(\ell (f,Z
\prime 
i)  - \ell (f,Zi)) [47, Chapter 6.4]. Define the

class of functions \scrL n by

\scrL n =
\Bigl\{ 
\ell (f,\bfitz ) : \scrZ \mapsto \rightarrow \BbbR | f \in \scrN \scrN (W,L,K)

\Bigr\} 
.

For a given set of samples \bfitz 1, . . . ,\bfitz n from \scrZ , the empirical Rademacher complexity of class
\scrL n is defined by

\widehat \Re n(\scrL n) =\BbbE \bfitsigma 

\Biggl\{ 
sup

f\in \scrN \scrN (W,L,K)

1

n

n\sum 
i=1

\sigma i\ell (f,\bfitz i)

\Biggr\} 
.

We analyze the Rademacher complexity following the method motivated by [31]. For a given
\tau \in (0, \varepsilon ), let CB\varepsilon 

(\tau ) be a (\tau ,\| \cdot \| \infty )-cover of B\varepsilon (0) with the smallest cardinality M\tau . Denote
the elements of CB\varepsilon 

(\tau ) by \bfitdelta 1, . . . ,\bfitdelta M\tau 
. It follows by Lemma SM1.3 that logM\tau \leq cd log(\varepsilon \tau  - 1)

for a constant c. For any \bfitz = (\bfitx , y) \in \scrZ , the continuity of \ell and f implies that there exists
\bfitdelta \prime \in B\varepsilon (0) such that \ell (f,\bfitz ) = \ell (f(\bfitx + \bfitdelta \prime ), y). Then

\ell (f,\bfitz )  - max
j

\ell (f(\bfitx + \bfitdelta j), y) = \ell (f(\bfitx + \bfitdelta \prime ), y) - max
j

\ell (f(\bfitx + \bfitdelta j), y)

\leq min
j

| \ell (f(\bfitx + \bfitdelta \prime ), y)  - \ell (f(\bfitx + \bfitdelta j), y)| 

\leq Lip1(\ell )Lip(f) min
j

\| \bfitdelta \prime  - \bfitdelta j\| \infty 

\leq Lip1(\ell )Lip(f)\tau .
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Therefore, for any f \in \scrN \scrN (W,L,K),

1

n

n\sum 
i=1

\sigma i\ell (f,\bfitz i)

=
1

n

n\sum 
i=1

\{ \sigma i\ell (f,\bfitz i)  - \sigma i max
j

\ell (f(\bfitx i + \bfitdelta j), yi) + \sigma i max
j

\ell (f(\bfitx i + \bfitdelta j), yi)\} 

\leq Lip1(\ell )K\tau +
1

n

n\sum 
i=1

\{ \sigma i max
j

\ell (f(\bfitx i + \bfitdelta j), yi)\} .

This leads to an upper bound of \widehat \Re n(\scrL n) as follows:

\widehat \Re n(\scrL n) \leq \BbbE \bfitsigma 

\Biggl\{ 
sup

f\in \scrN \scrN (W,L,K)

1

n

n\sum 
i=1

\sigma i max
j

\ell (f(\bfitx i + \bfitdelta j), yi)

\Biggr\} 
+ Lip1(\ell )K\tau .

Define the class

\scrL n,\tau =

\biggl\{ 
max

j
\ell (f(\bfitx + \bfitdelta j), y) : \scrZ \mapsto \rightarrow \BbbR | f \in \scrN \scrN (W,L,K)

\biggr\} 
.

Let \scrN (u,\scrL n,\tau ,L\infty (Pn)) denote the covering number of the class \scrL n,\tau under the data-dependent
L\infty metric. Define SnM\tau 

= \{ \bfitx i + \bfitdelta j : i = 1, . . . , n, j = 1, . . . ,M\tau \} . For the dataset SnM\tau 
,

let \scrN (u,\scrN \scrN (W,L,K),L\infty (PnM\tau 
)) denote the covering number of the class \scrN \scrN (W,L,K)

under the data-dependent L\infty metric. For any f \in \scrN \scrN (W,L,K), there exists f \prime such that
maxi,j | f(\bfitx i + \bfitdelta j)  - f \prime (\bfitx i + \bfitdelta j)| \leq u, which leads to

max
i

| max
j

\ell (f(\bfitx i + \bfitdelta j), yi)  - max
j

\ell (f \prime (\bfitx i + \bfitdelta j), yi)| 

\leq max
i,j

| \ell (f(\bfitx i + \bfitdelta j), yi)  - \ell (f \prime (\bfitx i + \bfitdelta j), yi)| 

\leq Lip1(\ell ) max
i,j

| f(\bfitx i + \bfitdelta j) - f \prime (\bfitx i + \bfitdelta j)| 

\leq Lip1(\ell )u.

Hence, we show

\scrN (u,\scrL n,\tau ,L\infty (Pn))\leq \scrN (u/Lip1(\ell ),\scrN \scrN (W,L,K),L\infty (PnM\tau 
)).

Suppose the functions in \scrN \scrN (W,L,K) are uniformly bounded; otherwise they can be trun-
cated. Define the uniform covering number of \scrN \scrN (W,L,K) by

\scrN \infty (u,\scrN \scrN (W,L,K), n) = sup
Pn

\scrN (u,\scrN \scrN (W,L,K),L\infty (Pn)),

where the supremum runs over all the datasets of size n. Combining Lemmas SM1.1 and
SM1.2, we derive

log\scrN \infty (u,\scrN \scrN (W,L), n)\leq C1W
2L2 log(W 2L) log(u - 1n)
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BOUNDS FOR ADVERSARIAL EXCESS RISK 863

for a constant C1. It follows that

log\scrN (u,\scrL n,\tau ,L\infty (Pn))\leq C2W
2L2 log(W 2L) log(u - 1nM\tau )

for a constant C2. Since the class \scrN \scrN (W,L,K) is bounded and \ell is continuous, there exists
B > 0 such that sup\bfitz \in \scrZ | maxj \ell (f(\bfitx + \bfitdelta j), y)| \leq B for any f \in \scrN \scrN (W,L,K). From Lemma
SM1.4 and logM\tau \leq cd log(\varepsilon \tau  - 1), we have

\BbbE \bfitsigma 

\Biggl\{ 
sup

f\in \scrN \scrN (W,L,K)

1

n

n\sum 
i=1

\sigma i max
j

\ell (f(\bfitx i + \bfitdelta j), yi)

\Biggr\} 

\leq inf
\delta \geq 0

\Biggl\{ 
4\delta + 12

\int B

\delta 

\sqrt{} 
log\scrN (u,\scrL n,\tau ,L\infty (Pn))

n
du

\Biggr\} 

\lesssim inf
\delta \geq 0

\biggl\{ 
\delta + WL

\sqrt{} 
log(W 2L)n - 1/2 \cdot 

\int B

\delta 

\Bigl[ \sqrt{} 
log(u - 1) +

\sqrt{} 
logn +

\sqrt{} 
logM\tau 

\Bigr] 
du

\biggr\} 
\lesssim WL

\sqrt{} 
log(W 2L)n - 1/2

\Bigl\{ \sqrt{} 
logn +

\sqrt{} 
log(\varepsilon \tau  - 1)

\Bigr\} 
.

Therefore, by selecting \tau such that \varepsilon \tau  - 1 =O(n), we show

I1 \lesssim K\varepsilon n - 1 +WL
\sqrt{} 

log(W 2L)n - 1/2
\sqrt{} 

logn.

Following a similar procedure, we have I4 \lesssim K\varepsilon n - 1 +WL
\sqrt{} 

log(W 2L)n - 1/2
\surd 

logn.

A.2. Bound for \bfitI \bftwo . Define the approximation error by

\scrE (\scrH \alpha ,\scrN \scrN (W,L,K)) = sup
f\in \scrH \alpha 

inf
\phi \in \scrN \scrN (W,L,K)

\| f  - \phi \| C([0,1]d),

where C([0,1]d) is the space of continuous functions on [0,1]d equipped with the supremum
norm. There exists f̄ \in \scrN \scrN (W,L,K) approximating the target function f \star \in \scrH \alpha such that

\| f \star  - f̄\| C([0,1]d) =O(\scrE (\scrH \alpha ,\scrN \scrN (W,L,K))).

The difference between the empirical adversarial risks \widetilde \scrR Pn
(f \star , \varepsilon ) and \widetilde \scrR Pn

(f̄ , \varepsilon ) satisfies\bigm| \bigm| \bigm| \widetilde \scrR Pn
(f \star , \varepsilon ) - \widetilde \scrR Pn

(f̄ , \varepsilon )
\bigm| \bigm| \bigm| \leq 1

n

n\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| sup
X\prime 

i\in B\varepsilon (Xi)
\ell (f \star (X \prime 

i), Yi)  - sup
X\prime 

i\in B\varepsilon (Xi)
\ell (f̄(X \prime 

i), Yi)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 1

n

n\sum 
i=1

sup
X\prime 

i\in B\varepsilon (Xi)

\bigm| \bigm| \bigm| \ell (f \star (X \prime 
i), Yi)  - \ell (f̄(X \prime 

i), Yi)
\bigm| \bigm| \bigm| 

\leq Lip1(\ell ) \cdot \| f \star  - f̄\| C([0,1]d).

Since \widehat fn minimizes the empirical adversarial risk over the class \scrN \scrN (W,L,K), then

I2 = \widetilde \scrR Pn
( \widehat fn, \varepsilon )  - \widetilde \scrR Pn

(f \star , \varepsilon ) = \widetilde \scrR Pn
( \widehat fn, \varepsilon )  - \widetilde \scrR Pn

(f̄ , \varepsilon ) + \widetilde \scrR Pn
(f̄ , \varepsilon )  - \widetilde \scrR Pn

(f \star , \varepsilon )

\leq \widetilde \scrR Pn
(f̄ , \varepsilon )  - \widetilde \scrR Pn

(f \star , \varepsilon )

\leq Lip1(\ell ) \cdot \| f \star  - f̄\| C([0,1]d).

The approximation error \scrE (\scrH \alpha ,\scrN \scrN (W,L,K)) is investigated by [22] and the result is
given as follows.
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864 C. LIU, Y. JIAO, J. WANG, AND J. HUANG

Lemma A.1 ([22, Theorem 3.2]). Let \gamma = \lceil log2(d + r)\rceil . There exists c > 0 such that for
any W \geq c(K/ log\gamma K)(2d+\alpha )/(2d+2) and L\geq 4\gamma + 2,

\scrE (\scrH \alpha ,\scrN \scrN (W,L,K))\lesssim (K/ log\gamma K) - \alpha /(d+1).

Therefore, we derive

I2 \lesssim (K/ log\gamma K) - \alpha /(d+1).

A.3. Bound for \bfitI \bfthree . For any f \in \scrH \alpha and \bfitz = (\bfitx , y) \in \scrZ , we define \ell (f,\bfitz ) = sup\bfitx \prime \in B\varepsilon (\bfitx )

\ell (f(\bfitx \prime ), y). The error I3 can be upper bounded by

I3 = \widetilde \scrR Pn
(f \star , \varepsilon )  - \widetilde \scrR P (f \star , \varepsilon ) \leq sup

f\in \scrH \alpha 

\{ \BbbE Z\sim Pn
\ell (f,Z)  - \BbbE Z\sim P \ell (f,Z)\} .

Define the class \scrL \alpha = \{ \ell (f,\bfitz ) : \scrZ \mapsto \rightarrow \BbbR | f \in \scrH \alpha \} . Let \bfitsigma = (\sigma 1, . . . , \sigma n) consist of i.i.d.
Rademacher variables and be independent of the data. For any samples \bfitz 1, . . . ,\bfitz n from \scrZ ,
we denote the empirical Rademacher complexity of the class \scrL \alpha by

\widehat \Re n(\scrL \alpha ) =\BbbE \bfitsigma 

\Biggl\{ 
sup
f\in \scrH \alpha 

1

n

n\sum 
i=1

\sigma i\ell (f,\bfitz i)

\Biggr\} 
.

From supf\in \scrH \alpha \| f\| \infty \leq 1, there exists a constant B such that sup\bfitz \in \scrZ | \ell (f,\bfitz )| \leq B for any
f \in \scrH \alpha . In addition, we have

log\scrN (u,\scrL \alpha ,\| \cdot \| \infty )\leq log\scrN (u/Lip1(\ell ),\scrH \alpha ,\| \cdot \| \infty ).

This is because for any f , f̃ \in \scrH \alpha satisfying \| f  - f̃\| \infty \leq u/Lip1(\ell ), it follows that

| \ell (f,\bfitz ) - \ell (f̃ ,\bfitz )| =

\bigm| \bigm| \bigm| \bigm| \bigm| sup
\bfitx \prime \in B\varepsilon (\bfitx )

\ell (f(\bfitx \prime ), y)  - sup
\bfitx \prime \in B\varepsilon (\bfitx )

\ell (f̃(\bfitx \prime ), y)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq Lip1(\ell ) sup

\bfitx \prime \in B\varepsilon (\bfitx )
| f(\bfitx \prime ) - f̃(\bfitx \prime )| 

\leq u.

From [24], log\scrN (u,\scrH \alpha ,\| \cdot \| \infty )\lesssim u - d/\alpha holds. Hence,

log\scrN (u,\scrL \alpha ,L2(Pn))\leq log\scrN (u,\scrL \alpha ,\| \cdot \| \infty )\lesssim u - d/\alpha ,

where L2(Pn) denotes the L2 metric generated by the samples. It follows by Lemma SM1.4
that

\widehat \Re n(\scrL \alpha )\lesssim inf
\delta \geq 0

\Biggl\{ 
4\delta + 12

\int 1

\delta 

\sqrt{} 
log\scrN (u,\scrL \alpha ,\| \cdot \| \infty )

n
du

\Biggr\} 
.

Let \gamma = d/(2\alpha ). Thus, we show

\widehat \Re n(\scrL \alpha )\lesssim inf
\delta \geq 0

\biggl( 
\delta + n - 1/2

\int 1

\delta 
u - \gamma du

\biggr) 
.
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BOUNDS FOR ADVERSARIAL EXCESS RISK 865

When \gamma > 1, by taking \delta = n - \alpha /d, one has

\widehat \Re n(\scrL \alpha )\lesssim inf
\delta \geq 0

\Bigl( 
\delta + (\gamma  - 1) - 1n - 1/2(\delta 1 - \gamma  - 1)

\Bigr) 
\lesssim n - \alpha /d.

When \gamma = 1, by taking \delta = n - 1/2, one has

\widehat \Re n(\scrL \alpha )\lesssim inf
\delta \geq 0

\Bigl( 
\delta  - n - 1/2 log \delta 

\Bigr) 
\lesssim n - 1/2 logn.

When \gamma < 1, one has

\widehat \Re n(\scrL \alpha )\lesssim inf
\delta \geq 0

\Bigl( 
\delta + (1  - \gamma ) - 1n - 1/2(1 - \delta 1 - \gamma )

\Bigr) 
\lesssim n - 1/2.

Combining these cases together, we derive

\widehat \Re n(\scrL \alpha )\lesssim n - \mathrm{m}\mathrm{i}\mathrm{n}\{ 1/2,\alpha /d\} logc(\alpha ,d) n,

where c(\alpha ,d) = 1 if d = 2\alpha , and c(\alpha ,d) = 0 otherwise. Following a similar analysis method in
(A.1), we derive

sup
f\in \scrH \alpha 

\{ \BbbE Z\sim Pn
\ell (f,Z)  - \BbbE Z\sim P \ell (f,Z)\} \lesssim n - \mathrm{m}\mathrm{i}\mathrm{n}\{ 1/2,\alpha /d\} logc(\alpha ,d) n.

Consequently, it follows that

I3 \lesssim n - \mathrm{m}\mathrm{i}\mathrm{n}\{ 1/2,\alpha /d\} logc(\alpha ,d) n.

Let \gamma = \lceil log2(d + r)\rceil . Combining the results from sections A.1–A.3, we show for any
W \geq c(K/ log\gamma K)(2d+\alpha )/(2d+2) and L\geq 4\gamma + 2,

\widetilde \scrE ( \widehat fn, \varepsilon ) = max\{ \scrE 1,\scrE 2\} 
\leq max\{ I1 + I2 + I3, I1 + I4\} 
\lesssim K\varepsilon n - 1 +WL

\sqrt{} 
log(W 2L)n - 1/2

\sqrt{} 
logn

+ (K/ log\gamma K) - \alpha /(d+1) + n - \mathrm{m}\mathrm{i}\mathrm{n}\{ 1/2,\alpha /d\} logc(\alpha ,d) n,

(A.2)

where c(\alpha ,d) = 1 when d = 2\alpha , and c(\alpha ,d) = 0 otherwise. By selecting K \asymp n(d+1)/(2d+3\alpha ),
and WL\asymp n(2d+\alpha )/(4d+6\alpha ), we have

WL
\sqrt{} 

log(W 2L)n - 1/2
\sqrt{} 

logn + (K/ log\gamma K) - \alpha /(d+1)

\lesssim n - \alpha /(2d+3\alpha ) logn\mathrm{m}\mathrm{a}\mathrm{x}\{ 1,\gamma \alpha /(d+1)\} .

This leads to

\widetilde \scrE ( \widehat fn, \varepsilon )\lesssim K\varepsilon n - 1 + n - \alpha /(2d+3\alpha ) logn\xi ,

where \xi = max\{ 1, \gamma \alpha /(d+ 1)\} . Hence, the result is proved.
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