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ABSTRACT

Fundus fluorescein angiography (FFA) serves as 
the current gold standard for visualizing retinal 
vasculature and detecting various fundus dis-
eases, but its interpretation is labor-intensive 
and requires much expertise from ophthal-
mologists. The medical application of artificial 
intelligence (AI), especially deep learning and 
machine learning, has revolutionized the field 
of automatic FFA image analysis, leading to 
the rapid advancements in AI-assisted lesion 
detection, diagnosis, and report generation. 
This review examined studies in PubMed, Web 
of Science, and Google Scholar databases from 

January 2019 to August 2024, with a total of 
23 articles incorporated. By integrating current 
research findings, this review highlights cru-
cial breakthroughs in AI-assisted FFA analysis 
and explores their potential implications for 
ophthalmic clinical practice. These advances in 
AI-assisted FFA analysis have shown promising 
results in improving diagnostic accuracy and 
workflow efficiency. However, further research 
is needed to enhance model transparency and 
ensure robust performance across diverse pop-
ulations. Challenges such as data privacy and 
technical infrastructure remain for broader clini-
cal applications.
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Key Summary Points 

Why carry out this study?

Retinal diseases are major causes of vision 
impairment globally, affecting millions and 
burdening healthcare systems. Fluorescein 
fundus angiography (FFA), the gold standard 
for diagnosing these diseases, is labor-inten-
sive and subject to variability, causing diag-
nostic delays.

This study investigates whether artificial 
intelligence (AI) can enhance diagnostic 
accuracy and workflow efficiency in FFA 
image analysis, improving clinical workflow 
in ophthalmology.

What was learned from the study?

AI tools significantly improve diagnostic 
accuracy and workflow efficiency in FFA 
analysis, with advancements in automated 
lesion detection, diagnostic support, and 
report generation.

AI can reduce ophthalmologists’ work-
loads, support large-scale screening, achieve 
cost-savings, and expand healthcare access 
through telemedicine. Despite promis-
ing results, challenges remain, including 
the need for diverse datasets, transparent 
AI models, and smoother integration into 
clinical workflows to ensure broader clinical 
adoption.

INTRODUCTION

Retinal diseases, such as diabetic retinopathy 
(DR), retinal vein occlusion (RVO), and age-
related macular degeneration (AMD), are lead-
ing causes of vision impairment globally [19, 
32]. For instance, in 2020, it was estimated that 
103.12 million people were affected by DR, with 
numbers projected to rise to 160.50 million by 

2045 [36], posing a significant burden on health-
care systems worldwide. Fundus fluorescein 
angiography (FFA) has long been regarded as 
the gold standard for detecting retinal vascular 
abnormalities associated with these diseases [1]. 
By utilizing FFA imaging, clinicians can detect 
and analyze retinal lesions, assess microvascu-
lar structures and blood flow, and generate com-
prehensive diagnostic reports, each essential for 
accurately diagnosing conditions and guiding 
therapeutic decisions [11].

Nevertheless, the traditional manual inter-
pretation of FFA images is time-consuming and 
relies on clinicians’ expertise, often leading to 
subjective variability, diagnostic delays, and 
inconsistent accuracy. Experts have noted that 
manual grading of conditions such as capil-
lary non-perfusion is subjective and difficult to 
standardize, emphasizing the need for artificial 
intelligence (AI) tools to enhance efficiency and 
consistency [30].

In recent years, advancements in AI, particu-
larly deep learning and machine learning, have 
transformed medical image analysis. Within 
ophthalmology, AI-assisted analysis of FFA 
images has gained considerable momentum, 
demonstrating robust performance in auto-
mated diagnosis, lesion detection, pathology 
segmentation, and medical report generation 
[37]. For example, FFA-Lens developed by Veena 
et al. [20] can automate the identification of 
lesions, helping to increase diagnostic efficiency 
and improve clinical disease management strate-
gies. Moreover, Nunez do Rio et al.’s deep learn-
ing model automates capillary non-perfusion 
segmentation and quantification in ultrawide 
field fluorescein angiography images, improv-
ing detection consistency and reducing manual 
grading variability [30]. These AI-assisted models 
significantly alleviate the workload of healthcare 
professionals, achieving promising results in 
diagnostic accuracy and disease management, 
indicating the great potential to improve clini-
cal efficiency. From a health economics perspec-
tive, the integration of AI into ophthalmic diag-
nostics has the potential to significantly reduce 
healthcare costs by improving early detection, 
minimizing unnecessary treatments, and opti-
mizing resource allocation, particularly in areas 
with limited access to retinal specialists [17, 
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40]. In conclusion, AI-assisted analysis of FFA 
images not only improves diagnostic speed and 
accuracy, reduces healthcare costs [1, 17], but 
also undertakes multiple tasks such as pathol-
ogy segmentation, greatly easing the burden on 
ophthalmologists.

This systematic review aims to assess recent 
progress in the application of AI technologies for 
the analysis of FFA images from 2019 to 2024. 
Specifically, this review focuses on AI-assisted 
lesion detection, diagnostic support, and report 
generation, examining how AI enhances diag-
nostic accuracy, reduces diagnostic time, and 
improves clinical workflows. By consolidating 
current research findings, this review highlights 
key advancements in AI-assisted FFA analysis 
and explores their potential implications for 
clinical practice in ophthalmology.

METHODS

This systematic review was conducted in com-
pliance with the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) 
guidelines. The objective was to evaluate the 
role of AI in ophthalmology, particularly in the 
analysis of FFA for diagnostic purposes.

Search Strategy

A comprehensive literature search was per-
formed across PubMed, Google Scholar, and 
Web of Science databases from January 1, 2019 
to August 1, 2024. Keywords were selected from 
three topics of interest: FFA-related terms (fun-
dus fluorescein angiography, FFA, retinal fluo-
rescein angiography, fluorescein angiogram), 
AI-related terms (artificial intelligence, deep 
learning, machine learning) and ophthalmol-
ogy-related terms (ophthalmology, eye diseases, 
ophthalmic disorders, ophthalmic diagnostics).

The final combined term is as follows: (“Oph-
thalmology” OR “Eye Diseases” OR “Ophthalmic 
Disorders” OR “Ophthalmic Diagnostics”) AND 
(“Artificial Intelligence” OR “Deep Learning” OR 
“Machine Learning”) AND (“Fundus Fluorescein 
Angiography” OR “FFA” OR “Retinal Fluorescein 
Angiography” OR “Fluorescein Angiogram”). 

The terms from each category were cross-refer-
enced independently with terms from the other 
category.

Inclusion and Exclusion Criteria

For this systematic review, we targeted literature 
published between January 1, 2019 and August 
1, 2024 to encompass the latest research. Our 
initial search yielded 224 potential articles based 
on titles and abstracts. We included studies that 
were reviews or original research, all concentrat-
ing on the use of AI in ophthalmology, with an 
emphasis on automatic FFA image analysis for 
tasks from lesion detection to report generation.

Exclusions were applied for: (1) non-English 
articles, (2) duplicate publications, (3) content 
outside the scope of ophthalmology or AI appli-
cations, (4) conference abstracts, and (5) non-
empirical works like editorials, case reports, and 
commentaries.

Figure 1 outlines the research process of AI-
assisted FFA image analysis, including detailed 
steps of literature screening and inclusion 
criteria.

Study Selection and Quality Assessment

Eligibility assessment was conducted by two 
independent reviewers, with disagreements 
resolved through consensus or by a third 
reviewer. The quality of the included studies 
was assessed based on predefined criteria such 
as study design, methodology, and validity of 
AI algorithms used.

Data Extraction and Analysis

A standardized data abstraction form was used 
to extract the following data from the selected 
studies: key themes, information on datasets, the 
purpose, and methods of AI-assisted FFA image 
analysis, as well as the results and conclusions.

In addition, we gave particular attention 
to how AI models processed FFA images—
whether they analyzed single images or the 
entire sequence. Given the dynamic nature of 
FFA, this distinction is crucial for ensuring the 
completeness and accuracy of the analysis. If 
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only individual frames are considered, valu-
able temporal information may be lost, which 
could affect the overall interpretation. There-
fore, studies where AI models accounted for 
the full image sequence were prioritized in our 
analysis.

We have identified and synthesized key 
themes on the supportive role of AI in identi-
fying FFA images. These themes are presented 
clearly to explain the current state of the field. 
Table 1 summarizes the studies on AI-assisted 

FFA image analysis, including model perfor-
mance and areas of application.

Ethical Approval

This article is based on previously conducted stud-
ies and does not contain any new studies with 
human participants or animals performed by any 
of the authors.

Fig. 1   The preferred reporting items for systematic reviews 
and meta-analyses (PRISMA) 2020 flow diagram for the 
systematic review of artificial intelligence analysis tools of 

fundus fluorescein angiography (FFA) images. It should 
be noted that the excluded records contained non-English 
papers (e.g., German, French, Chinese, Japanese)
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RESULTS

According to our review, in recent years, there 
has been significant progress in the AI-assisted 
analysis of FFA images, particularly in three 
main areas: identifying lesions, aiding in diag-
nostics, and generating automatic reports. 
This review highlights the key achievements 
in each area, emphasizing the specific methods 
and contributions from various research teams. 
These studies have utilized advanced deep-
learning models and algorithms to improve the 
accuracy and efficiency of FFA image analysis, 
with tangible applications in clinical practice. 
Figure 2 shows the process of analyzing FFA 
images using an AI model.

Lesion Detection

AI-driven lesion detection in FFA images has 
made substantial progress, particularly in the 
identification and segmentation of retinal 
abnormalities. Several research teams have 
employed deep learning models to detect and 
classify lesions, improving both accuracy and 
speed in clinical workflows.

In addition to lesion detection, fluorescein 
leakage, and staining are critical in diagnosing 
retinal diseases using FFA. These features help 
detect conditions like diabetic macular edema 
(DME) and AMD, as well as identify microaneu-
rysms, non-perfused areas, and vascular abnor-
malities [12]. AI can enhance the accuracy of 
these assessments, supporting more precise dis-
ease evaluation and treatment planning.

Fig. 2   In this flowchart, fundus fluorescein angiography 
(FFA) images are first obtained and then the sequence pho-
tos are processed developing an artificial intelligence (AI) 
model to identify lesions, provide diagnostic support, and 
generate a comprehensive report. The AI-driven approach 
streamlines the ophthalmic diagnostic workflow, improv-
ing accuracy and efficiency. The figure was created with 

BioGDP.​com. The icons of reinforcement learning, unsu-
pervised learning, and supervised learning are created by 
orvipixel. Other icons are created by Freepik. The machine 
picture is taken from https://​www.​micro​clear​tech.​com/​
zh/​produ​ct?​type=​all. The FFA images were taken from Eye 
Center, The Second Affiliated Hospital, School of Medi-
cine, Zhejiang University

https://biogdp.com
https://www.microcleartech.com/zh/product?type=all
https://www.microcleartech.com/zh/product?type=all
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For example, the detection and segmenta-
tion of non-perfusion areas (NPA) in DME were 
a key focus of Jin et al. [18], who utilized deep 
learning models to compare performance with 
human experts. The study included 3014 FFA 
sequence images of 221 patients with DME. 
The top-performing model achieved an average 
NPA detection precision of 0.643, demonstrating 
significant potential for automatic detection of 
retinal lesions, including fluorescein leakage and 
staining patterns, in FFA images for the diag-
nosis and monitoring of DME. This research 
indicates that deep learning models could play 
a crucial role in improving the accuracy and 
speed of retinal disease diagnosis, particularly 
in detecting critical features such as leakage and 
abnormal vascular patterns.

Similarly, the team of Sun [35] proposed a 
multi-path cascade U-Net (MCU-net) architec-
ture for vessel segmentation in FFA sequence 
images. This model integrates vessel features 
from different image modalities to enhance seg-
mentation accuracy. Trained and tested on both 
the public external dataset and internal data, 
MCU-net outperformed current state-of-the-art 
methods in terms of F1 score, sensitivity, and 
accuracy. Notably, the model excelled at preserv-
ing fine details, such as microvasculature and 
vascular connectivity. The MCU-net also dem-
onstrated robustness in handling FFA images 
captured at different perfusion stages, showing 
potential for the accurate quantification of ves-
sel morphology in FFA sequences. This method 
provides valuable tools for detailed vascular seg-
mentation and analysis, with promising applica-
tions in clinical retinal imaging.

These advancements highlight the growing 
potential of AI to enhance precision in retinal 
lesion detection, providing valuable support to 
clinicians while reducing diagnostic variability 
and workload.

Diagnostic Support

AI-assisted diagnostic support has shown 
great potential in automating and improv-
ing the accuracy of disease diagnosis from FFA 
images. Several research teams have focused on 
using deep learning models to aid clinicians in 

diagnosing retinal conditions such as RVO, DR, 
and AMD. Key studies have employed novel AI 
architectures to enhance diagnostic precision 
and efficiency.

A detailed study aimed at developing a deep 
learning system for the automatic diagnosis of 
RVO in FFA images was carried out by Huang 
et al. [16], demonstrating improved accuracy. 
The study included 4028 FFA sequence images 
of 467 eyes from 463 patients, which were col-
lected and annotated. When compared to oph-
thalmologists, the accuracy of the best model 
was able to equal or even exceed that of ophthal-
mologists for most of the labels. These findings 
highlight the potential of deep learning mod-
els in assisting medical professionals in image 
analysis tasks.

Addressing the challenges of detecting DR, 
RVO, and AMD, Li et al. [24] combined convolu-
tional neural networks (CNNs) with an attention 
mechanism for multi-label classification of FFA 
and color fundus photography (CFP) images. In 
this study, they curated a dataset consisting of 
15,089 CFPs obtained from 8110 patients who 
underwent FFA examination. Their model dem-
onstrated high area under curve (AUC) values 
and reliable F1 scores in detecting these con-
ditions. In some instances, its performance 
matched that of human ophthalmologists, 
underscoring the potential of AI in automat-
ing the detection of major retinal diseases. This 
approach shows how deep learning can effec-
tively handle complex multi-disease tasks, mak-
ing it a valuable tool for clinical diagnosis.

Gao et  al. [11] focused on the automatic 
analysis of FFA images from patients with DR. 
They collected 15,599 sequence images from 
1558 eyes of 845 patients and used this dataset 
to train three CNN models to evaluate image 
quality, eye localization, and disease staging. 
The model that performed best achieved diag-
nostic accuracy ranging from 80.79 to 93.34% in 
pre-diagnosis evaluations and 63.67 to 88.88% 
in lesion detection. The performance of the AI 
models was comparable to that of junior oph-
thalmologists, demonstrating the potential 
of CNN models in assisting with automatic 
diagnosis.

AI-driven systems have shown great promise 
in supporting the diagnosis of retinal diseases 
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through automatic analysis of FFA images. 
Advanced deep learning architectures have 
improved the detection and classification of 
conditions such as RVO, DR, and AMD. By 
enhancing diagnostic accuracy and efficiency, 
AI is emerging as a powerful tool that can 
complement human expertise, offering reli-
able, faster diagnostic support and contribut-
ing to improved clinical decision-making in 
ophthalmology.

Report Generation

AI-driven automatic report generation from FFA 
images has significantly advanced, reducing the 
reliance on retinal specialists and improving effi-
ciency. Several research teams have developed 
systems that not only generate detailed reports 
but also offer interactive question-answering 
capabilities.

An AI system for automating the interpreta-
tion of FFA images, including report generation 
and medical question-answering, was developed 
by Chen et al. [6, 7]. The model, trained on 
654,343 FFA images and 9392 reports, consists 
of Bootstrapping Language-Image Pre-training 
framework for report generation and Llama 2 
for interactive Q&A. It generates coherent, free-
text reports that provide detailed descriptions of 
the examination site, angiographic process, and 
clinical indications, closely matching the stand-
ardized reports written by ophthalmologists. 
Its impression section can accurately diagnose 
specific retinal conditions, rather than offering 
generic diagnostic patterns. Additionally, the 
system can address open-ended diagnostic ques-
tions, providing further context or clarification 
for clinicians.

Similarly, the multi-task AI system Ai-Doctor, 
introduced by Zhao et al. [45], was designed to 
automatically interpret FFA images and assist in 
the diagnosis and treatment of ischemic retinal 
diseases (IRDs). Trained on 24,316 FFA images, 
Ai-Doctor demonstrated high accuracy in image 
stage identification, IRD diagnosis, and segmen-
tation of NPA and branch RVO regions. In the 
reports generated by Ai-Doctor, the image phase, 
disease diagnosis, ischemic area segmentation, 
and calculation of the ischemic index are clearly 

displayed, providing a comprehensive summary 
of the disease’s progression. These reports are 
essential for guiding clinical decisions, such 
as laser treatment, and help clinicians assess 
ischemic severity in a timely manner. Ai-Doctor 
is expected to reduce reliance on retinal special-
ists, particularly in resource-limited settings, 
while providing an efficient tool for clinicians 
and researchers. Its utility is poised for further 
validation in broader clinical environments, 
making it a promising solution for enhancing 
diagnostic workflows and treatment planning.

Overall, automatic report generation from 
FFA images has seen notable advancements with 
AI, streamlining the interpretation process and 
reducing the dependence on retinal specialists. 
AI systems are now capable of generating com-
prehensive, clinically relevant reports, offering 
interactive question-answering capabilities, and 
providing key diagnostic information like dis-
ease identification, image phase analysis, and 
ischemic area segmentation. These develop-
ments significantly enhance the efficiency of 
diagnostic workflows, particularly in managing 
IRDs [45], where AI systems provide accurate 
and timely insights for clinical decision-making.

DISCUSSION

In recent years, AI-assisted analysis of FFA images 
has emerged as a transformative approach in 
ophthalmology, significantly enhancing the 
efficiency and accuracy of disease diagnosis. AI 
technologies, particularly those algorithms, are 
revolutionizing how conditions such as DR and 
AMD are detected and monitored on deep learn-
ing. These advancements are paving the way for 
more precise and timely interventions, improv-
ing patient outcomes [21, 32].

One notable benefit of AI in this field is the 
capability to facilitate large-scale screening initi-
atives. AI systems, like the EyeArt platform [33], 
have been successfully implemented in com-
munity health settings to screen for DR. These 
systems allow for the rapid assessment of thou-
sands of patients, demonstrating high sensitiv-
ity and specificity in detecting the disease. This 
capability is particularly crucial in regions with 
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a high prevalence of diabetes, as early detection 
through these automatic systems can signifi-
cantly reduce the risk of vision loss [32].

Moreover, incorporating AI into FFA image 
analysis leads to considerable cost savings. A 
cost-offset analysis of AI-assisted glaucoma 
screening in rural China revealed that inte-
grating AI technology can decrease unneces-
sary referrals and treatments, thereby lowering 
overall healthcare expenses [39]. By optimizing 
resource allocation and reducing misdiagnosis 
rates, AI contributes to the economic sustain-
ability of healthcare systems [8].

The integration of AI with telemedicine helps 
bridge healthcare gaps, particularly in under-
served or remote areas. AI systems can auto-
mate initial screenings and provide diagnostic 
insights, allowing healthcare providers to pri-
oritize patients who require in-person care. In 
teleophthalmology, this synergy is particularly 
effective, as AI-driven analysis can efficiently 
triage cases, identifying those needing urgent 
follow-ups. For instance, outreach programs in 
Western Australia have successfully combined 
AI and teleophthalmology to extend specialist 
care to remote communities, maximizing lim-
ited resources and improving access to timely 
diagnosis [8].

Additionally, AI systems significantly reduce 
the clinical burden on ophthalmologists by 
automating routine diagnostic tasks, allowing 
clinicians to focus on more complex cases and 
enhances their interactions with patients. For 
example, under the guidance of AI, clinicians 
can spend less time on preliminary evaluations 
and more time on treatment strategies and 
patient education [21]. Compared to traditional 
manual methods, AI also offers superior diag-
nostic accuracy and improves time efficiency, 
especially for large or complex datasets [8].

Overall, the integration of AI in FFA analysis 
presents numerous advantages, including facili-
tating large-scale screenings, achieving cost sav-
ings, ensuring equitable healthcare distribution 
through telemedicine, and alleviating clinical 
burdens. These advancements underscore the 
transformative potential of AI in improving 
patient outcomes and optimizing healthcare 
delivery. Future efforts should focus on address-
ing associated challenges to maximize these 

benefits, ensuring that AI serves as a valuable 
ally to healthcare professionals rather than a 
replacement [8, 32].

Although AI-assisted analysis of FFA images 
offers great potential, several limitations need 
to be addressed for its successful integration into 
clinical practice [19, 23].

One of the primary challenges for AI in oph-
thalmology is ensuring generalizability. Many AI 
models are trained on datasets lacking diversity, 
often underrepresenting certain populations, 
which leads to reduced accuracy when applied 
to different ethnic or geographic groups. This is 
particularly significant in ophthalmology, where 
retinal diseases manifest differently across popu-
lations [33]. For instance, models trained on spe-
cific groups may struggle to generalize, affecting 
the reliability of diagnoses in diverse settings. 
Additionally, AI systems that perform well in 
controlled environments often see a decline in 
accuracy when applied to real-world clinical sce-
narios, where factors such as image quality and 
equipment variability can differ [33]. To address 
these challenges, expanding datasets to include 
a broader range of patient groups, and validating 
models across various clinical environments and 
imaging devices, is essential. Collaborative data-
sharing efforts, the use of synthetic data gen-
eration methods (such as generative adversarial 
networks), and federated learning approaches 
can help improve the diversity and robustness 
of AI models [3, 11]. Federated learning, in par-
ticular, allows multiple institutions to collabo-
ratively train models without sharing sensitive 
patient data, thus addressing privacy concerns 
and improving generalizability across diverse 
populations [22].

Technical and logistical challenges also pre-
sent barriers to the widespread adoption of 
AI in FFA analysis. AI systems often require 
advanced infrastructure, including high-qual-
ity imaging devices and stable internet con-
nectivity for cloud-based processing. These 
requirements can be challenging to meet in 
resource-limited settings, restricting the acces-
sibility of AI technologies. Solutions include 
developing AI systems that are compatible with 
a broader range of imaging devices and can 
function with minimal technical infrastruc-
ture. Additionally, ensuring that healthcare 
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providers receive proper training on how to use 
AI systems effectively is critical for successful 
integration [43]. Building AI literacy among 
clinicians and healthcare professionals will be 
essential to ensure they can trust and utilize AI 
tools appropriately, for example by incorporat-
ing AI training into medical education, which 
will make AI technologies more accessible and 
effective in clinical settings [14]. Moreover, 
addressing cost factors, including the initial 
investment in technology and training, is cru-
cial to ensure AI systems remain both afford-
able and sustainable in clinical practice [28].

In addition to these specific challenges, there 
are more general concerns around transparency 
and explainability, data privacy, and regula-
tory oversight. Many AI models, especially deep 
learning systems, function as “black boxes”, 
making it difficult for clinicians to understand 
how the AI arrives at its conclusions. This lack 
of transparency can create mistrust and slow 
adoption [33]. The development of explain-
able AI systems, which provide insights into the 
decision-making process, will be key to building 
clinician confidence in these tools. Moreover, 
data privacy must be safeguarded by adhering 
to regulations like General Data Protection Regu-
lation, and robust ethical frameworks must be 
implemented to ensure responsible AI use.

By addressing these challenges—improving 
data diversity, conducting broader clinical vali-
dation, reducing technical barriers, and ensur-
ing ethical compliance—AI can fully realize its 
potential in enhancing FFA image analysis and 
improving patient care in ophthalmology.

However, FFA examination also has some 
limitations, especially its invasive nature, as it 
requires dye injection, which can cause discom-
fort and allergic reactions in some patients. This 
makes it less ideal for frequent monitoring or 
for patients with contraindications. As an alter-
native, optical coherence tomography angiog-
raphy (OCTA) offers a non-invasive solution. 
OCTA provides high-resolution images of reti-
nal blood vessels without the need for dye, mak-
ing it safer and more comfortable for patients 
[2]. When combined with AI, OCTA can further 
improve diagnostic accuracy and accessibility, 
especially in settings where invasive procedures 
are not feasible.

The systematic review provides a broad per-
spective on AI advancements in FFA image anal-
ysis from 2019 to 2024, backed by a rigorous 
search across multiple databases and a stringent 
selection process, ensuring a high-quality syn-
thesis of current research. Despite its strengths, 
several limitations need to be considered. One 
key challenge is publication bias, particularly 
the underreporting of negative findings, which 
can skew the overall understanding of the field. 
To mitigate this, future research should empha-
size publishing null or negative results, and 
journals could adopt policies encouraging such 
submissions [4]. Additionally, the exclusion of 
non-English studies in our review may limit the 
scope and omit valuable global insights; future 
reviews should aim to include studies from a 
broader range of languages for a more compre-
hensive perspective. Finally, the rapid pace of 
AI advancements makes it difficult to stay up-
to-date. However, continuous tracking of recent 
publications, including preprints and early-stage 
research, will help ensure the inclusion of the 
latest studies. Despite these limitations, the 
review offers valuable insights into AI’s potential 
to enhance diagnostic accuracy and efficiency in 
ophthalmology.

CONCLUSIONS

The application of AI in FFA image analysis 
has brought significant benefits to ophthalmic 
diagnostics, including improved precision, faster 
workflow efficiency, and reduced clinician work-
load through automation of tasks such as lesion 
detection and report generation. AI systems also 
enhance diagnostic consistency by minimizing 
human error and variability, offering more reli-
able insights for clinical decision-making.

However, challenges remain in fully integrat-
ing AI into clinical practice. Ensuring data diver-
sity is essential for improving AI’s performance 
across different populations, while enhancing 
model transparency is crucial to building trust 
in AI’s decision-making processes. Addressing 
these issues will be key to further integrating AI 
into clinical practice [29].



617Ophthalmol Ther (2025) 14:599–619	

Although there are challenges, the role of AI 
in advancing ophthalmic diagnostics is increas-
ingly evident. By overcoming these hurdles, 
AI has the potential to significantly enhance 
patient outcomes and revolutionize ophthal-
mic care delivery, providing more accessible, 
efficient, and equitable healthcare solutions [23, 
26].
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