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A B S T R A C T

Maintenance has long been a concern in manufacturing, both in the production and product-service phases. As a 
type of large product, aviation maintenance produces a collection of services to ensure that aircrafts or aircraft 
systems, components, and structures meet airworthiness standards. Planning, scheduling, and execution (PSE) is 
important for maintenance systems to optimize resource utilization and job sequencing through decision-making 
at different time cycles. However, stochastic uncertainty always exists, affecting the stability of the entire 
maintenance process. Therefore, in this study, which was inspired by operating systems (i.e., Windows, Android, 
etc.) for processing uncertain user actions with high efficiency, an out-of-order enabled operation system in 
aviation maintenance (OoO-AMOS) is designed to mitigate the influence of uncertainties that exist in the PSE 
procedure. Two key components, namely, thread manager and resource manager, are proposed at the kernel 
level of the OoO-AMOS. The concept of out-of-order (OoO) is deployed for the thread manager to dynamically 
select the optimal order sequence based on task dependencies and feasibility. A finite state machine (FSM) model 
is integrated as the operation validation mechanism to formulize the resource states and their transitions. Finally, 
a case study is conducted to evaluate the effectiveness of the proposed OoO-AMOS. The results show that OoO- 
AMOS presents significant advantages over traditional approaches. In uncertain environments, the total setup 
time was reduced by more than 55 %, whereas the maintenance makespan, average order tardiness, and hangar 
turnover rate achieved improvements of more than 22 %, 31 %, and 23 %, respectively.

Introduction

Maintenance is a critical and necessary part of a manufacturing 
system, and its goal is to restore a machine component to a condition 
where it can perform its intended function [1]. In the aviation industry, 
maintenance produces services of overhaul, repair, inspection, and 
modification to aircraft systems, components, and structures, which 
ensure that an aircraft retains an airworthy condition [2,3]. The forecast 
data released by Oliver Wyman indicate that expansion demand in 
aviation maintenance will increase 1.8 % annually on average during 
the next 10 years [4]. Planning, scheduling, and execution (PSE) in 
aviation maintenance involve decision-making and implementation 
processes regarding resource utilization and job sequencing 

optimization [5,6]. Stable operation of the maintenance PSE process is 
vital for minimizing aircraft downtime, reducing maintenance costs, and 
increasing aircraft utilization. However, as shown in Table 1, uncertain 
events exist at each stage of maintenance PSE, which may result in 
delayed order delivery, low resource utilization, inefficient mainte-
nance, and high downtime costs. Specifically, the planning phase in-
volves developing the maintenance plan and defining workflows and 
timetables, but temporary order modifications can disrupt the original 
plan [7]. In the scheduling phase, determining maintenance order pri-
orities and resource allocation is essential but can be challenging due to 
limited resource availability and potential scheduling conflicts [8]. 
During the execution phase, operational processing time fluctuations 
and temporary failures can lead to operational tasks not being 
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successfully completed [9]. Thus, minimizing the influence of uncer-
tainty during the multistage maintenance procedure is essential. How-
ever, previous research has focused mainly on how to handle 
uncertainty during maintenance planning and scheduling processes 
[10–12]. Therefore, how to reduce the influence of various uncertain 
events throughout the maintenance process requires further 
investigation.

In previous research [7,8], historical experiences and patterns were 
learned from the planning and scheduling stage of aviation mainte-
nance, and forecasting methods were used to minimize the disturbance 
caused by uncertainties. However, the execution phase is also full of 
unexpected accidents, such as operator absences and unpredicted pro-
cessing time [13]. Such uncertain events may not only delay the 
completion of the task being executed but also disrupt the original 
maintenance plan and scheduling. Similarly, the process in computer 
systems is highly uncertain because of the unpredictability of user re-
quirements and the grabbing of limited resources. The operating system 
(OS) is a fundamental component of a computer system with the ability 
to respond to and handle uncertain user requirements [14]. The OS 
senses user requirements and translates them into instructions that the 
computer can understand and execute. The required resources, such as 
data, memory, and hardware devices, are then allocated to instructions 
reasonably according to priorities to ensure the proper functioning of 
the computer system.

Furthermore, aviation maintenance is a dynamic, complex, multi-
resource, coordinated process that includes operators, spare parts, 
hangars, etc. [15]. Advanced technologies equipped with sensing, 
identification, transmission, and interaction capabilities collect 
real-time data from PSE stages. These real-time data not only reflect the 
status of maintenance resources but also capture the inherent un-
certainties in the onsite maintenance process. Similarly, the proper 
functioning of a computer system requires the support of multiple re-
sources. Within the kernel layer of the operating system, thread man-
agers and resource managers serve as the two core functional 
components. Thread managers are responsible for scheduling 
thread-level tasks. Out-of-order execution (OoOE) is a dynamic rule for 
executing instructions in the thread manager according to the real-time 
availability of resources rather than on the basis of traditional sequential 
principles [16]. Furthermore, based on real-time status, the resource 
manager traces the status of the limited resource and rationally allocates 
according to the instructions’ priority to ensure the normal operation of 
the computer system.

To handle uncertainty during the aviation maintenance multistage, 
inspired by computer science, this study embarks on the following 
research questions. 

1) Could the concept of an operating system be adopted in an aviation 
maintenance scenario to mitigate the influence of uncertainty orig-
inating from multiple stages?

2) If so, what kinds of underlying mechanisms can thread manager rely 
on to handle tasks and reduce the influence caused by the un-
certainties present in the PSE phases?

3) How can resource manager manage and formulize the availability of 
multiple resources and perform rational resource allocation with 
real-time information?

To address the above research questions, this study proposes an out- 
of-order enabled operation system in aviation maintenance (OoO- 
AMOS) to facilitate real-time, flexible, and robust PSE decisions in 
complex and stochastic environments. The main contributions of this 
research are summarized as follows. 

1) Inspired by operating systems (i.e., Windows, Android, etc.), OoO- 
AMOS is introduced to address uncertainty in aviation mainte-
nance to minimize the impact of uncertain events during the PSE 
process, which is the first application of the operating system’s un-
derlying logic.

2) The OoO-based decision-making mechanism is designed for the 
thread manager to dynamically select the optimal order sequence on 
the basis of task dependencies and feasibility, which guarantees that 
the PSE processes are stable and robust with the occurrence of un-
certain events.

3) The resource manager and finite state machine-based operation 
validation mechanisms are combined to digitally describe the mul-
tiresource under uncertainty and visually formulate the dynamic 
resource status, which enables automatic feedback and real-time 
state transitions.

The remainder of this article is organized as follows. Section II pre-
sents a review of related works. Section III presents the framework of 
OoO-AMOS. The mathematical model of the OoO principle for thread 
manager is proposed in Section IV. A case study including system 
implementation and computational experiments is presented in Section 
V. Section VI presents a summary of the study with future perspectives.

Literature review

Two research streams are relevant to this research: 1) uncertain PSE 
in aviation maintenance and 2) OoO-based decision-making methods. 
These streams of research are reviewed, and the research gaps of this 
work are summarized.

Uncertain PSE in aviation maintenance

With the development of commercial aviation, an increasing number 
of scholars are examining ways in which the PSE problem in aviation 
maintenance can be solved more efficiently. As early as the 1970s, Air 
Canada developed the aircraft maintenance operations simulation 
model to replace manual planning and greatly improve the speed of 
developing maintenance plans [17]. On this basis, numerous mathe-
matical models and system frameworks have been proposed to optimize 
aviation maintenance planning and scheduling processes [10–12].

Previous studies can be broadly divided into two categories: aviation 
maintenance planning problems and aviation maintenance scheduling 
problems. Fleet assignment [18], capacity planning [19,20], and aircraft 
maintenance routing problems are key topics in aviation maintenance 
planning. Ben Ahmed et al. [18] proposed a matheuristic consisting of a 
decomposition approach and a proximity search algorithm to address an 
integrated airline planning problem. Erkoc et al. [19] constructed an 
integer programming model for the optimal overhaul process within a 
limited processing capacity environment. To maximize the total 
remaining time of a fleet, Başdere et al. developed and solved an integer 
linear programming model using the branch-and-bound method to 
determine maintenance routes [21]. For the aviation maintenance 
scheduling process, maintenance resource scheduling is one of the most 

Table 1 
Uncertain events from PSE stages in aviation maintenance.

Phase Task Uncertain Event Possible Consequence

Planning
[7]

Tactical plan 
development

Temporary 
modification of 
maintenance orders

Order delivery delays, 
low resource 
utilization, low 
maintenance 
efficiency, high 
downtime costs

Scheduling
[8]

Task priority 
ranking and 
resource 
allocation

Uncertain resource 
availability and 
conflict

Execution
[9]

Complete 
operational tasks 
as required

Fluctuating 
operating duration 
and temporary 
breakdown
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studied problems. Resources such as maintenance operators, spare parts, 
and hangars are essential for completing maintenance tasks. Niu et al. 
[8] addressed the aviation maintenance technician scheduling issue by 
establishing a model with a practical dynamic task decomposition 
mechanism, aiming to allocate maintenance workload and ensure timely 
and effective supply of maintenance personnel. Chen et al. [22] pro-
posed a cyber-physical spare parts intralogistics system from the 
perspective of spare parts intralogistics. The system’s flexible manage-
ment of aviation spare parts helps to improve resource scheduling. Qin 
et al. [23] presented a mixed-integer linear programming mathematical 
model that integrates the interrelations between the maintenance 
schedule and aircraft parking layout in hangars. In addition, some 
studies have suggested that there is no clear conceptual separation be-
tween maintenance planning and scheduling. For example, Deng et al. 
[10] developed a practical dynamic programming-based methodology 
to optimize long-term aircraft maintenance planning. In their subse-
quent research [24], a decision support system was proposed for task 
allocation while optimizing aircraft maintenance scheduling. However, 
current research focuses mainly on the planning and scheduling phases 
in problem solving and ignores the potential impact of the execution 
phase on the aviation maintenance process.

Aviation maintenance is a highly complex and dynamic process with 
varying degrees of uncertainty that significantly impacts the perfor-
mance of the entire aviation maintenance process [25]. Samaranayake 
et al. noted that unplanned tasks can constitute up to 50 % of the total 
maintenance tasks [12]. The occurrence of uncertain events can delay 
the completion of maintenance tasks, subsequently affecting the start 
times of subsequent work. A typical system response to uncertainty in-
volves rescheduling the remaining maintenance tasks and operations on 
the basis of the current situation, which often results in some degree of 
hysteresis [11]. Therefore, some scholars have tried to utilize forecasting 
methods to mitigate the influence caused by uncertainties in the aviation 
maintenance process. Masmoudi et al. [7] categorized uncertainties in 
the maintenance planning and scheduling phases into tactical and 
operational levels on the basis of their sources. They established a fuzzy 
model to address uncertainties and address the impact of uncertainties 
on maintenance workload at the tactical level due to the uncertainty of 
macroscopic task contents and at the operational level due to the un-
certainty of maintenance task durations. Weide et al. [25] utilized ge-
netic algorithms to generate robust aircraft heavy maintenance 
schedules in uncertain environments, aiming to reduce the workload 
and frequency of modifications to maintenance plans. However, un-
predictable events also occur in the aviation maintenance execution 
stage. The above approach, which relies on aviation maintenance his-
torical experience and operational pattern training, is no longer suitable 
for addressing such problems.

OoO-based decision-making method

OoOE originates from modern computer central processing units, 
which emphasize the real-time availability of resources and constraints 
at the time of instruction execution rather than the order of instructions 
[16]. OoOE provides a method for dynamically analyzing and solving 
resource-dependent complex logic, avoiding unnecessary pauses in or-
dered processors and improving the efficiency of instruction processing 
[26]. Graduation intelligent manufacture system (GiMS) for making 
decisions under uncertain manufacturing environments has been pro-
posed in recent research [6]. GiMS was also adapted for prefabricated 
production by Ding et al. [27] as a stable, resilient, and adaptable 
decision-making mechanism for fixed-point assembly. The underlying 
logic of GiMS is similar to that of OoOE. They both have the goal of 
weakening the importance of the original sequence and focusing on the 
dependencies between operations/instructions and the availability of 
limited resources. In this context, the principle of OoOE is applied to 
address uncertainty problems [6,21,23]. Li et al. [9] developed 
out-of-order synchronization to facilitate flexible, resilient, and coordi-
nated production and intralogistics operations in 
multiresource-constrained assembly systems. A spatial-temporal out--
of-order execution method is composed of real-time planning and 
scheduling in cyber-physical factories [26]. Sun et al. [28] proposed the 
out-of-order enabled dueling deep Q network approach for dynamic 
additive manufacturing scheduling.

Research gap summary

According to the literature reviewed above, Table 2 provides an 
overview of research investigations into the aviation maintenance PSE 
uncertainty problem. Although existing research has made significant 
contributions in the field of aviation maintenance uncertainty and out- 
of-order-based decision-making methods, there are still some research 
gaps that need to be bridged. 

1) Forecasting methods, which employ historical experiences and pat-
terns of maintenance planning and scheduling processes, were used 
to minimize the impact caused by uncertainties. However, current 
research lacks an approach for responding to predictable and un-
predictable uncertainties from the whole process of aviation main-
tenance PSE.

2) Currently, out-of-order (OoO)-inspired approaches have been 
applied in production scenarios and have demonstrated excellent 
performance in addressing uncertainties in the PSE process. How-
ever, although aviation maintenance scenarios are also characterized 
as multistage, multiresource, and dynamic, existing research has 

Table 2 
Comparison of existing aviation maintenance task solutions.

References Target Planning Scheduling Execution Uncertainty

[7] Maintenance planning in uncertainty ✓   ✓
[8] Technician scheduling  ✓  ✓
[10] Long-term maintenance check scheduling ✓ ✓  ✓
[11] Maintenance capacity planning and scheduling ✓ ✓  ✓
[18] Airline fleet assignment, aircraft routing, crew pairing ✓ ✓  ✓
[19] Planning and scheduling for overhaul services ✓ ✓  
[20] Long-term maintenance decision optimization ✓   
[21] Maintenance route problem ✓   
[22] Spare part management  ✓  
[23] Aircraft parking layout in hangar  ✓  
[24] Optimizing maintenance schedule and task allocation  ✓  
[25] Long-term maintenance scheduling optimization  ✓  ✓
[29] Airline operator management ✓   
[30] Resource scheduling on multiple on-site task  ✓  
[31] Maintenance manpower planning  ✓  
Ours Improve aviation maintenance efficiency, minimize the total tardiness and maximize resource 

utilization
✓ ✓ ✓ ✓
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seldom applied OoO principles to address uncertain PSE in aviation 
maintenance.

To bridge these gaps, in this research, an OoO-based aviation 
maintenance operating system (OoO-AMOS) is used to address the un-
certainties during the PSE phases. Specifically, the uncertainties in the 
PSE stages can be detected by IoT devices with sensing, identification, 
transmission, and interaction functions. After detection, an OoO-based 

decision-making mechanism is designed and adopted to handle the 
uncertainties in each stage.

Overall framework of OoO-AMOS

An operating system is a fundamental component of computer sys-
tems and is positioned between the underlying hardware and users. It 
manages hardware resources at the lower level and provides services to 

Fig. 1. Overall OoO-AMOS framework.
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users at the higher level [14]. The process in a computer is highly un-
certain due to the unpredictability of the user’s operations. In the 
application layer, users initiate requests through applications. Once the 
operating system detects a user request, it requests the component in the 
kernel layer to execute tasks by system calls. In the kernel layer, the 
thread manager processes instructions based on various scheduling al-
gorithms, such as out-of-order execution, first-come-first-service, and 
shortest-job-first. OoOE is a real-time execution method that takes into 
account the availability of data, resources, and constraints [16]. By 
employing OoOE rules in the thread manager, the operating system 
dynamically resolves blocking issues caused by uncertainties. The 
resource manager is responsible for managing and coordinating all the 
resources needed for the operation of the operating system, such as data, 
hardware devices, memory, etc. It has the functions of tracking the 
status of resources and optimizing the use of resources. Based on the 
real-time status, the resource manager rationally allocates limited re-
sources to instructions according to their priority to ensure the normal 
operation of the computer system. Finally, device drivers interact with 
hardware to fulfill user requirements.

Inspired by the operating system in computer science, this section 
provides a comprehensive introduction to how OoO-AMOS is deployed 
in aviation maintenance scenarios to handle uncertainties. Fig. 1 illus-
trates the proposed framework of OoO-AMOS. The framework is divided 
into three main layers: physical layer, kernel layer, and application 
layer.

Physical layer in OoO-AMOS

The first component involves the management of physical resources 
within the OoO-AMOS. Advanced technologies equipped with sensing, 
identification, transmission, and interaction capabilities are deployed in 
practical maintenance scenarios to collect real-time data, facilitating 
communication between physical and digital objects [27]. Various types 
of sensing devices are deployed in different locations within hangars to 
perceive signals and events in the maintenance environment, which are 
then converted into digital signals to provide data and information for 
real-time decision-making [22]. Identification labels such as RFID, QR 
codes, NFC, etc., are used to bind and create intelligent entities for re-
sources such as humans, spare parts, and equipment. By reading the 
identification and verification of devices, real-time tracking of the 
resource status is achieved. The physical objects within aviation main-
tenance are interconnected and exchange collected real-time data 
through network gateways, routers, and other devices with transmission 
capabilities. Finally, data communication is facilitated through inter-
active devices such as mobile and wearable devices. The digitalization 
process creates corresponding digital objects for each physical object, 
abstracting physical objects into digitized information to capture the 
uncertainties present in aviation maintenance [32,33].

Kernel layer in OoO-AMOS

The second component is the kernel layer, which serves as the core of 
the entire framework. It consists of the resource manager, thread man-
ager, and other supporting kernel services.

Resource manager
PSE in aviation maintenance is a multiresource coordinated process 

that involves operators, spare parts, hangars, and other maintenance 
resources. The real-time based maintenance resource manager is 
responsible for managing digital resources, describing the resource 
status, and analyzing potential uncertainties. First, the resource man-
ager utilizes the real-time data collected from IoT devices to construct 
digital representations of objects using a series of relevant information. 
This includes the object ID, attributes (e.g., level, type, location), and 
real-time status (e.g., current location, order status, completion prog-
ress, part quantity). Second, the resource manager facilitates 

comprehensive visibility and traceability of multiple resource status by 
providing real-time monitoring, detailed state tracking, and perfor-
mance assessments. This ensures efficient resource utilization, timely 
identification of issues, and informed decision-making across the avia-
tion maintenance PSE process. Third, by analyzing real-time data, it 
becomes possible to identify and address some of the uncertainties 
hidden in the maintenance process. This proactive approach not only 
helps in detecting potential issues at an early stage but also enables 
timely interventions, reducing the risk of disruptions and ensuring the 
overall efficiency and reliability of the process.

Thread manager
The thread manager, which is based on the principles of OoO, is 

responsible for managing and coordinating the processing of tasks in the 
aviation maintenance PSE procedure. To organize the thread manager, 
three types of functional tickets are introduced: job tickets (JTs), ma-
terial tickets (MTs), and operation tickets (OTs). JT is associated with 
each maintenance task within the customer orders. Each JT is linked to a 
series of MTs and OTs. MTs are generated based on the bill of materials 
(BOM) and include tools, spare parts, equipment, and other required 
maintenance materials. OTs represent specific operational tasks derived 
from the decomposition of each JT. During the planning phase, customer 
orders randomly arrive and enter the order pool, where each mainte-
nance task within the order is assigned a JT. Each JT contains infor-
mation such as airplane type, maintenance task description, and due 
date. Similar JTs are grouped into a job family (JF) based on different 
attributes. In the scheduling phase, JFs are assigned to the most suitable 
and available hangars based on real-time status. JTs within each JF enter 
the matched hangars for maintenance tasks according to their priorities. 
Prior to entering the hangar, each hangar needs to configure its internal 
settings based on aircraft type and task content. Once a JT enters the 
hangar, it proceeds to the execution phase to commence the mainte-
nance task. The FSM-based OT validation mechanism is employed to 
assess three conditions based on real-time data: (1) Are the required MTs 
available? (2) Have the required operators arrived? (3) Are the task 
sequencing restrictions satisfied?

Supporting kernel services
There are also other functional components, such as the clock man-

ager, file system, and interrupt manager, are necessary for supporting 
the proper functioning of the kernel layer. 

1) The clock manager is involved in flexibly decomposing the total 
maintenance time horizon H into three granularities based on 
different PSE phases. The long-term time horizon, denoted as T, 
represents the total time required to complete all tasks within a JF. It 
provides an overall view of the time needed for the entire JF. The 
midterm time horizon, denoted as t, indicates the duration required 
to complete a single JT. It focuses on the time needed to accomplish 
the tasks associated with a specific JT. The short-term time horizon, 
denoted as τ, represents the processing time for each OT. It reflects 
the time required to complete individual operational tasks. Impor-
tantly, the lengths of these three types of time horizons are not 
strictly defined but depend on the specific processing times associ-
ated with the tasks.

2) The file system primarily manages the tickets generated during the 
aviation maintenance process. For example, when an order is 
received, the corresponding BOM information is stored in the file 
system. When the intralogistics department receives a shipment 
notification, it retrieves the relevant BOM from the file system to 
arrange the intralogistics task. The file system handles the storage, 
retrieval, and management of various documents and information 
related to the maintenance process.

3) The interrupt manager responds to and initiates interrupt requests 
when the system encounters anomalies, leading to the suspension of 
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ongoing tasks within the hangar. It then performs appropriate checks 
and adjusts actions in response to the interrupt cause.

Application layer in OoO-AMOS

The third component is the application layer, which supports user- 
friendly interactions for all stakeholders involved in aviation mainte-
nance, such as operators, managers, and customers. For example, 

operators on the shop floor utilize mobile devices to access task lists and 
upload their work status, and managers access real-time and historical 
data through visual tools on their computer terminals to guide and 
optimize their decision-making processes. The application layer en-
compasses several key components, including the following: 

• Order Management: Complete functions such as creating, processing, 
and tracking orders, as well as providing statistics, reminders, and 
notifications.

• User Management: Manage user accounts, permissions, and roles and 
provide user login, registration, and authentication.

• Intralogistics management: Track and manage the movement of 
items within the maintenance environment, including inbound, 
outbound, and transfer operations.

• Site Management: Coordinate and manage site work, including task 
assignment, progress tracking, resource scheduling, and problem 
solving.

• Warehouse Management: Manage warehouse inventory, including 
functions such as inventory tracking, goods receiving and shipping, 
inventory adjustment, and reporting.

The orders released by users at the application layer are uncertain. 
OoO-AMOS receives these user orders and generates maintenance re-
quests at the kernel layer. The thread manager converts all tasks asso-
ciated with an order into JTs, and the PSE operations are processed 
based on the OoO principle. During the maintenance process, the 
resource manager drives supporting departments to supply the neces-
sary maintenance resources to the JTs based on real-time information.

OoO-enabled thread manager in AMOS

In the previous section, the workflow of the thread manager in OoO- 
AMOS was described. In this section, a detailed explanation of the de-
cision rules, which are employed in each stage of the PSE in the thread 
manager, is provided. All the notations and descriptions are presented in 
Table 3.

Table 3 
Notation and descriptions.

Notations Descriptions

JTi Job ticket of maintenance jobi
OTi,o Operation ticket of operation o of jobJTi

MTi,m Material ticket of material m required by jobJTi

MTwh
i,m Warehouse of required materialMTi,m

JTPT JT pool in T
JTQt JT queue int JTQt = JTQt

finished ∪ JTQt
executing ∪ JTQt

queuing

OTQτ OT queue at τ OTQτ = OTQτ
finished ∪ OTQτ

executing ∪ OTQτ
queuing

MTQτ MT queue at τ MTQτ = MTQτ
finished ∪ MTQτ

executing ∪ MTQτ
queuing

dti Due date ofJTi

JFc Job familyc
nc Number of jobs inJFc

spti Standard processing time ofJTi

ati Arrive time ofJTi

cti Completion time ofJTi

JFT
c Job family c inT

FDT
c Family due date ofJFT

c
rptτ

i Remaining processing time of JTi atτ
rptτ

i,o Remaining processing time of OTi,o atτ
rtT,th

Estimated ready time of hangar h in time window(T, t)
impi The importance ofJTi

nm,t
i Number of ready materials of JTi in time window(T, t)

nm,τ
i Number of ready materials of jti atτ

nT
i Number of JTs that belong to the same JFc withJTi

sthi− 1,i Setup time of hangar h between JTi− 1 and JTi which are not in sameJFc

fh Setup time of hangar h between jt in sameJF
nτ

avapo,o Number of available operators for OTi,o atτ

Fig. 2. Spectral clustering for the maintenance planning phase.
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Spectral clustering for the planning phase

Inspired by GiMS [6,34,35], in the aviation maintenance planning 
phase, spectral clustering is employed to calculate the similarity and 
cluster the orders/JTs within the JT pool at T (JTPT). After the clustering 
process, all the JFs are queued for scheduling and execution. The JF 
queue at T is defined as 

JFQT = JFQT
finished ∪ JFQT

executing ∪ JFQT
queuing .# (1) 

Through the utilization of this approach, similar orders/JTs are 
grouped together in the same cluster JF and released into the hangar 
within the same time horizon T. The purpose of clustering similar or-
ders/JTs is to minimize setup times within a JF without prioritizing the 
specific processing sequence, thereby enabling out-of-order planning. 
Consequently, it provides flexibility to address any uncertainties that 
may arise during the planning phase. For the example in Fig. 2, a new 
maintenance order arrives at time (H, T). According to the clustering 
results of JFQT at that time, the new order is assigned to the most suit-
able JF6 based on its attributes. At time (H, T + 1), JF6 is executed 
sequentially, including the new order.

In this research, two attributes of the orders are used to calculate the 
distance for clustering: the due date and the required materials.

The due date refers to the delivery date of each JT. Measuring the 
distance between due dates helps meet maintenance delivery deadlines 
and enhances customer satisfaction. The due date distance distd

ij between 
JTi and JTj is measured by calculating the standardized Euclidean dis-
tance [36]

distd
ij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

di − dj

std(d)

)2
√

.# (2) 

The required materials refer to the bill of materials (BOM) associated 
with each JT, including the spare parts, tools, and machines required for 
each maintenance task. In aviation maintenance, the required materials 
exhibit a high degree of specialization, wherein different types of 
aircraft often necessitate distinct materials, where MTwh

i represents the 
set of warehouses for storing the required material of JTi. Evaluating the 
similarity between warehouses that stock the required materials en-
hances intralogistics efficiency and reduces the setup time between JTs 
in the hangar. The required material distance distm

ij between JTi and JTj 

is calculated by the Jaccard similarity coefficient [37]

distm
ij = 1 −

⃒
⃒
⃒MTwh

i ∩ MTwh
j

⃒
⃒
⃒

⃒
⃒
⃒MTwh

i ∪ MTwh
j

⃒
⃒
⃒
.# (3) 

The overall distance DistT
ij between JTi and JTj is 

DistT
ij = ωd

dist • norm(distd
ij) + ωm

dist • norm(distm
ij ).# (4) 

where ωd
dist and ωm

dist are the weights of the due date and the required 
material distances, respectively. Notably, the distance calculation is 
highly flexible. The weights can be customized according to actual re-
quirements and situations.

By calculating the distance between each pair of JTs in the order pool 
in T, a 

⃒
⃒JTT⃒⃒×

⃒
⃒JTT⃒⃒ symmetric distance matrix is obtained. This distance 

matrix is used in the subsequent spectral clustering algorithm. Spectral 
clustering is a graph-based clustering algorithm. In the aviation main-
tenance context, each JT is represented as a node in an undirected graph, 
and each edge represents a pair of JTs, with the edge weight being the 
distance between each pair of JTs. The spectral clustering algorithm, 
which is based on the work of Von Luxburg [38], classifies JTs into 

Fig. 3. Updating priority of JT in the maintenance scheduling phase.
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different JFs.

Suitability-based priority updating for the scheduling phase

During the planning phase, JTs are clustered into multiple JFs based 
on the similarity of their order attributes. In the scheduling phase, it is 
necessary to allocate appropriate hangars for each JF and determine the 
priority of the JTs within them. Furthermore, the scheduling process is 
dynamic and responsive to real-time data. As real-time information 
becomes available, such as setup time changes or resources arriving at 
the onsite buffer, the scheduling decisions can be adjusted accordingly. 
This feedback loop ensures that the scheduling process remains adaptive 
and optimized based on the evolving conditions within the maintenance 
process.

Considering the real-time suitability of both JFs and hangars to 
achieve appropriate matching between them is essential. The family due 
date (FD) of JTs within a JF reflects the overall urgency of the mainte-
nance orders associated with each JF. The FDT

c of JFT
c is defined as 

FDT
c =

∑
JTi∈JFT

c
di

nT
c

.# (5) 

JFs with earlier FDs are considered higher priorities, as their 
completion is crucial to meeting deadlines and ensuring customer 
satisfaction. High-priority JFs are matched to the earliest available 
hangars to minimize the hangar idle time. For hangars, their available 
time is determined by the completion time of the last JT in the matched 
JF. It’s important to note that the available time of a hangar is not a fixed 
value but is adjusted based on real-time data after the end of the time 
horizon in different dimensions.

Once the matching between JFs and hangars is completed, real-time 
prioritization of JTs within a JF is required to identify the most suitable 
JT to start executing within the time horizon (T, t). Fig. 3 illustrates the 
process of updating the JT priorities from (T, t) to (T, t + 1). At time (T,

t), JTi+1 has a higher priority than JTi+3, which both are waiting to be 
executed in the JTQt

queuing. However, at time (T,t + 1), due to the impact 
of uncertainty at the scheduling layer, the priority of JTi+3 increases. As 
a result, at time (T, t + 1), JTi+3 is executed first, whereas JTi+1 con-
tinues to wait in the queue.

To comprehensively evaluate the real-time priority of JTs, this study 
considers the following three aspects:

Urgency of JT: The due date di, standard processing time spti and 
estimated ready time of hangar h rtT,t

h of JTi and the importance of the 
associated customer impi are used to describe the urgency of JTi. The 
higher the urgency is, the higher the priority of the JT. The priority of JTi 

in terms of urgency priour,t
i in time horizon (T, t) is calculated as 

priour,t
i = (di − spti − rtT,t

h ) ∗ impi.# (6) 

On-site feasibility: Since MTs need to be executed and completed 
before related OTs, the completion of MTs indicates that the required 
materials for the OTs are available. Therefore, a higher number of 
completed MTs suggests that the JT is more executable and can be 
prioritized accordingly. The number of ready materials of size JTi in 
time window(T, t) nm,t

i is set to finish MTi,m in time window(t,τ), which 
can be calculated as follows: 

nm,t
i =

∑

τ⊂t
nm,τ

i .# (7) 

The priority of jti in terms of onsite feasibility prioos,t
i in time horizon 

(T, t) is calculated as 

prioos,t
i = 1 −

nm,t
i

|MTi|
.# (8) 

Complexity of setup conditions: The state of the hangar at time (T, t- 
1) is considered. The shorter the setup time sth,t− 1

i between the JT and the 
orders executed at (T, t-1), the higher the priority of the JT. The priority 

Fig. 4. FSM-based validation mechanism for the execution phase.
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of jti in terms of setup condition priose,t
i in time horizon (T, t) is calculated 

as 

priose,t
i =

{
0, if setup work is not required
sth,t− 1

i , if setup work is required
.# (9) 

The setup time is contingent upon the conditions of the two pre-
ceding and succeeding JTs. In cases where the two JTs belong to the 
same JF, the hangar requires only basic organizational tasks that need fh 

to complete the setup job. Conversely, if the two JTs do not belong to the 
same JF, an extensive setup of the hangar is essential, typically neces-
sitating a long setup time. The formula utilized to describe the setup 
time is outlined below: 

sth
i− 1,i =

⎧
⎨

⎩

fh, if jti− 1andjtiare in the same JF
sth

i− 1,i, if jti− 1andjtiare not in the same JF
.# (10) 

The overall priority of jti is Priot
i , which can be calculated by 

Priot
i =ωur

prio •norm
(
priour,t

i
)
+ωos

prio •norm
(
prioos,t

i
)
+ωse

prio •norm
(
priose,t

i
)
#

(11) 

where ωur
prio, ωos

prio and ωse
prio are the weights of different priorities. It is 

important to highlight that the priority calculation offers significant 
flexibility. Thus, the weights and indexes can be tailored to meet specific 
needs and adapt to varying conditions.

FSM-based OT validation mechanism for the execution phase

The execution phase of aviation maintenance is a process that 
operates at a fine-grained level and needs to make decisions from the 
perspective of OTs. Inspired by the concept of OoOE, only the OTs that 
satisfy both the availability of resources and the constraints are executed 
[26]. Maintenance execution primarily encompasses two main tasks. 
Firstly, based on real-time data within the maintenance process, re-
sources such as operators, spare parts, tools, etc., are virtually allocated 
to different OTs. Subsequently, an OT validation mechanism based on a 
finite state machine is employed to assess the validity of OTs at different 
time intervals.

Fig. 4 shows the process of FSM-based OT validation in (t, τ) and the 
result of the OT queue changing in (t, τ + 1). At time (t, τ), OTi,4 is 
currently being executed. At the same time, OTi,5 and OTi,6 are waiting 
in the OT queue. At this point, all OTs in the OT queue need to undergo 
an FSM-based validation mechanism to check if the conditions for 
execution are satisfied. However, OTi,5 cannot be executed because the 
required operator and materials have not yet arrived at the maintenance 
site, whereas OTi,6 passed the validation with all the required resources 
and constraints. Therefore, at time (t, τ+1), OTi,6 with higher priority is 
executed first, and OTi,5 remains in the OT queue waiting for the next 
validation.

Mealy machine, as one type of FSM, can be adopted to enhance real- 

time data utilization and formulate the OT validation process [39]. The 
FSM-based OT validation mechanism is defined as a six-tuple (S, s0, Σ, Λ,

T,G).
where S = {s0, s1, s2, …, sn} represents the set of finite states, 

which represents the state of the conditions affecting the validity of OT.
where s0 is the initial state, which means that the corresponding 

operation does not have any condition to be fulfilled.
Σ = {σ0, σ1, σ2, …, σn} is the set of input alphabets that represent 

the set of input elements required for operation and the preceding 
operational constraints.

Λ = {λ0, λ1, …, λn} is the set of output alphabets, and G : S × Σ → Λ 
is the set of output functions.

T : S × Σ →S is a set of transition functions. In the FSM, the state 
transition is determined by the transition function, which is related to 
the present state and the input signal.

δ(p, l) = q where p, q ∈ S denotes that in state p, with input signal l, 
the state migrates from p to q.

To represent the validation state of OTp,j in terms of an FSM, there is 
no sequence among the three conditions. OTp,j can be recognized as valid 
or ready to be executed only if all three conditions are satisfied. Thus, an 
8-state FSM is designed, where each state represents a possible combi-
nation of condition states. A state can be represented as a four-bit binary 
number, where each bit represents whether a condition is satisfied or 
not. When a condition is satisfied, the value of the corresponding bit 
changes from 0 to 1. Each round of state transitions is described in detail 
in Fig. 5. The transition function depends on the current state and input. 
For example, if the current state is s0 and the input is the operators, the 
next state would be state s1. The transition function can be δ(s0, σ0, s1). 
Under these circumstances, if another input is the MT, it jumps to state 
s4. The transition function can be δ(s2, σ1, s5). The operation is not valid 
until the state is transferred to s7.

Each condition is validated as follows:
Availability of material. Verify if the required materials for OTi,o 

have been delivered to the responding hangar and finished in MTQτ
finished 

atτ 

MTi,m ∈ MTQτ
finished.# (12) 

Availability of operator. Verify the presence of at least one operator 
capable of conducting the maintenance operation OTi,o at timeτ 

nτ
avapo,o ≥ 1 (13) 

where nτ
avapo,o is the number of available operators for OTi,o at τ.

Satisfaction of the precedence constraints. Verify the completion of 
the OTs that are required to precede OTi,o at time τ. A constraint matrix 
PCτ

o,oʹ is introduced to represent the operational precedence constraints 

Fig. 5. State transition of FSM-based OT validation.
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PCτ
o,oʹ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Cτ
1,2

Cτ
2,1 0

⋯
Cτ

1,O

Cτ
2,O

⋮ ⋱ ⋮
Cτ

O,1 Cτ
O,2 ⋯ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,# (14) 

Cτ
o,oʹ =

{&0, OTi,odoes not necessarily precedeOTi,oʹ

&1, OTi,omust precedeOTi,oʹ
.# (15) 

Case study

A case study from a collaborative aircraft engineering company 
based in Hong Kong was introduced in this section to validate the 
effectiveness of the proposed OoO-AMOS. There are two parts: 1) 
implementation of OoO-AMOS in the aviation maintenance scenario and 
2) numerical experiments.

Implementation of OoO-AMOS in an aviation maintenance scenario

Motivated by the team’s research projects in the aviation mainte-
nance field, the OoO-AMOS has been implemented in the maintenance 
department of a collaborative company. The maintenance process in-
volves dismantling aircraft components, such as the fuselage, engines, 
and landing gear, for repair or replacement. Thus, the process must be 
conducted entirely within the hangar, and no movements outside the 
hangar are permitted during maintenance processes. Due to the limita-
tions with the partner company, this study was only able to complete the 
validation experiments in a single hangar scenario.

Following the formulation in Section 3 and Section 4, an OoO-AMOS 
enabled application was developed via the Java programming language 
in the Java runtime environment 8.0. Tomcat 7.0 was used as the web 
application server, and SQL Server 2012 was used as the database server. 
A mobile application was used with Android 11.0. Fig. 6 illustrates the 
full maintenance process in the hangar. Upon an aircraft entering the 
hangar, inspection personnel undertake a task assessment according to 

the requirements outlined in the customer orders. Then, the intra-
logistics and maintenance departments receive execution requests for a 
set of MTs and OTs. During the execution operations, real-time onsite 
data are collected, analyzed, and presented. Customers, maintenance 
managers, and operators monitor the entire maintenance cycle via smart 
and wearable devices. Once all maintenance operations are completed, 
maintenance managers conduct functional testing of the aircraft. After 
successfully passing the functional tests, the aircraft is released from the 
hangar and delivered to the customers.

Numerical experiments

A numerical experiment was conducted to further validate the 
effectiveness of the OoO-enabled decision-making mechanism on a 
theoretical level. For ease of representation, OoO will be used in place of 
the OoO-enabled decision-making mechanism.

Experiment settings
The historical data used in this study was obtained from the collab-

orative company. As the Table 4 shows, through data analysis, the 
dataset can be categorized into three main types: Job Data, Operation 
Data, and Material Data, which correspond to the core information of 
maintenance tasks, operational processes, and material management, 
respectively.

Based on previous similar studies and real historical data, the 
experimental datasets were generated according to Table 5 [6,40,41]. 
Six schemes, organized in a 2× 3 matrix, were designed to simulate the 
performance of OoO under certain and uncertain environments with 
varying order volumes. Additionally, Table 6 shows that four different 
types of uncertain events existing in PSE were introduced in the exper-
iments, including urgent customer orders, stochastic setup/processing 
time, stochastic material delivery time, and equipment failure [42]. To 
ensure a reliable level of experimental results, all performance evalua-
tion experiments based on the logic of Algorithm 1 were repeated 100 
times. All the experiments were conducted using custom code in 
PyCharm. 

Fig. 6. OoO-enabled base maintenance process.
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Algorithm 1. OoO-based MRO-PSE decision making mechanism
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Performance measurement and benchmark
As presented in Table 7, four typical and common rules Earliest Due 

Date (EDD), Shortest Processing Time (SPT), Shortest Setup Time (SST), 
and Just-in-Time (JIT) were adopted in the experiments to evaluate the 
performance of the OoO for decision-making in PSE [43]. Moreover, 
four measures have been used to evaluate performance [44]. 

• Makespan (MS): This refers to the total amount of time needed to 
completely process all JTs. A minimum makespan usually indicates 
high maintenance efficiency 

MS = max
j

{
ctj

}
.# (14) 

• Total setup time (TST): This is the total setup time between each JTs. 
A lower TST implies that fewer nonvalue-added operations occur 
during the maintenance procedure. 

TST =
∑|JT|

i=2
sth

i− 1,i.# (15) 

• Mean order tardiness (MOT): This metric is the average difference 
between the completion time and due date of all the orders. MOT is a 
typical metric used to indicate customer satisfaction 

MOT =

∑

|CO|

max
j∈co

(0, ctj − dtj)

|CO|
.# (16) 

• Mean jt maintenance cycle (MJMC): This is the average duration 
from when JT arrives to when it is completed and delivered to the 
customer. A shorter MJMC indicates higher resource utilization in 
the maintenance process.

MTMC =

∑|JT|
j=1

(
ctj − atj

)

|JT|
.# (17) 

Performance evaluation
Tables 8 and 9 present the performance of OoO and the other four 

comparative rules in certain and uncertain scenarios. The bold values in 
the table correspond to the rules that perform best in those scenarios. In 
a certain environment, EDD emphasizes delivery punctuality and avoids 
the accumulation of delays by prioritizing the jobs with the earliest due 
date, thus effectively reducing the MOT by the determined job infor-
mation. Although OoO slightly falls behind EDD in MOT under deter-
ministic scenarios, it performs better in uncertain environments. 
Moreover, OoO has the best overall performance on MS, TST, and MTMC 

Table 4 
Structure of the base maintenance process historical data.

Data Type Description Sample

Job Data
Job ID Unique identifier for each maintenance 

job.
JT_C3854

Customer ID Identifier for the customer. 00289449
Airplane Type Type or model of the airplane being 

serviced.
BOE737

Priority Priority level of the job (e.g., high, 
medium, low).

High

Processing 
Time

Estimated time required to complete 
the job.

120

Delivery Date Scheduled date for job completion and 
delivery.

485

Arriving Time Time when the airplane arrives at the 
maintenance facility.

283

Leaving Time Time when the airplane departs from 
the maintenance facility.

356

BOM Bill of Materials. [TG1910237c, 
TG2843558a,…]

Status Current status of the job (e.g., pending, 
in progress, completed).

Completed

Operation Data
Operation ID Unique identifier for each operation 

within a job.
OT_Be4552

Operation 
Component

Description of operation performed (e. 
g., inspection, repair, replacement).

Engine

Operator Identifier for the technician or team 
performing the operation.

OP053

Part ID Unique identifier for each part or 
material performing the operation.

TG2843558a

Starting Time Time when the operation begins. 313
Finishing Time Time when the operation is completed. 325
Status Current status of the operation (e.g., 

not started, in progress, completed).
Completed

Material Data
Part ID Unique identifier for each part or 

material.
TG2843558a

Location ID Identifier for the storage location of the 
part.

WH-A12

Time OUT Time when the part is checked out from 
the inventory.

298

Time IN Time when the part is returned to the 
inventory (if applicable).

309

Status Current status of the part (e.g., in use 
and available).

Available

Table 5 
Experimental dataset.

Data Values

Number of customer order 30, 50, 100
Number of jobs per 

customer order
U[1, 3]

Number of job family ⌈|JT|/3 ⌉
Number of part types in 

BOM
10

Number of variants of each 
part type

U[1, 10]

Standard processing time of 
each part of variants

(5, 4, 2,4, 4,1, 1,5, 4,5)/h

Number of operations For small-scale jt:U[1,3] For mid-scale jt:U[4,6] For 
mid-scale jt:U[7,10]

Operational constraints Operation 1 must be the first. No operation 
constraints between operation 2–9. Operation 10 
must be the last.

Hangar setup time For jt not in same JF:U[30, 50]/hFor jt in same JF:fh =

5/h
Mean time between arrivals MBTA = 100/h
Order arrive timeati Exp(MTBA)
Order due timedti ati + α ∗

∑

i∈co
spti,α ∈ [3.0, 5.0]

Table 6 
Uncertain events generation.

Data Values

Urgent customer orders 
Number of urgent orders 1

2
× |JT|

Due time of urgent orders ati + α ∗
∑

i∈co
spti,α ∈ [1.5, 3.0]

Stochastic setup/processing time 
Variation coefficient cv = 0.3
Standard p
Actual job setup/processing time U[(1 − cv)p, (1 + cv)p]
Stochastics material arrive time 
Mean time between material arrive MTBM = 50/h
Material arrive time Exp (MBTM)
Equipment Failure 
Mean time between failure MTBF = 1000/h
Failure happen time Exp(MTBF)
Time for repair U[30,50]/h
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across all the scenarios.
Tables 10 and 11 illustrate the extent to which OoO outperforms 

other rules across varying order volumes and uncertainties. The com-
parison results indicate that the order volume has a minimal impact on 
the performance of OoO when environmental factors remain constant. 
This implies that OoO can be widely extended and applied to scenarios 
with any order volume. Furthermore, the overall performance of OoO 
exhibits a slight enhancement as the order volume increased. For 
example, in a certain scenario, increasing the order quantity from 30 to 
100 results in OoO showing an average improvement of 2 % compared 
with the other four rules. Additionally, when the environment transi-
tions from certain to uncertain while maintaining the same number of 
orders, the improvement in OoO remains steady, with slight enhance-
ments observed. Specifically, the effectiveness of OoO in reducing order 
tardiness significantly increases from an average of 21–32 %. In an 
uncertain environment, OoO shows a massive average reduction of 
approximately 56 % in TST and moderate average improvements of 
approximately 23 % in MS, 32 % in MOT, and 23 % in MTMC.

Fig. 7 and Fig. 8 provide intuitive descriptions of the box plots used 
to measure the performance across the six scenarios for the 5 rules. 
Consistent with the results shown in Tables 8–11, OoO performs as an 
optimal rule in both certain and uncertain environments. Fig. 7 and 
Fig. 8 show that the box lengths of OoO are shorter than those of the 
other methods, which suggests that the performance of OoO is more 
stable than that of EDD, SPT, SST, and JIT, regardless of the total number 
of orders and uncertainty level. In addition to OoO, EDD effectively 

reduces lateness rates, SST is excellent at reducing the total setup time, 
and SPT has a certain effect on decreasing the aircraft holding time in 
hangars.

To further quantify the advantage of OoO in uncertain scenarios, we 
compare the degree of degradation for each rule when transitioning 
from certain to uncertain scenarios with the same order volume. 
Grouping bar charts are plotted to illustrate the relative degradation 
rates of the comparison rules with OoO (shown in Fig. 9). The occur-
rence of uncertain events adversely affects the performance of all the 
rules. However, the degradation of OoO is significantly smaller than that 
of the other four rules, which suggests that OoO is the most robust rule 
among them. Fig. 9 shows that, under uncertain environments, the 
degradation levels of OoO for MS and MTMC remain approximately 
30 % and 38 % lower than those of the other rules, respectively. Addi-
tionally, OoO and EDD exhibit less degradation in enhancing order de-
livery punctuality, whereas OoO and SST demonstrate minimal 
degradation in reducing the total setup time. However, when faced with 
uncertain events, the degradation levels in MOT and TST of SPT and JIT 
compared with OoO exceed 140 %.

Discussion

Uncertain events such as the addition of emergency orders, resource 
uncertainty, and fluctuating processing time during the PSE make the 
maintenance process highly dynamic. From a practical perspective, it 
was proven that the application of OoO-AMOS is effective for providing 
stable PSE performance for a high-uncertain aviation maintenance 
company. Moreover, numerical experimental results have theoretically 
proven that OoO delivers excellent performance in terms of enhanced 
maintenance efficiency, on-time delivery, and resource utilization. 

Table 7 
Rules adopted as references in the experiments.

Rules Type Descriptions Priority Values

EDD
[45]

Static To minimize the total tardiness, all the 
JTs are sorted in ascending order by 
their due dates. JT with the smallest 
due date is processed first.

Prioi =
1
dti

SPT
[46]

Static To minimize inefficient use of 
maintenance resources, all the JTs are 
sorted in ascending order by their 
standard processing time. JT with the 
smallest processing time is processed 
first.

Prioi =
1

spti

SST
[47]

Dynamic Initialize all JTs sorted on a first-come- 
first-served principle. To minimize the 
total setup time, once completing jti− 1, 
search for the shortest setup time jti in 
the remaining JTQ until all jobs are 
completed.

Prioi =
1

sthi− 1,i

JIT
[47]

Dynamic To complete the task delivery at the 
right time to meet the customer 
demand, all the JTs are released and 
executed as closely to their due dates as 
possible.

Prioi =

(dti − spti − τ)2

Table 8 
Performance evaluations in certain scenarios.

OoO EDD SPT SST JIT

30 Orders
MS 10115 13025 13001 12528 13175
TST 956 2331 2316 1785 2330
MOT 5172 4679 7123 7382 7616
MTMC 4946 6284 5830 6432 6788
50 Orders
MS 16289 21525 21533 20314 21341
TST 1597 3929 3911 2975 3906
MOT 8545 7923 12015 12235 12686
MTMC 7999 10304 9595 10454 10968
100 Orders
MS 32841 43213 43182 40932 42951
TST 3243 7940 7905 5988 7910
MOT 17625 16331 24674 25236 26254
MTMC 16143 20691 19212 21157 22167

Table 9 
Performance evaluations in uncertain scenarios.

OoO EDD SPT SST JIT

30 Orders 
MS 14828 19238 19229 18463 19384
TST 1411 3517 3510 2671 3508
MOT 6638 7043 10727 11099 11536
MTMC 7184 9231 8595 9515 9974
50 Orders 
MS 24303 31828 31824 30300 31825
TST 2430 5876 5873 4458 5889
MOT 11165 11902 18066 18677 19380
MTMC 11777 15208 14158 15711 16476
100 Orders 
MS 48873 64159 64149 60988 64008
TST 4904 11951 11938 8990 11926
MOT 22910 24444 36973 37872 39436
MTMC 23781 30631 29321 31597 33083

Table 10 
Performance improvement of OoO compared with other rules in certain 
scenarios.

Average OoO to EDD OoO to SPT OoO to SST OoO to JIT

30 Orders
MS 22 % 22 % 22 % 19 % 23 %
TST 56 % 59 % 59 % 46 % 59 %
MOT 20 % − 11 % 27 % 30 % 32 %
MTMC 22 % 21 % 15 % 23 % 27 %
50 Orders
MS 23 % 24 % 24 % 20 % 24 %
TST 56 % 59 % 59 % 46 % 59 %
MOT 21 % − 8 % 29 % 30 % 33 %
MTMC 22 % 22 % 17 % 23 % 27 %
100 Orders
MS 23 % 24 % 24 % 20 % 24 %
TST 56 % 59 % 59 % 46 % 59 %
MOT 21 % − 8 % 29 % 30 % 33 %
MTMC 22 % 22 % 16 % 24 % 27 %
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Fig. 7. Boxplots of performance measures (certain scenario).

Fig. 8. Boxplots of performance measures (uncertain scenario).
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Specifically, the total setup time was reduced by more than 55 %, 
highlighting the efficiency gains achieved through minimizing the un-
necessary setup and waiting time. Additionally, significant improve-
ments were observed in other key performance metrics: maintenance 
makespan decreased by more than 22 %, average order tardiness was 
reduced by more than 31 %, and the hangar turnover rate improved by 
more than 23 %. These results underscore the impact of OoO in 
enhancing operational efficiency and resource utilization in aviation 
maintenance environments. By utilizing real-time on-site data, OoO is 
capable of making fine-grained decisions during the execution phase, 
which reduces the impact of unpredictable and uncertain events in the 
execution phase. Therefore, the proposed OoO-AMOS is suitable and 
effective for minimizing the influence caused by uncertainties in the 
multistage maintenance process.

Conclusions

This research proposes OoO-AMOS as an integrated solution for 
reducing the influence of uncertainty on aviation maintenance PSE. 
Firstly, advanced technologies were employed to manage maintenance 

resources intelligently and capture uncertainties hidden in PSE at the 
same time. Afterward, the collected real-time on-site data are used as 
inputs to an OoO-based thread manager for real-time decision-making 
under the PSE phase. Moreover, a resource manager and an FSM-based 
validation mechanism were deployed to formulize the state transitions 
of multiple maintenance resources. Finally, a real-life case study was 
conducted with our research collaborators to demonstrate the effec-
tiveness of OoO-AMOS from both theoretical and practical sides. The 
numerical experiments evaluated the performance of the OoO-enabled 
mechanism in terms of maintenance efficiency, punctuality, and 
resource utilization. The results revealed that the adoption of the OoO- 
based decision-making mechanism in the uncertain scenario reduced the 
total setup time by more than 55 %, whereas the maintenance make-
span, average order tardiness, and hangar turnover rates improved by 
more than 22 %, 31 %, and 23 %, respectively.

The main contributions of this paper are as follows. First, this study is 
the first attempt at investigating the underlying logic of the OS for 
handling the uncertainty in aviation maintenance. Second, the frame-
work of aviation maintenance PSE processes was constructed through a 
newly designed thread manager. The OoO-enabled decision-making 

Table 11 
Performance improvement of OoO compared with other rules in uncertain scenarios.

Average OoO to EDD OoO to SPT OoO to SST OoO to JIT

30 Orders
MS 22 % 23 % 23 % 20 % 24 %
TST 57 % 60 % 60 % 47 % 60 %
MOT 32 % 6 % 38 % 40 % 42 %
MTMC 23 % 22 % 16 % 24 % 28 %
50 Orders
MS 23 % 24 % 24 % 20 % 24 %
TST 55 % 59 % 59 % 45 % 59 %
MOT 32 % 6 % 38 % 40 % 42 %
MTMC 23 % 23 % 17 % 25 % 29 %
100 Orders
MS 23 % 24 % 24 % 20 % 24 %
TST 56 % 59 % 59 % 45 % 59 %
MOT 31 % 6 % 38 % 40 % 42 %
MTMC 24 % 22 % 19 % 25 % 28 %

Fig. 9. Relative degradation of performance indicators under uncertainty.
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mechanism is employed as the theoretical foundation for the thread 
manager, thereby breaking through the traditional sequence mechanism 
and mitigating the impact of uncertainty on the maintenance process. 
Third, the integration of the resource manager and FSM-based operation 
validation mechanism enables aviation maintenance companies to 
effectively manage and analyze digitized resource data, thereby real-
izing the value of real-time information in maintenance scenarios.

However, this study has some limitations. OoO-AMOS strongly relies 
on real-time data. Therefore, if there are any errors in data collection 
due to factors such as improper deployment of smart devices in real- 
world scenarios, the performance of OoO-AMOS will be greatly 
affected. In addition, when using OoO-AMOS in different aviation 
maintenance companies, the weights of work priorities need to be 
rationally adjusted according to the actual situation in the field and the 
expectations of the company management. Future research will consider 
more complex maintenance constraints and objectives.

CRediT authorship contribution statement

Yang Fan: Writing – original draft, Visualization, Validation, Soft-
ware, Methodology, Investigation, Formal analysis, Conceptualization. 
Liu Wei: Writing – review & editing, Supervision. Ren Cheng: Writing – 
review & editing, Methodology. Li Ming: Writing – review & editing, 
Supervision, Resources, Project administration, Methodology, Funding 
acquisition, Conceptualization. Li Mingxing: Writing – review & edit-
ing, Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This paper is partially supported by three grants from the Research 
Grants Council of the Hong Kong Special Administrative Region, China 
(Project No. PolyU15208824, C7076-22G and T32-707/22-N) and the 
Innovation and Technology Commission of the HKSAR Government 
through the InnoHK initiative.

References

[1] Ogunfowora O, Najjaran H. Reinforcement and deep reinforcement learning-based 
solutions for machine maintenance planning, scheduling policies, and 
optimization. J Manuf Syst 2023;70:244–63. https://doi.org/10.1016/j. 
jmsy.2023.07.014.

[2] H.A. Kinnison and T. Siddiqui, “Aviation maintenance management,” 2013, 
Accessed: Dec. 20, 2024. [Online]. Available: https://commons.erau.edu/cgi/ 
viewcontent.cgi?article= 2668&context=publication.

[3] Li T, Lockett H, Lawson C. Using requirement-functional-logical-physical models to 
support early assembly process planning for complex aircraft systems integration. 
J Manuf Syst 2020;54:242–57. https://doi.org/10.1016/j.jmsy.2020.01.001.

[4] Cooper T, Smiley J, Porter C, Precourt C. Global Fleet & MRO Market Forecast 
Commentary. Olyver Wyman; 2018.

[5] Jiang Y, et al. Digital twin-enabled real-time synchronization for planning, 
scheduling, and execution in precast on-site assembly. Autom Constr 2022;141: 
104397. https://doi.org/10.1016/j.autcon.2022.104397.

[6] Li M, Li M, Ding H, Ling S, Huang GQ. Graduation-inspired synchronization for 
industry 4.0 planning, scheduling, and execution. J Manuf Syst 2022;64:94–106. 
https://doi.org/10.1016/j.jmsy.2022.05.017.

[7] Masmoudi M, Haït A. Fuzzy uncertainty modelling for project planning: application 
to helicopter maintenance. Int J Prod Res 2012;50(13):3594–611. https://doi.org/ 
10.1080/00207543.2012.670925.

[8] Niu B, Xue B, Zhong H, Qiu H, Zhou T. Short-term aviation maintenance technician 
scheduling based on dynamic task disassembly mechanism. Inf Sci Jun. 2023;629: 
816–35. https://doi.org/10.1016/j.ins.2023.01.137.

[9] Li M, Li M, Guo D, Qu T, Huang GQ. Real-time data-driven out-of-order 
synchronization for production and intralogistics in multiresource-constrained 
assembly systems. IEEE Trans Syst Man Cyber, Syst 2023:1–13. https://doi.org/ 
10.1109/TSMC.2023.3298927.

[10] Deng Q, Santos BF, Curran R. A practical dynamic programming based 
methodology for aircraft maintenance check scheduling optimization. Eur J Oper 
Res 2020;281(2):256–73. https://doi.org/10.1016/j.ejor.2019.08.025.
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