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A B S T R A C T

Accurate continuum modelling of granular flows is essential for predicting geohazards such as flow-like land-
slides and debris flows. Achieving such precision necessitates both a robust constitutive model for granular media 
and a numerical solver capable of handling large deformations. In this work, a novel unified phase transition 
constitutive model for granular media is proposed that follows a generalized Maxwell framework. The stress is 
divided into an elastoplastic part and a viscous part. The former utilizes a critical-state-based elastoplasticity 
model, while the latter employs a strain acceleration-based μ(I) rheology model. Key characteristics such as 
nonlinear elasticity, nonlinear plastic hardening, stress dilatancy, and critical state concept are incorporated into 
the elastoplasticity model, and the non-Newtonian μ(I) rheology model considers strain rate and strain accel-
eration (i.e., a higher-order derivative of strain) to capture changes in accelerated and decelerated flow condi-
tions. A series of element tests is simulated using the proposed unified phase transition model, demonstrating 
that the novel theory effectively describes the transition of granular media from solid-like to fluid-like states in a 
unified manner. The proposed unified model is then implemented within the material point method (MPM) 
framework to simulate 2D and 3D granular flows. The results show remarkable consistency with results from 
experiments and other numerical methods, demonstrating the model’s accuracy in capturing solid-like behaviour 
during inception and deposition, as well as liquid-like behaviour during propagation.

1. Introduction

Landslides with three stages, initiation, propagation, and deposition, 
are among the most hazardous geological phenomena (Li et al., 2019; Ye 
et al., 2024). They exhibit various movement types, such as fall, topple, 
and flow (Dikau and Commission, 1996). Notably, flow-like landslides, 
characterized by high velocity and extensive impact areas, can shape the 
morphography of the natural environment and induce high potential 
risks to man-made structures (Li et al., 2019). For example, a flow-like 
landslide in Valarties, Val d’Aran (Catalonia, Spain), travelled 280 m 
down the valley and ascended about 80 m on the opposite hillside, 
reshaping the geological characteristics (Di Carluccio et al., 2022). 
Another example is the 2001 flow-like landslide in Las Colinas (Santa 
Tecla, El Salvador), which caused 600 fatalities and destroyed 400 
homes (Dutto, 2014). Additionally, the Yahuokou landslide in Gansu, 
China, with a volume of 3.92 × 106 m3, resulted in direct economic 
losses exceeding 102 million CNY (Yang et al., 2024).

These flow-like landslides, closely associated with granular flows, 
exhibit distinct characteristics across different stages (Vescovi et al., 

2013; Redaelli et al., 2016; Si et al., 2019; Berzi et al., 2022) (see Fig. 1): 
(i) During the initiation stage, the sliding material begins with a solid- 
like state in the small strain rate range, with effective stress gradually 
decreasing to residual strength; (ii) in the propagation stage, the sliding 
material demonstrates fluid-like behaviour in the large strain rate range; 
and (iii) in the sedimentation stage, the material ultimately deposits as 
solid-like substances under the frictional resistance of the terrain. 
Accurately modelling these complex mechanical responses of granular 
media, especially the intricate particle-particle interaction mechanisms 
during large deformation flow, is crucial for the precise analysis and 
prediction of geohazards, particularly flow-like landslides.

Existing literature has developed various constitutive models linking 
stress and deformation to describe material responses during granular 
flow. Soil mechanics-based models, such as elastic, elastoplastic, and 
hypoplastic models, effectively capture solid-like behaviour at small 
strain rates (e.g., Wu and Bauer, 1994; Sloan et al., 2001; Yao et al., 
2009; Yin et al., 2020; Feng et al., 2024). However, they inadequately 
replicate post-failure behaviour at large strain rates. Conversely, fluid 
mechanics-based models are employed for fluid-like characteristics at 
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high strain rates (e.g., Franci and Cremonesi, 2019), yet they fail to 
capture solid-like responses at small deformations. Given these charac-
teristics, neither soil mechanics-based nor fluid mechanics-based models 
can fully capture the initiation and propagation stages of granular flow. 
Therefore, it is crucial to propose a robust model that effectively ad-
dresses these issues.

Many studies have developed advanced constitutive models that 
depict the phase transition from solid-like to fluid-like states in granular 
flow, integrating interdisciplinary ideas including elasticity, plasticity, 
and viscosity from theories of soil mechanics and fluid dynamics. These 
models have the following categories based on their representations of 
elastic, plastic, and viscous behaviours: (i) Rate-based elasto-visco-
plastic model. It consists of an elastic spring in series with a viscoplastic 
part (e.g., Pastor et al., 2015a, 2015b; Manzanal et al., 2016). Notably, 
Pastor et al. (2015a) employed Perzyna’s elasto-viscoplastic models 
(Perzyna, 1963) to describe the solid-fluid phase transition behaviour 
for cohesive-viscous materials. (ii) Rate-based elastoplastic model. It 
includes a rate-based elastic spring and a rate-based plastic slider con-
nected in series (e.g., Kamrin, 2010; Dunatunga and Kamrin, 2015; 
Baumgarten and Kamrin, 2019). In these models, the rheology relation is 
incorporated in the plastic flow rule to consider the rete-dependence. 
(iii) Hydrodynamic-plastic model (Alaei et al., 2021), which integrates 
the hydrodynamic idea (see Landau and Lifshitz, 1987) with the plas-
ticity theory to describe the rate-dependent and rate-independent 
characteristics. (iv) Generalized Maxwell framework-based model (i.e., 
unified frictional-collisional framework in this study) (e.g., Vescovi 
et al., 2013; Guo et al., 2016; Peng et al., 2016; Si et al., 2019; Vescovi 
et al., 2020a; Vescovi et al., 2020b; Redaelli et al., 2016; Wu et al., 2020; 
Guo et al., 2021; Berzi et al., 2022; Marveggio et al., 2022; Wang and 

Wu, 2024). It consists of an elastic spring and a plastic slider connected 
in series, in parallel with a viscous dashpot. The total stress is divided 
into a rate-independent frictional stress (i.e., elastic spring and a plastic 
slider) and a rate-dependent collisional stress (i.e., viscous dashpot), 
each of which can be seen as representing solid-like and fluid-like 
stresses. This study follows the generalized Maxwell framework to 
establish a robust unified phase transition model for granular flows from 
solid-like to fluid-like states.

To the authors’ knowledge, existing unified frictional-collisional 
models from solid-like to fluid-like states can be categorized based on 
their treatment of frictional stress (see Table 1): hypoplastic-based (e.g., 
Peng et al., 2016; Guo et al., 2021; Wang and Wu, 2024) and 
elastoplastic-based models (e.g., Vescovi et al., 2013; Redaelli et al., 
2016; Marveggio et al., 2022); Hypoplastic-based models integrate a 
hypoplastic framework, developed independently of elastoplastic the-
ory, for frictional stress, along with viscous models such as the Bagnold- 
based models and modified μ(I) models to describe collisional stress. 
These models effectively capture fluid-like responses using straightfor-
ward viscous formulations. In contrast, the elastoplastic-based model 
utilizes elastoplastic theory to describe frictional stress. Considering that 
it can effectively differentiate between elastic and plastic responses (see 
Table 1), we employ the elastoplasticity-based model to depict the 
granular flow.

In the existing literature, early efforts by Vescovi et al. (2013) and 
Redaelli et al. (2016) proposed elastoplastic models with critical state 
concepts to describe the frictional mechanism of granular flows and 
employed kinetic theory with a state variable, granular temperature, to 
model collisional mechanism. Marveggio et al. (2022) further developed 
a model combining strain-hardening elastoplasticity and kinetic theory, 

Fig. 1. The movement of granular material during the flow-like landslide.

Table 1 
Existing solid-fluid phase transition models using the frictional-collisional framework.

Reference Frictional stress Collisional stress

Type Nonlinear 
elasticity

Nonlinear plastic 
hardening

Stress 
dilatancy

Critical 
state

Type

Guo et al. (2016); Peng et al. (2016); Guo et al. 
(2021); Wang and Wu (2024)

Hypoplastic 
model £ £ √ √ Bagnold-based model; 

Modified μ(I) model

Vescovi et al. (2013); Redaelli et al. (2016)
Elastoplastic 
model

£ £ £ √ Kinetic theory

Si et al. (2019) Elastoplastic 
model

£ £ £ £ Kinetic theory

Xu et al. (2019) Elastoplastic 
model

£ £ £ £ μ(I) model

Marveggio et al. (2022)
Elastoplastic 
model £ √ √ √ Kinetic theory

This study
Elastoplastic 
model

√ √ √ √ Modified μ(I) model
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which can consider the role of isotropic softening/hardening, critical 
state, and stress dilatancy. The employed kinetic theory is irrelated to 
strain acceleration. In addition, Xu et al. (2019) developed a phase 
transition model utilizing the μ(I) viscosity but neglected the critical 
state concept. Up to now, a comprehensive and simple elastoplasticity- 
based phase transition model that accurately describes the following 
key characteristics is still under investigation: (i) the progression from 
the initial state to the critical state within solid-like conditions; (ii) 
essential features such as nonlinear elasticity, nonlinear plasticity, and 
the phenomena of stress-induced shear hardening or softening within 
solid-like conditions; and (iii) dependence on the strain acceleration in 
fluid-like conditions. Thus, a comprehensive constitutive model to 
address these issues should be proposed.

Accurate modelling of granular flows requires not only a robust 
constitutive model but also an effective numerical solver. Traditional 
Lagrangian-based methods, such as the finite element method (FEM), 
face significant mesh distortion challenges when addressing large 
deformation problems. In contrast, Eulerian-based approaches, such as 
the finite volume method (FVM) and finite difference method (FDM), 
struggle to accurately capture free surfaces of granular flow. Conse-
quently, neither traditional Lagrangian-based nor Eulerian-based 
methods can fully rationally represent granular flow. Alternative 
particle-based methods, such as the Material Point Method (MPM) (e.g., 
Liu et al., 2022; Urmi et al., 2024; Shen et al., 2024), Particle Finite 
Element Method (PFEM) (e.g., Jin et al., 2020), and Smoothed Particle 
Hydrodynamics (SPH) (e.g., Su et al., 2024), effectively overcome these 
limitations. In this study, we have chosen the MPM as our numerical 
solver for this study.

Motivated by the above considerations, this study aims to develop a 
novel unified elastoplasticity-μ(I) phase transition constitutive model 
that completely represents the aforementioned essential characteristics 
in both solid-like and fluid-like phases and to implement this model into 
the MPM framework to model granular flow. Based on the generalized 
Maxwell framework, the unified phase transition model is proposed by 
combining a critical-state-based elastoplasticity model with a strain 
acceleration-based μ(I) rheology model. The critical-state-based elasto-
plasticity model incorporates nonlinear elasticity, nonlinear plastic 
hardening, stress dilatancy, and the critical state. Concurrently, the non- 
Newtonian μ(I) model accounts for dependences on strain rate, strain 
acceleration, and void ratio. To validate the effectiveness of the pro-
posed elastoplasticity-μ(I) phase transition model, various element test 
simulations are conducted. Additionally, the new unified elastoplas-
ticity-μ(I) model is incorporated into the material point method (MPM) 
to simulate granular flows. Both 2D and 3D granular flow simulations 
are performed using the MPM framework with the unified elastoplas-
ticity-μ(I) model, thereby evaluating its effectiveness.

The paper is organized as follows: Section 2 details the proposed 
unified elastoplasticity-μ(I) model, while Section 3 discusses the verifi-
cation of the proposed unified elastoplasticity-μ(I) model. Section 4
presents 2D and 3D numerical simulations to validate the MPM scheme 
with the proposed unified elastoplasticity-μ(I) model. Finally, Section 5
draws some major conclusions for the study.

2. Proposed unified elastoplasticity-μ(I) phase transition model

This section commences with a brief introduction of the generalized 
Maxwell framework; and then proceeds to describe the frictional stress 
and collisional stress part. The summary of the proposed unified elas-
toplasticity-μ(I) model and the model validation are then discussed.

2.1. Generalized maxwell framework

When the granular soil undergoes large deformation flows, two main 
particle interaction mechanisms exist: frictional and collisional. The 
frictional mechanism represents enduring contacts among particles, 
while the collisional mechanism describes particle collisions (see Fig. 1). 

Frictional and collisional stress are the two mechanisms that match up 
(Vescovi et al., 2013; Redaelli et al., 2016; Wang and Wu, 2024). Based 
on these two mechanisms, granular flow can be divided into three re-
gimes: (i) “quasi-static” regime: dominated by the friction mechanism, 
where the material is dense and behaves like solids in the small strain 
rate range. The stress is primarily frictional, also referred to as quasi- 
static stress. (ii) “Collisional” regime: dominated by the collision 
mechanism, where the granular material is loose and controlled by 
collisional stress in the large strain rate range. (iii) “Transitional” 
regime: characterized by interactions through both collision and fric-
tion, where the material behaves like fluids under the combined influ-
ence of collision-induced and friction-induced stress (Redaelli et al., 
2016; Vescovi et al., 2020a, 2020b; Marveggio et al., 2022).

As shown in Fig. 2, a generalized Maxwell model is used to establish a 
constitutive relationship capable of addressing the aforementioned 
concerns. This model consists of a spring, slider, and dashpot. The upper 
part, a combination of a spring in series with a slider, is parallel to the 
lower part, which only includes a dashpot. The spring and slider 
represent elasticity and plasticity, respectively, while the dashpot de-
notes viscosity.

Within the generalized Maxwell framework, the total stress is 
decomposed into frictional stress from the upper part and collisional 
stress from the lower part (see Eq. (1)). The frictional stress σf is strain 
rate-independent and is described by elastoplasticity theory, while the 
collisional stress σcol is strain rate-dependent and is represented by 
rheology model. Due to their parallel arrangement, frictional and 
collisional stresses coexist during granular flow. The following condi-
tions are required to describe the phase transition from a solid-like to a 
fluid-like state using Eq. (1): (i) In the solid-like state, the frictional stress 
should effectively characterize the granular material’s frictional prop-
erties, such as nonlinearity, dilatancy, and frictional yielding, while the 
collisional stress should be negligibly small. (ii) In the fluid-like state, 
the frictional stress should be minimal, while the collisional stress 
should accurately represent the granular flow’s viscous properties. 

σ = σf + σcol (1) 

where σ is the total Cauchy stress tensor; σf is the elastoplastic stress; σcol 
is the collisional stress.

2.2. Frictional stress part

The frictional stress contribution in the small strain range has been 
extensively characterized by models in soil mechanics, such as the Mohr- 
Coulomb, von Mises, Drucker-Prager, and Cam-Clay models (Ponthot, 
2002; Yao et al., 2009; Yin et al., 2020; Cheng et al., 2023; Cheng and 
Yin, 2024; Feng et al., 2025). These models effectively capture the 
fundamental frictional characteristics. Furthermore, during the initia-
tion of granular flow (i.e., the transition from a solid-like to a fluid-like 
state), the granular material begins to deform indefinitely without 

Fig. 2. Illustration of the generalized Maxwell framework for the solid-fliud 
phase transition model.
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significant changes in stresses and volume. This state can be accurately 
described by critical state theory (Roscoe et al., 1958; Schofield and 
Wroth, 1968). Therefore, utilizing a critical state-based elastoplasticity 
model is more effective in describing frictional stress in the phase 
transition model. Subsequently, numerical simulations of element tests 
using the frictional stress model are conducted to evaluate its 
performance.

2.2.1. Critical-state-based elastoplasticity model
This work employs the framework of the critical state-based sand 

model SIMSAND (Yin et al., 2013, 2014, 2020) to depict the frictional 
stress. Following the framework, the strain increment δε is decomposed 
into an elastic increment δεe and a plastic increment δεp (see Eq. (2)). 
The nonlinear elasticity characteristic is considered in the elastic part. 
The nonlinear plastic hardening, stress dilatancy (contraction or dila-
tion), and critical-state concept are considered in the plastic part. 

δε = δεe + δεp (2) 

In the elastic part, the stress increment can be determined using the 
elastic strain increment as shown in Eq. (3). Herein Kf represents the 
fourth-order stiffness tensor, which depends on the elastic modulus Ef 
and Poisson’s ratio ν. The elastic modulus Ef is defined by Eq. (4) to 
incorporate dependencies on the void ratio and hydrostatic component 
of frictional stress. 

δσf = Kf : δεe (3) 

Ef = E0pat
(2.97 − e)2

(1 + e)

(
pf

pat

)n

(4) 

where pat is atmospheric pressure (i.e., pat = 101.3 kPa); n is the elastic 
constant controlling nonlinear stiffness; pf is the hydrostatic part of 
frictional stress; e is the void ratio.

The plastic behaviour can be determined by the yield criterion, 
hardening rule, and flow rule, as follows: 

1. Frictional yield criterion:

The well-known Mohr-Coulomb yield criterion is employed, which is 
expressed as: 

ff =
qf

pf
− Hf (5) 

where qf is the deviatoric part of frictional stress; Hf is the hardening 
parameter. 

2. Nonlinear plastic hardening rule:

A hardening rule in hyperbolic form is employed, as follows: 

Hf =
Mpεp

d

kp + εp
d

(6) 

where Mp is the slope of the failure line in the pf-qf plane, which is 
expressed as Mp = 6sinϕc/(3 − sinϕc) (where ϕc is the friction angle) in 
triaxial compression condition (Lode angle effect is introduced to follow 
the Mohr-Coulomb criterion). εp

d is the plastic deviatoric strain. kp is a 
constant controlling the plastic hardening behaviour. 

3. Flow rule with stress dilatancy characteristic:

To consider the stress dilatancy (contraction or dilation), a param-
eter Ad is often introduced in plastic potential function g, as proposed by 
Nova and Wood (1982), Jefferies (1993), Gajo and Wood (1999), Li et al. 
(1999), Yang and Muraleetharan (2003), which can be expressed as 
follows: 

∂g
∂pf

= Ad

(

Mpt −
qf

pf

)

,
∂g
∂qf

= 1 (7) 

where Ad is a parameter controlling the magnitude of the stress- 
dilatancy; Mpt is the transformation stress ratio corresponding to the 
transitional state between a contractive and a dilatant behaviour. If the 
current stress ratio is smaller than Mpt, the material is contractive. 
Otherwise, it is dilative. 

4. Critical state concept:

The critical void ratio ec is considered: 

ec = erefexp

[

− Λ
(

pf

pat

)ξ
]

(8) 

where eref is the initial critical-state void ratio; Λ is the slope of the 
critical state line (CSL) in the e-log pf plane; parameter ξ controls the 
nonlinearity of the critical state line.

The critical-state theory is implemented in the SIMSAND model by 
modifying the peak stress ratio Mp and phase transformation stress ratio 

Mpt via Mp = 6sinϕp/
(

3 − sinϕp

)
and Mpt = 6sinϕpt/

(
3 − sinϕpt

)
, 

respectively. The peak friction angle ϕp and transformation angle ϕpt are 
expressed as: 

ϕp = arctan
[(ec

e

)np
tanϕc

]
(9) 

ϕpt = arctan
[(

e
ec

)nd

tanϕc

]

(10) 

where np and nd are parameters controlling the effect of particle inter-
locking. When the granular material is dense (i.e., e < ec), ϕpt is initially 
smaller than ϕc, representing a dense structure that is initially contrac-
tive and then dilative. When the material is loose (i.e., e > ec), ϕpt is 
larger than ϕc, which leads to contractive behaviour. Both loose and 
dense materials will arrive at the critical state, resulting in the phase 
transition in the granular flow.

In summary, Eqs. (2)~(10) describe the frictional stress contribution 
using a critical-state-based elastoplastic model. The nonlinear elasticity, 
dilatancy (contraction or dilation), nonlinear plastic hardening, and 
critical state concept are well considered in the solid-like state of 
granular material. The parameters required are listed in Table 2.

2.2.2. Element test simulation
The undrained simple shear test is the available element test capable 

Table 2 
Input parameters in the frictional stress part.

Parameters Definition Analysis Wichtmann 
(2016)

E0
Dimensionless referential elastic 
modulus

150.00 50.00

ν Poisson’s ratio 0.20 0.15

n
Constant controlling nonlinear 
elastic stiffness 0.60 0.60

φc Critical-state friction angle 23.00 31.3
eref Initial critical-state void ratio 0.907 1.05

Λ
Constant controlling CSL 
nonlinearity

0.022 0.0579

ξ
Constant controlling CSL 
nonlinearity 0.71 0.4

Ad
Constant controlling stress dilatancy 
magnitude 0.50 2

kp Plastic modulus-related constant 0.001 0.01
np Peak strength parameter 1.00 2.4
nd Phase transformation parameter 1.00 2.9
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of exhibiting large deformation characteristics, demonstrating solid-like 
behaviour at low strain rates and fluid-like behaviour at high strain 
rates. Additionally, it can reveal the liquefaction phenomenon and has 
been widely employed to investigate the phase transition model (e.g., 
Guo et al., 2016; Peng et al., 2016; Guo et al., 2021; Wang and Wu, 

2024). Hence the undrained simple shear tests are employed in this 
work. The details of undrained simple shear tests are listed in Appendix 
A. This section investigates the proposed model’s performance in 
describing the phase transition through the numerical integration of 
undrained simple shear tests. Herein, a forward Eulerian explicit 

Fig. 3. Simulation results of the undrained simple shear test using the critical-state-based sand model with different initial void ratios: (a) relation between the 
hydrostatic stress and deviatoric stress; (b) relation between the deviatoric strain and hydrostatic stress; (c) relation between the deviatoric strain and devia-
toric stress.

Fig. 4. Simulation results of the undrained simple shear test with different initial vertical stress: (a) relation between the hydrostatic stress and deviatoric stress; (b) 
relation between the deviatoric strain and hydrostatic stress; (c) relation between the deviatoric strain and deviatoric stress.
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integration algorithm is employed (see Eq. (11)). Considering the strain 
rate-independent characteristic, only the shear strain is given, which is 
0.3. A small time step dt = 10− 6 s is employed to guarantee the nu-
merical convergence. The input parameters are listed in Table 2. Two 
groups of numerical integration are employed to investigate the influ-
ence of initial void ratio and initial pressure: i). The initial pressure pf0 is 
set at 500 kPa with different initial void ratios e0 = 0.95, 0.90, 0.85, and 
0.80; and ii) The initial void ratio e0 is set at 0.95 with different initial 
pressures pf0 = 500, 700, and 900 kPa. It is worth noting that pf and qf 

are employed to denote the effective hydrostatic stress and effective 
deviatoric stress in the undrained test, respectively. γ is used to denote 
the shear strain. 

σt+1
f = σt

f + δσf = σt
f +Kt : (δε − δεp) (11) 

Fig. 3 shows the simulation results of the undrained simple shear 
tests with different initial void ratios. Fig. 3(a) demonstrates that all the 
specimens reach the critical-state line, triggering the initiation of gran-
ular flow (i.e., the transition from a solid-like to a fluid-like state). Fig. 3
(b) and (c) show that the dense specimen (i.e., e0 = 0.80) exhibits shear- 
hardening and dilation characteristics. The very loose specimens (i.e., e0 
= 0.95, 0.90) behave with the shear-softening characteristic and reach 
complete liquefaction, resulting in residual stress. The specimen with a 
medium void ratio (i.e., e0 = 0.85) first behaves with the shear-softening 
characteristic and then with the shear-hardening characteristic. 
Notably, the proposed critical-state-based elastoplastic sand model 
performs similarly to the hypoplastic model of Wu et al. (2020), both 
effectively describing the dependence on the void ratio.

To further investigate the proposed critical-state-based elastoplastic 
sand model, the specimens with different initial vertical stress pf0 of 500, 
700, and 900 kPa are employed. As is shown in Fig. 4, specimens with 
different vertical stresses arrive at the critical-state line. All the speci-
mens behave with the shear-softening behaviour and obtain complete 
liquefaction, which indicates the established frictional stress model can 
effectively describe the mechanism in the liquefaction of debris flows 
and can be rational in depicting the initiation of granular flow.

To validate the critical-state-based sand model, the experimental 
results from Wichtmann (2016) are utilized and presented herein. In the 
prototype experiment, three different initial pressures pf0 of 100, 300, 
and 500 kPa were applied. To obtain the parameters for the proposed 
frictional stress model, the calibration process outlined in Appendix C is 
followed. First, the critical-state line (CSL) reported by Wichtmann 
(2016) is used to determine the values of eref , Λ, and ξ, with fitted values 
of 1.05, 0.0579, and 0.4, respectively. The second determination in-
volves the elastic parameters. Poisson’s ratio ν is set to a typical value of 
0.15, while the elastic modulus coefficient E0 and n are assigned values 
of 50 and 0.6, respectively, to reflect the small stiffness reported by 

Wichtmann (2016). The friction angle φc is reported as 23◦, and two 
different initial void ratios, 1.039 and 0.923, are obtained using the 
initial relative density. Finally, the parameters Ad and kp are assigned 
typical values of 2 and 0.01, np and nd are set as 2.4 and 2.9 based on the 
values reported for Toyoura Sand (see Yin et al., 2018).

Fig. 5 compares the simulation results using the critical-state-based 
frictional stress model with the experimental results from Wichtmann 
(2016). Both the simulation and experiment stresses with different 
initial void ratios, travel along the critical-state line (CSL), showing good 
agreement. This demonstrates the effectiveness of the critical-state- 
based frictional stress model.

2.3. Collisional stress part

When granular material is fluid-like, it is mainly controlled by 
collisional stress, which can be depicted using a viscous stress model (e. 
g., Jop et al., 2006; Vescovi et al., 2013; Redaelli et al., 2016). Most of 
these models are based on the relationship between stress and strain rate 
and cannot consider different viscous behaviours under acceleration and 
deceleration. Hence, a higher-order derivative of strain is more rational 
for considering the acceleration effect of granular flow in the large strain 
range stage. This section uses a strain acceleration-based non-Newto-
nian μ(I) model to depict the collisional stress in the Generalized 
Maxwell model. Numerical simulations of element tests are then per-
formed to investigate this model’s effectiveness.

2.3.1. Stain acceleration-based μ(I) model
In this work, the framework of collisional stress proposed by Wang 

and Wu (2024) is employed to depict the collisional stress contribution 
in the generalized Maxwell model. Following the framework, the colli-
sional stress is expressed in rate form, which is expressed as follows: 

σ̇col = fΦ(2μ|γ̇|ë − ėë − ëė ) (12) 

where ė is the deviatoric part of the strain rate tensor, defined as ė = ε̇ −
tr(ε̇)I/3 (in which ε̇ is the first time-derivation of the strain tensor 
expressed in Eq. (13)); ë is the deviatoric part of the strain acceleration 
tensor, defined as ë = ε̈ − tr(ε̈)I/3 (in which ε̈ is the second time- 
derivation of the strain tensor expressed in Eq.(14)); |γ̇| is the second 
invariant of the deviatoric strain rate tensor, expressed as |γ̇| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ė : ė/2

√
. μ is a friction coefficient. fΦ is the function of the volume 

fraction of the granular material Φ, effectively describing the depen-
dence on the void ratio.

The first time-derivation of the strain tensor (i.e., strain rate tensor) 
and second time-derivation of the strain tensor (i.e., strain acceleration 
tensor) are expressed as follows: 

Fig. 5. Comparison of the undrained triaxial test from simulation solution and experimental results by Wichtmann (2016): (a) loose sample: e0 = 1.039; (b) dense 
sample: e0 = 0.923.

H. Feng et al.                                                                                                                                                                                                                                    Engineering Geology 352 (2025) 108054 

6 



ε̇ =
1
2
(
∇v+∇vT) (13) 

ε̈ =
1
2
(∇v̇+∇v̇T

) (14) 

where v is the velocity tensor; ∇v represents the velocity gradient.
The function of the volume fraction fΦ, expressed as follows: 

fΦ = ρs

(

2d
ΔΦ

Φc − Φ

)2

(15) 

where Φ is the volume fraction of the granular material, related to the 
void ratio via 1/(1 + e); ρs denotes the density of the granular particle; 
d is the diameter of the particle; Φc represents the random close packing 
volume fraction; ΔΦ is the dynamic loosening coefficient.

In the fluid-like state, the friction coefficient μ is significant to depict 
the relation between the shear part and the hydrostatic part. Jop et al. 
(2006) established the μ(I) model to describe the rheology of the gran-
ular matter, which is expressed as follows: 

μ(I) = μs +
μd − μs

I0 + I
I (16) 

where inertial number I represents the ratio between the time scales of 
deformation and the structural confinement of particles, defined as I =
2d|γ̇|/

̅̅̅̅̅̅̅̅̅
p/ρs

√
(Note p is the hydrostatic part of the total stress in the 

generalized Maxwell model). I0 is a referential inertial number; μs and 

μd are the static and dynamic friction coefficient, respectively (Note that 
μs can be related to friction angle ϕc in a solid-like state via μs = tanϕc). 
An example of the μ(I) model is expressed in Fig. 6. which indicates that 
the friction coefficient tends to be μs for the minimal inertial number 
while it tends to be μd for the large inertial number.

In the strain acceleration-based non-Newtonian μ(I) model, the 
equivalent shear viscosity coefficient can be expressed as η1 = 2μ|γ̇|fΦ 

while an equivalent bulk viscosity coefficient can be described via η2 =

2|γ̇|fΦ. Fig. 7 shows a typical example of these equivalent viscosity co-
efficients. The viscosity coefficients are negligible in the small strain rate 
regime while are significant for the large strain rate regime, indicating 
the strain acceleration-based non-Newtonian μ(I) model effectively 
satisfies the requirement of the phase transition model: i). The colli-
sional stress σcol should be negligibly small in the solid-like state ii). The 
material is controlled by the collisional stress when the material is in a 
fluid-like state.

2.3.2. Element test simulation
This section investigates the collisional stress model’s performance 

via the numerical integration of undrained simple shear tests. Details of 
the collisional stress in the undrained simple shear tests are listed in 
Appendix B. As is shown in Eq. (17), a forward Eulerian explicit inte-
gration algorithm is employed. A small-time step dt = 10− 6 s is 
employed. The model parameters from Franci and Cremonesi (2019)
and Wang and Wu (2024) listed in Table 3, are adopted. 

σt+1
col = σt

col + σ̇t
coldt (17) 

To investigate the capability of the established non-Newtonian μ(I) 
model in describing the strain rate-dependent, strain acceleration- 
dependent, and void ratio-dependent characteristics, two groups of 
numerical integration are employed: i). Three different strain rate paths 
depicting the time evolution of strain rate and acceleration are adopted, 
shown in Fig. 8, with an initial void ratio e0 = 0.80. ii) Different void 
ratios of 0.80, 0.85, 0.90, and 0.95 are employed with strain rate path 1 
in Fig. 8. Two groups adopt the same initial pressure of 100 kPa. It is 
worth noting that pcol and qcol are employed to denote the effective 
vertical stress and effective shear stress of the collisional stress contri-
bution, respectively. γ denotes the shear strain, while γ̇ and γ̈ represent 
the shear rate and acceleration, respectively.

Fig. 9 shows the simulation results of the undrained simple shear test 
using the strain acceleration-based non-Newtonian μ(I) model. In path 1, 
the strain acceleration changes from a positive to a zero, then to a 
negative value. The strain rate first increases, then keeps constant, fol-
lowed by a decrease. The hydrostatic stress pcol and deviatoric stress qcol 
under this strain rate path first increase, then remain constant, and then 
decrease, which matches well with the evolution of γ̇γ̈. In path 2, the 
strain acceleration of the granular material varies from a positive to a 
negative, then to a positive value. The strain rate experiences an in-
crease, followed by a decrease, and then a rise. The hydrostatic stress pcol 
and deviatoric stress qcol under strain rate path 2 have the same tendency 
as γ̇γ̈. In path 3, there is a constant strain acceleration and an increasing 
strain rate. The corresponding collisional stress gradually increases. 
These results under different strain rate paths demonstrate that the non- 
Newtonian μ(I) model effectively describes the strain rate-dependent 

Fig. 6. Relation between the friction coefficient μ and the inertial number I 
(μs=0.4245; μd=0.5718; d = 10− 3 m; ρs=1090 kg/m3, I0 = 0.28).

Fig. 7. Relation between the viscosity η and shear rate γ̇ (μs = 0.4245; μd =

0.5718;d = 10− 3 m; ρs=1090 kg/m3, I0 = 0.28, ΔΦ=0.29, Φc=0.62).

Table 3 
Input parameters in the collisional stress part.

Parameters Definitions Values

I0 Referential inertial ratio 0.28
Φc Random close volume fraction 0.62
ΔΦ Dynamic loosening factor 0.29
ρs Particle density (kg/m3) 1090.00
μs Static friction coefficient (tanφc) 0.4245
μd Dynamic friction coefficient 0.5718
d Particle diameter (m) 1.0× 10− 3
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Fig. 8. Different strain rate paths depicting the evolution of strain rate and acceleration: (a) Path 1 (Variable strain acceleration); (b) Path 2 (Variable strain ac-
celeration); (c) Path 3 (Constant strain acceleration).

Fig. 9. Simulation results using the strain acceleration-based non-Newtonian μ(I) model with different strain paths (e0 = 0.80, p0 = 100 kPa) (a) relation between the 
hydrostatic stress and time; (b) relation between the deviatoric stress and time.

Fig. 10. Simulation results using the strain acceleration-based non-Newtonian μ(I) model with different initial void ratios (Strain path 1, p0 = 100 kPa) (a) relation 
between the hydrostatic stress and time; (b) relation between the deviatoric stress and time.
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and strain acceleration-dependent characteristics. It is also observed 
that the hydrostatic stress pcol and deviatoric stress qcol have the same 
evolution tendency but different values, indicating this model effec-
tively expresses the effect of friction coefficient μ.

Fig. 10 shows the simulation results of the undrained simple shear 
test using the collisional stress model under different initial void ratios. 
The results indicate that the loose specimens have smaller collisional 
stress than the dense specimens, matching the dependence of the fric-
tional stress on the void ratio in subsection 2.2. This indicates the 
established non-Newtonian μ(I) model can effectively describe the void 
ratio-dependent characteristics.

2.4. Unified elasticity-μ(I) phase transition model

2.4.1. Unified model
Following the generalized Maxwell framework, the unified phase 

transition model is proposed by combining both frictional and colli-
sional contributions. Using the explicit form, the unified stress is 
expressed as follows: 

σt+1 = σt+1
col +σt+1

f = σt
col +σt

f + σ̇t
coldt+Kt : (δεt − δεt,p) (18) 

This proposed phase transition model employs the strain rate- 
independent stress in the critical-state-based elastoplastic model to 

depict the frictional interaction, while using strain rate-dependent and 
strain acceleration-dependent stress in Non-Newtonian μ(I) model to 
describe the collisional interaction. From the solid-like to fluid-like 
state, the dominant stress controlling the granular behaviour changes 
from frictional to collisional stress. This model can not only reproduce 
the solid-like behaviours, such as nonlinear elasticity, nonlinear plastic 
hardening, stress dilatancy (contraction or dilation), and critical state 
characteristics but also capture the non-Newtonian fluid-like behav-
iours. Note that this study assumes that frictional stress is rate- 
independent, i.e., the critical state line (CSL) does not vary with strain 
rate. The rate-induced dilatancy described by Bagnold (1954) is only 
considered for collisional stress. Future work should propose a modified 
phase transition model that incorporates rate-dependent characteristics, 
specifically a dynamical critical state line, as suggested by Pastor et al. 
(2015c).

The basic input parameters in this unified phase transition model are 
summarized in Table 4. Important input parameters for the frictional 
stress part include: dimensionless referential elastic modulus E0, Pois-
son’s ratio ν, and elastic constant controlling nonlinear stiffness n; pa-
rameters eref, Λ, and ξ for the evolution of critical void ratio; coefficients 
Ad and kp depicting the nonlinear plastic hardening characteristics; pa-
rameters np and nd depicting the stress dilatancy and shear softening. 
Basic parameters for the collisional part are: reference inertial ratio I0, 

Table 4 
Basic input parameters in the proposed unified elastoplasticity-μ(I) model.

Stress type Parameter Definition Reference value

Polystyrene Glass DEM data MPM Case 1 MPM Case 2

Elastoplastic stress

E0 Dimensionless referential elastic modulus 190.00 200.00 200.00 150.00 100.00
ν Poisson’s ratio 0.235 0.235 0.235 0.2 0.2
n Constant controlling nonlinear elastic stiffness 0.60 0.60 0.60 0.50 0.50
φc Critical-state friction angle 23.00 25.00 21.11 18.9 16.7
e0 Initial void ratio – – – 0.85 0.85
eref Initial critical-state void ratio 0.910 0.917 0.750 0.877 0.977
Λ Constant controlling CSL nonlinearity 0.122 0.122 0.122 0.0596 0.0596
ξ Constant controlling CSL nonlinearity 0.71 0.71 0.71 0.365 0.365
Ad Constant controlling stress dilatancy magnitude 0.5 0.5 0.5 0.7 0.7
kp Plastic modulus–related constant 0.001 0.001 0.001 0.0044 0.0044
np Peak strength parameter 1 1 1 2.4 2.4
nd Phase transformation parameter 1 1 1 2.9 2.9

Viscous stress

I0 Referential inertial ratio 0.28 0.28 0.48 0.28 0.20
ρs Particle density (kg/m3) 1050.00 2970.00 1000.00 2500.00 2500.00
d Particle diameter (m) 1.0⋅10− 3 1.8⋅10− 3 2⋅10− 5 1.0⋅10− 3 1.0⋅10− 3

μs Static friction coefficient (tanφ) 0.4245 0.4660 0.386 0.38 0.30
μd Dynamic friction coefficient 0.5774 0.5774 0.610 0.66 0.70
Φc Random close volume fraction 0.62 0.62 0.64 0.70 0.70
ΔΦ Dynamic loosening factor 0.29 0.22 0.18 0.29 0.20

Fig. 11. Performance of the unified model in undrained simple shear tests with different void ratios (a) Relation between the hydrostatic stress and strain rate; (b) 
Relation between the deviatoric stress and strain rate.
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particle density ρs, particle diameter d, static friction coefficient μs, and 
dynamic friction coefficients μd for the μ(I) relation; random close vol-
ume fraction Φc and dynamic loosening factor ΔΦ describing the influ-
ence of variable void ratio. Note that a detailed calibration process for 
these parameters is provided in Appendix C.

2.4.2. Element test simulation
To evaluate the effectiveness of the proposed unified phase transition 

model in depicting the granular flow from the solid-like to fluid-like 
state, element tests using the unified phase transition model are per-
formed. The integration algorithm is the same as in Sections 2.2 and 2.3. 
The basic input parameters for the frictional and collisional part con-
tributions are in Tables 2 and 3, respectively. Different initial void ratios 
e0 = 0.895, 0.902, 0.950 are employed to distinguish different granular 
behaviours in large deformation flow. A fixed shear strain acceleration 
γ̈ = 50s− 2 is adopted.

Fig. 11 illustrates the evolution of the total hydrostatic and devia-
toric stress with different initial void ratios. Initially, in a solid-like state, 
all the samples are governed by frictional stress. As the strain rate in-
creases, dense specimens tend to dilate. The frictional stress with the 
shear-hardening characteristic reaches the critical state to obtain a 
limited value. Meanwhile, collisional stress becomes more important at 
large strain rates, resulting in an increase in total stress. For the loose 
specimens (i.e., e0 = 0.950), the initially dominant frictional stress with 
shear-softening behaviour reaches the critical state (i.e., liquefaction 
stage) to obtain the residual strength near zero. In the large strain rate 
regime, the collisional stress becomes dominant to control the viscous 

behaviour at the fluid-like state. These observations demonstrate that 
the proposed unified model can effectively depict the phase transition 
from a solid-like to a fluid-like state.

Considering the significance of the liquefaction phenomenon in 
depicting fast granular flow (e.g., debris flow and flow-like landslides), 
the hydrostatic and deviatoric components from total, frictional, and 
collisional stresses of the loose specimen with e0 = 0.950 are derived and 
shown in Fig. 12. It shows that frictional stress is dominant in the solid- 
like state (i.e., at small strain rates), while collisional stress is the main 
controlling factor in the fluid-like state (i.e., at large strain rates). This 
indicates that the proposed unified model effectively satisfies the 
requirement of the phase transition model. Notedly, the individual 
critical-state-based elastoplastic sand model fails to capture the behav-
iour at the fluid-like state because it only has a small residual strength at 
large strain rate ranges.

The effect of the strain rate path on the proposed model is also 
examined. Samples with an initial void ratio e0 of 0.95 are subjected to 
the different strain rate paths shown in Fig. 8. The simulation results are 
presented in Fig. 13. These results demonstrate that the frictional stress 
diminishes quickly, after which the collisional stress dominates. In the 
high strain rate regime, the collisional stress varies under different strain 
rate paths. Fig. 13 indicates that the developed solid-fluid phase tran-
sition model can effectively capture the strain acceleration dependence 
through the collisional stress component.

Fig. 12. Comparison of different types of hydrostatic and deviatoric stresses in the undrained simple shear test for the loose specimen with e0 = 0.950: (a) Relation 
between the hydrostatic stress and strain rate; (b) Relation between the deviatoric stress and strain rate.

Fig. 13. Simulation results using the proposed elastoplasticity-(I) model with different strain rate paths (e0 = 0.950) (a) relation between the hydrostatic stress and 
time; (b) relation between the deviatoric stress and time.
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3. Verification of proposed phase transition model via element 
test

In this section, the performance of the proposed phase transition 
model will be evaluated against experiment results with two different 
granular materials by Savage and Sayed (1984).

3.1. Validation using polystyrene beads

Savage and Sayed (1984) investigated the response of granular ma-
terials such as polystyrene beads and glass beads using annular shear 
tests. In the prototype experiment, the volume of specimens remains 
constant, while a large shear strain rate is applied. Accordingly, the 
undrained simple shear test is employed to model the prototype exper-
iment (Guo et al., 2016; Wang and Wu, 2024). According to the report 
by Guo et al. (2016), and Wang and Wu (2024), the initial pressure p0 
takes the value of 500 Pa. At the beginning, a shear rate of 10 s− 1 and 
zero strain acceleration are given in 0.5 s, then a strain rate acceleration 
of 50 s− 2 is applied from 0.5 s to 20 s. Note that we employ γ =

0.5(∂u/∂y) when conducting simulation.
Table 4 lists the parameters for the polystyrene beads. According to 

Savage and Sayed (1984), Guo et al. (2016), and Wang and Wu (2024), 
the critical-state friction angle is 23◦. The dimensionless referential 
elastic modulus is 190. The Possion’s ratio is 0.235. The initial void 
ratios e0 are 1.010, 1.100, and 1.169. The initial critical-state void ratio 
takes 0.910. The values of parameters Λ and ξ for the evolution of 
critical void ratio, coefficients Ad and kp depicting the nonlinear plastic 

hardening characteristics, and parameters np and nd for the stress 
dilatancy and shear softening are chosen for the typical granular ma-
terial. The particle density in the prototype experiment was reported as 
ρs = 1050 kg/m3. The diameter d is 1.0 mm. The static friction coeffi-
cient μs takes the values of tanφ = 0.4245. The other parameters for the 
collisional part include reference inertial ratio I0, dynamic friction co-
efficients μd, random close volume fraction Φc, and dynamic loosening 
factor ΔΦ reported by Wang and Wu (2024) are employed.

Figs. 14 and 15 depict the normalized hydrostatic stress-shear rate 
and normalized deviatoric stress-shear rate relations under the loga-
rithm coordinate, respectively. It demonstrates that the proposed phase 
transition model can well approximate the measured response from the 
experiment results. From the solid-like to fluid-like state, the total hy-
drostatic and deviatoric stresses first decrease in the small strain rate 
range and then increase in the large strain rate range. This is because the 
dominant stress changes from frictional to collisional stress. These ob-
servations validate the developed phase transition model.

3.2. Validation using glass beads

To further demonstrate the applicability of the proposed phase 
transition model in depicting the behaviour of granular flow, element 
tests of the glass beads are utilized. The initial pressure and loading 
strain rate path are the same as those used for the polystyrene beads. The 
parameters for the glass beads are listed in Table 4. According to Savage 
and Sayed (1984), Guo et al. (2016), and Wang and Wu (2024), the 
critical-state friction angle is 25◦. The dimensionless referential elastic 

Fig. 14. Comparison of the hydrostatic stress from numerical and experimental results for polystyrene beads: (a) A wide range of shear rate from 10− 4 to 102; (b) A 
small range of shear rate from 0.1 to 10.

Fig. 15. Comparison of the deviatoric stress from numerical and experimental results for polystyrene beads: (a) A wide range of shear rate from 10− 4 to 102; (b) A 
small range of shear rate from 0.1 to 10.
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modulus is 200. The Possion’s ratio is 0.235. Four different void ratios 
e0 = 0.916, 0.972, 1.037, and 1.096 are employed. The initial critical- 
state void ratio is 0.917. The particle density in the prototype experi-
ment was reported as ρs = 2970 kg/m3. The diameter d is 1.8 mm. The 
static friction coefficient μs takes the values of tanφ = 0.4660. The other 
parameters for the frictional and collisional parts take typical values for 

granular material (see Table 4).
Figs. 16 and 17 depict the normalized hydrostatic stress-shear rate 

and normalized deviatoric stress-shear rate relations for the glass beads, 
respectively. This comparison once again emphasizes the proposed 
phase transition model’s capacity to reasonably approximate laboratory 
element tests. The proposed phase transition model can effectively 

Fig. 16. Comparison of the hydrostatic stress from numerical and experimental results for glass beads: (a) A wide range of shear rate from 10− 4 to 102; (b) A small 
range of shear rate from 0.1 to 10.

Fig. 17. Comparison of the deviatoric stresses from numerical and experimental results for glass beads: (a) A wide range of shear rate from 10− 4 to 102; (b) A small 
range of shear rate from 0.1 to 10.

Fig. 18. Comparison of the hydrostatic stress from numerical solutions and DEM results by Chialvo et al. (2012).
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describe the evolution of stress in granular flow from a solid-like to a 
fluid-like state.

3.3. Validation using DEM results

To further validate the effectiveness of the proposed phase transition 
model, the DEM results from Chialvo et al. (2012) are utilized. In the 
DEM simulations, a simple shear test under constant volume conditions 
is performed. Accordingly, an undrained simple shear test is adopted in 
this study. The parameters employed are listed in Table 4. The critical- 
state friction angle is set to 21.11◦, as reported by Vescovi et al. (2020a, 
2020b). The dimensionless referential elastic modulus and Poisson’s 
ratio are set to 200 and 0.235, respectively. Other parameters are not 
explicitly reported and are therefore assigned typical values for granular 
media based on Yin et al. (2020). The void ratios considered include e0 
= 1.000, 0.932, 0.852, 0.818, 0.683, 0.667, 0.639, and 0.618, as re-
ported in Chialvo et al. (2012). The basic simulation conditions are 
consistent with those described in subsection 3.1.

Fig. 18 illustrates the simulation results obtained using the proposed 
elastoplasticity-μ(I) model alongside the DEM data from Chialvo et al. 
(2012). The DEM results depict the stress evolution under a smaller 
strain rate compared to the figures in subsections 3.1 and 3.2. The 
proposed phase transition model aligns well with the DEM data, further 
validating its effectiveness in capturing the stress-strain relationship 
under both high and low strain rates regimes.

4. Application of the proposed phase transition model via MPM

In this section, the validated elastoplasticity-μ(I) phase transition 
model will be integrated into the material point method to address 
boundary value problems, including 2D granular slumping and 3D cy-
lindrical granular collapse, thereby evaluating its effectiveness in 
simulating large deformation granular flow.

4.1. Material point method

MPM is a numerical approach that combines Eulerian (stationary 
backdrop grid) and Lagrangian (material points) descriptions. Material 
properties such as velocity, displacement, tension, and strain are stored 
at Lagrangian material points, while the governing equations are solved 
on an Eulerian grid. Shape functions facilitate the transfer of informa-
tion between the Lagrangian material points and the Eulerian grid. In 
MPM, the mass conservation equation is inherently satisfied, with the 

momentum conservation equation serving as the primary equation to be 
solved, as follows: 

ρv̇ = ∇⋅σ+ ρb (19) 

where ρ is the density; v denotes the velocity; □̇ is the notation for the 
time derivative; ∇ is the gradient operator; σ is the Cauchy stress tensor, 
and b is the body force.

The strong form of Eq. (19) can be converted to its weak form by 
multiplying it with a test function, and the resulting weak form of the 
conservation equation can be integrated by parts over the material 
domain. The derivation of the MPM solution scheme is beyond the scope 
of this work; therefore, only the final fully discretized and linearized 
solution scheme is presented, with further details available in Liang 
et al. (2024).

The calculation processes at each time step of the MPM solution al-
gorithm are summarized below (see Fig. 19): 

(a) Particle to Grid (i.e., P2G): At the current step tk, update the nodal 

mass mk
I and nodal velocity vk

I :mk
I =

∑
pNk

Ip mp, vk
I =

(∑
pNk

Ipmpvk
p

)
/mk

I (where Nk
Ip = NI

(
xk

p

)
is the shape function; mp 

and vk
p are the mass and velocity of the particle).

(b) Update the particle velocity gradient ∇vk
p and deformation 

gradient Fk
p: ∇vk

p =
∑

I∇Nk
Ip vk

I , Fk
p =

(
1 +∇vk

pΔt
)

Fk− 1
p .

(c) Update nodal internal forces fint,k
I : fint,k

I = −
∑

pσk
p⋅∇Nk

Ip Vk
p . Note 

that the nodal external forcefext,k
I only considers the gravity in the 

typical granular flow.
(d) Update nodal acceleration ak

I and velocity vk+1
I : ak

I =
(

fint,k
I + fext,k

I

)
/mk

I , v
k+1
I = vk

I + ak
I Δt.

(e) Grid to Particle (G2P): update the particle velocity vk+1
p and po-

sition xk+1
p : vk+1

p = vk
p +

∑
Iak

I Nk
Ip Δt, xk+1

p = xk
p +

∑
Ivk+1

I Nk
Ip Δt.

The steps (a-e) form a basic loop in MPM simulation. For the next 
time step, the background grid information is discarded to maintain the 
grid node positions unchanged. It is important to note that the proposed 
unified elastoplasticity-μ(I) model is implemented in Step (c) when 
calculating the nodal internal forces.

Fig. 19. Illustration of the material point method solution algorithm.
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4.2. Case 1: 2D granular slumping

4.2.1. Model setup
To validate the proposed elastoplasticity-μ(I) model, we first utilized 

the experimental results of 2D granular slumping on a horizontal surface 
from Xu et al. (2017). Initially, glass beads were packed into a column, 
remaining in a solid-like state. Upon the sudden release of gates on both 
sides, the material transitioned to a fluid-like state, producing granular 
flow.

Fig. 20 illustrates the initial geometry of the column, with a height H 
of 50 mm and a length 2 L of 80 mm, resulting in a length-to-height ratio 
of 1.25. The MPM simulation is set up under identical experimental 
conditions. For simplicity, the gate-lifting process is not simulated. As 
base layer friction has a negligible effect on the collapse (Fern and Soga, 
2016), a no-slip boundary condition is applied to the base. The 
computational domain is discretized into square elements with a grid 
size of 2 mm, and the initial spacing between material points (MPs) is set 
to 0.5 mm, yielding a total of 64,000 MPs. To ensure stability and ac-
curacy, a time step of dt = 1 × 10− 6 s is used, and a total time of 0.5 s is 
simulated.

Table 4 lists the parameters for the elastoplasticity-μ(I) model. For 
the elastoplastic stress, the dimensionless referential elastic modulus E0, 
Poisson’s ratio ν, and constant controlling nonlinear stiffness n are set to 
150, 0.2, and 0.5, respectively. The friction angle φ is reported as 20.9◦

(Franci and Cremonesi, 2019). Other parameters are based on typical 
values reported by Yin et al. (2018). For the viscous stress parameters, 
the glass beads used in the study have the following properties according 
to Franci and Cremonesi (2019): ρd = 2500 kg/m3, μs = tan(20.9◦) =
0.382, μd = 0.643, I0 = 0.279. Additional material properties, including 
particle diameter d = 1 mm, random close volume fraction Φc=0.70, and 
dynamic loosening factor ΔΦ=0.29 are taken from Wang and Wu 
(2024). Note that accurately determining all the parameters of the 
proposed solid-fluid phase transition model is challenging, and this can 
be considered a limitation of the current study.

4.2.2. Simulation results
Fig. 21 compares the numerical and experimental results at four 

different time instants. A constant lifting velocity of vL = 0.56 m/s is 
assumed (Franci and Cremonesi, 2019), corresponding to a lifting 
duration of 0.09 s. The experimental results at the reference time t* =

t/
̅̅̅̅̅̅̅̅̅
g/H

√
(where g = 9.81 m/s2) correspond to the simulation results at 

t* − 0.09 s. The figure shows a good agreement between the MPM 
simulation results using the unified elastoplasticity-μ(I) constitutive 
model and the experimental data, demonstrating the accuracy of the 
proposed unified elastoplasticity-μ(I) model.

Fig. 22 further presents the final granular flow positions as deter-
mined by the MPM simulation using the proposed unified elastoplas-
ticity-μ(I) model in this study, experimental data from Xu et al. (2017), 
and SPH results from the same source. The comparison demonstrates 
that both MPM and SPH continuum simulations align well with the 
experimental outcomes. Notably, the MPM simulation, utilizing the 
proposed elastoplasticity-μ(I) model, more accurately predicts the 
deposition height compared to the SPH simulation, further highlighting 
the effectiveness of the proposed model.

To analyze the unified elastoplasticity-μ(I) model, the evolution of 
two key variables is examined (see Fig. 23): the equivalent plastic strain 
ϵp

eff from the solid-like critical-state-based elastoplastic model, and the 
equivalent shear viscosity η = 2fΦμ|γ̇| from the fluid-like viscous μ(I) 
model. The equivalent plastic strain effectively delineates the boundary 
between solid-like particles in the small-strain regime and fluid-like 
particles in the large-strain rate regime. Meanwhile, the equivalent 
shear viscosity captures the evolution of viscous stress. Fig. 23(b1)-(b4) 
show the evolution of equivalent shear viscosity η during the granular 
flow, indicating that the viscosity of the mobilized particles initially rises 
from zero, then decreases back to zero. This behaviour clearly illustrates 
the transition of dominant stress from elastoplastic stress to 
elastoplastic-viscous stress, and finally back to elastoplastic as the ma-
terial transitions from a solid-like to fluid-like state, and back to a solid- 
like state, effectively validating the proposed elastoplasticity-μ(I) model.

Specifically, Fig. 23(a1)-(a2) illustrate the initiation of granular flow 
due to plastic failure, where particles in this region experience signifi-
cant deformation, as indicated by equivalent plastic strain values 
approaching 1.0. Concurrently, viscous stress begins to develop, as 

Fig. 20. Illustration of 2D granular flow with two free surfaces.

Fig. 21. Free surface for granular flow between MPM results unified elasto-
plasticity-μ(I) model and experimental results by Xu et al. (2017) (length 
unit: cm).

Fig. 22. Comparison of free surface for granular flow at t* = 5.88 T between 
EP-μ(I)-MPM results, EP-MPM results, experimental results by Xu et al. (2017), 
and SPH solutions by Xu et al. (2017).
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represented by equivalent shear viscosity (see Fig. 23(b1)-(b2)). Fig. 23
(a3) further distinguishes between the mobilized zone, where material 
points reach the critical state and exhibit fluid-like behaviour, and the 
solid-like zone, where material points remain unchanged. The interface 
between these zones marks the transition from solid-like to fluid-like 
behaviour. In the solid-like state, elastoplastic stress predominantly 
governs the material, as evidenced by the absence of equivalent shear 
viscosity. Conversely, in the fluid-like zone, both elastoplastic and 
viscous stresses are present (see Fig. 23(b3)), with the increase in shear 
viscosity associated with rapid granular flow. Ultimately, the flow ceases 
due to basal friction (see Fig. 23(a4) and (b4)), with equivalent shear 
viscosity decreasing to zero, signifying a return to frictional stress 
dominance. These observations confirm that the proposed unified elas-
toplasticity-μ(I) model effectively captures the solid-like behaviour 

Fig. 23. The evolution of the equivalent plastic strain ϵp
eff and equivalent viscosity η in this study (length unit: cm).

Fig. 24. Illustration of 3D cylindrical granular flow.

Fig. 25. Velocity contours in 3D cylindrical granular column collapse.
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during the inception and deposition stages and the fluid-like behaviour 
during the propagation phase.

4.3. Case 2: 3D cylindrical granular collapse

4.3.1. Model setup
This section employs a 3D cylinder granular flow by Lacaze and 

Kerswell (2009) to demonstrate the wider application of the validated 
MPM model with the unified elastoplasticity-μ(I) constitutive model. 
The initial cylinder has a height H of 175 mm and a diameter R of 70 mm 
(see Fig. 24). In the MPM model, the no-slip condition is adopted for the 
bottom boundary for simplicity. The computational domain is dis-
cretized with cubic elements using the grid size of 8 mm, and each grid 
housing 36 material points, yielding a total of 284,724 MPs for the 
simulation. To ensure the stability and accuracy of the simulation, the 
time step dt = 1 × 10− 6 s is employed. A total time of 0.5 s is simulated. 
The material parameters of Lacaze and Kerswell (2009) for the elasto-
plasticity-μ(I) model are listed in Table 4. These parameters are not 
discussed for simplicity, the details can be referred to Franci and Cre-
monesi (2019).

4.3.2. Simulation results
Fig. 25 demonstrates the evolution of the velocity magnitude in 3D 

granular flow. Initially, the top of the cylindrical granular pile un-
dergoes near free-fall under gravity, while the base starts to move 
laterally, with the elastoplastic stress arriving at the critical state (see t 
= 0.05 s). Subsequently, the heap transitions into a fluid-like state 
governed by both elastoplastic and viscous stresses, as observed at t =
0.1 s and 0.15 s. Before halting, only a narrow layer near the free surface 
of the granular mass continues to move gradually. Finally, all particles 
cease movement and return to a solid-like state.

Fig. 26 further depicts the evolution in time of the dimensionless 
radius (rꝏ − r0)/r0 and residual height (hꝏ/H0) (where rꝏ and r0 are the 
deposition radius and initial radius, respectively; hꝏ and H0 are the 
deposition radius and initial radius, respectively) obtained with the 
proposed MPM scheme using unified elastoplasticity-μ(I) constitutive 
model and the DEM results by Lacaze and Kerswell (2009). The com-
parison reveals good agreement between the continuum and discrete 
numerical solutions. Notably, the curve in Fig. 26(a) maintains a con-
stant slope between 0.05 s and 0.35 s, consistent with the granular flow 
experimental findings by Lube et al. (2004). These observations 
demonstrate the robust capability of the EP-μ(I)-MPM model to accu-
rately simulate 3D granular flow.

5. Conclusions

This study has proposed a novel unified elastoplasticity-μ(I) phase 
transition constitutive model (EP-μ(I)) and implemented it into the 

material point method (MPM) numerical scheme, which accurately 
simulates large deformation granular flow by capturing the solid-like 
behaviour during the inception and deposition stages and fluid-like 
behaviour during propagation. Based on the generalized Maxwell 
framework, the proposed unified elastoplasticity-μ(I) constitutive model 
integrates an elastoplastic stress and a viscous μ(I) stress, encompassing 
key features such as nonlinear elasticity, nonlinear plastic hardening, 
stress dilatancy, and critical-state principle, while the viscous stress is 
dependent on both strain rate and strain acceleration. Implemented 
within the MPM framework (EP-μ(I)-MPM), this model has been vali-
dated through simulations of both 2D and 3D granular flows. Key 
findings include: 

1. The elastoplasticity part is established to consider the nonlinear 
elasticity, dilatancy (contraction or dilation), nonlinear plastic 
hardening, and the critical state in the solid-like state during gran-
ular flow. Based on the element test simulation, it is indicated that 
this elastoplastic part can effectively describe the dependence on the 
void ratio and the initiation of granular flow.

2. The μ(I) rheology part is established to consider the dependence on 
the void ratio, strain rate, and strain acceleration in the fluid-like 
state during granular flow. Element test simulation results indicate 
this part can efficiently depict these dependencies and the propa-
gation of granular flow.

3. By comparing the element test simulation results with experimental 
data, it is evident that the proposed phase transition model effec-
tively describes the phase transition of granular media from a solid- 
like state during the initiation stage to a fluid-like state during the 
propagation stage.

4. The MPM numerical simulations for 2D and 3D granular flows 
demonstrate remarkable consistency with experimental data, 
emphasizing the effectiveness of the proposed elastoplasticity-μ(I) 
constitutive model.

5. The proposed EP-μ(I)-MPM successfully captures the solid-like and 
fluid-like characteristics across different stages of granular flow: 
during initiation, propagation, and deposition, the dominant stress 
transitions from elastoplastic to elastoplastic-viscous and ultimately 
to elastoplastic, reflecting the material’s shift from a solid-like state 
to a fluid-like state and back to a solid-like state. Specifically, the 
initiation of granular flow is described using the critical state in the 
proposed elastoplasticity-μ(I) constitutive model.
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Appendix A. The undrained simple shear test

In the simple shear test, the specimen is laterally confined with two plates at the top and bottom. The top plate moves horizontally to generate the 
shear deformation. Under the simple shear condition, the stress tensor is expressed as follows: 

σ =

⎡

⎣
σxx τxy 0
τyx σyy 0
0 0 σzz

⎤

⎦ =

⎡

⎣
σn τxy 0
τyx σn 0
0 0 σn

⎤

⎦ (A1) 

where σn is the vertical stress; τxy is the shear stress. Accordingly, the hydrostatic and deviatoric parts of the stress are express as: p = σn and q = τxy, 
respectively.

The strain tensor is expressed as: 

ε =

⎡

⎣
εxx εxy 0
εyx εyy 0
0 0 εyy

⎤

⎦ =

⎡

⎣
εn γ 0
γ εn 0
0 0 εn

⎤

⎦ (A2) 

where εn is the vertical strain. γ is the shear strain. The volumetric and deviatoric parts of the strain are express as: εv = εn and εd = γ, respectively. In 
the undrained simple test, the volumetric strain is zero, i.e., εv = εn = 0. pf and qf are employed to denote the vertical stress and shear stress of the 
frictional stress part, respectively. pcol and qcol are used to denote the vertical stress and shear stress of the collisional stress part, respectively. γ is used 
to denote the shear strain.

Appendix B. Collisional stress part in the undrained simple test

The strain rate tensor in the undrained simple test is expressed as: 

ė =

⎡

⎢
⎣

0 ε̇xy 0
ε̇yx 0 0
0 0 0

⎤

⎥
⎦ =

⎡

⎣
0 γ̇ 0
γ̇ 0 0
0 0 0

⎤

⎦ (B1) 

The strain acceleration tensor in the undrained simple test is expressed as: 

ë =

⎡

⎢
⎣

0 ε̈12 0
ε̈21 0 0
0 0 0

⎤

⎥
⎦ =

⎡

⎣
0 γ̈ 0
γ̈ 0 0
0 0 0

⎤

⎦ (B2) 

The first part of the collisional stress in the undrained simple test is expressed as: 

2μ|γ̇|ë =

⎡

⎣
0 2μ|γ̇|γ̈ 0

2μ|γ̇|γ̈ 0 0
0 0 0

⎤

⎦ (B3) 

The second part of the collisional stress in the undrained simple test is expressed as: 

ėë =

⎡

⎢
⎣

0 ε̇12 0
ε̇21 0 0
0 0 0

⎤

⎥
⎦⋅

⎡

⎢
⎣

0 ε̈12 0
ε̈21 0 0
0 0 0

⎤

⎥
⎦ =

⎡

⎢
⎣

ε̇12ε̈21 0 0
0 ε̇21ε̈12 0
0 0 0

⎤

⎥
⎦ =

⎡

⎣
γ̇γ̈ 0 0
0 γ̇γ̈ 0
0 0 0

⎤

⎦ (B4) 

The third part of collisional stress in the undrained simple test is expressed as: 

ëė =

⎡

⎢
⎣

0 ε̈12 0
ε̈21 0 0
0 0 0

⎤

⎥
⎦⋅

⎡

⎢
⎣

0 ε̇12 0
ε̇21 0 0
0 0 0

⎤

⎥
⎦ =

⎡

⎢
⎣

ε̈12ε̇21 0 0
0 ε̈21ε̇12 0
0 0 0

⎤

⎥
⎦ =

⎡

⎣
γ̈γ̇ 0 0
0 γ̈γ̇ 0
0 0 0

⎤

⎦ (B5) 

By adding Eqs.(B3) ~ (B5), the collisional stress rate is expressed as follows: 

σ̇col = fΦ(2μ|γ̇|ë − ėë − ëė ) = fΦ

⎡

⎣
− 2γ̇γ̈ 2μ|γ̇|γ̈ 0
2μ|γ̇|γ̈ − 2γ̇γ̈ 0

0 0 0

⎤

⎦ (B6) 

Accordingly, the hydrostatic and deviatoric part of the collisional stress rate is expressed as: 
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ṗcol = − 2fΦ γ̇γ̈ (B7) 

q̇col = 2μfΦ|γ̇|γ̈ (B8) 

Appendix C. Calibration for the proposed unified elastoplasticity-μ(I) model

For the proposed unified elastoplasticity-μ(I) model, 19 parameters are required, as shown in the Table 4. Determining the input parameters for 
different materials will be divided into 2 parts:

Part 1: The first part is determining the parameters of the elastoplasticity-based frictional stress model, which has the following 4 steps: 

• Step 1–1: Determination of CSL parameters of eref , Λ, and ξ.

To determine the parameters of eref , Λ, and ξ, triaxial tests are conducted to obtain the CSL. In the CSL, the parameter eref is the reference void ratio 
corresponding to the mean effective frictional stress is zero; the parameter Λ controls the slope of the CSL; the parameter ξ controls the position of the 
inflection point in the CSL. 

• Step 1–2: Determination of elastic parameters of E0, ν, and n.

Parameter ν can be obtained through data from triaxial tests by plotting the axial strain versus radial strain and determining ν from the slope of the 
line. Additionaly, this parameter can also determined from the literature, as suggested by Yin et al. (2020), ranges from 0.2 to 0.25. Parameters E0 and 
n can be obtained from isotropic compression tests. The parameter n usually takes the value of 0.5–0.7, as suggested by Yin et al. (2020). 

• Step 1–3: Determination of parameters φc and e0.

Critical angle φc can take the value from the drained direct shear test or drained triaxial test. Parameter e0 is the initial void ratio provided by the 
triaxial test. 

• Step 1–4: Determination of parameters Ad, kp, np, and nd.

These four parameters can be derived from undrained or drained triaxial tests. As suggested by Yin et al. (2020), both np and nd can take the value of 
1 when direct determination of these parameters is challenging. Parameter Ad can take the value of 0.5–1.5, while kp usually takes the value from 
0.0001 to 0.01.

Part 2: The second part is determining the parameters of the modified μ(I) rheology model, which has the following 2 steps: 

• Step 2–1: Determination of parameters of ρs, d, and μs.

Parameter ρs and d can be determined via the laboratory test. These two parameters are also determined from the literature. Parameter μs takes the 
value of tanφc. 

• Step 2–2: Determination of parameters of elastic parameters I0, μd, Φc, and ΔΦ.

DEM simulation, undrained simple shear test, or the annular shear test, can be employed to obtain the μ(I) relation, further obtaining the μd and I0. 
The stress-shear rate relation in the undrained simple shear test can be employed to obtain Φc and ΔΦ.

While determining the optimal value of these parameters, the machine learning algorithm can serve as a reliable tool, which has been discussed in 
our group (see Jin et al., 2016; Jin et al., 2017).

Data availability

Data will be made available on request.
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