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Abstract: Diffractive multispectral optical imaging plays an essential role in optical sensing, which
typically suffers from the image blurring problem caused by the spatially variant point spread
function. Here, we propose a novel high-quality and efficient hybrid space calibrated 3D network
“HSC3D” for spatially variant diffractive multispectral imaging that utilizes the 3D U-Net structure
combined with space calibration modules of magnification and rotation effects to achieve high-
accuracy eight-channel multispectral restoration. The algorithm combines the advantages of the space
calibrated module and U-Net architecture with 3D convolutional layers to improve the image quality
of diffractive multispectral imaging without the requirements of complex equipment modifications
and large amounts of data. A diffractive multispectral imaging system is established by designing
and manufacturing one diffractive lens and four refractive lenses, whose monochromatic aberration
is carefully corrected to improve imaging quality. The mean peak signal-to-noise ratio and mean
structural similarity index of the reconstructed multispectral images are improved by 3.33 dB and
0.08, respectively, presenting obviously improved image quality compared with a typical Unrolled
Network algorithm. The new algorithm with high space calibrated ability and imaging quality has
great application potential in diffraction lens spectroscopy and paves a new method for complex
practical diffractive multispectral image sensing.

Keywords: multispectral imaging; diffractive lenses; space calibration; point spread function

1. Introduction

Diffraction multispectral imaging typically uses binary optical diffractive elements
which are axially dispersive to realize spectral separation and optical imaging, attracting
great interest among researches in optical sensing, such as gas sensing [1], industrial detec-
tion [2,3], security sensing [4], and so on. A diffraction lens, the critical optical element of
diffraction multispectral imaging, disperses the spectra of incident light, and different spec-
tra are separated at different imaging positions along the optical axis. Since Denise M. Lyons
reported the diffractive optic image spectrometer (DOIS) system in 1995 [5], scholars have
carried out many studies on diffractive spectral imaging [6-8]. In 1999, Michele Hinnrichs
et al. proposed a diffractive hyperspectral system for gas sensing with a camcorder-sized
prototype and further realized dual-band mid-wavelength infrared /long-wavelength in-
frared hyperspectral imaging using a single lens and a single dual-band focal plane array
in 2003 [9]. Neelam Gupta et al. developed a diffraction imaging spectroscopy system by
using a stepper motor on a linear rail, confirming the detection of surface contaminants [2].
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Phuong-Ha Cu-Nguyen et al. demonstrated a confocal hyperspectral sensing system uti-
lizing diffractive optical elements and a tunable membrane fluidic lens [10], and further
designed the highly compact tunable hyperchromatic lens system at a wavelength range of
450-900 nm [11]. These reported diffractive multispectral imaging systems utilize a stepper
motor and a tunable fluidic lens to adjust the position of the image and obtain multispectral
images in the visible and infrared spectrum, which shows low spectrum resolution and
cannot meet the need of more accurate and more sensitive multispectral diffractive imaging.

With the rapid development of artificial intelligence, many researchers pay attention to
the high-accuracy multispectral reconstruction of the diffractive image by introducing Al
algorithms to avoid the weaknesses of complex equipment modifications and extensive data
processing [12-14]. Zhang Ming-qi et al. proposed the so-called inverse filtering restoration
algorithm along the path of traditional methods to solve the ill-posed problem of inverse
filtering of diffraction spectroscopy imaging [15]. Daniel S. Jeon and coworkers proposed
the use of a neural network algorithm in spectral image reconstruction to improve the
spectral resolution and imaging quality [16]. E. S. Oktem developed a model-based fast
reconstruction algorithm in an extreme ultraviolet regime by combining data-driven and
model-driven methods to improve the reconstruction accuracy [17]. Zhao Hai-bo designed
a dual-channel visible and near-infrared diffraction computational imaging system that
utilizes additional calibration information to improve the spatial resolution of the DOIS
for complex imaging scenery [18]. These diffraction spectral algorithms use end-to-end
algorithms that are accurate and efficient. However, these methods require substantial real-
world data and sophisticated calibration methods to meet the precision demand of neural
networks. On the other hand, the hardware improvements of the multispectral diffractive
imaging system normally suffer from larger amounts of data, a higher economic expense,
and a more complex system due to the utilization of more cameras and spiral diffractive
lenses; as a result, they cannot meet the requirements of miniature diffractive multispectral
imaging technology.

Furthermore, spatial variation is an important factor in the multispectral diffractive
imaging system that involves magnification, rotation, and displacement, which leads to the
complex spatially variant point spread function (PSF) dramatically degrading the imag-
ing quality. Michele Hinnrich et al. resampled acquired spectral images with different
magnifications, and spectral image construction was then carried out with the same magnifi-
cation [6]. Qiang Sun et al. added the optical zoom module into the diffractive multispectral
imaging system to avoid the magnification effect [19]. These reported works utilize precise
PSF estimation, large training datasets, and novel optical structures to enhance the accuracy
of multispectral reconstruction in various diffractive multispectral imaging applications. In
addition, complex measurements such as shooting, registration, and color correcting are
necessary for PSF estimation. Moreover, large training datasets are necessary for hardware
improvements to achieve high-accuracy calibrations of targeted images. These traditional
methods suffer from complex manual methods and procedures, and again cannot meet the
development trend of diffractive multispectral imaging. Thus, how to achieve convenient
high-accuracy diffraction spectroscopy imaging that overcomes complex space variation
factors and algorithmic limitations in complex sensing is still an open question.

In this paper, we propose a diffractive hyperspectral optical imaging system with a
hybrid space calibrated 3D Network “HSC3D” that adopts complex optical sensing with
the spatially variant PSF. Our HSC3D algorithm utilizes the 3D U-Net structure with 3D
convolutional layers that is constructed by our recently published method [20], which is also
combined with the advantages of a space calibration module to improve the imaging quality
of reconstructed images. Multispectral data are simulated through the forward process
of diffractive optical imaging and are further corrected by using a fabricated calibration
module. The diffraction multispectral imaging system is composed of one diffractive lens
and four refractive lenses, whose monochromatic aberration is designed and corrected to
improve imaging quality. The magnification and rotation variant effects of the measured
eight-channel multispectral images are corrected by the spaced calibrated module and
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further transferred into the 3D U-Net to restructure the multispectral images accurately.
The mean peak signal-to-noise ratio (MPSNR) and the mean structure similarity index
measure (MSSIM) of the restructured multispectral images are calculated and discussed.
The effectiveness of our HSC3D algorithm is also analyzed and compared with a typical
Unrolled Network.

This article proceeds as follows. In Section 2, we introduce the hybrid space calibrated
3D Network. In Section 3, we present our established diffractive multispectral imaging sys-
tem. In Section 4, we analyze the reconstruction of eight-channel multispectral images and
compare it with other algorithms. In Section 5, the conclusions of the proposed approach
and directions for future work are given.

2. Experimental Methods

Diffraction multispectral imaging typically uses diffractive lenses to disperse light
along the optical axis to obtain multispectral information. According to the dispersion
properties of the diffractive lenses (f(A) = Agfo/A), the incident light of longer wave-
lengths is imaged at the front image plane, while the light of shorter wavelengths is imaged
in the back image plane [21]. The incident light travels through the diffractive lens and
disperses along the optical axis, forming narrowband multispectral images. Multispectral
images of different wavelengths can be obtained by moving the image plane by multiple
measurements. Figure 1a shows the ideal imaging process of the diffractive multispectral
imaging system. When the measurement plane is adjusted to different positions of zj, z,
and z3 along the optical axis, these multispectral images at different wavelength show
similar dimensions (D1 = D, = Dj3) and rotation angles (6; = 6, = 63). Furthermore, the
magnification effect of the real multispectral imaging process in Figure 1b presents a smaller
dimension (D; < D, < D3) with a larger wavelength according to the transverse magnifi-
cation of the system [6]. Figure 1c shows the rotation effect of the real multispectral imaging
process, where a different rotation angle (6, # 6, # 63) emerges among different multispec-
tral images along the optical axis. In addition, as shown in Figure 1d, practical multispectral
diffractive imaging presents more complex spatial variations combing magnification and
rotation effects, whose multispectral images have different dimensions (D; < D, < D3)
and rotation angles (6 # 6, # 603). The multispectral imaging information is related to the
intensity of each spectral component and can be calculated as follows:

glm,n) =3 3 I(&¢MH(m—¢n—0A) +7 (1)

A mn

where g(m, n) represents the spectral image, and m and n denote the center of each pixel in
the x and y direction. I(¢, {, A) represents the original spectral information, H represents
the PSF of the diffractive lens, and # denotes noise. The PSF of multispectral diffractive
imaging can be calculated by using the established method in [20],

ik

i i 2
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where P(s,t,A), (x, ), (s, t), f, A and k denote the function of the incident light field, the
spatial coordinates in the plane of the image sensor, the spatial coordinates in the plane of
the diffractive lens, the distance between the lens and the sensor, the wavelength, and the
wave number, respectively. Considering the space-variant effect on practical multispectral
diffractive imaging, the calibrated spectral image y(m, 1) can be expressed by

y(mn) =Y A Y muH(m—&n—AK(A,2)I(E,0,A) +1, 3)

where the space variation matrix K(A,z) is related to the wavelength A and the focus
position z. For a specific wavelength A; at a specific position along the optical axis z;, the
space variation matrix K can be expressed as a function of x5x and yax,
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K(Ai zi) = f(Xmax, Ymax) 4)

where Xj0x and yy,0x denote the maximum values of the spatial coordinate in the plane of
the image sensor. The dimension D of multispectral images for a specific wavelength I;
satisfies D = 4X4xYmax. Furthermore, the reconstruction of multispectral images can be
regarded as a 2D multichannel deconvolution problem and can be formalized as

1) = argmin 3 ||y~ KHI [ +AR(1), ©)

where R(I) is a regularization term that serves as a constrained condition and is used to
avoid the overfitting problem.
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Figure 1. (a) The schematic diagram of the ideal imaging process of diffractive multispectral imaging,
(b) the schematic diagram of the magnification effect of diffractive multispectral imaging, (c) the
schematic diagram of the rotation effect of diffractive multispectral imaging, and (d) the schematic
diagram of complex spatial variations combing the magnification and rotation of practical diffractive
multispectral imaging, where A;, A5, and A3, denote different wavelengths and satisfy A; > Ay > A3,
and D1, Dy, and D3 denote the dimension of diffractive multispectral images at different wavelengths.
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To obtain the reconstructed multispectral images, the inverse problem of Equation (4)
can be separated into the following two steps. Firstly, the measured images are calibrated
to remove spatial variations and noise, and can be expressed as

~ 1
S1 = argminy Il y — KSy H% +AR(S1), (6)

where S represents the environmentally influenced multichannel spectral images. Secondly,
the multichannel spectral information is unmixed by means of a multispectral inverse
convolutional reconstruction network and can be formalized as

i) = argmim% | $1 — HI |3 +AR(1). 7)

In practice, diffractive multispectral imaging commonly presents magnification
(Figure 1b) and the rotation effect (Figure 1c), which arises from variable transversal magnifi-
cation and small vibrations of the imaging system and complex sensing background [22,23].

To solve this problem, the 3D network is combined with the space calibration module to
achieve high-accuracy multispectral image reconstruction. Figure 2 exhibits the architecture
of our HSC3D algorithm that is composed of four critical parts, including magnification
and rotation calibration, intensity calibration, denoising, and 3D U-Net reconstruction.

1.  Magnification and rotation calibration: The magnification variation a of diffractive
multispectral imaging at the focal length of different wavelengths is calibrated through
simulation of multispectral training data. Also, the random rotation angle difference
B introduced by the complex imaging progress of the diffractive multispectral system
(Figure 1c) is inputted into the data preprocessing step to improve the robustness of
the network.

2. Intensity calibration: The intensity calibration is applied to multispectral images at
different wavelengths to obtain the spectral profile that is close to the final recovered
image. The variation in intensity is caused by the small vibration of the light source
and the transmitted deviation of different wavelength channels.

3. Denoising: Noise, an important factor of diffractive multispectral imaging, causes the
difference between simulated and measured information, which includes environmen-
tal noise, dark current, photon noise, readout noise, and analog-to-digital converter
(ADC) noise. Google’s MAXIM model is used as the preprocessor to remove the noise
of the aliased images.

4. 3D U-Net: Calibrated diffractive multispectral images are trained by the 3D U-Net to
reconstitute multispectral images. The 3D U-Net network is composed of the encoding
module and decoding module based on the U-Net framework. The encoder consists
of a down-sampling and feature extraction module that transforms the input 3D mul-
tispectral image into a multichannel feature map. Also, the decoding module with an
up-sampling and image reconstruction module reduces the multichannel 4D feature
tensor to the 3D multispectral image. Both feature extraction modules and image
reconstruction modules are made up of a norm layer, 3D convolution layer, rectified
linear unit (ReLU), and simplified channel attention (SCA) layer. The 3D convolution
layer and the SCA layer are utilized to capture 3D features and adjust the weight
between adjacent spectral channels to reconstruct diffractive multispectral images.

The aforementioned network structure was implemented by using python programs.
Numerical experiments were conducted on a server with an Intel(R) Xeon(R) Platinum
8255C CPU and two RTX 3080 (10 GB) GPUs. The operating system for the experiment
environment was Ubuntu 20.04.4 LTS. The model was constructed through the pytorch
framework, version 1.11.0, and was guided by the open-source BasicSR library [24]. In this
way, our HSC3D algorithm combines the advantages of the space calibrated module and
3D U-Net, which is able to learn spatial and intensity calibrated factors and obtain network
parameters automatically.
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Figure 2. Experimental method of our hybrid space-variant 3D U-Net.

3. Diffractive Multispectral Imaging System

The diffractive multispectral optical imaging system is designed and fabricated to
obtain multispectral information. As shown in Figure 3, the experimental diffraction multi-
spectral imaging system consists of one diffractive lens and four refractive lenses, whose
monochromatic aberration has been carefully corrected to achieve high-quality imaging. The
diffractive lens is fabricated by photolithography, and its microcosmic appearance is mea-
sured by LuphoScan50 with an accuracy of 2 nm by using a non-contact scanning method.
The measured microcosmic appearance of the fabricated diffractive lens in Figure 3a shows
the deviation of the fabricated diffractive lens, which is around 78.89% less than 0.1 um,
satisfying the wave aberration caused by the above deviation errors of less than 1/10A.
From Figure 3b, the simulated modulation transfer function (MTF) of our diffractive multi-
spectral optical imaging system is higher than 0.76 for the wavelength ranging from 510 to
580 nm, demonstrating the high imaging quality of our diffractive multispectral optical
imaging system.

The experimental schematic for the diffractive hyperspectral optical imaging system
is shown in Figure 3c. The uniformly illuminated incident light from the monochromator
(Omno150300) and integrating sphere (NBT-JF-150m) passed through the USAF1951 cali-
bration target and carried the spatial information of different spectral images. Then, the
transmitted light traveled through the collimator with a focus of 500 mm at 555 nm and
formed parallel light. Further, this parallel light was input into the fabricated diffractive
multispectral imaging system. Finally, the light intensity of the diffractive multispectral
channels was recorded by moving the complementary metal-oxide semiconductor (CMOS)
pixel sensor installed on the stepper motors (Zolix PA300), with a moving accuracy of
around 25 um. During the experimental process, monochromatic light with an interval
of 10 nm was used to calibrate the focus position for different wavelengths. In addition,
wide-spectrum light was used to record the actual images. A 550 nm filter (EO65744) with
a spectral width of 80 nm was inserted between the monochromator and integrating sphere
to prevent the interference caused by outside light.
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Figure 3. (a) The measured microcosmic appearance of the fabricated diffractive lens. (b) The simulated
MTF of the diffractive multispectral optical imaging system for a wavelength ranging from 510 nm to
580 nm, where the solid line and the dashed line depict the tangential and sagittal results, respectively.
(c) The experimental schematic for the diffractive multispectral optical imaging system.

4. Diffractive Multispectral Imaging Experimental Results

Magnification factors « and rotation factors B are computed by using the intensity-
based automatic image registration methods. The features of eight-channel images are
identified by the Gaussian differential function, where each feature point possesses three
messages including position, scale, and direction. Also, the geometric transform matrix of
eight-channel images is calculated by fitting the paired feature points using the least squares
method. From Figure 4a, the measured magnification factor ame, (black line) declines with
the increasing wavelength along the optical axis with a larger focus distance of the imaging
system. The calibrated magnification factor «,; (red line) in Figure 4a is calculated by using
the image warping algorithm and is closer to 1, presenting a smaller deviation compared
to the measured magnification factor amea (black line). In addition, the measured random
rotation factor Bopt in Figure 4b (black line) is corrected by using the image warping
algorithm, and the calibrated random rotation factor Bopt (red line) is closer to 0° in the
wavelength of 570 nm and 580 nm. In addition, the measurement errors in the magnification
factor amea and the rotation factor bmea are around 0.0015 and 0.0126, respectively, which
can be attributed to the effect of different measurement backgrounds during multispectral
diffractive imaging. Furthermore, the calibration errors of the magnification factor a., and
the rotation factor b, are around 0.0012 and 0.0092, respectively, which can arise from
the data processing of the calibration model. As a result, the proposed measurement and
calibration errors have quite a small value of around 0.01, confirming that our proposed
calibrated module could decrease the space-variant issues.
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Figure 4. (a) The magnification factors « and (b) rotation factors § of the 8-channel multispectral
images, where the black line and red line depict the measured and calibrated results, respectively.

Furthermore, the MPSNR and MSSIM parameters are calculated to characterize the
effectiveness of space calibration and the imaging quality of the multispectral images. The
peak signal-to-noise ratio (PSNR) typically assesses the similarity between the two images
and satisfies the following [25]:

PSNR = 20log, <%> 8)

where the mean squared error (MSE) can be calculated by

1 m—1n—1 )
MSE = o Yo I IG7) — K@ j) 1”7 )
i=0 j=0
Also, the structure similarity index measure (SSIM) depicts the effect of brightness,
contrast, and structure, and is consistent with the subjective perception of image quality by

the human eye [26], which can be calculated as follows:

2 Cy)(2 C
SSIM(x,y) = —p ety £ 1) @0 1+ Co) (10)
(12 + w2 + C1) (02 + 0,2 + Ca)
where jiy, 0y, and oy, can be calculated by the following:
N
Py = ) WiX; (11)
i=1
N 1
Ox = (Z w;(x; — px)°)2 (12)
i=1
N
Oxy = L wi(x; — px) (i — py) (13)

i=1
As can be seen from Table 1, the calculated PSNR values of the multispectral channel
images at wavelengths of 520 nm, 530 nm, 540 nm, 550 nm, 560 nm, 570 nm, and 580 nm
are 9.95 dB, 10.89 dB, 11.93 dB, 12.71 dB, 13.11 dB, 13.26 dB, and 13.36 dB, respectively,
which are higher than the original values. Similarly, the calculated SSIM values of the
multispectral channel images at wavelengths of 520 nm, 530 nm, 540 nm, 550 nm, 560 nm,
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570 nm, and 580 nm are 0.53, 0.57, 0.64, 0.67, 0.62, 0.65, and 0.68, respectively, which are
also higher than the original images. In order to fully evaluate the multispectral imaging
performance, the values of the MPSNR and MSSIM are also calculated. In comparison with
that of the original eight-channel multispectral images, the MPSNR and MSSIM values are
improved by 0.11 dB and 0.04, respectively. As a result, our calibration model shows good
performance in reducing the space-variant issues of magnification and rotation effects and
increasing the imaging quality of diffractive multispectral imaging.

Table 1. Comparison of PSNR and SSIM between calibrated and original 8-channel multispectral images.

Wavelength (nm) PSNRmea SSIMmea PSNRcal SSIMcal
510.00 9.09 0.48 9.09 0.48
520.00 9.84 0.51 9.95 0.53
530.00 10.77 0.55 10.89 0.57
540.00 11.80 0.60 11.93 0.64
550.00 12.58 0.63 12.71 0.67
560.00 12.97 0.61 13.11 0.62
570.00 13.15 0.60 13.26 0.65
580.00 13.25 0.60 13.36 0.68

Mean value 11.68 0.57 11.79 0.61

The calibrated multispectral images are further input into 3D U-Net to reconstruct
the multispectral images. Figure 5a—c show the reconstructed eight-channel multispectral
images by using the 3D U-Net, Unrolled Network algorithm, and our HSC3D network,
respectively. As shown in Figure 5a, the imaging quality of the simulated reconstructed
eight-channel multispectral images by using the 3D U-Net algorithm is obviously decreased
when the wavelength is increased, especially at 580 nm. This trend may come from the mag-
nification and rotation effects shown in Figure 4, which is also in accordance with reported
research that describes similar decreased imaging quality properties [22,23]. The recon-
structed eight-channel multispectral images by using the Unrolled Network in Figure 5b
present the typical ghosting issue that multispectral images erroneously retain, and also
exhibit a similar decreasing imaging quality effect to that in Figure 5a. The reconstructed
spectral images obtained by using our HSC3D network (Figure 5c) are clearer than the re-
constructed spectral images in Figure 5a and avoid the ghosting issues present in Figure 5b.
Further, the PSNR and SSIM of the Unrolled Network and our HSC3D network are calcu-
lated and analyzed to characterize the imaging performance quantitatively.
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1
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Figure 5. Reconstructed 8-channel (510 nm, 520 nm, 530 nm, 540 nm, 550 nm,560 nm, 570 nm, and
580 nm) multispectral images from (a) 3D U-net, (b) Unrolled Network, and (c) our HSC3D network.
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As shown in Table 2, the calculated values of the PSNR of the eight-channel recovered
images by using our HSC3D network at wavelengths of 510 nm, 520 nm, 530 nm, 540 nm,
550 nm, 560 nm, 570 nm, and 580 nm are 8.90 dB, 9.64 dB, 10.44 dB, 11.19 dB, 11.85 dB,
12.41 dB, 12.84 dB, and 13.00 dB, respectively, which are larger than those obtained by using
the Unrolled Network. Similarly, the calculated values of the SSIM of the eight-channel
recovered images by using our HSC3D network are 0.54, 0.58, 0.63, 0.65, 0.65, 0.64, 0.65, and
0.65, respectively, which are also higher than those obtained by using the Unrolled Network.
These improvements in the PSNR and SSIM of the eight-channel recovered images are in
accordance with Figure 5b,c, confirming an improved imaging quality compared with the
Unrolled Network. Furthermore, the calculated values of MPSNRyyp, and MSSIMy,yy, of
the eight-channel recovered images by using our HSC3D network are around 11.28 dB
and 0.62, respectively, which are 3.33 dB and 0.08 higher than those obtained by using the
Unrolled Network, respectively. All of these improvements show that our new algorithm
has a better performance in terms of overall spectral image restoration results.

Table 2. Comparison of PSNR and SSIM between Unrolled Network and our HSC3D network algorithms.

Wavelength (nm) PSNRhyb SSIMhyb PSNRunr SSIMunr
510.00 4.03 0.44 8.90 0.54
520.00 7.87 0.47 9.64 0.58
530.00 8.66 0.52 10.44 0.63
540.00 9.08 0.53 11.19 0.65
550.00 9.08 0.62 11.85 0.65
560.00 8.70 0.60 12.41 0.64
570.00 8.19 0.57 12.84 0.65
580.00 7.97 0.54 13.00 0.65

Mean value 7.95 0.54 11.28 0.62

5. Conclusions

In conclusion, we proposed a novel high-quality and efficient hybrid space calibrated
3D Network “HSC3D” for space-variant diffractive multispectral imaging. Our “HSC3D”
network utilizes the 3D U-Net structure combined with space calibration models of mag-
nification and rotation correction to achieve more accurate multispectral restoration. A
prototype diffractive multispectral imaging system was designed and manufactured which
consisted of one diffractive lens and four refractive lenses, whose monochromatic aber-
ration is corrected carefully to realize high-quality multispectral imaging. The measured
eight-channel multispectral images with variant space effects of magnification and rotation
were calibrated by employing an intensity-based automatic image registration module,
and were then input into the 3D network to reconstruct multispectral images. The calcu-
lated values of the MPSNR and MSSIM of the reconstructed eight-channel multispectral
images obtained by using our hybrid space calibrated 3D network are shown to be im-
proved by 3.33 dB and 0.08, respectively, in comparison with the original ones, confirming
the obviously improved image quality in comparison with the typical Unrolled Network
algorithm. Our algorithm combines the advantages of the space calibration model and
U-Net architecture with 3D convolutional layers to improve the image quality of diffractive
multispectral imaging, and thus has no need for large amounts of experimental data and
complex equipment modifications. More complex physical variation effects of the PSF, such
as the aberrations of different optical elements, can also be discussed and calibrated in
future work to achieve an even wider spectrum and more sensitive diffractive multispectral
imaging capability. Moreover, a discrete pixel-by-pixel PSF of the diffractive multispectral
imaging array can also be researched to advance gazing diffractive multispectral imaging
by using a grid hybrid space calibrated 3D algorithm. The proposed HSC3D network can
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also be adapted to more complex practical cases, especially for cases with various spatial
variants such as space imaging [27], micrography [28], and security camera systems [29].
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