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Abstract: Annually, over 10 billion tons of construction and demolition waste is transported globally
from sites to reception facilities. Optimal and effective planning of waste transportation holds the
potential to mitigate cost and carbon emissions, and alleviate road congestion. A major challenge
for developing an effective transportation plan is the uncertainty of the precise volume of waste at
each site during the planning stage. However, the existing studies have assumed known demand
in planning models but the assumption does not reflect real-world volatility. Taking advantage of
the problem structure, this study adopts the stochastic programming methodology to approach the
construction waste planning problem. An integer programming model is developed that adeptly
addresses the uncertainty of the amount of waste in an elegant manner. The proposed stochastic
programming model can efficiently handle practical scale problems. Our numerical experiments
amass a comprehensive dataset comprising nearly 4300 records of the actual amount of construction
waste generated in Hong Kong. The results demonstrate that incorporating demand uncertainty can
reduce the transportation cost by 1% correlating with an increase in profit of 14% compared to those
that do not consider the demand uncertainty.
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1. Introduction

Construction waste, also known as construction and demolition waste, consists of
solid waste, such as rock, rubble, boulder, earth, and bamboo, arising from construction,
renovation, and demolition projects [1]. Construction waste is the outcome of overordering
leading to leftover materials, change in design, damages to the element during transporta-
tion, storage, laying, and cutting [2]. The escalating irreversible urbanization in many
countries, resulting in the blooming of construction activities, has led to the generation of
unprecedented amount of construction waste, over 10 billion tons of construction waste
around the globe annually [3]. Furthermore, the proportion of construction waste in the
total amount of solid waste landfilled is also significant [4]; for example, in the United
States, the proportion is 25–40% [5], meanwhile, in the United Kingdom, Australia, and
Japan, the proportions are 50%, 44%, and 36%, respectively [6], whereas in the European
Union [7], the average proportion is more than a third of the total volume of waste gen-
erated. Generally, construction waste is generated at construction sites, then transported
to off-site and centralized reception facilities for subsequent processes such as sorting,
recycling, and landfilling.

Construction waste transportation is costly due to the sheer amount of waste in-
volved [8]. Assuming 10 billion tons of construction waste generated worldwide annually
is transported by vehicles with a capacity of 10 tons each consuming 26.4 L of diesel per
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100 km, and assuming the average transportation distance from construction sites to waste
reception facilities is 30 km, the annual fuel consumption is 7.92 billion liters (i.e., 26.4 ÷
100 × 30 = 7.92).This quantity equates roughly to the same amount of fuel consumption
in Denmark [9], resulting in a fuel cost that is approximately as high as USD7.92 billion,
assuming the price of fuel is at 1 USD/L. Therefore, an optimal waste transportation system
is vital to enhance the sustainability of the construction industry in terms of cost and carbon
emissions [8]. In addition, issues of sustainability have emerged as a growing significant
global concern [10,11].

In the current practice, the transportation company decides the dispatch of vehicles
to collect the waste from a predetermined number of construction sites and transport it
to a waste reception facility with the aim of minimizing the transportation cost. One of
the primary challenges of developing the transportation plan is the uncertainty of the
amount of waste generated at each construction site during the initial planning stage
(e.g., the site manager can only provide an estimate of the weight or volume of the waste
to the waste transportation company), resulting in the complexities in determining the
capacities and trips of the planned vehicles in order to minimize the expected sum of cost
for the planned and potential additional vehicles. However, most existing studies on waste
transportation planning hold a strong assumption that the transportation company knows
the actual amount of waste generated in each construction site. This paper addresses the
above challenge by examining the transportation planning of construction waste with
waste amount uncertainty. Specifically, a stochastic program is designed to capture the
uncertainty in the amounts of construction waste at construction sites. The optimization
objective from the perspective of a waste transportation company is to minimize the total
expected cost for waste transportation, considering both the planned vehicles and the
potential need for supplementary vehicles.

The novelties of this research are threefold: (1) From a modeling perspective, a novel
stochastic programming model is devised for the transportation planning of construction
waste. The proposed model considers the uncertainty in the amount of waste generated in
each construction site, thereby eliminating the assumption identified in the existing litera-
ture (i.e., planners know the actual transportation amount when making their decisions).
This novelty makes the proposed model more aligned with the stochastic decision-making
situations faced by planners in real-life scenarios; (2) from an algorithmic perspective,
a number of appealing model properties are analyzed for the development of an effec-
tive method capable of providing optimal solutions for waste transportation problems
of practical scales in one second. While many established heuristic algorithms can yield
high-quality feasible solutions, this paper contributes to the literature by illustrating how to
derive optimal solutions through the exploration of problem structure; (3) from a practical
perspective, real data from Hong Kong are collected for experiment validation. The results
of the numerical experiments show that considering uncertainty can significantly reduce
transportation costs. With that, our study contributes to the literature on optimization in
construction management.

The subsequent sections of this paper are organized as follows. Section 2 provides an
overview of the related literature. Section 3 describes the waste transportation planning
problem using real examples. Section 4 proposes a stochastic programming model and
outlines the proposed solution method. Section 5 reports the data for parameter setting and
demonstrates the results of extensive numerical experiments. Finally, Section 6 summarizes
the conclusions of this study.

2. Literature Review

Numerous papers have focused on the identification of potential locations for con-
struction waste reception facilities, primarily aimed at minimizing the total construction
cost of the facilities and the associated transportation cost. Xu et al. [12] proposed a mixed-
integer linear programming model to aid in deciding the locations for waste collection and
classification, remanufacturing, and landfilling facilities, in which the construction waste is
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first transported from construction sites to a waste collection and classification facility, then
directed either to a remanufacturing facility or a landfilling facility. Lin et al. [13] developed
a model to study the selection of locations for construction waste treatment facilities and
landfilling facilities, where the construction waste is transported from construction sites
to a treatment facility, or a landfilling facility, or disposed of illegally. Meanwhile, Rahimi
and Ghezavati [14] formulated a bi-objective model aimed at minimizing both the total
cost and environmental burden of a construction waste transportation network, taking into
account the selection of facility locations as well as the risk preferences of decision makers.
Pan et al. [15], on the other hand, formulated a multi-objective model to determine the
number, locations, and sizes of waste treatment plants incorporating multiple stakeholders’
objectives. Specifically, the model addresses the government’s objective of maximizing the
proportion of waste recycled, maximizing profit for the waste treatment facility operators
and the construction contractors’ objective of minimizing costs. Furthermore, in the model
proposed by Pan et al. [15], the construction waste is transported from construction sites to
a treatment facility, after which the recyclable part is directed to the sales market while the
non-recyclables are sent to a landfilling facility (the locations of landfilling facilities are fixed
and are not decision variables). Yang and Chen [16] investigated a similar predicament
but comprising the uncertainty of the processing capacities of the facilities, while Ahmed
and Zhang [17] proposed a mixed-integer linear programming model to determine the
locations of waste collection, recycling, and landfilling facilities, in which the construction
waste is first transported from construction sites to a waste collection facility, then to a
recycling facility and eventually to a landfilling facility. However, the previous studies on
location-related issues took the assumption of a constant cost of transportation between
the two locations (e.g., facilities and construction sites). In contrast, the focus of this study
is leaning towards the cost of transportation considering the dispatching of vehicles and
uncertain amounts of waste at sites.

Apart from that, research on routings of construction waste has been gaining momen-
tum among academicians. For instance, Qiu et al. [18] noticed that construction waste
transportation vehicles pose a severe threat to safe transportation and, hence, developed
a method for finding the optimal route from origin to destination that considers the risk
attitude of decision-makers and minimizes safety cost. Ahmed and Zhang [19] further
elaborated on the transportation cost components associated with transporting construc-
tion waste from construction sites to collection facilities, recycling facilities, and landfilling
facilities. Elshaboury and Marzouk [20] examined the transportation fleet requirement for
construction waste using a genetic algorithm. Moreover, we concur that our problem is
relevant to the well-known vehicle routing problem [21–26], bin packing problem [27–29],
and their variants [30–33]. A key distinction between this study and the aforementioned
ones is that we account for the uncertainty in the amounts of construction waste at sites,
which is a practical factor that decision-makers must take into consideration when they
design the optimal waste transportation plans.

Studies on transportation planning with uncertain demand have been conducted for
decades. Bertsimas [34] examined several special cases of uncertain demand distributions,
e.g., all customers have the same discrete demand distribution, and derived lower and
upper bounds on a route. Additionally, Dror [35] derived theoretical properties of the
problem, such as no arc will be traversed twice and a customer is visited at most n-1
times where n is the number of customers in total, without presenting a solution method.
Mendoza et al. [36] applied a penalty to a vehicle route once the total demand of the
customers on the route exceeds the capacity of the vehicle, without considering how to
handle the excess demand. Moghaddam et al. [37] used an adjusted demand in their design
of heuristics for vehicle routing, while Wang et al. [38] introduced different scenarios to
address uncertain demands. Other approaches, such as robust optimization [39] and fuzzy
set approaches [40], have also been utilized. The model proposed in this paper is capable
of dealing with any bounded distribution of random demand and offers an exact solution
that minimizes the total expected cost.
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3. Problem Description

Consider a construction waste transportation company that operates a fleet of different
types, denoted by set V, of vehicles. We assume that the number of vehicles of each type is
infinite. The capacity of a vehicle of type v ∈ V is Wv (tons) and the cost of using a vehicle of
type v is cv ($/min). For simplicity, we let W1 ≤ W2 ≤ · · · ≤ W|V| and c1 ≤ c2 ≤ · · · ≤ c|V|.
We define v(w) as the type of smallest vehicle whose capacity is no less than w, that is

v(w) = min
{

v′ ∈ V
∣∣Wv′ ≥ w

}
. (1)

The vehicles are located at a depot that is next to a construction waste reception facility.
The transportation company transports construction waste from construction sites

to a construction waste reception facility. Large construction sites produce significant
amounts of waste and usually full truckloads of waste are transported. The challenge is
planning the transport of construction wastes from small construction sites that produce
less than a full load of the largest truck, which is our focus. When the construction
work at a small construction site is finished, the site manager will call the transportation
company to transport the waste to a waste reception facility. At the beginning of a day, the
transportation company plans the transportation of construction waste from a set of small
construction sites, denoted by N. Define the depot and the construction waste reception
facility as location 0 since they are at the same location and define set N0 = N ∪ {0} to
include both the construction sites and the depot/waste reception facility. The waste at
the construction sites must be transported to the waste reception facility. The travel time
from location n1 ∈ N0 to location n2 ∈ N0 is tn1n2 (min). The actual amount of waste to
transport from construction site n ∈ N is unknown at the time of transportation planning
and, hence, is modelled as a continuous random variable, denoted by

∼
wn. The exact amount

is known after the waste is loaded onto a truck as the truck has pressure gauge that can
measure the weight.

∼
wn has a lower bound wL

n , an upper bound wU
n , and a cumulative

distribution function Fn(·). That is, Pr
(

wL
n ≤ ∼

wn ≤ wU
n

)
=

∫ wU
n

wL
n

dFn(wn) = 1. We assume

that wU
n ≤ W|V| for all n ∈ N, that is, the largest vehicle is capable of transporting all the

waste from any single site with probability 1. At the planning stage, the transportation
company knows wL

n , wU
n , and Fn(·) based on the estimate of the construction site manager

and historical records, as shown in the example below.

Example 1. The construction site manager makes a phone call to the transportation company and
informs them that “I estimate we have 5 tons of construction waste to be transported tomorrow.”
Suppose further that the transportation company has three historical records of similar sites and
similar amounts of waste, in which the construction site managers estimated 4 tons, 6 tons, and
7 tons, whereas their actual weights are 4.3 tons, 5.3 tons, and 4.9 tons, respectively (107.5%,
88.3%, and 70.0% of the estimates, respectively). Then, the transportation company may estimate
that, for example, the lower bound of the amount of the waste is 3.5 tons (70.0% of the estimate
by the construction site manager), the upper bound is 5.375 tons (107.5% of the estimate by the
construction site manager), and the amount follows a uniform distribution (we assume uniform
distribution simply because there are few data here; of course, other distributions can be used if a
large historical dataset is available, depending on the pattern of the data).

At the planning stage, the transportation company needs to decide, for each vehicle,
the construction sites to be visited and the sequence of the visits. Since the amount of
waste at a construction site is random, it is possible that the planned vehicle does not have
sufficient capacity to carry all the waste from the sites assigned to it. Extra trucks will be
dispatched to the sites whose waste are not completely collected yet, and the types and
routes of the extra trucks depend on the upper bounds of the amounts of waste at the sites.
Moreover, if the planned vehicle does not have sufficient capacity to carry all the waste
from a site, the amount of remaining waste at the site is still unknown. Example 2 below
illustrates this point.
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Example 2. Suppose that at the planning time, the transportation company decides that a truck of
type v visits construction sites 5, 3, and 8 sequentially. Four cases may occur, as shown in Figure 1,
and we analyze them one by one.

Case (i): the total actual amount of waste at the three sites is less than Wv (note, we
assume random variable

∼
wn is continuous and, hence, it makes no difference whether the

total actual amount of waste at sites 5, 3, and 8 is less than Wv or the total actual amount is
not greater than Wv). Then the truck travels from the depot to site 5, site 3, site 8, and the
construction waste reception facility. The resulting cost is cv(t05 + t53 + t38 + t80).

Case (ii): the total actual amount of waste at site 5 and site 3 is less than Wv, but the
total amount at the three sites is over Wv. Then the truck travels from the depot to site 5
(loads all the waste at site 5), site 3 (loads all the waste at site 3), site 8 (loads part of the
waste at site 8), and the construction waste reception facility. The resulting cost for this
planned truck is cv(t05 + t53 + t38 + t80). However, there is still some waste remaining at
site 8 and the transportation company has to dispatch an extra truck to collect it. Denoted
by ŵ5 and ŵ3 are the actual amounts of waste at site 5 and site 3, respectively. The amount
of waste collected by the truck from site 8 is Wv − ŵ5 − ŵ3. Therefore, the maximum
possible amount of waste remaining at site 8 is wU

8 − (Wv − ŵ5 − ŵ3), the type of the
extra truck that should be dispatched is v

(
wU

8 − (Wv − ŵ5 − ŵ3)
)
, and the resulting cost

is cv(wU
8 −(Wv−ŵ5−ŵ3))

(t08 + t80).
Case (iii): the actual amount of waste at site 5 is less than Wv, but the total amount at site

5 and site 3 is already over Wv. Then the truck travels from the depot to site 5 (loads all the
waste at site 5), site 3 (loads part of the waste at site 3), and the construction waste reception
facility. The resulting cost for this planned truck is cv(t05 + t53 + t30). The transportation
company then has to dispatch extra trucks to collect the remaining waste at site 3 and
the waste at site 8. There are two options. Option 1: two extra trucks are dispatched,
one to site 3 and the other to site 8. The type of truck that should be dispatched to site
3 is v

(
wU

3 − (Wv − ŵ5)
)

and the resulting cost is cv(wU
3 −(Wv−ŵ5))

(t03 + t30). The type of

truck that should be dispatched to site 8 is v
(
wU

8
)

and the resulting cost is cv(wU
8 )(t08 + t80).

Option 2: one extra truck is dispatched to collect the waste from both site 3 and site 8. The
type of truck that should be dispatched is v

(
wU

3 − (Wv − ŵ5) + wU
8
)

and the resulting cost
is cv(wU

3 −(Wv−ŵ5)+wU
8 )min{t03 + t38 + t80, t08 + t83 + t30}, where the “min” operator exists

because it is possible to visit site 3 first or to visit site 8 first. The lower-cost option will be
selected for implementation.

Case (iv): the actual amount of waste at site 5 is already over Wv. Then the truck
travels from the depot to site 5 (loads part of the waste at site 5), and the construc-
tion waste reception facility. The resulting cost for this planned truck is cv(t05 + t50).
The transportation company then has to dispatch extra trucks to collect the remain-
ing waste at site 5 and the waste at site 3 and site 8. There are five options. Option
1: The transportation company dispatches three extra trucks, one to site 5, one to site
3, and another to site 8. The resulting cost is cv(wU

5 −Wv)
(t05 + t50) + cv(wU

3 )(t03 + t30) +

cv(wU
8 )(t08 + t80). Option 2: The transportation company dispatches two extra trucks, one

to site 5, and the other to site 3 and site 8. The resulting cost is cv(wU
5 −Wv)

(t05 + t50) +

cv(wU
3 +wU

8 )min{t03 + t38 + t80, t08 + t83 + t30}. Option 3: The transportation company dis-
patches two extra trucks, one to site 3, and the other to site 5 and site 8. The resulting cost
is cv(wU

3 )(t03 + t30) + c
v(wU

5 −Wv+wU
8 )

min{t05 + t58 + t80, t08 + t85 + t50}. Option 4: The trans-

portation company dispatches two extra trucks, one to site 8, and the other to site 5 and site
3. The resulting cost is cv(wU

8 )(t08 + t80) + c
v(wU

5 −Wv+wU
3 )

min{t05 + t53 + t30, t03 + t35 + t50}.

Option 5: The transportation company dispatches one extra truck to site 5, site 3, and site 8.
The resulting cost is c

v(wU
5 −Wv+wU

3 +wU
8 )

min
{

t05 + t53 + t38 + t80, t05 + t58 + t83 + t30, t03 + t35

+t58 + t80, t03 + t38 + t85 + t50, t08 + t85 + t53 + t30, t08 + t83 + t35 + t50
}

. The lowest-cost op-
tion will be selected for implementation.
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The objective of the transportation company is to design a transportation plan that
incurs the lowest expected total cost, including the cost of the planned vehicles and the cost
of the extra vehicles. The definition of transportation plan is as follows.

Definition 1. A transportation plan is decisions of (i) the set of trucks to use (excluding the extra
trucks), (ii) the set of sites assigned to each truck, and (iii) the sequence of the sites serviced by each used
truck (due to uncertainty, not all sites in the plan can be serviced, extra trucks have to be dispatched).
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Figure 1. Cases of the route of the planned truck and the routes of extra trucks (note that in Option 2
of Case (iii), the extra truck may visit site 8 before site 3; this also applies to options 2, 3, 4, and 5 of
Case (iv), which are plotted).

4. Stochastic Programming Model

To facilitate model formulation, we define a “trip” of construction sites below.

Definition 2. A trip is a set of sites serviced by the same truck in the plan in a given sequence.

For example, site 5 → site 3 → site 8 is a different trip from site 5 → site 3 and is a different
trip from site 3 → site 8 → site 5. We denote by B the set of all possible trips, πb the number
of sites in trip b ∈ B, nbi the ID of the site that is the ith site on the trip, i = 1, . . . , πb, and ρbn a
binary indicator that is 1 if site n ∈ N is in trip b and 0 otherwise. For instance, in the trip of
site 5 → site 3 → site 8, πb = 3, nb1 = 5, nb2 = 3, nb3 = 8, ρb1 = 0, ρb2 = 0, ρb3 = 1, ρb4 = 0.

We define trip because it has several nice properties.

Property 1. In reality, a truck can only serve a few (one, two or three) sites on a trip. Therefore, we
can enumerate all possible trips. For instance, if there are 30 sites and a trip has at most three sites,
then the number of all possible trips is P1

30 + P2
30 + P3

30 = 25, 260, where P means permutation.
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Property 2. The expected total cost of serving all the sites on a trip (i.e., the sum of the expected
cost of using the truck in the plan and the extra trucks) is independent of the other trips. In other
words, the expected total cost of serving all the sites on a trip is only dependent on the type of truck
planned for the trip and the sequence of the sites in the trip.

Based on the above two properties, we elaborate on the computation of the expected
cost of a trip with a planned vehicle of type v, that is, the expected total cost of serving
all the sites on the trip when a truck of type v is planned to serve the trip. For better
readability, we describe the computation of the expected costs of trips with one, two, and
three construction sites separately.

Case (i): trip b has only one construction site nb1 and a truck of type v is planned to
serve the trip. The expected cost of the trip, denoted by Cbv, is

Cbv = Pr
(∼

wnb1 < Wv

)
cv
(
t0nb1 + tnb10

)
+ Pr

(∼
wnb1 > Wv

)[
cv
(
t0nb1 + tnb10

)
+

cv(wU
nb1

−Wv)
(t0nb1 + tnb10)

]
, b ∈ B, πb = 1, v ∈ V.

(2)

In Equation (2), if the actual weight of the waste at construction site nb1 is less
than the capacity of the truck in the plan, then the cost will be cv

(
t0nb1 + tnb10

)
. Oth-

erwise, the cost cv
(
t0nb1 + tnb10

)
will still be incurred for the planned truck, and the

cost cv(wU
nb1

−Wv)

(
t0nb1 + tnb10

)
will be incurred for the extra truck.

Case (ii): trip b has two construction sites and a truck of type v is planned to serve the
trip. Define E[·] as the expectation operator. The expected cost of the trip is

Pr
( ∼

wnb1 +
∼
wnb2 ≤ Wv

)
cv
(
t0nb1 + tnb1nb2 + tnb20

)
+ Pr

(∼
wnb1 < Wv,

∼
wnb1 +

∼
wnb2 > Wv

)[
cv
(
t0nb1 + tnb1nb2 + tnb20

)
+

E
[

c
v(wU

nb2
−(Wv−

∼
wnb1 ))

∣∣∣∣∼wnb1 < Wv,
∼
wnb1 +

∼
wnb2 > Wv

](
t0nb2 + tnb20

)]
+ Pr

(∼
wnb1 > Wv

)[
cv
(
t0nb1 + tnb10

)
+

min
{

cv(wU
nb1

−Wv)

(
t0nb1 + tnb10

)
+ cv(wU

nb2
)

(
t0nb2 + tnb20

)
, cv(wU

nb1
−Wv+wU

nb2
)min

{
t0nb1 + tnb1nb2 + tnb20, t0nb2+

tnb2nb1 + tnb10

} }]
, b ∈ B, πb = 2, v ∈ V.

(3)

Equation (3) has three terms. The first one calculates the cost when the total weight of
waste at the two sites is less than the capacity of the planned truck; the second one calculates the
cost when the weight of the waste at the first site is less than the capacity of the planned truck,
but the total weight of waste at the two sites is more than the capacity of the truck in the plan (an
extra vehicle is dispatched, its type depends on the random amount of waste at the first site, and

the resulting expected cost is E
[

c
v(wU

nb2
−(Wv−

∼
wnb1))

∣∣∣∣∼wnb1 < Wv,
∼
wnb1 +

∼
wnb2 > Wv

](
t0nb2 + tnb20

)
;

the third one calculates the cost when the weight of the waste at the first site is more than
the capacity of the planned truck (then we may dispatch two extra vehicles, resulting in a
cost of cv(wU

nb1
−Wv)

(
t0nb1 + tnb10

)
+ cv(wU

nb2
)

(
t0nb2 + tnb20

)
, or one vehicle, resulting in a cost

of cv(wU
nb1

−Wv+wU
nb2

)min
{

t0nb1 + tnb1nb2 + tnb20, t0nb2 + tnb2nb1 + tnb10
}

).

Case (iii): trip b has three construction sites and a truck of type v is planned to serve
the trip. The expected cost of the trip is

Cbv = Pr
(∼

wnb1 +
∼
wnb2 +

∼
wnb3 < Wv

)
C0 + Pr

(∼
wnb1 +

∼
wnb2 < Wv,

∼
wnb1 +

∼
wnb2 +

∼
wnb3 > Wv

)
C1 + Pr

(∼
wnb1 < Wv,

∼
wnb1+

∼
wnb2 > Wv

)
C2 + Pr

(∼
wnb1 > Wv

)
C3, b ∈ B, πb = 3, v ∈ V.

(4)

Equation (4) has four terms, where C0 is the cost when the total weight of waste at
the three sites is less than the capacity of the planned truck, C1 is the cost when the total
weight of the waste at the first two sites is less than the capacity of the planned truck,
but the total weight of waste at the three sites is more than the capacity of the planned
truck, C2 is the cost when the weight of the waste at the first site is less than the capacity
of the planned truck, but the total weight of waste at the first two sites is more than the
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capacity of the planned truck, and C3 is the cost when the weight of the waste at the first
site is more than the capacity of the planned truck. The detailed formulae for Equation (4)
as well as C0, C1, C2, and C3 is in Appendix A.

Evidently, the computation of the probabilities in Equation (2) involves univari-
ate calculus and the computation of the probabilities and conditional expectations in
Equations (3) and (4) involves multivariate calculus. As a result, it is generally challenging
to derive a closed-form expression of Cbv. Nevertheless, the value of Cbv can be easily
estimated with high accuracy using Monte Carlo simulation. A theoretical analysis is in
Appendix B. Moreover, the estimation of Cbv can be carried out using parallel computing.

Before presenting the model, let us summarize all the assumptions in the study:

1. The number of vehicles of each type operated by the construction waste transportation
company is infinite.

2. At the planning stage, the transportation company knows the lower bound, upper
bound, and distribution of the amount of waste at each construction site.

3. The capacity of the largest vehicle is greater than the upper bound on the amount of
waste at any single site.

4. If the planned vehicle does not have sufficient capacity to carry all the waste from a
site, extra vehicles will be dispatched based on the upper bound of the amounts of
wastes at the sites in the trip that are not served by the planned vehicle.

5. A trip has at most three sites.

Using the concept of trip, we define zb as a binary decision variable that equals 1 if
trip b ∈ B is chosen and 0 otherwise. We define a binary decision variable ybv to be 1 if
trip b is served by a truck of type v, and 0 otherwise. The model is:

[M1] minimize ∑b∈B ∑v∈V Cbvybv (5)

subject to
∑
b∈B

ρbnzb = 1, n ∈ N (6)

∑
v∈V

ybv = zb, b ∈ B (7)

ybv ∈ {0, 1}, b ∈ B, v ∈ V (8)

zb ∈ {0, 1}, b ∈ B. (9)

Equation (5) minimizes the total cost. Equation (6) ensures that each construction
site is included in exactly one chosen trip. Equation (7) enforce that each chosen trip uses
exactly one truck. Equations (8) and (9) define the decision variables to be binary.

Model [M1] has the following properties, whose proofs are straightforward and hence
omitted.

Property 3. Let
(
y∗bv, z∗b , b ∈ B, v ∈ V) be an optimal solution to [M1]. If a trip b′ is used, that

is, z∗b′ = 1, then there exists a type of vehicle v′ ∈ argminv∈V{Cb′v} such that y∗b′v′ = 1. In other
words, the choice of type of vehicle in the plan for a trip is independent of the decisions for the other trips.

Property 4. The integrality constraints on ybv can be removed. That is, constraints (8) in [M1] can
be replaced with 0 ≤ ybv ≤ 1, b ∈ B, v ∈ V. Such a replacement can reduce the number of integer
decision variables in the model, simplifying the branch-and-bound tree in the solution algorithm.

Based on Property 3, we can further simplify [M1]. Define Cb = minv∈V{Cbv} as the
minimum expected cost of trip b ∈ B, i.e., the expected cost of trip b when the optimal
type of vehicle is planned. zb is still a binary decision variable that equals 1 if trip b ∈ B is
chosen and the optimal type of vehicle is planned and 0 otherwise. The model is:

[M2] minimize ∑b∈B Cbzb (10)
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subject to
∑
b∈B

ρbnzb = 1, n ∈ N (11)

zb ∈ {0, 1}, b ∈ B. (12)

Equation (10) minimizes the total cost. Equation (11) ensures that each construction
site is included in exactly one chosen trip (the truck to use for a chosen trip is determined a
priori). Equation (12) define the decision variables to be binary.

Property 5. Consider two trips b1 ∈ B and b2 ∈ B in [M2] with the same set of sites (ρb1n =
ρb2n, n ∈ N) and Cb1 < Cb2 . Then, z∗b2

= 0 in all optimal solutions.

Property 5 can be used to eliminate a number of trips from model [M2]. For example,
there are six trips that contain sites 3, 5, and 8: site 3 → site 5 → site 8; site 3 → site
8 → site 5; site 5 → site 3 → site 8; site 5 → site 8 → site 3; site 8 → site 3 → site 5; and
site 8 → site 5 → site 3; only one of them is needed in model [M2].

Property 6. Consider a trip b1 ∈ B and a set of trips B1 ∈ B and |B1|≥ 2 . If the sites contained in
the trips in B1 are the same as the ones in b1, that is, ∑b∈B ρbn = ρb1n, n ∈ N, and the total cost of
the trips in B1 is less than that of b1 (∑b∈B1

Cb < Cb1 ). Then, z∗b1
= 0 in all optimal solutions.

We illustrate the implications of Property 6 using an example. Suppose that the cost of
the trip site 5 → site 3 → site 8 is greater than the sum of the costs of the three trips: site 3
only, site 5 only, and site 8 only, then we will not use the trip site 5 → site 3 → site 8 in any
optimal solution. Suppose that the cost of the trip site 5 → site 3 → site 8 is greater than the
sum of the costs of the two trips: site 3 only and site 8 → site 5, then we will not use the
trip site 5 → site 3 → site 8 in any optimal solution.

Suppose that the remaining set of trips after using Property 5 and Property 6 is B′. The
resulting model is:

[M3] minimize ∑b∈B′ Cbzb (13)

subject to
∑

b∈B′
ρbnzb = 1, n ∈ N (14)

zb ∈ {0, 1}, b ∈ B′. (15)

Equation (13) minimizes the total cost. Equation (14) ensures that each construction site
is included in exactly one chosen trip. Equation (15) defines the decision variables as binary.

It can be seen that [M3] is a weighted set cover problem and, thus, NP-hard. However,
because in reality the cardinality of N is small and the number of construction sites in a trip
is very limited, as demonstrated in Property 1, [M3] can be efficiently solved by off-the-shelf
integer programming solvers.

5. Computational Experiments

In this section, extensive computational experiments based on the construction waste
data of Hong Kong were conducted to test the efficiency of the proposed stochastic pro-
gramming models and to verify their effectiveness. This approach has been widely used in
the literature for methodology validation [41–45]. Note that although only relevant Hong
Kong data were collected for case study purposes, our proposed model and method can
be applied to various countries and regions for their cost-optimized transport planning of
construction waste.

We selected Hong Kong as an instructive case study because of its representative-
ness. Hong Kong is characterized by high population density, limited space, and unmet
housing demands, all of which are common features in countries and regions where a
considerable amount of construction waste is likely to be generated. Figure 2 shows
the construction waste reception facility at Chai Wan, Hong Kong. The construction
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waste transportation company operates a fleet of |V|= 8 types of vehicles, whose car-
rying capacity Wv and cost cv are listed in Table 1. The transportation company will
serve |N|∈ {5, 10, 20, 30, 40} construction sites in Hong Kong Island the next day, whose
locations are randomly generated. The amount of waste at each site is randomly generated
based on the actual amount of waste collected at the Chai Wan reception facility. The real
data of construction waste generation in Hong Kong can be found at the website of the Envi-
ronmental Protection Department (https://www.epd.gov.hk/epd/misc/cdm/scheme.htm,
accessed on 10 July 2024).
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Table 1. Carrying capacity and cost of the vehicle fleet.

Vehicle Type v Carrying Capacity Wv (ton) Cost cv ($/min)

1 3 1.75
2 5 2.26
3 8 2.86
4 10 3.19
5 15 3.91
6 20 4.52
7 30 5.53
8 35 5.97

In particular, Figure 3 shows the distribution of the actual amounts of 4291 records,
with the minimum weight of 0.58 ton and the maximum weight of 22.37 ton. It can be seen
that the weights are concentrated at 5, 7.5, 11, 15, and 22 tons. We, therefore, assume the
construction manager of a site will estimate 5, 7.5, 11, 15, and 22 tons if the actual amount is
between 0.58 and 6.25 tons, between 6.25 and 9.25 tons, between 9.25 and 13 tons, between
13 and 18.5 tons, and between 18.5 and 22.37 tons, respectively. For each of the |N| sites
in the study, we assume its actual amount of waste (which is unknown at the planning
stage) is randomly drawn from the distribution in Figure 3. For example, if the actual (but
unknown yet) amount is 4.23 tons, the construction site manager will estimate 5 tons, and
then the transportation company knows its lower bound (i.e., 0.58 tons), its upper bound
(i.e., 6.25 tons), and its distribution based on the historical records.

https://www.epd.gov.hk/epd/misc/cdm/scheme.htm
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facility (data from Hong Kong Environmental Protection Department [46]).

For each value of |N|, five instances are randomly generated. For each instance, we
first use a sample size of 10,000 to estimate the value of Cb using Monte Carlo simulation.
The sample size 10,000 is chosen because in our trial experiments, we find this size is
sufficient for practical purposes. Then, model [M3] is solved by integer programming
solver CPLEX 12.10 on a Lenovo laptop with CPU of 1.10 GHz processing speed and 16 GB
of memory.

5.1. Computational Analysis

We first examine the computational efficiency of model [M3]. Table 2 shows the
results over five instances regarding the number of sites (column 1), the theoretical num-
ber of trips (column 2), the average actual number of trips after applying Properties
3, 5, and 6 (column 3), the ratio of the average actual number of trips after applying
properties 3, 5, and 6 and the theoretical number of trips (column 4), and the aver-
age computation time for solving one instance of [M3] (column 5). Given |N| sites
and |V| types of vehicles and a trip can have at most three sites, the theoretical number of
trips is |V|(Combination(|N|, 1) + Combination(|N|, 2) + Combination(|N|, 3)) . Table 2
shows that the theoretical number of trips increases with |N| roughly in a cubic manner,
that is, when |N| is doubled, the theoretical number of trips will be eight times as large. Ap-
plying Properties 3, 5, and 6, we can significantly reduce the number of trips that need to be
considered. Moreover, for larger values of |N|, a higher proportion of trips can be excluded
by Properties 3, 5, and 6. Note that the number of trips to be considered corresponds to
the number of decision variables and, hence, a smaller number is highly desirable from
computational perspective. Indeed, this can be reflected in the last column of Table 2: [M3]
can be solved in 1 s, showing the computational efficiency.

Table 3 reports the detailed trips chosen and their vehicles used for an instance of
10 construction sites. As shown in the first row of Table 3, the trip that includes only site 3
(its estimated amount of waste is 7.5 tons) uses a vehicle of type 4 (its carrying capacity
is 10 tons) instead of a vehicle of type 3 (its carrying capacity is 8 tons). This is because
whereas the estimated amount of waste at site 3 is 7.5 tons, the actual amount of waste can
be any value between 6.25 and 9.25 tons. If a vehicle of type 3 were used, there would be a
high chance that an extra vehicle has to be dispatched. Similarly, as shown in the second
row of Table 3, the trip that includes only site 6 (its estimated amount of waste is 15 tons)
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uses a vehicle of type 6 (its carrying capacity is 20 tons) instead of a vehicle of type 5 (its
carrying capacity is 15 tons) because the actual amount of waste can be any value between
13 and 18.5 tons.

Table 2. Computational efficiency of [M3].

Number of Sites |N| Theoretical Number of
Trips

Average Actual Number of
Trips

Actual
Theoretical Average CPU Time (s)

5 200 15.4 7.7% <1
10 1400 72.4 5.2% <1
20 10,800 284.6 2.6% <1
30 36,200 725.2 2.0% <1
40 85,600 1348.8 1.6% <1

Table 3. Trips chosen and their vehicles used for an instance of 10 construction sites (with consolida-
tion and uncertain demand).

Trip Vehicle Type

3 4
6 6

2 → 5 6
7 → 8 6
9 → 1 6

4 → 10 8

The trip that includes site 2 (its estimated amount of waste is 11 tons) and 5 (its
estimated amount of waste is 7.5 tons) uses a vehicle of type 6 (its carrying capacity is
20 tons). This vehicle will always be able to transport all the waste from site 2 as its
maximum amount is 13 tons, but may not be able to transport all the waste from site 5
because the sum of the maximum amounts at the two sites is 13 + 9.25 = 22.25 tons. The
trips 7 → 8 and 9 → 1 are similar to the trip 2 → 5. In trip 4 → 10, both sites have an
estimated amount of waste of 15 tons, and the used vehicle has a capacity of 35 tons, larger
than the sum of estimated amounts at the two sites.

5.2. Comparison with No Consolidation

Next, we assess the value of construction waste consolidation. The value of con-
solidation in logistics has been widely acknowledged [47]. However, the Hong Kong
Environmental Protection Department [46] does not allow consolidation of construction
waste from different sites on one vehicle and it requires a vehicle to report the ID of the
construction site whose waste is being carried by the vehicle. One reason for this regulation
is for the government to track the amount of waste transported to the reception facility
so that if there is illegal dumping of waste from a construction site, the government can
spot abnormality from its record. For instance, if a large construction site has only a small
amount of waste transported to the reception facility, it is likely that the construction site
has illegally dumped some waste. Therefore, we examine numerically the potential loss
from forbidding construction waste consolidation so that the government can weigh the
pros and cons of forbidding construction waste consolidation.

To this end, we solve the same instances with the requirement that each vehicle can only
carry construction waste from one site (no consolidation). Note that when consolidation is
allowed, construction waste from at most three sites can be carried on the same vehicle,
as shown in Figure 1. Table 4 reports the average cost for instances of different numbers
of construction sites. It can be seen that with consolidation, the cost can be significantly
reduced. Moreover, the cost reduction increases with the number of construction sites. This
is because with more construction sites, the average distance between two sites is smaller
and, hence, it is easier to collect wastes from several neighboring sites.
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Table 4. Value of construction waste consolidation.

Number of Sites |N| Average Cost without Consolidation
(Each Trip Contains One Site Only)

Average Cost with Consolidation
(Each Trip Contains at Most Three Sites)

Cost
Reduction

5 1421.55 1356.72 4.6%
10 2809.90 2662.69 5.2%
20 5960.36 5511.30 7.5%
30 8947.00 8220.79 8.1%
40 12,073.24 11,009.00 8.8%

Table 5 reports the detailed trips chosen and the vehicles used for the same instance of
10 construction sites as Table 3. For trips that include only one site in Table 3, their used
vehicles are unchanged without consolidation. For trips that include more than one site
in Table 3, they are broken down into multiple trips, using smaller vehicles, leading to a
higher transportation cost.

Table 5. Trips chosen and their vehicles used for an instance of 10 construction sites without
consolidation.

Trip Vehicle Type

1 4
2 5
3 4
4 6
5 4
6 6
7 5
8 4
9 5
10 6

5.3. Comparison with Models That Do Not Consider Random Demand

Finally, we assess the value of considering the randomness of the amount of construc-
tion waste, as a comparison with studies in the literature that do not consider demand
uncertainty [12,13]. To this end, we solve the same instances by assuming the amount of
waste at each construction site is equal to the estimated value and then the chosen trips are
evaluated by considering the uncertainty. Table 6 reports the average cost for instances of
different numbers of construction sites. It can be seen that, taking into account the random-
ness, the cost can be reduced by about 1%. Note that the operating margin of the transport
and logistics industry is about 7% [48]. Therefore, reducing the cost by 1% means increasing
the profit by 14%. We notice that there are fluctuations in the percentage of cost reduction,
which is solely due to randomness in the parameter settings in the numerical experiments.
Moreover, even if the cost is reduced by only 0.4%, the profit will be increased by 5%.

Table 6. Value of considering the randomness of the amount of construction waste.

Number of Sites |N| Average Cost without Considering
Randomness

Average Cost Considering
Randomness Cost Reduction

5 1361.08 1356.72 0.3%
10 2726.32 2662.69 2.3%
20 5600.74 5511.30 1.6%
30 8378.53 8220.79 1.9%
40 11,051.32 11,009.00 0.4%

Table 7 reports the detailed trips chosen and their vehicles used for the same instance
of 10 construction sites as Table 3. Without considering uncertain demand, the wastes from
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more construction sites are consolidated. Moreover, the capacities of the vehicles used will
be determined solely based on the estimated amounts of waste at the sites in the trips. For
instance, the estimated amount at site 1 is 7.5 tons and the estimated amount at site 6 is
15 tons, hence a vehicle of type 7 (carrying capacity 30 tons) is used for trip 1 → 6, and the
estimated amount at site 3 is 7.5 tons and the estimated amount at site 9 is 11 tons, hence a
vehicle of type 6 (carrying capacity 20 tons) is used for trip 3 → 9. As a result, considerably
high costs of extra vehicles are incurred, compared with the plan in Table 3.

Table 7. Trips chosen and their vehicles used for an instance of 10 construction sites without
considering uncertain demand.

Trip Vehicle Type

1 → 6 7
3 → 9 6
4 → 7 7
5 → 10 7
8 → 2 6

6. Conclusions

The amount of construction and demolition waste to transport from construction sites
to reception facility is considerable, owning to the rapid urbanization all over the world.
Optimal planning of the transportation for waste transportation companies can reduce
cost and thereby decrease carbon emissions and alleviate road congestion. However, a
major challenge for developing a transportation plan is the exact amount of waste at each
site is unknown at the planning stage. Taking advantage of the problem structure, we
define the concept of trip that handles the uncertainty in an elegant manner. Specifically,
the calculation of the expected cost of a trip involves the amounts of waste at only a small
number of sites and, hence, can easily be achieved using Monte Carlo simulation. Based
on the concept of trip, we develop an integer programming model, which can be solved
efficiently for problems of practical size. Using the construction waste data in Hong Kong,
we carry out extensive numerical experiments. The results demonstrate that considering
uncertainty can reduce about 1% of the transportation cost, which can be translated to
about 14% of profit. To use the proposed model, a waste transportation company only
needs to keep a record of the estimated amount by site manager and the actual amount of
the waste at sites that have been served by the company. Therefore, the proposed model
offers significant practical relevance to the construction waste transportation industry.

Some limitations of this study should be recognized. For example, only the uncertainty
of the amount of waste is considered in the transportation planning of construction waste.
However, in real practices, waste transportation companies are faced with diverse uncertain
factors that can have a compound impact on the optimality of the generated transportation
plan. Considering the uncertainty of both the amount of waste and the travel time is a
worthwhile future search direction.
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Appendix A

We present the detailed formulae of Equation (4) below:

Cbv = Pr
(∼

wnb1 +
∼
wnb2 +

∼
wnb3 < Wv

)
cv
(
t0nb1 + tnb1nb2 + tnb2nb3 + tnb30

)
+ Pr

(∼
wnb1 +

∼
wnb2 < Wv,

∼
wnb1 +

∼
wnb2+

∼
wnb3 > Wv

)[
cv
(
t0nb1 + tnb1nb2 + tnb2nb3 + tnb30

)
+ E
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cv(wU

nb3
−(Wv−

∼
wnb1−

∼
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nb3

)min
{

t0nb2 + tnb2nb3 + tnb30, t0nb3 + tnb3nb2+

tnb20

}
, cv(wU

nb2
)(t0nb2 + tnb20) + cv(wU

nb1
−Wv+wU

nb3
)min

{
t0nb1 + tnb1nb3 + tnb30, t0nb3 + tnb3nb1 + tnb10

}
, cv(wU

nb3
)(t0nb3+

tnb30) + cv(wU
nb1

−Wv+wU
nb2

)min
{

t0nb1 + tnb1nb2 + tnb20, t0nb2 + tnb2nb1 + tnb10

}
, cv(wU

nb1
−Wv+wU

nb2
+wU

nb3
)min

{
t0nb1+

tnb1nb2 + tnb2nb3 + tnb30, t0nb1 + tnb1nb3 + tnb3nb2 + tnb20, t0nb2 + tnb2nb1 + tnb1nb3 + tnb30, t0nb2 + tnb2nb3 + tnb3nb1+

tnb10, t0nb3 + tnb3nb1 + tnb1nb2 + tnb20, t0nb3 + tnb3nb2 + tnb2nb1 + tnb10

}}]
, b ∈ B, πb = 3, v ∈ V.

(A1)

Appendix B

We carry out a theoretical analysis of the accuracy of using Monte Carlo simulation to
estimate the value of Cbv in Equation (2). The cases of Equations (3) and (4) can be analyzed
in a similar way.

For brevity, define p = Pr
(∼

wnb1 < Wv

)
, C′ = cv

(
t0nb1 + tnb10

)
, and C′′ = cv

(
t0nb1 + tnb10

)
+

cv(wU
nb1

−Wv)

(
t0nb1 + tnb10

)
; C′ < C′′. Then, Cbv = pC′+ (1 − p)C′′, b ∈ B, πb = 1, v ∈ V.

To estimate Cbv using Monte Carlo simulation, we randomly generate a sample of M re-
alizations of

∼
wnb1 according to its distribution function Fnb1

(
wnb1

)
, and the resulting estimate

of Cbv, denoted by Ĉbv, is Ĉbv = p̂C′+ (1 − p̂)C′′, where p̂ is the proportion of the M real-
izations that are less than Wv. Note that Ĉbv is random as it depends on the sample that is
randomly drawn from the distribution of

∼
wnb1 .

Supposing that we hope Pr
(
| Ĉbv−Cbv

Cbv
| < 1%

)
> 99%, that is, there is at least 99% chance

that the relative estimation error is at most 1%, let us examine the choice of sample size M. To

this end, we only need to guarantee Pr
(

Ĉbv−Cbv
Cbv

> 1%
)
< 0.5% and Pr

(
Cbv−Ĉbv

Cbv
> 1%

)
< 0.5%.

We now examine the requirement Pr
(

Ĉbv−Cbv
Cbv

> 1%
)

< 0.5%, i.e.,

Pr
(
[p̂C′+(1−p̂)C′′]−[pC′+(1−p)C′′]

pC′+(1−p)C′′ > 1%
)
< 0.5%. According to Hoeffding’s inequality, which

provides an upper bound on the probability that the sum of random variables devi-
ates from its mean value by a given amount, Pr

(
[ p̂C′+(1− p̂)C′′ ]−[pC′+(1−p)C′′ ]

pC′+(1−p)C′′ > 1%
)

≤

e−2M{ 1%[pC′+(1−p)C′′ ]
C′′−C′ }

2

< e−2M{ 1%[pC′+(1−p)C′′]
C′′ }

2

. Since C′ < C′′,Pr
(
[p̂C′+(1−p̂)C′′]−[pC′+(1−p)C′′]

pC′+(1−p)C′′ > 1%
)

< e−2M( 1%C′
C′′ )

2

. To ensure Pr
(

Ĉbv−Cbv
Cbv

> 1%
)
< 0.5%, we only need e−2M( 1%C′

C′′ )
2

< 0.5%.

Suppose C′′ = 5C′, we only need to take a sample of size M not less than 662, 290. The

examination of the requirement Pr
(

Cbv−Ĉbv
Cbv

> 1%
)
< 0.5% yields the same sample size.

Note that the above derivation refers to the worst case and many steps in the derivation
can be further strengthened. Therefore, in reality the sample size required is much smaller
than the above theoretical value. In fact, in our trial experiments we find setting M at
10,000 is sufficient and, therefore, in the numerical study of the paper, we set M at 10,000.
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