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ABSTRACT

Identifying drugs from surveillance or other videos presents challenges such as small target 
sizes, class imbalance, and similarities to other objects. Additionally, the hardware used to capture 
videos and the video resolution and clarity limit model scalability, leading to poor detection accuracy 
in traditional models. To address this issue, we propose an improved YOLOv8s-based model. The 
experimental outcomes reveal that the improved YOLOv8s model attains a precision of 95.1% and 
a mAP@50 of 87.4% in drug detection and identification, representing improvements of 3.0% and 
2.2% over the original YOLOv8s model. The proposed improvements to YOLOv8s effectively boost 
detection accuracy and recognition rates while preserving high efficiency. This model demonstrates 
superior overall detection performance compared to other algorithms, providing fresh perspectives 
and methods for advancing research and applications in drug detection and recognition.
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INTRODUCTION

Drugs typically refer to substances capable of inducing both psychological and physiological 
dependence in individuals, posing significant risks to the physical and mental health of those who 
use them. This category includes not only legally prescribed medications that are misused, but also 
various natural plants, compounds, and organic solvents without medical use. According to the 
“World Drug Report 2021” released by the United Nations Office on Drugs and Crime, around 275 
million people globally are involved in drug usage, resulting in at least 500,000 deaths every year, 
while over 36 million individuals develop mental health disorders because of drug abuse. Across the 
world, drug-related criminal activities are increasing, as evidenced by incidents such as drug-impaired 
driving accidents and a rise in violent crimes driven by addiction. Drug addiction results in both 
physical and psychological dependance, affecting bodily mechanisms and potentially reducing lifespan. 
Irrespective of the method of drug ingestion, drugs pose significant harm to the human body and 
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contribute to the dissemination of infectious diseases. Moreover, drug-related activities disrupt societal 
peace and escalate criminal behavior, posing a serious threat to social cohesion. The drug issue is 
a global challenge that endangers human health, undermines social stability, and hinders economic 
development, making it a pressing concern for nations around the world.

Social media has now become the main channel through which people communicate with others 
in their social networks. The rapid evolution of internet technology has not only propelled the growth 
of the self-media and live broadcasting industries, but also facilitated drug trafficking by offering 
new platforms and channels to connect people with drugs. Consequently, more and more drug 
transactions are occurring online, posing significant challenges to drug enforcement efforts. Whether 
internet users are adolescents or adults, everyone should be aware of the dangers posed by drugs 
and learn to identify them. Drug abuse not only harms individuals’ physical health but also affects 
societal security and stability. Therefore, drug detection is of the utmost importance. Currently, drug 
detection primarily relies on chemical composition analysis and odor detection, which are the most 
effective methods available for detecting drugs. However, conducting such screenings can be arduous 
and complex, necessitating specialized personnel and equipment, making large-scale detection and 
identification unfeasible. If it were possible to scan and detect potentially illicit substances in video 
images, analyzing the features and objects within the footage could facilitate the identification and 
investigation of suspected narcotics. This approach might significantly aid in the recognition and 
screening of drugs. For example, heroin packages are often grayish-white rectangular blocks sealed 
with plastic film and wrapped in yellow opaque adhesive tape. Thus, discovering small paper packets 
with this specific packaging should raise serious concerns. However, even though image detection can 
spot potentially sensitive images, it cannot conclusively determine whether these items are drugs, as 
solely relying on video images is inadequate for precise drug identification. Ultimately, determining 
whether something is a drug still requires traditional drug detection methods for final confirmation. 
These methods may include chemical composition analysis, odor detection, and more, which can 
provide more precise and reliable detection results. Therefore, image detection of drugs can serve as 
an initial screening method, enhancing the efficiency and speed of drug detection and identification. 
Meanwhile, traditional detection methods can be used as a final confirmation measure to ensure the 
accuracy and reliability of detection results.

In recent years, the rapid advancement of deep learning technologies (Song et al., 2024), 
particularly convolutional neural networks (CNNs) and computer vision-based detection methods, has 
led to remarkable progress, enabling their successful application in various domains. For example, 
deep learning techniques have been widely employed in sentiment analysis models (Samir et al., 2023). 
This technological progress has also offered innovative solutions for drug detection and screening. 
Deep learning technologies have achieved significant breakthroughs in image processing and visual 
recognition (Chao et al., 2024), with deep learning-based object detection algorithms becoming 
more refined. These algorithms demonstrate substantial advantages in both speed and accuracy, 
requiring only training on labeled datasets. Compared to traditional object detection methods, they 
offer robust feature extraction capabilities. In contrast to methods based on chemical composition 
and odor traits, deep learning-powered drug detection algorithms highlight exceptional speed and 
efficiency. Representative deep learning algorithms include AlexNet, GoogLeNet, ResNet, a Faster 
Region-based-CNN (R-CNN), DenseNet, and the YOLO series. Object detection algorithms, as 
one of the fundamental tasks in computer vision, accurately identify and classify objects in images, 
finding applications in various real-world scenarios. Chen et al. (2022) argued that intersection 
over union (IoU) variance impacts imbalance optimization, leading to potential performance 
bottlenecks. To address this, they proposed an enhanced Faster R-CNN for high-quality iterative 
object detection, which iteratively samples and gathers target boxes from loop steps, increasing the 
number of high-IoU training samples. Feng et al. (2024) presented an improved YOLO model that 
breaks through the limitations of the presence of necks, allowing the model to access semantic and 
structural information. Wei et al. (2024) set out to replace the traditional category regression loss with 
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the contrast loss of text and region, breaking the category limitation of the model. Hou et al. (2024) 
proposed a simple transformer-style CNN by studying the internal structure of self-attention. Li et 
al. (2023) introduced the concept of bidirectional-path aggregation network-feature pyramid network 
in YOLOv8 to improve feature fusion across different scales and replaced certain convolutional 
modules with the GhostblockV2 structure, achieving significant accuracy improvements. However, 
it struggled to outperform other models in small object detection tasks. Moon et al. (2024) proposed 
a rotating bounding box multilevel feature pyramid transformer to optimize the performance of 
object detection. Gao et al. (2022) projected an improved Faster R-CNN algorithm, incorporating 
a feature pyramid and adding deformable convolutions to the backbone. They replaced region of 
interest pooling with region of interest alignment to prevent the loss of feature details. Although the 
algorithm enhanced detection performance in extreme conditions, its high detection time limited its 
ability to meet the demands for fast detection. Wu et al. (2024) presented a point transformer V3 
that prioritized performance and simplicity, further improving the model's capabilities. Deng et al. 
(2023) added efficient channel attention mechanisms to each constraint satisfaction problem unit in 
the YOLOv5 backbone. They made lightweight improvements to the feature fusion module, proposing 
an improved attention-YOLOv5-Ghost algorithm that addressed issues like large parameter sizes, 
redundant gradient computation, and slow detection speed.

YOLOv8 is one of the fundamental models in the YOLO series, and compared to previous 
anchor-based detection methods, its adoption of anchor-free techniques offers higher detection accuracy 
and speed. YOLOv8s is a lightweight version of YOLOv8. Although the model is smaller in scale, 
it still performs well in terms of accuracy. It is well-suited for fast detection tasks and can maintain 
high detection speeds even in resource-constrained environments. The structure of YOLOv8s is 
designed for flexible adjustments, allowing easy integration and experimentation to verify the impact 
of different module changes on performance, so for this study, we selected the YOLOv8s model for 
experiments. However, due to the similarities and complexities among drugs and medications, the 
YOLOv8 detection algorithm still suffers from drawbacks, such as inadequate target perception and 
localization errors. In response to the issues identified in the preceding studies, this paper proposes 
an improved YOLO model based on YOLOv8s. The main contributions of this model are:

1.  We introduce a large separable kernel attention (LSKA) module, combined with the C2f module 
at the neck-end to construct the C2f-LSKA module. This enhancement enables the network to 
better capture and leverage information within the image, thereby improving the accuracy of the 
object detection model while reducing computational complexity and memory usage.

2.  We incorporate an attention module called the shuffle attention network (SA-Net), which adeptly 
combines two attention mechanisms. This module partitions the channel dimension into multiple 
sub-features to decrease the computational burden. Subsequently, the shuffle units merge the 
complementary channel and shuffle channel modules for each sub-feature set. This strategy 
delivers enhanced performance with reduced model complexity.

3.  We utilize the LSKA module to refine the single spatial pyramid pooling fusion (SPPF) module 
within the backbone network and incorporate attention mechanisms to revamp the pyramid 
pooling layer. This enhancement significantly improves the feature extraction prowess of the 
backbone network, enhances recognition capabilities for detected targets, and bolsters feature 
fusion capabilities.

4.  We introduce the shape-IoU loss and the inner-IoU loss and combine them to construct an 
inner-shape IoU loss function, replacing the original complete intersection over union (CIoU) 
loss function. This innovative adjustment enhances the model's generalization capabilities and 
detection accuracy while improving the regression performance of detection bounding boxes.
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RELATED WORK

Object Detection
Object detection is one of the core tasks in computer vision, and in recent years, the application 

of CNNs in this field has gradually increased. The development of target detection has gone through 
two stages, and the first stage is the traditional target detection algorithm, which mainly relies on 
manual feature extraction. The second stage is the detection algorithm based on deep learning. The 
latter is further categorized into anchor-based detection algorithms and anchorless detection algorithms 
based on whether or not anchors are used. Anchor-based algorithms include the RetinaNet (Lin et 
al., 2017), Faster R-CNN (Girshick, 2015), YOLO (Redmon et al., 2016; Redmon & Farhadi, 2018; 
Bochkovskiy et al., 2020; Wang et al., 2023), and Single Shot Multi-Box Detector (SSD) (Liu et al., 
2016). Anchor-free detection algorithms include the Fully Convolutional One Stage Object detection 
(FCOS) (Tian et al., 2022), CornerNet (Law & Deng, 2018), and CenterNet (Duan et al., 2019). In 
these object detection algorithms, the bounding box regression loss function is crucial for allowing 
detectors to precisely localize targets, improving the overall detection accuracy of the model.

YOLOv8 Model
The YOLOv8 model, launched by Ultralytics in January 2023, offers five variants—v8x, 

v8l, v8m, v8s, and v8n—ranging from largest to smallest. As the model size increases, so does 
its accuracy, making it suitable for various tasks such as object detection, image classification, 
instance segmentation, and keypoint detection. Compared to the YOLOv5 model, the YOLOv8 
replaces the original C3 module in the backbone network with the C2f module, which allows for 
improved gradient flow through additional skip connections and split operations while maintaining 
a lightweight design. It also introduces a decoupled-head structure by separating the localization and 
classification branches, eliminating parameter sharing between the two tasks, and resolving conflicts 
arising from joint training. This enhances overall model performance. Additionally, the YOLOv8 
model incorporates distribution focal loss alongside CIoU loss for regression, further improving the 
model’s precision and effectiveness.

Attention Mechanism
The significance of attention mechanisms has been widely explored and applied in previous 

studies. It tends to allocate the most informative feature representations while suppressing less 
relevant ones. Self-attention mechanisms compute the weighted sum of contextual information for a 
specific position by considering all positions within the image. In the SE, Hu et al. (2018) modeled 
the relationships between channels using two fully connected layers. Wang et al. (2018) introduced 
the non-local module, which generates an attention map by calculating the correlation matrix between 
spatial points in the feature map. The efficient channel attention (ECA) net (Wang et al., 2020) employs 
a 1D convolution filter to generate channel weights, significantly reducing the complexity of the SE 
model. The convolutional block attention module (Woo et al., 2018), the global context network (Cao 
et al., 2019), and the search generative experience (Li et al., 2019) sequentially combined spatial 
and channel attention, while the dual attention network (Fu et al., 2019) adaptively integrated local 
features with their global dependencies by adding two attention modules from different branches.

Bounding Box Regression Losses
Object detectors based on bounding box regression loss have been widely adopted in computer 

vision due to their simplicity and efficiency. The accuracy of localization algorithms within the loss 
function significantly affects the average precision of detection results. The Ln-norm loss (Girshick, 
2015), a type of bounding box regression loss, is highly sensitive to changes in the scale of bounding 
boxes. Subsequently, to address this deficiency, the IoU loss (Yu et al., 2016) was introduced as 
a replacement for Ln-norm loss, offering more accurate regression results for predicted boxes. 
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However, the IoU loss struggles with the gradient vanishing problem for non-overlapping samples. 
The generalized-IoU loss (Rezatofighi et al., 2019) compensates for this by introducing a minimum 
enclosing box. The distance-IoU loss (Zheng et al., 2020) incorporates distance constraints, adding 
the normalized distance between the center points of the predicted box and the ground truth (GT) 
box as a new loss term, improving convergence speed and localization accuracy. CIoU loss further 
enhances the regression process by considering the shape similarity between boxes and adding a 
shape penalty to distance-IoU loss. The efficient IoU loss (Zhang et al., 2022) addresses imbalance 
during training with focal loss and redefines the shape loss, further enhancing detection performance.

METHOD

The YOLOv8s algorithm boasts a relatively high accuracy and fast detection speed among its 
series. However, when confronted with drug detection and recognition, challenges such as small 
target sizes, class imbalances, and similarities with other objects make it difficult to extract features 
of certain drugs. The original YOLOv8s model exhibits shortcomings like missed detections, subpar 
accuracy, and hefty computational demands. Therefore, this paper introduces a drug recognition 
detection model based on an enhanced YOLOv8s architecture. The overall network structure of the 
improved model is depicted in Figure 1.

Modification and Optimization of C2f Module
The LSKA (Lau et al., 2023) module enhances the large-kernel attention (LKA) module. It 

achieves this by decomposing the two-dimensional convolution kernels in depthwise convolution 
layers into stacked, one-dimensional kernels, applied separately in the horizontal and vertical 
directions. This decomposition allows large kernels to be directly employed within the attention 
mechanism, eliminating the need for extra blocks and lowering both the computational complexity 
and memory usage. As the convolutional kernel size increases, this approach significantly reduces 
computational overhead. Traditional convolution extracts features by sliding a kernel of fixed size 
across the input image. In contrast, large kernel separable convolution uses larger kernels to capture 
broader spatial information, breaking the kernel down into smaller components that independently 
perform convolutions in horizontal and vertical directions. This decomposition reduces the number 
of parameters in the model, thus improving computational efficiency while preserving spatial 
information. As a result, the model's capacity to interpret input images is enhanced, which leads to 
improved performance and generalization abilities.

In the original YOLOv8s network, the C2f module consists of standard convolutions (Conv) 
and multiple bottleneck blocks. These blocks are interconnected with numerous skip connections 
and additional split operations, contributing to a more complex network structure and increased 
computation. For this problem, we use the LSKA_Attention module to replace the original bottleneck 
module in the C2f module. This integration forms a new C2f-LSKA module by combining the C2f 
backbone network module with the LSKA_Attention module, as shown in Figure 2. Compared to the 
original C2f module, the improved C2f-LSKA module achieves optimization in detection speed and 
computational complexity. This enhancement enables the network to capture and utilize information 
from images more effectively, thereby increasing the precision of the object detection model while 
reducing computational complexity and memory usage.

Structural Adjustment of SPPF Module
In the YOLOv8 model, the main objective of the SPPF module is to extract features from different 

scales and fuse them to improve the performance and accuracy of target detection. The core advantage 
of the SPPF module is its ability to capture features across different scales and combine them, thereby 
strengthening the model’s capability to represent various targets. This multi-scale feature extraction 
and fusion strategy improves the performance and robustness of object detection, enabling the model 
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to better adapt to targets of various sizes and proportions. The SPPF module processes input through 
three consecutive 5×5 max-pooling layers, concatenating their outputs to obtain multi-scale features. 
Additionally, the LSKA module addresses the challenge of large parameter growth in traditional 
convolutions by dividing a k×k convolution into separable kernels of kx1 and 1xk. These are applied 
in a cascading fashion, enabling more efficient processing of input features while maintaining accuracy 
and computational efficiency. This approach mitigates the computational cost typically associated 
with large convolutional kernels.

Integrating the LSKA module with the SPPF module, as shown in Figure 3, involves feeding the 
concatenated outputs from the multiple pooling layers of the original SPPF module into an 11×11 
LSKA convolution module. This setup utilizes large separable convolutional attention to capture 
extended dependencies, thereby expanding the receptive field for more comprehensive feature 
extraction. The features are then fused through standard convolution, adjusting the final output feature 
vector size of the backbone section of the model. Integrating the LSKA attention mechanism into 
the SPPF module does not impose a substantial parameter overhead. Yet, it enhances the model’s 
perception of multi-scale features, providing richer contextual information and aiding in more effective 
feature fusion. We use a large-scale separable convolutional attention module to refine the singular 
SPPF module in the backbone network and integrate the attention mechanism into the modified 

Figure 1. Improved YOLOv8 network structure diagram
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pyramid pooling layer. This enhancement effectively strengthens the feature extraction capability of 
the backbone network, thus enhancing its recognition ability to detect target objects.

SA-Net
Attention mechanisms provide significant flexibility and enhance the learning of discriminative 

feature representations, facilitating their seamless integration into algorithm backbone networks. 
Currently, attention mechanisms mainly fall into two categories: spatial attention mechanisms and 
channel attention mechanisms. The spatial attention, epitomized by the chemically aware model 
builder (CAMB) attention mechanism, focuses on establishing cross-channel spatial information by 
leveraging semantic dependencies between feature map spatial dimensions and channel dimensions. 
On the other hand, the channel attention, as demonstrated by the SE attention mechanism, explicitly 
models interactions between different channels to capture channel-specific attention. The primary 
aim of these mechanisms is to capture both pixel-level relationships and inter-channel dependencies. 
While using both types of attention mechanisms simultaneously can lead to improved performance, 
it also increases computational complexity.

Figure 2. Schematic diagram of C2f-LSKA module and sub-module
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Consequently, this paper introduces the SA-NET, an attention mechanism that effectively 
combines two different attention mechanisms, as shown in Figure 4. The SA module is proposed to 
address this issue, effectively integrating two types of attention mechanisms using a shuffle unit. In 
detail, the SA module first partitions the channel dimension into several sub-features and processes 
them concurrently. Then, for each sub-feature, the SA module employs a shuffle unit to capture 
feature dependencies across both spatial and channel dimensions. Afterward, all sub-features are 
aggregated and merged, utilizing the “channel shuffle” operator to enable communication among 
different sub-features.

Figure 3. Structure of SPPF and SPPF-LSKA
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Figure 4 illustrates that the SA module employs a “channel split” approach to concurrently process 

Figure 4. Structure of SA-NET
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each group of sub-features. For the channel attention branch, the SA utilizes global average pooling 
to embed global information, generating channel-wise statistics, as  s ∈  ℝ     C _ 2G ×1×1  , shown in Equation 1.

 s =  Φ  gp   ( X  k1  )  =   1 _ H × K    ∑ 
i=1

  
H

   ∑ 
j=1

  
W

   X  k1   (i, j)     (1)

Then, a gate mechanism with a sigmoid activation function is utilized to create concise features, 
defined by Equation 2.

  X  k1  
'   = σ ( Φ  c   (s) )  ⋅  X  K1   = σ ( W  1s   +  b  1  )  ⋅  X  k1    (2)

where   W  1   ,   b  1   ∈  ℝ     C _ 2G ×1×1  , using this pair of parameters to scale and shift the channel vector, 
respectively.

In the spatial attention branch, the SA module employs group norms to generate spatial statistical 
data and then creates compact features similar to the channel branch based on this. Initially, spatial 
statistics for   X  k2    are obtained using group normalization (GN), followed by   Φ  c   (⋅)   to enhance   X  k2    spatial 
attention, resulting in the final output, as shown in Equation 3.

  X  k2  
'   = σ ( W  2   ⋅ GN ( X  k2  )  +  b  2  )  ⋅  X  k2    (3)

where   W  2   ,   b  2   ∈  ℝ     C _ 2G ×1×1  .
When finished, the two branches are connected with the number of channels equal to the number 

of inputs, as   X  k  
'   =  [ X  k1  

'  ,  X  k2  
'  ]  ∈  ℝ     C _ G ×Η×Ω  . Then all sub-features are aggregated, and finally, the “channel 

shuffle” operator is used to realize the information communication between different sub-features.
The SA attention mechanism is designed by integrating group convolution (to reduce 

computation), spatial attention mechanism (implemented with GN), channel attention mechanism 
(similar to SENet), and ShuffleNetV2 (using channel shuffle to blend information across different 
groups). It reduces computational load by introducing group convolution, applying spatial and 
channel attention to each group, and facilitating an information exchange using the channel shuffle 
operation. The advantage of the SA module lies in its ability to dynamically adjust the importance of 
feature maps at the channel level, while increasing the diversity and richness of feature maps through 
channel shuffling. This enhancement boosts the model's capacity for representation and adaptability 
to complex perceptual tasks.

Adjustment and Application of Loss Function
The loss function used for bounding box regression plays a crucial role in object detection tasks 

by measuring the discrepancy between predicted and GT bounding boxes. Similarly, the IoU loss 
function is commonly applied in computer vision tasks to directly measure the overlap between 
predicted and GT bounding boxes. During the bounding box regression process, this loss function not 
only assesses the accuracy of the regression but also facilitates gradient propagation by calculating 
the regression loss, which accelerates the convergence of the model. The mathematical definition of 
the IoU loss function is shown in Equation 4.

 IoU Loss = 1 − IoU  (4)

where IoU stands for the ratio of the intersection area between the bounding boxes predicted by 
the model and the GT bounding boxes to their union area. The formula for calculating IoU is shown 
in Equation 5.
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 IoU =   Area of Inter sec tion   _______________  Area of Union    (5)

The intersection area of the bounding boxes refers to the region where the predicted bounding 
box overlaps with the GT bounding box, while the union area is the total area covered by both boxes 
combined minus the intersection area. The IoU loss function measure ranges between 0 and 1, where 
a value approaching 1 signifies a greater overlap between the predicted and GT bounding boxes, 
resulting in a lower loss. In contrast, a value approaching 0 indicates minimal overlap, leading to a 
higher loss. During the training process, the model aims to minimize the IoU loss function, thereby 
refining the alignment of predicted bounding boxes with the GT, which enhances the overall accuracy 
of object detection.

Within the YOLOv8 network, the CIoU functions as the bounding box regression loss function. 
It augments the computation of the IoU by introducing penalty terms for center point distance, 
aspect ratio difference, and area, resulting in a more accurate assessment of bounding box similarity. 
Consequently, it leads to an improved performance in object detection models. The formula for the 
CIoU is shown in Equation 6.

 CIoU = IoU −   
 ρ   2 ( C  pred    �  C  true   ) ___________  C   2    − αv  (6)

where   ρ   2  �  C  pred   �  C  true   �  is the Euclidean distance between the center points of the predicted and GT 
bounding boxes,   C   2   is the length of the diagonal that represents the smallest external rectangle, and v 
is a normalized aspect ratio difference term. The specific formulas are shown in Equations 7 and 8.

 v =   4 _  π   2    ⋅   (arctan (  
 w  true   _  h  true  

  )  − arctan (  
 w  pred   _  h  pred  

  ) )    
2

   (7)

 α =   v _ 1 − IoU + v    (8)

where w and h denote the width and height, respectively.
Current IoU-based edge regression methods tend to focus on speeding up convergence by 

introducing additional loss terms, often ignoring the inherent limitations of the IoU itself. While the 
IoU loss theoretically offers a robust representation of bounding box regression status, its lack of 
adaptability to diverse detectors and detection tasks hampers its generalization. Inner-IoU (Zhang 
et al., 2023) proposes a method of computing the IoU loss by utilizing auxiliary bounding boxes, 
with a scale factor ratio dictating the generation of auxiliary boxes across different scales for loss 
calculation, thereby improving the model's generalization. The specific computational formulas are 
shown in Equations 9 through 13.

  b  l   =  x  c   −   w * ratio _ 2  ,  b  r   =  x  c   +   w * ratio _ 2    (9)

  b  t   =  y  c   −   h * ratio _ 2  ,  b  b   =  y  c   +   h * ratio _ 2    (10)

 inter =  (min ( b  r  
gt ,  b  r  )  − max ( b  l  

gt ,  b  l  ) )  *  (min ( b  b  
gt ,  b  b  )  − max ( b  t  

gt ,  b  t  ) )   (11)

 union =  ( w   gt  *  h   gt )  *   (ratio)    2  +  (w * h)  *   (ratio)    2  − inter  (12)

 Io  U   inner  =   inner _ union    (13)
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where   b   gt ,  b   pred  denote the computed results of the truth and predicted bounding box, respectively, 
and w and h denote the width and height, respectively.

The inner IoU loss, while sharing some similarities with the traditional IoU loss, introduces unique 
aspects. It computes the IoU between auxiliary bounding boxes and ranges from 0 to 1. When the ratio 
of the auxiliary bounding box size to the actual bounding box size is less than 1, the auxiliary boxes 
are smaller, resulting in a reduced effective regression range compared to the IoU loss. This condition 
produces a larger gradient, facilitating faster convergence for high-IoU samples. Conversely, when 
the ratio exceeds 1, indicating larger auxiliary boxes, the effective regression range increases, which 
is advantageous for low-IoU regressions. Thus, employing smaller auxiliary bounding boxes can 
accelerate convergence for high-IoU cases, while larger boxes are more beneficial for low-IoU cases.

In current boundary box regression losses, the primary focus is on the geometric relationship 
between the predicted and GT boxes. These losses are determined by assessing their relative positions 
and shapes, often neglecting the intrinsic characteristics of the bounding boxes, such as their 
dimensions and proportions, and how these properties affect the regression process. Shape-IoU (Zhang 
& Zhang, 2023) proposes calculating the loss by focusing on the shape and scale of the boundary 
boxes themselves, making boundary box regression more precise. The specific calculation formulas 
are shown in Equations 14 through 19.

 IoU =    |B∩  B   gt |  _  |B∪  B   gt |     (14)

 ww =   2 ×   ( w   gt )    scale  _____________    ( w   gt )    scale  +   ( h   gt )    scale     (15)

 hh =   2 ×   ( h   gt )    scale  _____________    ( w   gt )    scale  +   ( h   gt )    scale     (16)

  distance   shape  = hh ×   ( x  c   −  x  c  
gt )    2  /  c   2  + ww ×   ( y  c   −  y  c  

gt )    2  /  c   2   (17)

  Ω   shape  =   ∑ 
t=w,h

    (1 −  e   −wt )    θ , θ = 4   (18)

  
⎧

 
⎪

 ⎨ 
⎪

 
⎩

 
 Ω  w   = hh ×    |w −  w   gt |  _ max (w,  w   gt )      
 Ω  h   = ww ×    |h −  h   gt |  _ max (h,  h   gt )   

     (19)

where the scale factor, denoted as scale, is related to the size of the targets in the dataset, while ww 
and hh represent the weight coefficients in the horizontal and vertical directions, respectively, which 
are related to the shape of the GT box. The corresponding boundary box regression loss calculation 
formula is shown in Equation 20.

  L  shape−IoU   = 1 − IoU +  distacne   shape  + 0.5 ×  Ω   shape   (20)

When the GT bounding box is not square, meaning there is a difference between its length and 
width, the shape and scale variations of the regression samples lead to differences in their IoU values. 
For samples of the same scale, the box's shape influences the IoU values, with more noticeable effects 
observed along the shorter side of the box. Conversely, for samples with the same shape, smaller-scale 
samples experience a greater impact on their IoU values due to the shape of the GT box compared 
to larger-scale samples.

Combining the inner-IoU with the shape-IoU to construct the inner-shape IoU loss function, 
replacing the original CIoU loss function, allows for better focus on the shape and proportion of the 
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bounding boxes themselves, as well as the differences between the auxiliary boxes and the actual boxes 
when calculating the loss. This enhances the model's generalization ability and detection accuracy 
and improves the regression performance of the detection boxes.

EXPERIMENT

Experimental Environment and Parameter Settings
Regarding the experimental setup, computations were performed on NVIDIA A30 GPUs with 

24GB of memory in a server environment. The code was developed, trained, and tested on the Red Hat 
Linux operating system (version 4.8.5). Programming was done using Python (version 3.8.12), and the 
PyTorch deep learning framework (version 2.0.0) was utilized for model construction. Additionally, 
model training acceleration was achieved through CUDA 11.7 and cuDNN 8.5.0, ensuring consistency 
in the hardware and software environment during training. For parameter configuration, the SGD 
optimizer, which is most commonly used in the field of computer vision, was used for gradient 
descent, and the specific parameter settings for the experimental environment are shown in Table 1.

Experimental Dataset
Acquiring datasets related to drugs is subject to regulations and legal restrictions due to the 

sensitive nature and potential involvement in illegal activities associated with images depicting 
drug-related content. Obtaining a large-scale drug dataset through legitimate channels is exceedingly 
challenging. Therefore, the dataset primarily used in the experiments is sourced from the drug 
dataset available on the dataset management platform Roboflow. Roboflow is a dataset management 
platform recommended by the YOLOv8 official website, providing free datasets and supporting the 
upload of custom datasets for format conversion. We carefully curated the experimental dataset by 
combining multiple datasets from Roboflow. We applied rigorous screening and cleaning processes 
to remove low-quality, duplicated, and redundant samples. Afterward, we employed specific data 
augmentation techniques to enhance the dataset's quality and accuracy. Our dataset comprises 5,560 
images captured from various scenes and includes four types of drug detection targets: cocaine, 
heroin, marijuana, and mushrooms. The training, validation, and test sets consist of 4,580, 440, and 
540 images, respectively. All models in the experiment were trained on this dataset with an input 
image size of 640×640, following the aforementioned specifications.

Evaluation Metrics
To objectively assess the model's detection performance, this experiment employs the mAP, 

precision rate (Precision), recall rate (Recall), floating-point operations (FLOPs), and frames per 
second (FPS) as evaluation metrics. Specifically, the formulas for the Precision and Recall values 
are shown in Equations 21 and 22.

Table 1. Training parameter settings

parameter setting parameter setting

epochs 200 close_mosaic 10

patience 50 warmup_epochs 3.0

batch 16 lr0 0.01

imgsz 640 lrf 0.01

workers 4 warmup_momentum 0.8

optimizer SGD weight_decay 0.0005
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 Precision =   TP _ TP + FP    (21)

 Recall =   TP _ TP + FN    (22)

where TP represents the count of correctly detected samples, FP represents the count of incorrectly 
detected samples, and FN represents the count of missed detections. The AP value represents the 
accuracy of a single category, while the mAP value denotes the average accuracy across all categories. 
The formulas for the AP and mAP values are defined in Equations 23 and 24, respectively.

 AP =  ∫ 
0
  
1
  P (r) dr   (23)

 mAP =   1 _ N    ∑ 
1
  

N
  A  P  i     (24)

The FPS value denotes the number of images that can be detected in a second, which is a measure 
of the detection speed of the model, and the FLOPs value denotes the amount of computation for the 
model, which is a measure of the computational complexity of the model.

Comparison of Improvement Methods Effect
To explore the practical impact of the proposed enhancements in this paper, we individually 

improve the YOLOv8s neck module and loss function, optimizing and adjusting the parameters 
accordingly. Our experiments aim to compare the effectiveness of these various enhancement methods.

Experiments on Neck Improvement
The YOLOv8s model's neck segment consists of four C2f modules, with the latter three attached 

to three detection heads. To identify the best enhancement point for the neck network, the SA-Net was 
appended after each C2f module. Specifically, adding the SA-Net after the last three C2f modules 
establishes direct connections to the detection heads. The improved model's precision was then 
measured.

As shown in Table 2, incorporating the SA-Net attention mechanism enhances the model's 
accuracy, with the highest mAP@ 0 .5 increasing by up to 0.8%. However, introducing too many 
SA-Net modules into the network can negatively impact detection accuracy, reducing the mAP@ 0 .5 
improvements. Based on the experimental results, this paper will add the SA-Net after the last two 
Cf2 modules in the YOLOv8 neck.

In the YOLOv8s model, the neck section includes four C2f modules. To explore the optimal 
position for introducing the LSKAs, we replaced each C2f module with the proposed C2f-LSKA 
module and tested the accuracy of the improved model.

Table 2. Ablation experiments of SA-NET

Model mAP@ 0 .5( %) mAP@ 0 .5: 0 .95( %) P(%)

YOLOv8s 85.2 60.6 92.1

YOLOv8s+1SA-Net 85.7 60.6 93.4

YOLOv8s+2SA-Net 86.0 60.8 93.4

YOLOv8s+3SA-Net 85.6 60.1 93.0

YOLOv8s+4SA-Net 85.6 60.0 92.8
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According to Table 3, incorporating the C2f-LSKA module can significantly enhance the model's 
detection accuracy, with the mAP@ 0 .5 increasing by 0.8%. Additionally, it substantially reduces 
the model's computational complexity. As the number of C2f-LSKA modules increases, the model's 
detection accuracy improves, and its computational complexity decreases. Based on the experimental 
results, this paper replaces all four C2f modules in the YOLOv8s neck with C2f-LSKA modules.

Experiments on Loss Function Improvement
To explore the effectiveness of the inner-shape IoU loss function, we compared it with the 

inner-IoU, the shape-IoU, and the standard loss functions like the IoU and the CIoU. Table 4 shows 
that integrating the inner-IoU or the shape-IoU enhances model accuracy. As illustrated in Table 
4, the YOLOv8s model with the inner-shape IoU loss function achieves higher detection accuracy. 
Compared to the original YOLOv8s model using the CIoU loss function, the mAP@50 increased by 
1.4%, the mAP@ 0 .5: 0 .95 improved by 0.7%, and the precision rose by 2.2%. This demonstrates that 
the inner-shape IoU loss function stabilizes the boundary box regression and improves prediction 
accuracy.

Ablation Study
To validate the effectiveness of the proposed algorithm improvements, we performed ablation 

experiments using the original YOLOv8s network as a baseline, as shown in Table 5. The experimental 
data show that replacing the original neck-end C2f module with the C2f-LSKA module increased the 
mAP@ 0 .5 by 0.8 percentage points and reduced the computation by 3.1G. Substituting the original 
SPPF module in the backbone network with the SPPF-LSKA feature pyramid module resulted in an 
additional 0.2% increase in the mAP@ 0 .5. Introducing the inner-shape IoU loss function instead of 
the original CIoU loss function added another 0.7 percentage points to the mAP@ 0 .5. Incorporating 
the SA-Net further increased the mAP@ 0 .5 by 0.5%, the mAP@ 0 .5: 0 .95 by 0.7 percentage points, 
and the precision by 1.1%. Although the final reduction in computation was only 1.8G, the detection 
accuracy improved by a total of 2.2 percentage points, significantly boosting the comprehensive 
detection performance. Therefore, the improved YOLOv8s model proposed in this paper demonstrates 
higher accuracy in drug detection and recognition than the YOLOv8s baseline model, confirming 
the effectiveness and feasibility of the optimization modules.

Table 3. Ablation experiments of LSKA

Model mAP@ 0 .5( %) mAP@ 0 .5: 0 .95( %) GFLOPs

YOLOv8s 85.2 60.6 28.4

YOLOv8s+1C2f-LSKA 85.5 60.3 27.9

YOLOv8s+2C2f-LSKA 85.8 60.6 27.1

YOLOv8s+3C2f-LSKA 86.0 60.7 26.4

YOLOv8s+4C2f-LSKA 86.0 60.7 25.3

Table 4. Ablation experiments of IoU

Model mAP@ 0 .5( %) mAP@ 0 .5: 0 .95( %) P(%)

YOLOv8s+IoU 84.9 60.1 92.4

YOLOv8s+CIoU 85.2 60.6 92.1

YOLOv8s+Inner-IoU 85.9 60.6 94.0

YOLOv8s+Shape-IoU 86.3 61.0 93.6

YOLOv8s+inner-shape IoU 86.6 61.3 94.3
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Comparison Experiments
To evaluate the detection performance of the improved model and comprehensively verify the 

advantages of the proposed algorithm, we compared the improved model with representative networks 
such as YOLOv5s, YOLOv7, YOLOv9c, and other enhanced YOLO models, as shown in Table 6.

The experimental results show that while the YOLOv8n model has the fastest detection speed 
and the lowest computational load, its detection accuracy is insufficient. YOLOv9-c, YOLOv3, and 
Rtdetr-l, despite their higher detection accuracy, suffer from excessive computational requirements 
and slow detection speeds, failing to meet rapid detection demands. The proposed improved model, 
although slightly slower in detection speed, significantly outperforms other mainstream models in 
detection accuracy, precision, and computational efficiency, with a precision rate of 87.4%, which 
is 2.2 percentage points higher than the original YOLOv8s model. Considering computational 
complexity, detection accuracy, and speed, the proposed algorithm excels compared to numerous 
mainstream algorithms.

Table 5. Ablation study

C2f-LSKA SPPF-LSKA SA-Net inner-shape 
IoU

mAP@ 0 .5( %) mAP@ 0 .5: 0 .95( %) P(%) R(%) GFLOPs

85.2 60.6 92.1 79.2 28.4

√ 86.0 60.7 94.7 78.8 25.3

√ 85.8 60.5 94.5 79.7 29.3

√ 86.0 60.8 93.4 78.8 28.4

√ 86.6 61.3 94.3 79.9 28.4

√ √ 86.2 60.7 94.4 79.8 26.2

√ √ √ 86.3 60.5 93.3 78.1 26.2

√ √ 86.6 61.2 94.2 79.1 28.4

√ √ √ 86.9 61.0 94.0 79.7 26.3

√ √ √ √ 87.4 61.7 95.1 79.6 26.6

Table 6. Comparative experiments

Model GFLOPs P(%) R(%) mAP@ 0 .5( %) mAP@ 0 .5: 0 .95( %) FPS

YOLOv5s 16.0 93.7 78.7 85.3 58.7 243.9

YOLOv9-c 238.9 93.3 78.6 86.7 60.7 32.57

YOLOv3 155.3 93.5 79.7 86.5 60.3 64.51

YOLOv7 105.2 93.9 79.1 86.1 60.8 68.49

Gold-yolo 32.1 94.1 77.4 85.8 60.4 135.13

Rtdetr-l 108.1 94.9 81.0 86.7 62.1 68.66

YOLOv8n 8.2 92.6 77.1 84.8 59.6 277.78

YOLOv8s(baseline) 28.4 92.1 79.2 85.2 60.6 156.25

YOLOv8m 79.1 93.9 80.7 86.3 61.0 98.03

YOLOv8s-Wrold 39.9 93.5 79.8 85.7 60.8 113.78

Ours 26.6 95.1 79.6 87.4 61.7 144.54
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Visualization Comparison
To intuitively verify the effectiveness of the improved algorithm, we conducted a visual 

comparison by training both the original YOLOv8s model and the improved model under the same 
experimental conditions and parameters. The left side of Figure 5 shows the detection results of the 
original model, while the right side displays the results of the improved model.

From the visual comparison, it is clear that both models accurately identified the drug types 
in the depicted scenarios. However, the improved algorithm shows significantly higher detection 
confidence than the original YOLOv8s algorithm. Based on the visual comparison and the previous 
analysis, it is apparent that the enhanced algorithm substantially improves the detection accuracy 
over the existing method.

DISCUSSION AND CONCLUSIONS

This article proposes an efficient drug detection and recognition model based on an improved 
YOLOv8s. By integrating large kernel separable convolution into the C2f modules in the neck, the 
model enhances multi-scale fusion capabilities while reducing computational complexity and memory 
usage. Adding the LSKA to the SPPF improves semantic fusion across different feature layers. 
Incorporating the SA-Net attention mechanism increases model robustness and reduces computation 
load. Using the combined inner-IoU and shape-IoU as the inner-shape IoU loss function for bounding 
box regression enhances detection accuracy and generalization ability, improving the bounding box 
regression performance. The improved model, which is smaller and faster than the YOLOv8m model, 
achieves performance that surpasses the YOLOv8m in nearly all aspects, meeting the requirements for 
rapid drug detection with its compact size and high accuracy. Compared to the original YOLOv8s, the 
improved model shows a 2.2% increase in the mAP@ 0 .5 and a 1.1% increase in the mAP@ 0 .5: 0 .95, 
while maintaining detection speed, making it highly practical. In online marketplaces like TaoBao, 
the model can help detect and prevent the illegal sale of drugs, which is a significant issue in some 
regions. The model could also help monitor user-uploaded images to detect disguised or hidden drugs 
in product photos. The model can be deployed in high-risk environments like nightclubs, concerts, or 
festivals, where drug usage is a concern. It could be integrated with security scanning systems to detect 
hidden or disguised drugs in bags, clothing, or personal items, helping security personnel prevent the 
entry of illegal substances into venues. However, the improved model occasionally misses detections 
in complex environments. In drug detection, “complex environments” refer to challenging conditions 
such as cluttered backgrounds, hidden drugs, or items designed to deceive detection systems. For 
example, drugs hidden in inconspicuous items or mixed with other substances may make accurate 
detection difficult. The model might struggle to differentiate drugs when they are camouflaged or 
purposefully obscured in a variety of real-world settings because it may not recognize subtle differences 

Figure 5. Comparison of object detection results
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in appearance, which requires enhanced feature detection or enhanced feature detection combined 
with other scanning technologies such as x-rays. Lack of proper lighting reduces the model’s ability 
to distinguish drug-related features, leading to potential false negatives. Addressing this might require 
using auxiliary technologies like infrared imaging or night-vision sensors alongside the model. Future 
work will further optimize the algorithm structure to improve its detection accuracy and precision.
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