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ABSTRACT

Fundus fluorescein angiography (FFA) serves as
the current gold standard for visualizing retinal
vasculature and detecting various fundus dis-
eases, but its interpretation is labor-intensive
and requires much expertise from ophthal-
mologists. The medical application of artificial
intelligence (AI), especially deep learning and
machine learning, has revolutionized the field
of automatic FFA image analysis, leading to
the rapid advancements in Al-assisted lesion
detection, diagnosis, and report generation.
This review examined studies in PubMed, Web
of Science, and Google Scholar databases from
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January 2019 to August 2024, with a total of
23 articles incorporated. By integrating current
research findings, this review highlights cru-
cial breakthroughs in Al-assisted FFA analysis
and explores their potential implications for
ophthalmic clinical practice. These advances in
Al-assisted FFA analysis have shown promising
results in improving diagnostic accuracy and
workflow efficiency. However, further research
is needed to enhance model transparency and
ensure robust performance across diverse pop-
ulations. Challenges such as data privacy and
technical infrastructure remain for broader clini-
cal applications.
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Key Summary Points

Why carry out this study?

Retinal diseases are major causes of vision
impairment globally, affecting millions and
burdening healthcare systems. Fluorescein
fundus angiography (FFA), the gold standard
for diagnosing these diseases, is labor-inten-
sive and subject to variability, causing diag-
nostic delays.

This study investigates whether artificial
intelligence (AI) can enhance diagnostic
accuracy and workflow efficiency in FFA
image analysis, improving clinical workflow
in ophthalmology.

What was learned from the study?

Al tools significantly improve diagnostic
accuracy and workflow efficiency in FFA
analysis, with advancements in automated
lesion detection, diagnostic support, and
report generation.

Al can reduce ophthalmologists’ work-
loads, support large-scale screening, achieve
cost-savings, and expand healthcare access
through telemedicine. Despite promis-

ing results, challenges remain, including
the need for diverse datasets, transparent

Al models, and smoother integration into
clinical workflows to ensure broader clinical
adoption.

INTRODUCTION

Retinal diseases, such as diabetic retinopathy
(DR), retinal vein occlusion (RVO), and age-
related macular degeneration (AMD), are lead-
ing causes of vision impairment globally [19,
32]. For instance, in 2020, it was estimated that
103.12 million people were affected by DR, with
numbers projected to rise to 160.50 million by

20435 [36], posing a significant burden on health-
care systems worldwide. Fundus fluorescein
angiography (FFA) has long been regarded as
the gold standard for detecting retinal vascular
abnormalities associated with these diseases [1].
By utilizing FFA imaging, clinicians can detect
and analyze retinal lesions, assess microvascu-
lar structures and blood flow, and generate com-
prehensive diagnostic reports, each essential for
accurately diagnosing conditions and guiding
therapeutic decisions [11].

Nevertheless, the traditional manual inter-
pretation of FFA images is time-consuming and
relies on clinicians’ expertise, often leading to
subjective variability, diagnostic delays, and
inconsistent accuracy. Experts have noted that
manual grading of conditions such as capil-
lary non-perfusion is subjective and difficult to
standardize, emphasizing the need for artificial
intelligence (Al) tools to enhance efficiency and
consistency [30].

In recent years, advancements in Al, particu-
larly deep learning and machine learning, have
transformed medical image analysis. Within
ophthalmology, Al-assisted analysis of FFA
images has gained considerable momentum,
demonstrating robust performance in auto-
mated diagnosis, lesion detection, pathology
segmentation, and medical report generation
[37]. For example, FFA-Lens developed by Veena
et al. [20] can automate the identification of
lesions, helping to increase diagnostic efficiency
and improve clinical disease management strate-
gies. Moreover, Nunez do Rio et al.’s deep learn-
ing model automates capillary non-perfusion
segmentation and quantification in ultrawide
field fluorescein angiography images, improv-
ing detection consistency and reducing manual
grading variability [30]. These Al-assisted models
significantly alleviate the workload of healthcare
professionals, achieving promising results in
diagnostic accuracy and disease management,
indicating the great potential to improve clini-
cal efficiency. From a health economics perspec-
tive, the integration of Al into ophthalmic diag-
nostics has the potential to significantly reduce
healthcare costs by improving early detection,
minimizing unnecessary treatments, and opti-
mizing resource allocation, particularly in areas
with limited access to retinal specialists [17,
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40]. In conclusion, Al-assisted analysis of FFA
images not only improves diagnostic speed and
accuracy, reduces healthcare costs [1, 17], but
also undertakes multiple tasks such as pathol-
ogy segmentation, greatly easing the burden on
ophthalmologists.

This systematic review aims to assess recent
progress in the application of Al technologies for
the analysis of FFA images from 2019 to 2024.
Specifically, this review focuses on Al-assisted
lesion detection, diagnostic support, and report
generation, examining how Al enhances diag-
nostic accuracy, reduces diagnostic time, and
improves clinical workflows. By consolidating
current research findings, this review highlights
key advancements in Al-assisted FFA analysis
and explores their potential implications for
clinical practice in ophthalmology.

METHODS

This systematic review was conducted in com-
pliance with the preferred reporting items for
systematic reviews and meta-analyses (PRISMA)
guidelines. The objective was to evaluate the
role of Al in ophthalmology, particularly in the
analysis of FFA for diagnostic purposes.

Search Strategy

A comprehensive literature search was per-
formed across PubMed, Google Scholar, and
Web of Science databases from January 1, 2019
to August 1, 2024. Keywords were selected from
three topics of interest: FFA-related terms (fun-
dus fluorescein angiography, FFA, retinal fluo-
rescein angiography, fluorescein angiogram),
Al-related terms (artificial intelligence, deep
learning, machine learning) and ophthalmol-
ogy-related terms (ophthalmology, eye diseases,
ophthalmic disorders, ophthalmic diagnostics).

The final combined term is as follows: (“Oph-
thalmology” OR “Eye Diseases” OR “Ophthalmic
Disorders” OR “Ophthalmic Diagnostics”) AND
(“Artificial Intelligence” OR “Deep Learning” OR
“Machine Learning”) AND (“Fundus Fluorescein
Angiography” OR “FFA” OR “Retinal Fluorescein
Angiography” OR “Fluorescein Angiogram”).

The terms from each category were cross-refer-
enced independently with terms from the other
category.

Inclusion and Exclusion Criteria

For this systematic review, we targeted literature
published between January 1, 2019 and August
1, 2024 to encompass the latest research. Our
initial search yielded 224 potential articles based
on titles and abstracts. We included studies that
were reviews or original research, all concentrat-
ing on the use of Al in ophthalmology, with an
emphasis on automatic FFA image analysis for
tasks from lesion detection to report generation.

Exclusions were applied for: (1) non-English
articles, (2) duplicate publications, (3) content
outside the scope of ophthalmology or Al appli-
cations, (4) conference abstracts, and (5) non-
empirical works like editorials, case reports, and
commentaries.

Figure 1 outlines the research process of Al-
assisted FFA image analysis, including detailed
steps of literature screening and inclusion
criteria.

Study Selection and Quality Assessment

Eligibility assessment was conducted by two
independent reviewers, with disagreements
resolved through consensus or by a third
reviewer. The quality of the included studies
was assessed based on predefined criteria such
as study design, methodology, and validity of
Al algorithms used.

Data Extraction and Analysis

A standardized data abstraction form was used
to extract the following data from the selected
studies: key themes, information on datasets, the
purpose, and methods of Al-assisted FFA image
analysis, as well as the results and conclusions.

In addition, we gave particular attention
to how Al models processed FFA images—
whether they analyzed single images or the
entire sequence. Given the dynamic nature of
FFA, this distinction is crucial for ensuring the
completeness and accuracy of the analysis. If
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Identification of new studies via databases and registers

s Records identified from:
® Databases (n = 224). Records removed before screening:
= Pubmed (n = 34) Duplicate records (n = 20)
z web of science (n = 22)
ﬁ Google scholar (n = 168)
Records screened Records excluded
(n=204) (n=175)
4
=2 Reports sought for retrieval Reports not retrieved
= (n=29) (n=0)
=
(0]
()
3]
(%3}
Reports excluded:
Reports assessed for eligibility conference abstract (n = 4)
(n=29) review (n=1)
protocol (n=1)
4
] . y .
2 New studies included in review
2 (n=23)
=

Fig. 1 The preferred reporting items for systematic reviews
and meta-analyses (PRISMA) 2020 flow diagram for the
systematic review of artificial intelligence analysis tools of

only individual frames are considered, valu-
able temporal information may be lost, which
could affect the overall interpretation. There-
fore, studies where AI models accounted for
the full image sequence were prioritized in our
analysis.

We have identified and synthesized key
themes on the supportive role of Al in identi-
tying FFA images. These themes are presented
clearly to explain the current state of the field.
Table 1 summarizes the studies on Al-assisted

fundus fluorescein angiography (FFA) images. It should
be noted that the excluded records contained non-English
papers (e.g., German, French, Chinese, Japanese)

FFA image analysis, including model perfor-
mance and areas of application.

Ethical Approval

This article is based on previously conducted stud-
ies and does not contain any new studies with
human participants or animals performed by any
of the authors.
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RESULTS

According to our review, in recent years, there
has been significant progress in the Al-assisted
analysis of FFA images, particularly in three
main areas: identifying lesions, aiding in diag-
nostics, and generating automatic reports.
This review highlights the key achievements
in each area, emphasizing the specific methods
and contributions from various research teams.
These studies have utilized advanced deep-
learning models and algorithms to improve the
accuracy and efficiency of FFA image analysis,
with tangible applications in clinical practice.
Figure 2 shows the process of analyzing FFA
images using an Al model.

Preprocessing

FFA imaging

)

l Reinforcement Unsupervised Supervised
learning learning

learning

‘V
He

B

Boe

Lesion Detection

Al-driven lesion detection in FFA images has
made substantial progress, particularly in the
identification and segmentation of retinal
abnormalities. Several research teams have
employed deep learning models to detect and
classify lesions, improving both accuracy and
speed in clinical workflows.

In addition to lesion detection, fluorescein
leakage, and staining are critical in diagnosing
retinal diseases using FFA. These features help
detect conditions like diabetic macular edema
(DME) and AMD, as well as identify microaneu-
rysms, non-perfused areas, and vascular abnor-
malities [12]. Al can enhance the accuracy of
these assessments, supporting more precise dis-
ease evaluation and treatment planning.

Lesion detection

L0 8.0J
=

=2 o]

g
Diagnostic support

a=

Image sequences

Data collection

Validation and test

Model development

'
Report generation

Application

Fig.2 In this flowchart, fundus fluorescein angiography
(FFA) images are first obtained and then the sequence pho-
tos are processed developing an artificial intelligence (AI)
model to identify lesions, provide diagnostic support, and
generate a comprehensive report. The Al-driven approach
streamlines the ophthalmic diagnostic workflow, improv-
ing accuracy and efficiency. The figure was created with

BioGDP.com. The icons of reinforcement learning, unsu-
pervised learning, and supervised learning are created by
orvipixel. Other icons are created by Freepik. The machine
picture is taken from https://www.microcleartech.com/
zh/product?type=all. The FFA images were taken from Eye
Center, The Second Afhiliated Hospital, School of Medi-

cine, Zhejiang University
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For example, the detection and segmenta-
tion of non-perfusion areas (NPA) in DME were
a key focus of Jin et al. [18], who utilized deep
learning models to compare performance with
human experts. The study included 3014 FFA
sequence images of 221 patients with DME.
The top-performing model achieved an average
NPA detection precision of 0.643, demonstrating
significant potential for automatic detection of
retinal lesions, including fluorescein leakage and
staining patterns, in FFA images for the diag-
nosis and monitoring of DME. This research
indicates that deep learning models could play
a crucial role in improving the accuracy and
speed of retinal disease diagnosis, particularly
in detecting critical features such as leakage and
abnormal vascular patterns.

Similarly, the team of Sun [35] proposed a
multi-path cascade U-Net (MCU-net) architec-
ture for vessel segmentation in FFA sequence
images. This model integrates vessel features
from different image modalities to enhance seg-
mentation accuracy. Trained and tested on both
the public external dataset and internal data,
MCU-net outperformed current state-of-the-art
methods in terms of F1 score, sensitivity, and
accuracy. Notably, the model excelled at preserv-
ing fine details, such as microvasculature and
vascular connectivity. The MCU-net also dem-
onstrated robustness in handling FFA images
captured at different perfusion stages, showing
potential for the accurate quantification of ves-
sel morphology in FFA sequences. This method
provides valuable tools for detailed vascular seg-
mentation and analysis, with promising applica-
tions in clinical retinal imaging.

These advancements highlight the growing
potential of Al to enhance precision in retinal
lesion detection, providing valuable support to
clinicians while reducing diagnostic variability
and workload.

Diagnostic Support

Al-assisted diagnostic support has shown
great potential in automating and improv-
ing the accuracy of disease diagnosis from FFA
images. Several research teams have focused on
using deep learning models to aid clinicians in

diagnosing retinal conditions such as RVO, DR,
and AMD. Key studies have employed novel Al
architectures to enhance diagnostic precision
and efficiency.

A detailed study aimed at developing a deep
learning system for the automatic diagnosis of
RVO in FFA images was carried out by Huang
et al. [16], demonstrating improved accuracy.
The study included 4028 FFA sequence images
of 467 eyes from 463 patients, which were col-
lected and annotated. When compared to oph-
thalmologists, the accuracy of the best model
was able to equal or even exceed that of ophthal-
mologists for most of the labels. These findings
highlight the potential of deep learning mod-
els in assisting medical professionals in image
analysis tasks.

Addressing the challenges of detecting DR,
RVO, and AMD, Li et al. [24] combined convolu-
tional neural networks (CNNs) with an attention
mechanism for multi-label classification of FFA
and color fundus photography (CFP) images. In
this study, they curated a dataset consisting of
15,089 CFPs obtained from 8110 patients who
underwent FFA examination. Their model dem-
onstrated high area under curve (AUC) values
and reliable F1 scores in detecting these con-
ditions. In some instances, its performance
matched that of human ophthalmologists,
underscoring the potential of Al in automat-
ing the detection of major retinal diseases. This
approach shows how deep learning can effec-
tively handle complex multi-disease tasks, mak-
ing it a valuable tool for clinical diagnosis.

Gao et al. [11] focused on the automatic
analysis of FFA images from patients with DR.
They collected 15,599 sequence images from
1558 eyes of 845 patients and used this dataset
to train three CNN models to evaluate image
quality, eye localization, and disease staging.
The model that performed best achieved diag-
nostic accuracy ranging from 80.79 to 93.34% in
pre-diagnosis evaluations and 63.67 to 88.88%
in lesion detection. The performance of the Al
models was comparable to that of junior oph-
thalmologists, demonstrating the potential
of CNN models in assisting with automatic
diagnosis.

Al-driven systems have shown great promise
in supporting the diagnosis of retinal diseases
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through automatic analysis of FFA images.
Advanced deep learning architectures have
improved the detection and classification of
conditions such as RVO, DR, and AMD. By
enhancing diagnostic accuracy and efficiency,
Al is emerging as a powerful tool that can
complement human expertise, offering reli-
able, faster diagnostic support and contribut-
ing to improved clinical decision-making in
ophthalmology.

Report Generation

Al-driven automatic report generation from FFA
images has significantly advanced, reducing the
reliance on retinal specialists and improving effi-
ciency. Several research teams have developed
systems that not only generate detailed reports
but also offer interactive question-answering
capabilities.

An Al system for automating the interpreta-
tion of FFA images, including report generation
and medical question-answering, was developed
by Chen et al. [6, 7]. The model, trained on
654,343 FFA images and 9392 reports, consists
of Bootstrapping Language-Image Pre-training
framework for report generation and Llama 2
for interactive Q&A. It generates coherent, free-
text reports that provide detailed descriptions of
the examination site, angiographic process, and
clinical indications, closely matching the stand-
ardized reports written by ophthalmologists.
Its impression section can accurately diagnose
specific retinal conditions, rather than offering
generic diagnostic patterns. Additionally, the
system can address open-ended diagnostic ques-
tions, providing further context or clarification
for clinicians.

Similarly, the multi-task Al system Ai-Doctor,
introduced by Zhao et al. [45], was designed to
automatically interpret FFA images and assist in
the diagnosis and treatment of ischemic retinal
diseases (IRDs). Trained on 24,316 FFA images,
Ai-Doctor demonstrated high accuracy in image
stage identification, IRD diagnosis, and segmen-
tation of NPA and branch RVO regions. In the
reports generated by Ai-Doctor, the image phase,
disease diagnosis, ischemic area segmentation,
and calculation of the ischemic index are clearly

displayed, providing a comprehensive summary
of the disease’s progression. These reports are
essential for guiding clinical decisions, such
as laser treatment, and help clinicians assess
ischemic severity in a timely manner. Ai-Doctor
is expected to reduce reliance on retinal special-
ists, particularly in resource-limited settings,
while providing an efficient tool for clinicians
and researchers. Its utility is poised for further
validation in broader clinical environments,
making it a promising solution for enhancing
diagnostic workflows and treatment planning.
Overall, automatic report generation from
FFA images has seen notable advancements with
Al, streamlining the interpretation process and
reducing the dependence on retinal specialists.
Al systems are now capable of generating com-
prehensive, clinically relevant reports, offering
interactive question-answering capabilities, and
providing key diagnostic information like dis-
ease identification, image phase analysis, and
ischemic area segmentation. These develop-
ments significantly enhance the efficiency of
diagnostic workflows, particularly in managing
IRDs [45], where Al systems provide accurate
and timely insights for clinical decision-making.

DISCUSSION

In recent years, Al-assisted analysis of FFA images
has emerged as a transformative approach in
ophthalmology, significantly enhancing the
efficiency and accuracy of disease diagnosis. Al
technologies, particularly those algorithms, are
revolutionizing how conditions such as DR and
AMD are detected and monitored on deep learn-
ing. These advancements are paving the way for
more precise and timely interventions, improv-
ing patient outcomes [21, 32].

One notable benefit of Al in this field is the
capability to facilitate large-scale screening initi-
atives. Al systems, like the EyeArt platform [33],
have been successfully implemented in com-
munity health settings to screen for DR. These
systems allow for the rapid assessment of thou-
sands of patients, demonstrating high sensitiv-
ity and specificity in detecting the disease. This
capability is particularly crucial in regions with

A\ Adis



Ophthalmol Ther (2025) 14:599-619

615

a high prevalence of diabetes, as early detection
through these automatic systems can signifi-
cantly reduce the risk of vision loss [32].

Moreover, incorporating Al into FFA image
analysis leads to considerable cost savings. A
cost-offset analysis of Al-assisted glaucoma
screening in rural China revealed that inte-
grating Al technology can decrease unneces-
sary referrals and treatments, thereby lowering
overall healthcare expenses [39]. By optimizing
resource allocation and reducing misdiagnosis
rates, Al contributes to the economic sustain-
ability of healthcare systems [8].

The integration of Al with telemedicine helps
bridge healthcare gaps, particularly in under-
served or remote areas. Al systems can auto-
mate initial screenings and provide diagnostic
insights, allowing healthcare providers to pri-
oritize patients who require in-person care. In
teleophthalmology, this synergy is particularly
effective, as Al-driven analysis can efficiently
triage cases, identifying those needing urgent
follow-ups. For instance, outreach programs in
Western Australia have successfully combined
Al and teleophthalmology to extend specialist
care to remote communities, maximizing lim-
ited resources and improving access to timely
diagnosis [8].

Additionally, Al systems significantly reduce
the clinical burden on ophthalmologists by
automating routine diagnostic tasks, allowing
clinicians to focus on more complex cases and
enhances their interactions with patients. For
example, under the guidance of Al, clinicians
can spend less time on preliminary evaluations
and more time on treatment strategies and
patient education [21]. Compared to traditional
manual methods, Al also offers superior diag-
nostic accuracy and improves time efficiency,
especially for large or complex datasets [8].

Overall, the integration of Al in FFA analysis
presents numerous advantages, including facili-
tating large-scale screenings, achieving cost sav-
ings, ensuring equitable healthcare distribution
through telemedicine, and alleviating clinical
burdens. These advancements underscore the
transformative potential of Al in improving
patient outcomes and optimizing healthcare
delivery. Future efforts should focus on address-
ing associated challenges to maximize these

benefits, ensuring that Al serves as a valuable
ally to healthcare professionals rather than a
replacement [8, 32].

Although Al-assisted analysis of FFA images
offers great potential, several limitations need
to be addressed for its successful integration into
clinical practice [19, 23].

One of the primary challenges for Al in oph-
thalmology is ensuring generalizability. Many Al
models are trained on datasets lacking diversity,
often underrepresenting certain populations,
which leads to reduced accuracy when applied
to different ethnic or geographic groups. This is
particularly significant in ophthalmology, where
retinal diseases manifest differently across popu-
lations [33]. For instance, models trained on spe-
cific groups may struggle to generalize, affecting
the reliability of diagnoses in diverse settings.
Additionally, Al systems that perform well in
controlled environments often see a decline in
accuracy when applied to real-world clinical sce-
narios, where factors such as image quality and
equipment variability can differ [33]. To address
these challenges, expanding datasets to include
a broader range of patient groups, and validating
models across various clinical environments and
imaging devices, is essential. Collaborative data-
sharing efforts, the use of synthetic data gen-
eration methods (such as generative adversarial
networks), and federated learning approaches
can help improve the diversity and robustness
of Al models [3, 11]. Federated learning, in par-
ticular, allows multiple institutions to collabo-
ratively train models without sharing sensitive
patient data, thus addressing privacy concerns
and improving generalizability across diverse
populations [22].

Technical and logistical challenges also pre-
sent barriers to the widespread adoption of
Al in FFA analysis. Al systems often require
advanced infrastructure, including high-qual-
ity imaging devices and stable internet con-
nectivity for cloud-based processing. These
requirements can be challenging to meet in
resource-limited settings, restricting the acces-
sibility of AI technologies. Solutions include
developing Al systems that are compatible with
a broader range of imaging devices and can
function with minimal technical infrastruc-
ture. Additionally, ensuring that healthcare
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providers receive proper training on how to use
Al systems effectively is critical for successful
integration [43]. Building Al literacy among
clinicians and healthcare professionals will be
essential to ensure they can trust and utilize Al
tools appropriately, for example by incorporat-
ing Al training into medical education, which
will make AI technologies more accessible and
effective in clinical settings [14]. Moreover,
addressing cost factors, including the initial
investment in technology and training, is cru-
cial to ensure Al systems remain both afford-
able and sustainable in clinical practice [28].

In addition to these specific challenges, there
are more general concerns around transparency
and explainability, data privacy, and regula-
tory oversight. Many Al models, especially deep
learning systems, function as “black boxes”,
making it difficult for clinicians to understand
how the Al arrives at its conclusions. This lack
of transparency can create mistrust and slow
adoption [33]. The development of explain-
able Al systems, which provide insights into the
decision-making process, will be key to building
clinician confidence in these tools. Moreover,
data privacy must be safeguarded by adhering
to regulations like General Data Protection Regu-
lation, and robust ethical frameworks must be
implemented to ensure responsible Al use.

By addressing these challenges—improving
data diversity, conducting broader clinical vali-
dation, reducing technical barriers, and ensur-
ing ethical compliance—AI can fully realize its
potential in enhancing FFA image analysis and
improving patient care in ophthalmology.

However, FFA examination also has some
limitations, especially its invasive nature, as it
requires dye injection, which can cause discom-
fort and allergic reactions in some patients. This
makes it less ideal for frequent monitoring or
for patients with contraindications. As an alter-
native, optical coherence tomography angiog-
raphy (OCTA) offers a non-invasive solution.
OCTA provides high-resolution images of reti-
nal blood vessels without the need for dye, mak-
ing it safer and more comfortable for patients
[2]. When combined with Al, OCTA can further
improve diagnostic accuracy and accessibility,
especially in settings where invasive procedures
are not feasible.

The systematic review provides a broad per-
spective on Al advancements in FFA image anal-
ysis from 2019 to 2024, backed by a rigorous
search across multiple databases and a stringent
selection process, ensuring a high-quality syn-
thesis of current research. Despite its strengths,
several limitations need to be considered. One
key challenge is publication bias, particularly
the underreporting of negative findings, which
can skew the overall understanding of the field.
To mitigate this, future research should empha-
size publishing null or negative results, and
journals could adopt policies encouraging such
submissions [4]. Additionally, the exclusion of
non-English studies in our review may limit the
scope and omit valuable global insights; future
reviews should aim to include studies from a
broader range of languages for a more compre-
hensive perspective. Finally, the rapid pace of
Al advancements makes it difficult to stay up-
to-date. However, continuous tracking of recent
publications, including preprints and early-stage
research, will help ensure the inclusion of the
latest studies. Despite these limitations, the
review offers valuable insights into Al’s potential
to enhance diagnostic accuracy and efficiency in
ophthalmology.

CONCLUSIONS

The application of Al in FFA image analysis
has brought significant benefits to ophthalmic
diagnostics, including improved precision, faster
workflow efficiency, and reduced clinician work-
load through automation of tasks such as lesion
detection and report generation. Al systems also
enhance diagnostic consistency by minimizing
human error and variability, offering more reli-
able insights for clinical decision-making.

However, challenges remain in fully integrat-
ing Al into clinical practice. Ensuring data diver-
sity is essential for improving Al’s performance
across different populations, while enhancing
model transparency is crucial to building trust
in AI’s decision-making processes. Addressing
these issues will be key to further integrating Al
into clinical practice [29].
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Although there are challenges, the role of Al
in advancing ophthalmic diagnostics is increas-
ingly evident. By overcoming these hurdles,
Al has the potential to significantly enhance
patient outcomes and revolutionize ophthal-
mic care delivery, providing more accessible,
efficient, and equitable healthcare solutions [23,
26].

Author Contributions. Design of the work:
Tao Yu, Jian Wu, and Kai Jin. Drafting the work:
Tao Yu. Revising of the manuscript: An Shao,
Hongkang Wu, Zichang Su, Wenyue Shen, Jin-
gxin Zhou, Xingxi Lin, Danli Shi, Andrzej Grzy-
bowski. Final approval of the completed version:
all authors.

Funding. This work was financially sup-
ported by the Natural Science Foundation of
China (Grant Number 82201195). No funding
or sponsorship was received for the publication
of this article. Kai Jin funded the journal’s Rapid
Service Fee.

Data Availability. Data sharing is not appli-
cable to this article as no datasets were generated
or analyzed during the current study.

Declarations

Conflict of Interest. Andrzej Grzybowski
is an Editorial Board member of Ophthalmol-
ogy and Therapy. Andrzej Grzybowski was not
involved in the selection of peer reviewers for
the manuscript nor any of the subsequent edito-
rial decisions. Tao Yu, An Shao, Hongkang Wu,
Zichang Su, Wenyue Shen, Jingxin Zhou, Xingxi
Lin, Danli Shi, Jian Wu, and Kai Jin declare that
there are no known competing financial inter-
ests or personal relationships that could poten-
tially affect the work reported in this paper.

Ethical Approval. This article is based on
previously conducted studies and does not con-
tain any new studies with human participants or
animals performed by any of the authors.

Open Access. This article is licensed under a
Creative Commons Attribution-NonCommercial

4.0 International License, which permits any
non-commercial use, sharing, adaptation, distri-
bution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the
original author(s) and the source, provide a link
to the Creative Commons licence, and indicate
if changes were made. The images or other third
party material in this article are included in the
article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material.
If material is not included in the article’s Crea-
tive Commons licence and your intended use is
not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain per-
mission directly from the copyright holder. To
view a copy of this licence, visit http://creativeco
mmons.org/licenses/by-nc/4.0/.

REFERENCES

1. Abramoff MD, et al. Pivotal trial of an autono-
mous Al-based diagnostic system for detection of
diabetic retinopathy in primary care offices. npj
Digit Med. 2018;1(1):39.

2. Abucham-Neto JZ, et al. Comparison between opti-
cal coherence tomography angiography and fluo-
rescein angiography findings in retinal vasculitis.
Int J Retina Vitreous. 2018;4:15.

3. Biswas A, et al. Generative adversarial networks
for data augmentation. In: Zheng B, et al., edi-
tors. Data-driven approaches on medical imaging.
Cham: Springer Nature; 2023. p. 159-77.

4. Blanco-Perez C, Brodeur A. Publication bias and
editorial statement on negative findings. Econ J.
2020;130(629):1226-47.

5. Chen M, et al. Automatic detection of leakage
point in central serous chorioretinopathy of
fundus fluorescein angiography based on time
sequence deep learning. Graefes Arch Clin Exp
Ophthalmol. 2021;259(8):2401-11.

6. Chen X, et al. ChatFFA: an ophthalmic chat sys-
tem for unified vision-language understanding
and question answering for fundus fluorescein
angiography. iScience. 2024;27(7):110021.

7. Chen X, et al. FFA-GPT: an automated pipeline for
fundus fluorescein angiography interpretation and
question-answer. NPJ Digit Med. 2024;7(1):111.

A\ Adis


http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

618

Ophthalmol Ther (2025) 14:599-619

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Chia MA, Turner AW. Benefits of integrating tel-
emedicine and artificial intelligence into outreach
eye care: stepwise approach and future directions.
Front Med. 2022. https://doi.org/10.3389/fmed.
2022.835804.

El-Ateif S, Idri A. Eye diseases diagnosis using deep
learning and multimodal medical eye imaging.
Multimedia Tools Appl. 2023;83(10):30773-818.

Gao Z, et al. End-to-end diabetic retinopathy
grading based on fundus fluorescein angiography
images using deep learning. Graefes Arch Clin Exp
Ophthalmol. 2022;260(5):1663-73.

Gao Z, et al. Automatic interpretation and clini-
cal evaluation for fundus fluorescein angiography
images of diabetic retinopathy patients by deep
learning. Br ] Ophthalmol. 2023;107(12):1852-8.

Haj Najeeb B, et al. The distribution of leakage
on fluorescein angiography in diabetic macular
edema: a new approach to its etiology. Investig
Ophthalmol Vis Sci. 2017;58(10):3986-90.

Hao Z, et al. Application and observation of
artificial intelligence in clinical practice of fun-
dus screening for diabetic retinopathy with
non-mydriatic fundus photography: a retro-
spective observational study of T2DM patients
in Tianjin, China. Ther Adv Chronic Dis.
2022;13:20406223221097336.

Holstein K, et al. Improving fairness in machine
learning systems: what do industry practitioners
need? In: Proceedings of the 2019 CHI conference
on human factors in computing systems. Glasgow,
Scotland, UK: Association for Computing Machin-
ery; 2019. p. Paper 600.

Huang K, et al. Lesion-aware generative adversarial
networks for color fundus image to fundus fluo-
rescein angiography translation. Comput Methods
Programs Biomed. 2023;229: 107306.

Huang S, et al. Automated interpretation of retinal
vein occlusion based on fundus fluorescein angi-
ography images using deep learning: a retrospec-
tive, multi-center study. Heliyon. 2024;10(13):
e33108.

Huang X-M, et al. Cost-effectiveness of artificial
intelligence screening for diabetic retinopathy in
rural China. BMC Health Serv Res. 2022;22(1):260.

Jin K, et al. Automatic detection of non-perfusion
areas in diabetic macular edema from fundus flu-
orescein angiography for decision making using
deep learning. Sci Rep. 2020;10(1):15138.

Jin K, Ye J. Artificial intelligence and deep
learning in ophthalmology: current status and

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

future perspectives. Adv Ophthalmol Pract Res.
2022;2(3): 100078.

Veena KM, et al. FFA-Lens: lesion detection tool for
chronic ocular diseases in Fluorescein angiography
images. SoftwareX. 2024;26: 101646.

Kang D, et al. A beginner’s guide to artificial intel-
ligence for ophthalmologists. Ophthalmol Ther.
2024;13(7):1841-55.

Konecny J, et al. Federated optimization: distrib-
uted machine learning for on-device intelligence.
2016. arXiv:1610.02527

Kumar R, et al. Medical imaging: challenges and
future directions in Al-based systems. AIP Conf
Proc. 2023;2782(1):020147.

Li W, et al. Interpretable detection of diabetic
retinopathy, retinal vein occlusion, age-related
macular degeneration, and other fundus condi-
tions. Diagnostics (Basel). 2024;14(2):121.

Li X, et al. Self-supervised feature learning
via exploiting multi-modal data for retinal
disease diagnosis. IEEE Trans Med Imaging.
2020;39(12):4023-33.

Li X, et al. Role of artificial intelligence in
medical image analysis: a review of current
trends and future directions. J] Med Biol Eng.
2024;44(2):231-43.

Miao J, et al. Deep learning models for segmenting
non-perfusion area of color fundus photographs in
patients with branch retinal vein occlusion. Front
Med (Lausanne). 2022;9: 794045.

Milne-Ives M, et al. The effectiveness of artificial
intelligence conversational agents in health care:
systematic review. ] Med Internet Res. 2020;22(10):
e20346.

Minh D, et al. Explainable artificial intelli-
gence: a comprehensive review. Artif Intell Rev.
2022;55(5):3503-68.

Nunez do Rio JM, et al. Deep learning-based seg-
mentation and quantification of retinal capillary
non-perfusion on ultra-wide-field retinal fluores-
cein angiography. ] Clin Med. 2020;9(8):2537.

Pan X, et al. Multi-label classification of retinal
lesions in diabetic retinopathy for automatic anal-
ysis of fundus fluorescein angiography based on
deep learning. Graefes Arch Clin Exp Ophthalmol.
2020;258(4):779-85.

Parmar UPS, et al. Artificial intelligence (AI) for
early diagnosis of retinal diseases. Medicina.
2024;60(4):527.

A\ Adis


https://doi.org/10.3389/fmed.2022.835804
https://doi.org/10.3389/fmed.2022.835804

Ophthalmol Ther (2025) 14:599-619

619

33.

34.

35.

36.

37.

38.

39.

Penna S. EyeArt: Al-based diabetic retinopathy
detection software. 2024. https://medicalnew
sobserver.com/2024/02/16/eyeart-ai-based-diabe
tic-retinopathy-detection-software/.

Shi D, et al. Translation of color fundus photog-
raphy into fluorescein angiography using deep
learning for enhanced diabetic retinopathy screen-
ing. Ophthalmol Sci. 2023;3(4): 100401.

Sun G, Liu X, Yu X. Multi-path cascaded U-net
for vessel segmentation from fundus fluorescein
angiography sequential images. Comput Methods
Programs Biomed. 2021;211: 106422.

Teo ZL, et al. Global prevalence of diabetic retin-
opathy and projection of burden through 2045:
systematic review and meta-analysis. Ophthalmol-
ogy. 2021;128(11):1580-91.

Ting DSW, et al. Artificial intelligence and deep
learning in ophthalmology. Br J] Ophthalmol.
2019;103(2):167-75.

Wongchaisuwat P, et al. Application of deep learn-
ing for automated detection of polypoidal cho-
roidal vasculopathy in spectral domain optical
coherence tomography. Transl Vis Sci Technol.
2022;11(10):16.

Xiao X, et al. Health care cost and benefits of
artificial intelligence-assisted population-based

40.

41.

42.

43.

44.

45.

glaucoma screening for the elderly in remote
areas of China: a cost-offset analysis. BMC Public
Health. 2021;21(1):1065.

Xie Y, et al. Health economic and safety consid-
erations for artificial intelligence applications in
diabetic retinopathy screening. Transl Vis Sci Tech-
nol. 2020;9(2):22-22.

Xu F, et al. Predicting post-therapeutic visual acu-
ity and OCT images in patients with central serous
chorioretinopathy by artificial intelligence. Front
Bioeng Biotechnol. 2021;9: 649221.

Xu F, et al. Predicting subretinal fluid absorp-
tion with machine learning in patients with cen-
tral serous chorioretinopathy. Ann Transl Med.
2021;9(3):242.

Young LH, et al. Automated detection of vascu-
lar leakage in fluorescein angiography—a proof of
concept. Transl Vis Sci Technol. 2022;11(7):19-19.

Zhang B, et al. An improved microaneurysm detec-
tion model based on SwinIR and YOLOvVS. Bioen-
gineering (Basel). 2023;10(12):1405.

Zhao X, et al. An artificial intelligence system for
the whole process from diagnosis to treatment
suggestion of ischemic retinal diseases. Cell Rep
Med. 2023;4(10): 101197.

A\ Adis


https://medicalnewsobserver.com/2024/02/16/eyeart-ai-based-diabetic-retinopathy-detection-software/
https://medicalnewsobserver.com/2024/02/16/eyeart-ai-based-diabetic-retinopathy-detection-software/
https://medicalnewsobserver.com/2024/02/16/eyeart-ai-based-diabetic-retinopathy-detection-software/

	A Systematic Review of Advances in AI-Assisted Analysis of Fundus Fluorescein Angiography (FFA) Images: From Detection to Report Generation
	Abstract
	Introduction
	Methods
	Search Strategy
	Inclusion and Exclusion Criteria
	Study Selection and Quality Assessment
	Data Extraction and Analysis
	Ethical Approval

	Results
	Lesion Detection
	Diagnostic Support
	Report Generation

	Discussion
	Conclusions
	References




