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Population-level gut microbiome and its
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and metabolic disorders in
Southwest China
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Gut microbiota affects host health and disease. Large-scale cohorts have explored the interactions
between themicrobiota, host, and environment to reveal the disease-associatedmicrobiota variation.
A population-level gut metagenomic cohort is still rare in China. Here, we performed metagenomic
sequencing on fecal samples from the CMEC Microbiome Project in Southwest China. In this study,
we identified host socioeconomics, diet, lifestyle, and medical measurements that were significantly
associated with microbiome function and composition. We revealed extensive novel associations
between the host microbiome and commonmetabolic disorders. Our results provide new insight into
associations of gut microbiota with metabolic disorders so as to support the translation of gut
microbiome findings into potential clinical practice.

Human gut microbiota is shaped by host and environmental factors1.
Population-level studies on the gut microbiome have presented the factors
in genetics, exposome, lifestyle, diet, diseases, andmedications that correlate
with the shifts in the microbiome composition and functionality2–5. The
microbiota variation is affected by numerous host and environmental fac-
tors, such as geography, age, sex, and stool consistency4,6,7. Such influence of
factors diversify in populations, and are essential for identification of robust
disease microbiome markers, so as to contribute to translation of gut
microbiome findings into potential clinical practice.

Extensive evidence from observation studies and animal experiments
have revealed that the gut microbiome is closely involved in the potential
pathogenesis of various commonmetabolic disorders, suchasobesity, type2
diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and
cardio-metabolic disease (CMD)8,9. However, the association of metabolic
disorders and disease microbiome markers are affected by host and envir-
onmental factors4,9. The influence of population-specified factors that sig-
nificantly affect the microbiota variations should be taken into account
when verifying disease microbiome markers for diagnostic and clinical
practice in new populations.

China has a huge populationwith various factors, such as lifestyle, diet,
socioeconomic status and natural environmental conditions. Several

population-level studies based on 16S ribosomal RNA (rRNA) gene
sequencing have described that the Chinese gut microbiota variations are
associated with study regions7 and staple food type10,11. Previous studies on
gut microbiome were mainly among the population in coastal areas of
China7,12, and the people living in Southwest China have distinct socio-
economic status, geography, diet, behavior, and lifestyle13, but the infor-
mation in regard to gut microbiome composition and related factors in this
area is still limited.

Based on a large-scale cohort in Southwestern China, the China
Multi-Ethnic Cohort (CMEC)13, a microbiome project, CMEC Micro-
biome Project (CMP) was founded for two most populous cities in this
region: Chengdu (~20 million) and Chongqing (~30 million). We
enrolled participants from the general population of these two cities and
collected blood and stool samples. We conducted microbiome analysis
using metagenome sequencing of stool samples and explored the com-
position and function of the gut microbiome. We collected compre-
hensive host and environmental factors to evaluate their impact on
microbiota variation. We described microbial taxa and functional
pathways in association with metabolic diseases. Such information is
expected to help with potential clinical translational research regarding
gut microbiome for metabolic diseases.
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Results
Overview of cohort and study participants
The CMEC is a community population-based prospective observational
study launched in 2017 and aimed to understand non-communicable dis-
eases (NCDs) prevalence, risk factors and associated conditions in South-
west China13. A total of 99,556 participants aged 30–79 years from five
provinces of Southwest China provided detailed and comprehensive
information on demographics, socioeconomics, lifestyles, health-related
histories, medical examinations, and clinical laboratory tests13.

To characterize the composition and function of gut microbiota and
identify its links with metabolic diseases, the CMP was established in 2020
and recruited participants from the first follow-up stage of the cohort
between July and December. More than 1600 Han participants from the
cities of Chengdu and Chongqing donated stool, oral, and blood samples
after extensive questionnaire investigations, medical examinations, and
clinical laboratory tests. Finally, paired-end metagenomic shotgun sequen-
cing (MGS) was performed on stool samples from 921 participants without
antibiotics used in the previous month before fecal donation (aged 31–81
years, 50.05% male, 55.8% from Chengdu; Fig. 1a and Supplementary
Table 1). In total, we obtained 293 intrinsic and exogenous factors covering
32 self-reported diseases, 24 anthropometric parameters, 34 health condi-
tions, 9 demographics data, 39 lifestyles, 59 blood and uric measurements,
and 97 diet factors from participants and an average of 11.05 ± 1.07 Gb of
microbiota data fromstool samples (Fig. 1a andSupplementaryTable 2A,B).

Seven metabolic disorders were integrated from self-reported ques-
tionnaires, anthropometric, and clinical laboratory tests, including hyper-
tension, T2DM, obesity, metabolic syndrome (Mets), NAFLD,
dyslipidemia, and 10-year arteriosclerotic cardiovascular disease (ASCVD)
risk (Supplementary Table 2C). Metabolic disorders exhibited varied
structure of proportions among the participants (Fig. 1b). Within the par-
ticipants, themost commonmetabolic disorder was hypertension (14.0 and
49.8% for stages 1 and 2, respectively), followed by 10-year ASCVD risk,
consisting of 47% high-risk and 10.2% moderate risk; and relatively rare
diseases included T2DM (19.9%) and obesity (16.4%) (Supplementary
Table 2D). Correlation between disorders was low except for multi-

indicator diseases, such as the associations between 10-year ASCVD risk
and stage 2 hypertension (Spearman r = 0.53, P value <2.2e-16), T2DM
(Spearman r = 0.50, P value <2.2e-16) (Supplementary Table 2E).

Overview of gut microbiome composition and function in
Southwest China
Microbiome sequence reads were processed by MetaPhlAn3 and
HUMAnN 3 to characterize the composition and function of the micro-
biome. A total of 1571 taxa (3 kingdoms, 15 phyla, 30 classes, 54 orders, 113
families, 305 genera, and1051 species), 10,091KyotoEncyclopedia ofGenes
and Genomes (KEGG) Orthologies (KOs), 633 MetaCyc pathways, and
1627 carbohydrate-active enzymes (CAZymes) were identified (Supple-
mentary Fig. 1 andSupplementaryTable 3A–D).Additionally,we identified
a total of 2,831 antibiotic resistance genes (ARGs) across different databases:
627 in the CARD database, 677 in the NCBI database, 634 in the ResFinder
database, 547 in the ARG-ANNOT database, and 346 in the MEGARes
database (Supplementary Table 3E).

We applied species accumulationmodels to study the accumulation of
microbial featureswhen thenumber of samples increases and estimated that
~62% of samples were able to characterize at least 90% ofmicrobial features
(Supplementary Fig. 2). The rarefaction and extrapolation sampling curve
predicted the total number of species in the participants under triple the
current sample size to be 1280 (standard error = 57) with 363 genera
(standard error = 26.8), 652 pathways (standard error = 15.6), and 10,489
KOs (standard error = 84) (Supplementary Fig. 3). Indicating that increased
sample size to triple will allow for an additional excavation of at least 20%
species.

Overall, we identified 525 taxa (2 kingdoms, 8 phyla, 17 classes, 27
orders, 50 families, 116 genera, and 305 species) and 430 pathways with a
prevalence of ≥5% (Fig. 1c). Gut microbiota composition was highly vari-
able across the population and with structural differences between the
results of cohorts fromdifferent countries or territories3,4,7,10. In our research,
Firmicutes dominated the taxonomic composition with an average relative
abundance of 42.29% (range: 0.48–97.46%), followed by Bacteroidetes
(range: 0.00–94.60%), Proteobacteria (range: 0.00–99.32%), Actinobacteria
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Fig. 1 | Summary of DMP participant characteristics. a The CMP assessed 316
exogenous and host intrinsic factors in 921 participants, including 32 self-reported
diseases, 24 anthropometric parameters, 34 health factors, 8 demographics, 39
lifestyles, 59 blood and uric measurements, and 97 diet factors. The data were
collected through questionnaires or clinical measurements. b The distribution of

metabolic disorders in the population. c The taxonomic tree of 305 species
(including 304 bacteria and 1 eukaryote) with a prevalence ≥5%. Each colored circle
represents a taxonomic entity, and different colors indicate different taxonomy
levels. From the inner to outer circles, the taxonomic levels range from kingdoms to
species.
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(range: 0.00–92.69%), and Verrucomicrobia (range: 0.00–24.58%) (Fig. 2a
and Supplementary Table 3A). The interindividual microbial functional
profile was relatively stable. The pathways of amino acid biosynthesis had
the highest relative abundance at 18.57% in the MetaCyc pathways (range:
12.86–29.37%), followed by nucleoside and nucleotide biosynthesis path-
ways (range: 7.73–22.98%), cofactor, carrier, and vitamin biosynthesis
(range: 8.00–17.80%), cell structure biosynthesis pathways (range:
3.44–12.34%), and fatty acid and lipid biosynthesis pathways (range:
2.63–15.15%) (Fig. 2b and Supplementary Table 3B).

Diversity and enterotypes of the gut microbiome in
Southwest China
Similar to results reported previously, the distribution of diversity
showed high inter-variability within the population, and Shannon’s

diversity index showed the strongest correlation with Bray-Curtis dis-
tances (envfit analysis r2 = 0.23, FDR = 0.002; Fig. 2c)5,14. The principal
coordinates analysis (PCoA) of microbiome data at the species level
revealed that the first principal coordinate was driven by Bacteroides
vulgatus (Spearman r = 0.77, P value <2.2e-16; Fig. 2d and Supplemen-
tary Table 4A), and the second principal coordinate was driven by
Faecalibacterium prausnitzii (Spearman r =−0.63, P value <2.2e-16;
Fig. 2e and Supplementary Table 4A). The PCoA of functional potential
identified that the first principal coordinate was highly correlated with
the pathways of UDP-N-acetylmuramoyl-pentapeptide biosynthesis
(PWY-6386 and PWY-6387; Spearman r =−0.93, P value ≈ 0.0), chor-
ismate biosynthesis (PWY-6163; Spearman r =−0.93, P value ≈ 0.0),
and peptidoglycan biosynthesis (PEPTIDOGLYCANSYN-PWY;
Spearman r =−0.93, P value ≈ 0.0); the second principal coordinate was

d
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Fig. 2 | Overview of microbiome composition and function in the DMP popu-
lation. a Phylum-level composition of all samples in the population, sorted by the
abundance of phylum Firmicutes. Each vertical line indicates one sample. b Relative
abundances of the top 10 MetaCyc pathways of all samples. Each vertical line
indicates one sample. c Principal coordinate analysis (PCoA) of all samples using
species-level Bray-Curtis dissimilarity, colored by the value of the Shannon index.
The basic characteristics and Shannon diversity index were fitted onto PCoA

ordinations by the envfit function in R. The length of the arrow indicates the strength
of the correlation between variables and the vector projections in the ordination plot
and arrows point to the direction in which variables change most rapidly.
d Bacteroides vulgatus (synonym Phocaeicola vulgatus) showed the strongest
Spearman correlation with the first principal coordinate. e Ruminococcus gnavus
showed the strongest Spearman correlation with the second principal coordinate.
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highly correlated with pathway of cis-vaccenate biosynthesis (PWY-
5973; Spearman r =−0.84, P value <2.2e-16; Supplementary Table 4A).

We further stratified individuals into twodistinct clusters (enterotypes)
using themultidimensional cluster analysis and identified drivingmicrobes
using principal component analysis (PCA) of genus-level community
composition (Fig. 3a, b and Supplementary Table 4B). Each of these two
enterotypes can be identified by the variation in one of two genera: Bac-
teroides (cluster 1) andPrevotella (cluster 2).We further repeated enterotype
analysis under different sample sizes to evaluate the changes in the number
of enterotypes, and the enterotype clustering results remained unchanged
(Supplementary Fig. 4 and Supplementary Table 4C). B. vulgatus (mean
abundance: 7.10%, range: 0.00–65.84%) and Prevotella copri (mean abun-
dance: 5.68%, range: 0.00–91.70%) were the richest and highly variable
species in our population. B. vulgatus was the most abundant species in
cluster 1 and P. copri was the second abundant species in cluster 2 (Sup-
plementary Fig. 5). We then examined the Spearman correlation between
enterotypes and population phenotypes, and no significant correlations
(FDR <0.05) were observed (Supplementary Table 4D). We performed a

logistic regression model to explore potential associations between meta-
bolic disorders and enterotypes, and no significant associations were iden-
tified. (Fig. 3c and Supplementary Table 4E, F).

The core and keystone microbial species differ in large cohort
studies
To characterize the shared microbial features among participants in our
study, we definedmicrobial taxawith≥90%prevalence as the coremicrobes
(Supplementary Fig. 6). In total, we identified nine genera and nine species
were core microbes in our population, counting for mean relative abun-
dance of 52.35 and 23.73%, respectively (Supplementary Fig. 7 and Sup-
plementaryTable 3A). The defined coremicrobeswere partially sharedwith
several large Europeanpopulation cohorts reportedpreviously3–5,15,16. Under
a unified definition, in nine identified core genera in our study, seven were
shared with the Finnish FINRISK, six were shared with the Estonian
Microbiome Project (EstMB), five were sharedwith the DutchMicrobiome
Project (DMP), and seven were shared with the Belgian Flemish Gut Flora
Project (FGFP) (Supplementary Table 5A). Four genera (Bacteroides,
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Fig. 3 | Enterotypes of the CMP participants. a Enterotypes at the genus level.
Labeled with the main contributors of each enterotype. b The CLR-transformed
relative abundances of the main contributors in each enterotype (cluster 1, blue;

cluster 2, yellow). cAssociation of enterotypes with metabolic disorders (dot, mean;
lines, 95% confidence intervals).
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Faecalibacterium,Parabacteroides, andRoseburia)were highly consistent in
all studies, suggesting a central role in the organization andmaintenance of
the gut microbiome ecosystem in humans. In the identified nine core spe-
cies, three overlapped (Bacteroides uniformis,B. vulgatus, andF. prausnitzii)
with the DMP cohort and four overlapped (B.uniformis, Streptococcus sal-
ivarius, Anaerostipes hadrus, and F. prausnitzii) with the LifeLines-DEEP
(LLDeep) cohort4,5.

We identified 22,792 species co-abundances and 79,297 pathway co-
abundances with an FDR cut-off of 0.05. We also defined central nodes
ranked in the top 10% in the number of node degrees as keystone species or
pathways, resulting in 31 keystone species (Fig. 4 and Supplementary
Table 5B) and 45 keystone pathways (Supplementary Fig. 8 and Supple-
mentary Table 5C). The two identified keystone species (F. prausnitzii and
B. uniformis) are also core species (Fig. 4). Six identified keystone species
(Alistipes shahii, Alistipes putredinis, Ruminococcus gnavus, Barnesiella
intestinihominis, F. prausnitzii, and Parabacteroides merdae) and five key-
stone pathways (PANTO-PWY, PWY-5667, PWY0-1319, PWY-3001, and
VALSYN-PWY) were overlapped with the DMP cohort4 (Supplementary

Table 5B, C). As the only shared core and keystone species in multiple
human studies, our study emphasized the cornerstone role of F. prausnitzii
between gut microorganisms interactions to affect the community-level
structure and related functions.

Phenotypes associated with interindividual variation of gut
microbiome
To access comprehensive associations between the fecal microbiome
and phenotypes, 273 factors (7 metabolic disorders, 24 anthropometric
parameters, 34 health factors, 9 demographics, 39 lifestyles, 59 blood
and uric measurements, and 97 diet factors) were correlated to the
microbial composition, diversity, and the unique functional KOs
richness (Supplementary Table 6A–E). We observed 108 significant
associations (FDR <0.05) between phenotypes and the microbiome
taxonomic composition and 34 significant associations between phe-
notypes and the alpha diversity index (Shannon diversity index and
observed species; univariate PERMANOVA; Supplementary Table
6B, C). The sequencing batch explained the largest proportion of beta-

22 255
Node degree

-0.5 1.0
SparCC r

Actinomyces_sp_HMSC035G02

Actinomyces_sp_ICM47

Adlercreutzia_equolifaciens

Asaccharobacter_celatus

Bacteroides_caccae

Bacteroides_intestinalis

Bacteroides_uniformis

Barnesiella_intestinihominis

Butyricimonas_virosa

Odoribacter_splanchnicus

Alistipes_finegoldii
Alistipes_putredinis

Alistipes_shahii

Parabacteroides_merdae

Eubacterium_ramulus

Eubacterium_ventriosum

Blautia_obeum

Blautia_sp_CAG_257
Ruminococcus_gnavus

Coprococcus_catus

Coprococcus_comes

Eubacterium_rectale

Roseburia_hominis Roseburia_inulinivorans

Oscillibacter_sp_57_20

Oscillibacter_sp_CAG

Faecalibacterium_prausnitzii

Gemmiger_formicilis

Ruminococcus_bicirculans

Erysipelatoclostridium_ramosum

Firmicutes_bacterium_CAG_83

Anaerostipes_hadrus

Bacteroides_thetaiotaomicron

Parabacteroides_distasonis

Escherichia_coli

Blautia_wexlerae

Streptococcus_salivarius

Bacteroides_vulgatus

Keynote speciesKeynote and Core species Core species

Fig. 4 |Microbial species co-abundance networks. In total, 22,792 significant (FDR
<0.05) co-abundance relationships were identified between 305 species. Only
showed the edges with |r | > 0.30 to simplify the figure. The size of the nodes

represents the level of degrees, and the thickness of the edges represents the absolute
value of Pearson r. Created by Gephi.
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diversity (R2 = 4.54%, FDR = 6.5 × 10−4), followed by geographic loca-
tion (city) (R2 = 1.81%, FDR = 6.5 × 10−4) and sampling month
(R2 = 1.10%, FDR = 6.5 × 10−4) (Fig. 5a and Supplementary Table 6B).
Defecation frequency also explained a significant proportion of var-
iance (R2 = 0.79%, FDR = 6.5 × 10−4). Age, sex, and BMI explained 0.28,
0.49, and 0.28% of individual variation, respectively. The metabolic
disorder describing the most variation in the microbiome composition
was dyslipidemia (R2 = 0.59%), followed by NAFLD (R2 = 0.57), 10-year
ASCVD risk (R2 = 0.46%), T2DM (R2 = 0.42%), and metabolic syn-
drome (R2 = 0.28%) (Fig. 5a and Supplementary Table 6B).

For microbiome function compositions, we observed 44 significant
associations between phenotypes and the microbiome function composi-
tion and 9 significant associations between phenotypes and the diversity of
functional KOs (Shannon diversity index and the richness of unique KOs;
univariate PERMANOVA; Supplementary Table 6D, E). Similarly, the
sequencing batch dominated the variation of gut microbiota function
profiles (R2 = 6.11%, FDR = 0.0025), followed by geographic location (city)
(R2 = 3.96%, FDR = 0.0025) and sampling month (R2 = 1.81%, FDR=
0.0025) (Fig. 5b and Supplementary Table 6D). The results suggested that
geography also exerts a strong effect on human gutmicrobiota composition
and function.

After excluding highly collinear (Spearman |r | > 0.8) phenotypes, 87
phenotypes were significantly associated (FDR <0.05) with microbiome
taxonomic composition, including 2 technical factors, 5 metabolic dis-
orders, 13 anthropometric parameters, 7 health factors, 4 demographics, 9
lifestyles, 29 blood and uric measurements, and 18 dietary factors (Sup-
plementary Table 6F); 42 phenotypes were significantly associated with
microbiome function composition, including 2 technical factors, 3 meta-
bolic disorders, 3 anthropometric parameters, 2 health factor, 1 demo-
graphic, 2 lifestyles, 16 blood and uricmeasurements, and 13 dietary factors
(Supplementary Table 6G). These phenotypes explained 36.54% of micro-
biome taxonomic composition and 29.54% of microbiome function com-
position, with the largest contribution coming from dietary factors and
blood and uric measurements (multivariate PERMANOVA; Fig. 5c and
Supplementary Table 6H).

Microbiome-phenotype associations for demographic, lifestyle,
diet, health, and blood measurements
To deeper understanding of internal and external characteristics that affect
microbiome composition and function, we performed multivariable linear
regression association analyses between each phenotype (factor) and
microbiome features with ≥ 5% prevalence (including 305 species, 430
MetaCyc pathways, 896 CAZymes, 143 CARD ARGs, 147 MEGARes
ARGs, and 104 Resfinder ARGs). When corrected for sequencing batch,
sampling month, city, and defecation frequency, we found 857 significant
associations (FDR <0.05) between 154 factors and 203 species (Fig. 6 and
Supplementary Table 7A), 156 significant associations between 41 factors
and 99 pathways (Supplementary Table 7B), 1305 significant associations
between 185 factors and 596 CAZymes (Supplementary Table 7C), and
694 significant associations between 116 factors and 288 ARGs (Supple-
mentary Table 7D).

The largest number of phenotype-taxa associations occurred on Acti-
nomyces sp. oral taxon 181 (Supplementary Table 7E). The core and key-
stone species showed 157 associations with phenotypes, and five species as
F. prausnitzii, Gemmiger formicilis, R. gnavus, Bacteroides intestinalis, and
Actinomyces sp.HMSC035G02,whichwere also listed in the top ten species,
were observed to have a higher number of significant associations (Fig. 7).
We also found HISDEG-PWY (L-histidine degradation I) and PWY-5130
(2-oxobutanoate degradation I) pathways had the largest number of
phenotype-pathway associations (Supplementary Table 7F). Several α-
amylase enzymes from the glycoside hydrolase (GH) family with starch-
binding domain (SBD) had the largest number of phenotype-CZAyme
associations (Supplementary Table 7G). The tetracycline resistance gene tet
(M) had the largest number of phenotype-ARGs associations (Supple-
mentary Table 7H–J).

Blood and urine measurements showed the highest number of asso-
ciations with microbiome features (235, 36, 315, and 293 associations with
taxa, pathways, CAZymes, and ARGs at FDR <0.05, respectively) (Sup-
plementary Fig. 9 and Supplementary Table 7K). Blood measurements
showed consistent association patterns with urine measurements (Fig. 6).
We found that serum uric acid (SUA) was widely associated with micro-
biome taxa and function, such as associations with decreased abundance in
A. putredinis (R2 = 0.026), Eubacterium eligens (R2 = 0.028), and F. praus-
nitzii (R2 = 0.022), and increased abundance in R. gnavus (R2 = 0.038),
Blautia hansenii (R2 = 0.037), and Streptococcus cristatus (R2 = 0.024)
(Supplementary Table 7A, L).

We identified 592 associations between dietary factors and micro-
biome features (113, 24, 464, and 195 significant associations with taxa,
pathways, CAZymes, and ARGs, respectively) (Supplementary Table 7K).
The diet phenotypes such as alcohol consumption (including alcohol con-
sumption frequency, ≥40% vol Chinese baijiu consumption, and weekly
intake of pure alcohol) exhibited the largest associations with microbiome
features (Supplementary Table 7L). Tea consumption (including herbal tea,
dark tea, green tea, and the grammage of weekly tea consumption) was also
found to be associated with certain numbers of the gutmicrobiome features
(9, 1, 44, and 5 associations with taxa, pathways, CAZymes, and ARGs,
respectively). We found a higher DASH (Dietary Approaches to Stop
Hypertension) score was associated with a decreased abundance in
Methanobrevibacter smithii.

Further,We investigated the influence of socioeconomic status on diet
pattern association (Supplementary Fig. 10). In the associations between
diet factors and taxa, we provided the results of multivariable linear
regression models that additionally included adjustment for annual
household income (Supplementary Table 7M). We observed 2233 nom-
inally statistically significant (P < 0.05) associations and 101 study-wide
significant (FDR <0.05) associations. Phenotypes of alcohol consumption
and tea consumption were found to be stably correlated with microbiome
features.

The microbiome associated with metabolic disorders and
health status
In total, we identified 155 significant associations between metabolic
disorders and microbiome features (78 with taxa, 45 with pathways, 17
with CAZymes, and 15 with ARGs, FDR <0.05; Supplementary Table
7K). T2DM showed the highest number of associations (16 associations
with taxa, 37 with pathways, 5 with CAZymes, and 12 with ARGs),
followed by NAFLD (20 associations with taxa, 7 with pathways, 3 with
CAZymes, and 1 with ARGs), and dyslipidemia (21 associations with
taxa) (Supplementary Table 7L). Similar to previous research results,
consistent microbiome–disease association patterns were across the
majority of metabolic disorders4 (Supplementary Fig. 11).

We further included corrections for age, sex, and BMI into our asso-
ciation models based on the corrections for sequencing batch, sampling
month, city and defecation frequency (Supplementary Table 8A–E). The
total number of significant associationswas reduced to 114 associationswith
species, 29 associations with pathways, 1104 with CAZymes, and 569 with
ARGs (Supplementary Table 8F). We identified 48 associations between
metabolic disorders and microbiome features (25 with taxa, 9 with path-
ways, and 14 with CAZymes, FDR <0.05; Supplementary Table 8G). We
observed 8, 8, 6, and 2 associations between NAFLD, dyslipidemia, T2DM,
and MetS with species, respectively (Fig. 8a).

We found that T2DM had strong correlations with an increased
abundanceofAbsiella dolichum,Lactobacillusmucosae, andEscherichia coli,
as well as a decreased abundance of G. formicilis, Romboutsia ilealis, and
Roseburia inulinivorans. NAFLD, dyslipidemia, andMetSwere consistently
associated with higher levels of R. gnavus and lower levels of E. eligens.
Furthermore, nine significant associations between T2DM and microbial
pathways were identified (Fig. 8b). Microbial functions involved in bio-
synthesis (COBALSYN-PWY, PWY-5121, PWY-5505, and PWY-6470),
degradation-utilization-assimilation (P164-PWY, PWY-5030, and PWY-
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Fig. 5 | Statistically significant associations with microbiome diversity, compo-
sition, and unique functional KOs richness. a Phenotypes associated with the
species-level microbiome taxonomic composition. b Phenotypes associated with the
microbiome function composition. c Variance in microbiome composition and
function explained by phenotype groups in multivariate PERMANOVA analysis.
The bar plot indicates the explained variance in the interindividual variation of the

microbial composition obtained by the permutational analysis of variance (based on
the Bray-Curtis distance). The heatmap shows the Spearman correlation coefficients
of each phenotype with the Shannon diversity index and the observed species
richness. The group of bloodmeasurement and diet only showed the top 15 factors in
the graphs. Blue indicates a negative correlation, and red indicates a positive cor-
relation. *FDR <0.05, **FDR <0.01, ***FDR <0.001.
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7237), and generation of precursor metabolite and energy (METH-
ACETATE-PWY) showed robustly associations with T2DM (Fig. 8b).

Discussion
We have conducted a gut microbiome study on 921 CMP participants in
Southwest China, who represent the Han population residing in a
landlocked low-altitude basin with distinctive geographical environ-
ments and climates. Our cohort with rich dietary, lifestyle, and clinical
information provides a unique opportunity to characterize the gut
microbiome features related to common metabolic disorders. We uti-
lized shotgun metagenomic sequencing to examine and identify sig-
nificant microbial associations with exogenous and intrinsic host
factors, including anthropometric parameters, health, diet, demo-
graphics, lifestyle, blood, and uricmeasurements.We have validated that
the host region exerted the strongest effect affecting interindividual
distance of microbial composition, far exceeding the effects of other host
phenotypes. Finally, our results support previous studies that a common
signal for gut dysbiosis can be observed in multiple diseases3,4.

Although huge variations existed in the interindividual microbial
composition, the microbiota community can be categorized into several
enterotypes driven by the main contribution genera15,17. Enterotypes
represented optimized states of gut symbiont compositions and were
independentof host age, sex, andgeography17. Inour study,weobserved two
enterotypes driven by Bacteroides and Prevotella, commonly found in stu-
dies worldwide that report enterotypes18. Prevotella and Bacteroides are

large, species-rich monophyletic taxa with antagonistic niches and inter-
actions. Prevotella has been reported to be positively associated with vege-
tarian, vegan, andMediterraneandiets19, while the abundanceofBacteroides
is usually associated with high-fat and protein-rich diets20. As the most
abundant species in the Prevotella enterotype, the role of Prevotella copri in
human health or disease status is still in debate and controversial21–24.

However, we could not replicate any statistically significant
between metabolic disease risks and P. copri abundance in prior reports
after correcting for sequencing technology and geographical factors.
Different roles ofP. copri in health and disease states were possibly due to
subspecies diversity caused by high levels of genomic and functional
diversity25. Genetic and population structure analysis showed that P.
copri complex composed of four distinct clades (>10% inter-clade
genetic divergence) is globally distributed and shaped by multi-
generational dietary modifications26. Associations between health con-
ditions and P. coprimay exist, but possibly only at the subspecies or sub-
clade level. Large-scale metagenomic assembly and strict quality control
are required in the future to unravel whether P. copri is considered either
a positive or a negative influence on health in the context of geography,
diet, lifestyle, and host genetic factors.

Overall, we measured 273 different factors from seven categories that
explained 36.54% of microbiome species-level composition and 29.54% of
microbiome function composition. This explained proportion of microbial
composition variation is far above the LifeLines-DEEPcohort (18.7), EstMB
cohort (10.14%), and DMP cohort (12.9%)3–5. One possible explanation is
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Health

Blood and urine

measurement
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Z-score × effect direction  

Fig. 6 | Microbiome-phenotype associations for demographic, lifestyle, diet,
health, and blood measurement. Top 40 species with the highest number of sig-
nificant associations are clustered by association Z-score using hierarchical clus-
tering and colored by direction of effect (blue, negative; orange, positive), with

associations significant at study-wide FDR <0.05 marked with plus and minus for
positive and negative correlations, respectively. Colored associations without amark
indicate nominally significant associations (P < 0.05).
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that we have correlated metadata variables of unique dietary preferences in
Southwest China (such as Chinese baijiu and tea), providing more insight
into how diet shapes intestinal microbial composition. Moreover, we pro-
vided a series of factors belonging to blood and urine measurements that
also explained a substantial proportion of the gut microbiota variation.
Nevertheless, additional contributions from unknown factors, stochastic
effects, and/or biotic interactions greatly restrict our interpretation of
interindividual variation in microbiome composition and function15.
Similar to the results of previous studies, lower biodiversity was associated
with a lower defecation frequency, smoking, weekly drinking, and a higher
waist-to-hip ratio3. We also provide new significant associations, such as
triglyceride, SUA, γ-glutamyl transpeptidase (GGT), and hemoglobin.

After linking with phenotypes, we found gut microbiome is wildly
associated with individual physical and mental health, diet, lifestyle, and
biochemistry measurements with a consistent pattern of association. For
instance, the association pattern between the gut microbiome and SUA is
opposite to that of low-purine foods and healthy dietmodels, but consistent
with unhealthy lifestyle habits, such as smoking and drinking. The gut
microbiome plays an indispensable role in UA metabolism, and its extra-
renal excretion function can degrade one-third of exogenous and endo-
genous UA generated daily27. The common genera in the human intestine,
such as Lactobacillus and Pseudomonas, have the ability to synthesize UA-
metabolizing enzymes catalyzing the degradation of UA to ammonia28,29.
Previous research has proven that dietary habits (such as purine-rich diets),
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Fig. 7 | Heatmap of core and keystone species associated with phenotypes. Core
and keystone species are clustered by association Z-score (multivariate linear
regression of CLR-transformed relative abundance of taxa, correcting for city,
defecation frequency, sequencing batch, and sampling month) using hierarchical

clustering. Associations are colored by direction of effect (blue, negative; orange,
positive), with associations significant at study-wide FDR <0.05 marked with plus
and minus for positive and negative correlations, respectively. Colored associations
without a label indicate nominally significant associations (P < 0.05).
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excessive alcohol consumption, and obesity were associated with a high
SUA level30,31. The association direction between interrelated phenotypes
may influence their association pattern with the gut microbiome. This
means the gut microbiome is highly individualized and micro-coevolved
with host genetics and environmental factors.

In our study, extensive associations between Actinomyces species and
phenotypes were found. Actinomyces species were regarded as members of
the healthy core microbiome, particularly in the oral cavity, and might be
relatively frequent commensal inhabitants on the gut, skin, andmucosae of
urogenital sites32. Individuals who exhibited both immunocompetent and
immunocompromised, suffered from invasive surgical procedures and
trauma, or undergone a mixed infection were more prone to cases of
actinomycosis32. Previously amajority of studies demonstrated an increased
abundance of Actinomyces and Actinomyces species in saliva or buccal
mucosa samples of cigarette smokers32–35. In our study, significant associa-
tions between smoking and heavy consumption of alcohol and increased
abundance of Actinomyces species (such as Actinomyces sp. oral taxon 181,
Actinomyces graevenitzii, and Actinomyces sp. oral taxon 414) in the gut
microbiome. It suggested that the effects of unhealthy behaviors of the host
may have a similar effect on shaping the gut microbiome and oral
microbiota.

Association analysis showed that NAFLD, dyslipidemia, and MetS
were associated with an increased abundance of Ruminococcus gnavus. R.
gnavus (also known asMediterraneibacter gnavus) is a prevalent human gut

symbiont and part of the infant and adult gut microbiota36. Recent studies
considered R. gnavus a potential “pro-inflammatory species” as it was
associated with animal-product-rich diets and inversely associated with the
healthy eating index (HEI)37,38. Among previous studies,R. gnavus has been
associated with an increasing number of intestinal and extraintestinal dis-
eases, such as inflammatory bowel diseases (IBD), irritable bowel syndrome
(IBS), obesity, andT2DM39. In a cohort study, the presence ofR. gnavuswas
robustly associated with several features of MetS, such as an increase in fat
mass, waist circumference, serum triglycerides, C-reactive protein, and
HbA1c, as well as a decrease in HDL40. Our study found that R. gnavuswas
positively associated with alcohol consumption and inversely associated
with fresh fruit consumption andMediterranean diet score. Further studies
are warranted to establish whether R. gnavus has a mediation effect on
metabolic disorders in response to lifestyle and diet.

After controlling the factors that greatest impact microbial composi-
tion and recognized confounders, we observed the strongest microbial
signal for T2DM based on stable associations. Our findings support pre-
vious research that the gutmicrobiome of T2DMpatientswas characterized
by a decrease in the abundance of some universal butyrate-producing
bacteria and an increase in various opportunistic pathogens41. For instance,
we observed T2DM negatively correlated with butyrate-producing bacteria
F. prausnitzii. As a potential intestinal health indicator for intestinal
disease42,43, the beneficial effects of F. prausnitzii in T2DMwere studied and
verified in human epidemiological research and animal experiments44–46.
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Fig. 8 | Heatmap of microbial species associated with metabolic disorders and
health status. Top 35 microbial species with the highest number of associations are
clustered by association Z-score (multivariate linear regression of CLR-transformed
relative abundance of taxa, correcting for sex, age, BMI, city, defecation frequency,
sequencing batch, and sampling month) using hierarchical clustering. Associations

are colored by direction of effect (blue, negative; orange, positive), with associations
significant at study-wide FDR <0.05 marked with plus and minus for positive and
negative correlations, respectively. Colored associations without a label indicate
nominally significant associations (P < 0.05).

https://doi.org/10.1038/s41522-025-00661-6 Article

npj Biofilms and Microbiomes |           (2025) 11:24 10

www.nature.com/npjbiofilms


Additionally, we provided some new associations between intestinal species
and T2DM. We found that T2DM was strongly associated with the
decreased abundance of butyrate-producing bacteria Roseburia spp.
(Romboutsia ilealis and Roseburia inulinivorans)47 and carbohydrate-
metabolism and anti-inflammatory bacteria E. eligens48. Given the findings
fromourhumancohort study, potential beneficial gutmicrobiotaonT2DM
could be further investigated in the future.

The present study also contains several limitations. Our cohort is
volunteer-based to a certain extent, so the composition of common
metabolic disorders among DMP participants cannot truly reflect the
epidemic situation of diseases in Southwest China. The cross-sectional
and lacking medication use history of this study inherently limits our
ability to delineate the observed associations between disease treatments
and gut microbiome. We included some self-reported variables, such as
lifestyle factors, which may incur recall bias. Finally, the data obtained
from sequencing is often voluminous, fragmented, noisy, and over-
lapping. Our understanding of gut microbiota largely relies on the
integrity and accuracy of reference databases when using metagenomic
tools for gene identification and annotation. The reference databases are
populated with genes/proteins from well-studied species, while the gut
microbiome contains many novel and poorly characterized isolates,
there will be many false negatives in the study.

Human health both affects and is affected by gut microbiome com-
position, the level of richness and diversity of themicrobiome, the influence
of dysbiosis, and even the existence and abundance of specific microbes.
Although recent large-scale studies have been uncovering numerous
underlying impacts of host heritability and exposures, the human gut
microbiome is still under-explored andmicrobiome-targeted therapy is still
at a juvenile stage both in its basic and translational dimensions. In the
future, we will conduct follow-up via linkage with established electronic
disease registries to obtain more reliable diagnoses of diseases and detailed
information on the history of medication usage. Study designs with large
sample sizes, rich phenotypes, long-term follow-up, sequential longitudinal
stool sample collection, integration of genome-wide association study, and
deeper metagenomic sequencing will enable more mechanistic hypotheses
of human metabolism and gut microbiome to be generated in the future.

Methods
CMEC and metadata collection
The CMECwas launched in 2017 to investigate the prevalence, risk factors,
and associated conditions of NCDs across various ethnicities in Southwest
China13. The baseline recruitment was completed in September 2019, and a
total of 99,556 participants were enrolled including 55,443 Han and 44,113
other ethnic people from nine cities. More than 80% of Han people were
from Chengdu and Chongqing cities13. The information from participants
was collected, including sociodemographics, diet, lifestyle habits, and
health-related history via an electronic questionnaire with face-to-face
interviews, medical examinations, and clinical laboratory tests on blood
samples13.

Thefirst follow-up stage of the cohortwas started in July 2020 for~10%
of baseline participants, providing consistent information with baseline
recruitment. In total, 1603 Han volunteers from Chengdu and Chongqing
cities were recruited to establish the CMEC Microbiome Project, partici-
pants were collected with stool samples from July to December 2020. The
participants who used antibiotics within one month before collecting stool
samples were excluded from this study. At last, 921 participants were
included for further study.

Assessment of dietary variables
The quantitative FFQwas used to assess the intake of themain food groups,
which covered the most commonly consumed food groups in Southwest
China. We collected information on the quantity (average grams per time)
and frequency (timesper day,week,month, or year) of each food groupover
the last year. Moreover, information on the frequency, quantity, and con-
sumption types was recorded for the alcohol, tea, and beverages at the

individual level and for cooking oil and salt at the family level. Total energy
intake was calculated according to the China food exchange lists and the
2018 China food composition tables49. Based on food frequency informa-
tion, each participant’s dietary approaches to prevention and treatment of
hypertension were calculated to Stop Hypertension (DASH) score and
Mediterranean diet score (MED) score50,51.

Assessment of physical activity (PA) and sedentary behavior
The questions on PA and sedentary behavior were adapted from validated
questionnaires used in the China Kadoorie Biobank (CKB)52,53. Participants
were investigated about their usual type and duration of activities related to
work, commuting, household chores, sedentary and leisure time, and
exercise during the past year. Activity types were classified as follows: heavy
manual work, manual work, standing work, sedentary work, manual work
in the farming season, semi-mechanized work in the farming season, fully
mechanized work in the farming season, commuting mode (walking,
bicycle, motorbike, private or public transportation [e.g., bus, car, under-
ground, ferry]), household activity, tai chi/qigong/leisure walking, jogging/
aerobics, swimming, ball games (e.g., basketball, badminton, table tennis),
exercisewithfitness equipment, andother exercises (e.g.,mountainwalking,
home exercise, jump rope).

PA was calculated by multiplying the metabolic equivalent (MET)
value for a particular type of PA by hours spent on that activity per day and
summing the MET-hours for all activities. METs were based on the 2011
Compendium of Physical Activities54. PA (MET h/day) included physical
activity related to jobs, transportation, leisure time, and housework. Leisure
sedentary time (ST) activities were recorded, such as playing on a mobile
phone or tablet, watching television, reading, playing cards ormahjong, and
using a computer outside of work (quantified as hours/day). Total ST
included leisure ST and work ST. Participants were asked to report 1
(regular) commuting mode in the past year, and response options included
the following:walking or bicycle,motorbike or private car or bus,working at
home or nearby, housework, or disabled to work.

Assessment of metabolic disorders
Stage 1 hypertension was diagnosed as the systolic blood pressure (SBP)
130–139mmHg, and/or diastolic blood pressure (DBP) 80–89mmHg on
two or more separate examinations. Stage 2 hypertension was diagnosed as
self-reported hypertension, the SBP ≥140mmHg, and/or DBP ≥90mmHg
on two or more separate examinations55.

Diabetes mellitus (DM) was diagnosed as self-reported diabetes, the
fasting blood glucose (FBG) level ≥7.0mmol/L (126mg/dL), or HbA1c
≥6.5% (48mmol/mol)56. The impaired fasting glucose (IFG) was defined as
FBG 5.6–6.9mmol/L or HbAlc 5.7–6.4%.

Overweight was defined as a BMI of 24.0–27.9 kg/m2, and obesity was
diagnosed as a BMI ≥28.0 kg/m2 (Chinese criteria)57.

According to the Guidelines of the Prevention and Treatment of
Dyslipidemia in Adults (Chinese criteria)58, the normal blood lipid was
defined as TC <5.2mmol/L, LDL-CH <3.4mmol/L, and TG <1.7mmol/L;
the edge elevation of blood lipid was defined as TC 5.2–6.2 mmol/L, LDL-C
3.4–4.1mmol/L, orTG1.7–2.3mmol/L; and the elevationof blood lipidwas
defined as TC ≥6.2 mmol/L, LDL-C ≥4.1mmol/L, or TG ≥2.3 mmol/L.

Metabolic syndrome (Mets) was defined as having three ormore of the
following five criteria formulated by the National Cholesterol Education
Program’s Adult Treatment Panel III (NCEP:ATP III)59: (1) Center obesity:
A waist circumference >102 cm for men and >88 cm for women. (2)
Hypertriglyceridaemia: triglycerides ≥1.70mmol/L. (3) Low HDL choles-
terol: <1.03mmol/L for men and <1.29mmol/L for women. (4) Hyper-
tension: blood pressure ≥135/85mmHg or related drug treatment. (5)
Fasting plasma glucose ≥6.1 mmol/L or related drug treatment.

The positive diagnosis of non-alcoholic fatty liver disease (NAFLD)
was based on radiological imaging-confirmed evidence of fat accumulation
in the liver (hepatic steatosis) with one of the following three criteria60: (1)
Overweight/obesity: defined as BMI ≥23 kg/m2 (Asians standard). (2)
T2DM: as previously described. (3) Metabolic dysregulation: defined as the
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presence of at least two metabolic risk abnormalities: (i) A waist cir-
cumference ≥90/80 cm in men/women (Asians standard).(ii) Blood pres-
sure ≥130/85mmHg or related drug treatment. (iii) Plasma triglycerides
≥1.70mmol/L or related drug treatment. (iv) Plasma HDL cholesterol
<1.0mmol/L for men and <1.3 mmol/L for women or related drug treat-
ment. (v) Prediabetes (i.e., fasting glucose levels from 5.6 to 6.9mmol/L or
HbA1c from 5.7 to 6.4%).

According to the Guidelines of the Prevention and Treatment of
Dyslipidemia in Adults (Chinese standards)58, participants with one of
the following conditions are directly classified as high-risk: (1) LDL-C
≥4.9 mmol/L; (2) TG ≥7.2 mmol/L; (3) diabetes patients over 40 years
old with LDL-C 1.8–4.9 mmol/L or with TC 3.1–7.2 mmol/L. Based on
LDL-C or TC levels, the presence or absence of hypertension, and the
number of other ASCVD risk factors, the risk stratification is divided
into 21 combinations for individuals without the above conditions
(Supplementary Table 9). The 10-year average risk of ASCVD in dif-
ferent combinations is defined as low-, medium-, and high-risk, which
represented <5%, 5–9%, and ≥10% risks of developing ASCVD in the
next 10 years, respectively.

Measurement of mental health conditions
Anxious symptoms were measured with the 7-item self-reported General
AnxietyDisorder-7 (GAD-7) scale61. Each itemof theGAD-7 is scored from
0 (not at all) to 3 (nearly all day), yielding a total score ranging from 0 to 21.
According to the established thresholds, the severity of anxiety symptoms
derived from this score is defined as mild (5–9), moderate (10–14), or
severe (≥15).

Depressive symptoms were assessed with the 9-item self-reported
Patient Health Questionnaire (PHQ-9)61. Each item of the PHQ-9 is scored
from0 (not at all) to 3 (nearly all day), yielding a total score ranging from0 to
27.The severity of depressive symptoms is classified asmild (5–9),moderate
(10–14), moderately severe (15–19), or severe (≥20).

EQ-5D-5L life quality
AChinese quantified EuroQol five-dimensional questionnaire (EQ-5D-5L)
scale was used to measure the quality of life62. The descriptive system of the
EQ-5D comprises five dimensions: mobility (MO), self-care (SC), usual
activities (UA), pain/discomfort (PD), and anxiety/depression (AD); each
dimension is described atfive levels (no, little,moderate, severe, and extreme
problems). The measurement results are transformed into the final quality
of life through the utility value integration system.

Medical physical examination
We conducted medical physical examinations mainly using the resources
and personnel at local clinical centers. We implemented standardized
training for the doctors and nurses before the investigation. The height,
weight, waist circumference, hip circumference, fasting blood pressure (the
average of three measurements), and fasting heart rate (the average of three
measurements) of theparticipantsweremeasuredon-site. Thebonemineral
density andpeak expiratoryflowof the participantsweremeasuredby using
unified devices of the bonemineral density densitometers (OSTEOKJ3000)
and peak expiratory flowmeters (KOKA PEF-3). The cardiac electrical
activity was recorded by a 12-lead electrocardiogram. Abdominal ultra-
sound was used to examine the size, shape, location, and corresponding
lesions of abdominal organs. Calculation of related indicators: Body mass
index (BMI) = weight (kg)/height (m)2; Waist-to-hip ratio (WHR) =Waist
(cm)/hip (cm); Waist-to-height ratio (WHtR) =Waist (cm)/height (cm).

Clinical laboratory tests
All participants provided blood and urine samples on-site at the time of the
baseline and the follow-up survey. Venous blood samples, collected after
overnight fasting (at least 8 h), were used for clinical laboratory testing,
including routine blood tests, blood glucose levels, lipid levels, hepatic
function, and renal function. Mid-stream urine was collected for routine
urine testing.

Stool sample collection and DNA extraction
The stool samples were collected at the site on the examination day from
September to December 2020. The participants were asked to collect fresh
stool into a sterile polypropylene specimen cup. The samples were trans-
ported at 4 °C and stored at −80 °C until the DNA extraction. Hexadecyl
trimethyl ammonium Bromide (CTAB) was used to isolate the microbial
DNA, and polyacrylamide gel electrophoresis (PAGE) at a concentration of
1% was used to qualify DNA purity and integrity. The Qubit® 2.0 Fluo-
rometer (Life Technologies, CA, USA)with aQubit® dsDNAAssay Kit was
used to quantify DNA. Library preparation for all samples was performed
usingNEBNext®UltraTMDNALibrary PrepKit for Illumina® (NEB, USA),
and the DNA was randomly fragmented by Covaris M220 Ultrasonicator
(Covaris, USA) to an average size of 350 bp. The fragments were amplifi-
cated and purified by the polymerase chain reaction (PCR) after end repair,
A-tailing, and Illumina adapters ligation. The Agilent 2100 Bioanalyzer was
used to detect the insert size distribution, and Qubit and real-time PCR
(qPCR) were used to accurately quantify the effective concentration of
libraries.

Metagenomic sequencing and data analyses
The shotgun metagenomic sequencing was performed by Novogene
Bioinformatics Technology, China, using the Illumina NovaSeq6000 plat-
form with a 150 bp paired-end protocol, finally generating 11.12 ± 1.06 Gb
of raw reads and 11.05 ± 1.07 Gb of clean reads per sample. KneadData
pipeline (https://github.com/biobakery/kneaddata) was used to prune the
raw reads by removing the adapters and low-quality reads through Trim-
momatic (v.0.39)63 and reads aligned to thehumangenome (GRCh38/hg38)
through Bowtie 2 (v.2.4.5)64. We obtained 10.27 Gb pair-end reads per
sample after moving human DNA reads. To determine the taxonomic
composition of each sample, microbiome sequence reads were mapped to
~1.1million unique clade-specificmarker genes using theMetaPhlAn3 tool
(v.3.0.14)65 and quantified at each level (kingdom, phylum, class, order,
family, genus, and species). A separate de novo assembly of metagenomes
from the quality-filtered reads into larger genomic fragments (contigs) for
each sample was performed by MEGAHIT (v.1.2.9)66. The assembled
metagenomic contigs were performed metagenome binning using Meta-
BAT (v.2.12.1)67. HUMAnN 3 (v.3.0.1)65 was used to identify the functional
orthologs basedon theKyotoEncyclopedia ofGenes andGenomes (KEGG)
Orthology (KO) database and annotate microbial pathways based on the
MetaCyc metabolic pathway database. The HMMER (v.3.3.2) in dbCAN
was used for automated CAZyme signature domain-based annotation. The
ABRicate (v.1.0.1)68 was used to predict antibiotic resistance gene (ARG)
families based on the Comprehensive Antibiotic Resistance Database
(CARD)69, the National Center for Biotechnology Information (NCBI)
antimicrobial resistance reference gene database70, the Resfinder database71,
the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database72,
and the MEGARes database73.

Species accumulation curves were performed to estimate the adequacy
of our sample sizeusing the function specaccum inRpackage vegan (v.2.6.4).
Sample size-based Rarefaction and extrapolation (R/E) sampling curves
were constructed to estimate the total richness of species, genera, metabolic
pathways, and KOs using the R package iNEXT (v.3.0.0)74. To limit the
number of tests of univariate association analysis and reduce the sparsity of
our data, we kept 525 taxa (2 kingdoms, 8 phyla, 17 classes, 27 orders, 50
families, 116 genera, and 305 species) and 430 pathways with ≥5% pre-
valence. Together, these microbial features accounted for 95.27 and 98.27%
of the average relative abundance of species and pathways, respectively.We
did not rarefy the counts to avoid loss of data.

Microbiome diversity
Alpha diversity was evaluated by the Shannon index and the observed
number of species using the function diversity in R package vegan. The total
count of unique KOswas used to characterize the diversity of the functional
profile. The association analysis between host phenotypes and α-diversity
index was assessed by the Spearman correlation, and the P values were
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further adjusted for multiple testing using the Benjamini–Hochberg (BH)
method. The microbiome beta-diversity (Bray-Curtis dissimilarity matrix)
was calculated at the species level using the function vegdist in the package
vegan.Aprincipal coordinates analysis (PCoA)was performedbased on the
Bray-Curtis dissimilarity using the function cmdscale from the package
stats (v.4.1.3).

An envfit analysis with 10,000 permutations was performed to fit
phenotypes and α-diversity index onto PCoA ordination (calculated by the
Bray-Curtis distance matrix) by the envfit function from the R package
vegan. The proportion of variance of Bray-Curtis distance that can be
explained by each phenotypewas assessed using permutationalmultivariate
analysis of variance (PERMANOVA) with 10,000 permutations by the
function adonis in R package vegan. Phenotypes that showed significant
association (FDR <0.05) with microbiome composition or function in the
univariate analyses were screened to detect collinearity (Spearman |r | >0.8).
Then the total proportion of variance in microbiome composition and
function explained by each phenotype group was calculated bymultivariate
PERMANOVA analyses using the function adonis2 in R package vegan.
The collinear phenotypes with the lowest contribution to microbiome
community variation were excluded from the multivariate adonis analysis.

Core microbiome and keystone microbiome detection
A bootstrapping-based selection approach was used to identify the core
microbiota. By subsampling the cohort with sampling ratios of 1 to
100%, the prevalences of each species at different subsampling levels
were obtained. Microbial features with a prevalence ≥90% were defined
as the core microbiome. A Python-based SparCC tool with 1000 boot-
straps and 100 permutations was used to elucidate networks of inter-
action among microbial species or pathways75. Relative abundances
from MetaPhlAn3 were converted to predicted read counts by multi-
plying the abundance percentages by the total sequenced reads of each
sample and then subjected to SparCC4,76. The read counts from
HUMAnN 3were regarded as absolute abundances of genes and directly
used for SparCC. The Benjamini–Hochberg procedure was used to
control multiple tests. Associations with an FDR <0.05 were included in
the downstream analysis. Features that ranked in the top 10% in the
number of network connections (node degree) were considered key-
stone species or pathways.

Microbiome clusters and gut enterotypes
Samples were clustered with the partitioning around medoids (PAM)
clustering algorithm based on the Jensen–Shannon divergence (JSD) dis-
tance calculated by relative abundance data at the genus level17. The
Calinski–Harabasz (CH) index was used to assess the optimal number of
clusters in our samples. Between-class analysis (BCA) was performed to
support the clustering and identify the driven genus for the enterotype using
the function dudi.pca and bca in R package ade4. APCoAwas performed to
visualize enterotypes with an input of a JSD distance matrix using the
function dudi.pco and s.class in the same R package. Linear regression
models were performed to analyze the associations between microbiome
clusters and disease phenotypes using R package lme4.

Calculation of microbial features associated with phenotypes
Themicrobiome datawas normalized using the centered log-ratio (CLR)
transformation with the geometric mean of the relative abundance of
microbial features as the CLR denominator. The multivariable linear
regression was used to identify the associations between microbiome
features (microbial taxa,MetaCyc pathways, CAZymes, andARGs in the
CARD, MEGARes, and Resfinder database) and each phenotype.
Models were adjusted for age, sex, BMI, city, defecation frequency,
sequencing batch, and sampling month to correct potential con-
founders. Linear mixed-effects models (LMMs) were performed to
analyze the associations between microbial taxa and phenotypes by the
function lmer in R package lme4. Several covariates (age, sex, BMI,
defecation frequency, sequencing batch, and sampling month) were

included in the LMMs with “city” as a random effect. An analysis of
variance (ANOVA) test was performed to compare two linear regression
models to provide an overall F statistic and P value: Model0 (Micro-
biome features – Covariates) and Medel1 (Microbiome features –
Covariates + Numerical/Categorical phenotypes). For multi-level phe-
notypes, dummy variables were used in regression analysis to provide
effect sizes and standard errors for each level of categorical variables. All
P values were corrected for the number of multiple comparisons using
the BH procedure. Results were considered significant at FDR <0.05.

Data availability
The rawmicrobiome sequencingdataused in this studyhavebeendeposited
into the CNGB Sequence Archive (CNSA) of China National GeneBank
DataBase (CNGBdb, https://db.cngb.org/cnsa/project/CNP0004236_
06ece14e/reviewlink/) with accession number CNP0004236.

Code availability
The source code for the analyses is available at https://github.com/CMEC-
Microbiome-Project-Southwest-China/CMEC.
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