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ABSTRACT 
accurate insights into the spatial distribution of cultivated areas, land use for effective 
agricultural management, and improvement of food security planning, especially in developing 
countries. therefore, this study examined the impact of land changes and population growth 
on agricultural land and wheat crop productivity. First, by incorporating more than three 
decades of satellite data (1990–2022) and different landsat missions with machine learning 
algorithms, high-confidence classes were defined for different land features, including 
cropland. Second, the wheat grown area was identified using the cropland extraction based 
wheat acreage assessment method (Cle-WaaM). third, population dynamics were examined 
by applying an exponential growth model to forecast population growth and predict food 
demand. these findings necessitate the integrated methodological development for wheat 
demand and supply mechanisms using the two-step floating catchment area (2SFCa) 
approach for a more thorough analysis of socioeconomic developments. the results revealed 
that the cropland area was transformed into non-cropland, with a percentage of 8.01. a 79% 
rise in the population occured between 1990 and 2022, with a projected increase of 112% by 
2030. Specifically, the wheat cultivation area decreased by 28%, despite stagnant parameters 
observed since 2000. the proposed method contributes efficiently to the United nations’ 
sustainable development goal (02: Zero hunger) using satellite, geospatial, and statistical data 
integration.

1.  Introduction

the global population is estimated to reach nearly 10 
billion by 2050, leading to a surge in agricultural 
demand. Under a scenario of moderate economic 
growth, this demand is anticipated to increase by 
approximately 50% compared with the levels 
observed in 2013. the rise in income in low- and 
middle-income countries, especially under develop-
ing countries, is expected to expedite a shift in 
dietary patterns, with a greater emphasis on food 
consumption. this transition necessitates correspond-
ing adjustments in agricultural productivity, including 
additional stress on natural resources (Fao, 2017). 

Current global trends, including rapid population 
growth, urbanization, abandonment of agricultural 
land, and climate change, impact food production 
and security, which also fall into sustainable develop-
ment goals (United nation, 2017). the SDG’s goal 02 
(zero hunger), related to managing and sustaining 
food supply in the coming decades, will necessitate 
the efficient utilization of agricultural land and sus-
tainable solutions to meet food demand (United 
nation, 2023). however, natural and environmental 
factors that vary in both time and space play a criti-
cal role in determining and influencing agricultural 
land use (Devkota et  al., 2024; Mjiri et  al., 2022; Z. 
Zhang et  al., 2024; Q. Zhang et  al., 2023). to address 
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this issue, this study attempts to better identify and 
assess the factors influencing agricultural land use, 
land use, and land cover (lUlC), including food 
demand, supply, and socio-economic developments, 
with innovative integrated approaches across diverse 
cross-scale and geographical contexts to achieve 
SDG’s goal 02. the rising worldwide need for food, 
along with rapid urbanization and the extensive 
effects of climate change (Mjiri et  al., 2020; rahimi 
et  al., 2021; Zeng et  al., 2023), highlights the crucial 
significance of monitoring and analyzing variations in 
cropland dynamics throughout the years (aloo et  al., 
2019; Bouasria et  al., 2021a; Bounif et  al., 2021; 
Zambrano et  al., 2018). accurately identifying crop-
land to other types of land cover is essential for effi-
cient land management and policy formulation of 
policies (el Mjiri et  al., 2021; Shirzad et  al., 2022; Wu 
et  al., 2022).

the rising consequences of climate change, com-
bined with uncontrolled expansion and unsustain-
able agricultural methods, have heightened the 
worldwide problem of cropland degradation and 
urbanization, which depends on agricultural produc-
tivity worldwide (Mjiri et  al., 2022; pandey & Seto, 
2015; popescu & popescu, 2022). the transformation 
of fertile land into other land uses has significant 
consequences that disturb ecosystems, biodiversity, 
food security, and the well-being of vulnerable pop-
ulations (hou et  al., 2021; rahimi et  al., 2022). 
Conversely, human actions such as deforestation, 
excessive grazing, inadequate farming techniques, 
urbanization, and population growth are just a few 
of the problems endangering land sustainability (liu 
et  al., 2005; C. Chen et  al., 2023). Urbanization and 
population growth have resulted in the enlargement 
of cities, leading to the encroachment of agricultural 
land. Unplanned population growth, rapid urbaniza-
tion, and the expansion or contraction of agricultural 
operations are the main drivers of changes in land 
use and land cover at different spatial scales (tu 
et  al., 2021). on a daily basis, a substantial number 
of populations increase and shift lUlC patterns, 
especially in croplands, resulting in considerable 
pressure on socioeconomic and environmental 
resources globally (hailu et  al., 2020; hassan et  al., 
2016). therefore, it is necessary to observe drastic 
effects using advanced methodologies in an appro-
priate manner (aslam et  al., 2024; Diem et  al., 2024). 
therefore, the classification of a vast quantity of sat-
ellite images and their properties present substantial 
computing issues related to big data (Bouasria et  al., 
2021b; Bouslihim et  al., 2024). lUlC classifiers can be 
utilized to understand the complexities linked to 

floods, droughts, urbanization, agriculture, and other 
variables at the national, continental, and global lev-
els (Derdouri et  al., 2021; Govender et  al., 2022; 
Kavhu et  al., 2022). as a result, they can offer lUlC 
products with a better resolution than those cur-
rently available. For example, several global land-cover 
products, such as GlobCover, often possess a lower 
spatial resolution of approximately 300 m (Jie Wang 
et  al., 2015). the most effective method for acquiring 
lUlC data involves classifying remotely sensed 
images utilizing several criteria such as spectral sig-
natures, indices, and contextual information for 
image classification (alshari & Gawali, 2021; ehsan 
et  al., 2024). image classification involves assigning 
pixels to certain classes based on various criteria 
such as spectral signatures, indices, contextual infor-
mation, and other factors (Shi et al., 2019; Vivekananda 
et  al., 2021). it is difficult to implement and analyze 
the interaction between many parameters and 
machine learning classifiers on higher-resolution and 
multitemporal images at a regional scale (Cheng 
et  al., 2023; Sharma et  al., 2017).

in many studies, remote sensing (rS) and geo-
graphical information system (GiS) utilization prac-
tices for cropland have provided generalized 
estimation equations to evaluate machine learning 
classifiers, such as classification and regression trees 
(Cart) (Jin Wang et  al. 2018), random forests (rF) 
(Ghosh et  al., 2014), support vector machines (SVM) 
(Jozdani et  al., 2019), maximum likelihood classifiers 
(MlC) (erbek et  al., 2004), artificial neural networks 
(ann) (Sajan et  al., 2022) and convolutional neural 
networks (Cnn) (C. Zhang et  al., 2019). Crop monitor-
ing and management have seen a growing use of 
earth observation data from sensors such as 
Sentinel-1C-band Synthetic aperture radar (S1 Sar) 
(hütt et al., 2016), Sentinel-2 Multispectral instrument 
(S2 MSi) (l. Sun et  al., 2021), radarsat-2 (Skakun 
et  al., 2016), landsat (Graesser & ramankutty, 2017), 
and moderate-resolution imaging spectroradiometer 
(MoDiS) (pittman et al., 2010). Some researchers have 
also employed satellite images from planet satellites 
and aerial images for classification (tao et  al., 2020; 
Vogels et  al., 2017). these satellites provide moderate 
to high geographic resolutions and have been widely 
used in various research studies. in addition, the 
need for improved methodology determines that the 
alteration of lUlC is intricate (Valle et  al., 2023) 
which is linked to human activities and can exert a 
discernible impact on the climate. population growth, 
urban development, changes in the local and regional 
environment, agricultural land depletion, and con-
sumption of natural resources are key factors driving 
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urbanization (Zahoor et  al., 2022) which have been 
examined with rS and machine learning techniques 
using efficient processing platforms (Ball et  al., 2017; 
raza et  al., 2024; Sagan et  al., 2020). recently, the 
manner in which remotely sensed imagery is 
obtained and examined has changed. Whereas the 
satellite imagery with the machine learning approach 
has been able to identify the agricultural land area 
over a big study area. instead of utilizing local com-
puters, this procedure is currently being conducted 
on cloud computing platforms, where data are stored 
and interactions occur over the internet (C. Chen 
et  al., 2023; C. Yang et  al., 2017). the Google earth 
engine (Gee) is a prevailing and widely used platform 
in this domain (X. Zhang et  al., 2020). this platform 
provides effortless access to multiple publicly avail-
able imagery archives, including landsat and Sentinel, 
as well as conventional image-processing tools con-
tained within a high-performance computing envi-
ronment (DeVries et  al., 2020). Cloud-based solutions, 
such as platforms like Gee, offer parallel processing 
environments for activities associated with image 
categorization using satellite image libraries (amani 
et  al., 2020; Mananze et  al., 2020).

previous studies using remote sensing, machine 
learning, and socio-economic analysis in this inter-
disciplinary approach have provided valuable 
insights for land management, population studies, 
and food security research separately (Junye Wang 
et  al. 2022; loibl et  al., 2022; odhiambo et  al., 
2021). all these factors have a great influence on 
each other for spatial representation and assess-
ment, with great potential for work enhancement 
in an integrated framework. the interplay between 
lUlC, specifically regarding agricultural patterns, 
has a significant influence on worldwide environ-
mental and socioeconomic landscapes (ahmad 
et  al., 2022; Su et  al., 2014). Comprehending the 
sequential development of agriculture land and its 
correlation with socioeconomic progress is crucial 
for sustainable development. examining temporal 
agricultural patterns is crucial for decision-makers, 
environmental scientists, and planners involved in 
sustainable land management and agricultural 
planning by incorporating demographic, socioeco-
nomic (Würtenberger et  al., 2006) and remote sens-
ing for analyzing human exposure. in the previous 
literature, most research, especially for developing 
countries, employs techniques for lUlC, population 
changes, cropland area, and demographic observa-
tions separately of the integration of some param-
eters (najmuddin et  al., 2018; patel et  al., 2019) but 
however, food consumption and production need 

more consideration to overcome food security 
issues. in 2017, the global food security index 
(GFSi) was developed for the risk assessment of 
food security, which has been used previously for 
country ranking (odhiambo et  al., 2021). the 
two-step floating catchment area (2SFCa) model 
has been developed for accessibility mapping and 
has also been used in food supply to recognize low 
food access units (X. Chen, 2019). the 2SFCa model 
has also been used at the community and state 
levels using catchment information and distant 
decay functions for accessibility mapping (X. Chen 
& Jia, 2019). the 2SFCa model is primarily used for 
accessibility mapping in education, health, and 
food supply assessments. this research has inten-
sively focused on the integration of remote sens-
ing, demographic, statistical, and socio-economic 
indicators to provide a comprehensive and techni-
cally justified road map for socio-economic devel-
opment and sustainability in terms of food security 
and scarcity (Mikalauskiene et  al., 2018) but how-
ever, gaps exist in previous work. a comprehensive 
analysis of several aspects associated with wheat 
(Zhu et  al., 2023), such as the extent of cropland, 
requirement, overall production, and availability 
per capita, revealed trade-offs (Bakker et  al., 2021) 
between population growth and the need to guar-
antee sufficient food supply (Z. Xu et  al., 2013; 
odey et  al., 2023).

this study aims to fill the research gaps by using 
the proposed integrated methodology using remote 
sensing, population, cropland productivity, and 
socio-economic factor data. this study is divided into 
three main sections. First, the cropland extraction 
(Cle) methodology has been used to examine tem-
poral changes from 1990 to 2022 with scenarios of 
transitions to non-croplands. Second, the precise Cle 
mask has been used in the wheat acreage assess-
ment method (WaaM) for identification of precise 
wheat grown area. third, the study proposed a com-
prehensive methodology to analyze wheat demand 
and supply in an efficient way with population 
dynamics variables, using the concept of 2SFCa and 
geographical data integration. this study emphasizes 
the challenges of maintaining an adequate per cap-
ita wheat supply in light of a growing population, 
showing notable threats to food security. therefore, 
research’s effectiveness and contributions towards 
the United nations’ sustainable development goal 
will help overcome food security with the incorpora-
tion of remote sensing, geospatial, and statistical 
data and provide great insight for sustainability 
measures.
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2.  Materials and methods

the selection of machine-learning algorithms is cru-
cial for achieving precise lUlC classification. this 
study evaluated the performance of rF, SVM, and 
Cart in terms of their capacity to distinguish agricul-
tural land patterns over a period of time. in addition, 
satellite-based indices were calculated and compared 
to provide a thorough assessment of vegetation 
vitality and land surface temperature (lSt). this 
study seeks to enhance our comprehensive under-
standing of the complex interconnections between 
land use, environmental variables, population growth, 
and socio-economic advancements by incorporating 

machine learning algorithms, satellite-derived indi-
ces, and socio-economic data. the study proposed a 
comprehensive methodological framework for crop-
land, including wheat demand and supply, in an 
innovative way with diverse data integration using 
the concept of 2SFCa modeling and geographical 
data incorporation. the research also includes super-
vised phenological profiling to explore temporal 
wheat cultivation patterns that have direct impacts 
on local communities, livelihoods, the broader econ-
omy, and food security. the detailed workflow chart 
shows the hierarchy of the processing methodology 
(Figure 1).

Figure 1. Comprehensive workflow diagram.
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2.1.  Study area

the current research investigation was carried out in 
the Sahiwal district, located in the central region of 
punjab province, pakistan, which is renowned for its 
varied agricultural terrain. the study region extends 
from 30.6682° n to 30.7682° n latitude and 73.1114° 
e to 73.2114° e longitude, spanning approximately 
3,200 square kilometers (Figure 2). the Sahiwal dis-
trict is situated in the productive plains of the 
Chenab and Sutlej rivers, known for its varied land-
scape and prosperous agricultural history (hussain 
et  al., 2023). the region displays diverse agricultural 
patterns, including crops such as wheat, maize, rice, 
sugarcane, cotton, and several horticultural crops 
(irfan et  al., 2022). Wheat is the primary crop, indicat-
ing the agricultural importance of this region (raza 
et  al., 2024). Sahiwal has exhibited significant demo-
graphic shifts based on data from the 1981, 1998, 
2017, and 2023 censuses. the populations reported 
for these years were 1,281,526, 1,843,194, 2,513,011, 
and 2,881,811, respectively. the demographic 

changes observed in this region reflect its dynamic 
character and have the potential to significantly 
influence land utilization and socioeconomic issues 
in the long run.

2.2.  Dataset and preprocessing

the datasets used in this study consisted of spectral 
bands, specifically blue, green, red, nir, and SWir, 
obtained from landsat 5 thematic mapper (tM) and 
landsat 8 operational land imager (oli) sensors. 
Which has been preprocessed included image 
enhancement and masking, where the acquisition of 
satellite images was based on the cloud conditions, 
which were set to standard < 5%, which varied with 
climate conditions. Vegetation, non-vegetation indi-
ces, and land surface temperature (lSt) were calcu-
lated using the same landsat images for temporal 
periods (hussain et  al., 2023). population density 
data from 2000 to 2022 were acquired from the 
landScan Global and official census data sources. in 

Figure 2. geographical representation of study area by sample data and settlement information with elevation profile from 
SrtM-deM with 30-meters spatial resolution.
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addition, the sample data included signature infor-
mation derived from field observations (1861 crop-
land samples) and very high-resolution (Vhr) Google 
earth (Ge) images from the Ge platform, continuing 
temporal features. the statistical dataset contains 
crop-related data, which serve as a complete basis 
for studying the temporal patterns of farmland and 
their socio-economic consequences in the Sahiwal 
area of pakistan. the multiple datasets used in this 
study were obtained from the United States 
Geological Survey (USGS), oak ridge laboratory 
(orl), agricultural Department, and national Census 
Data Center (table 1). these databases provide a 
comprehensive analysis that combines remote sens-
ing, demographic information, and ground-truth data.

2.2.1.  Spectral vegetation and non-vegetation 
indices
in this study, a wide range of vegetation and 
non-vegetation indices were specifically tailored to 
extract different information from landsat 5 and 8 
images (S. pal & Ziaul, 2017). Blue, green, red, nir, 
and SWir bands were used in the indicated indices 
for landsat 5 and 8 with sequence as 1–5 and 2–6, 
respectively, for both outcomes (table 2). however, 
due to canopy cover, nir shows high reflectance for 
healthy vegetation and is less absorbed by water. For 
vegetation and soil moisture, the SWir was sensitive 
to moisture content. the collection of indices in this 
array allowed for a detailed examination of temporal 
cropland patterns, vegetation health, and overall 
changes in land cover in the Sahiwal region.

the nDVi measures the health of vegetation, with 
higher values indicating healthier vegetation and 
lower values potentially indicating non-vegetated 
surfaces or stressed vegetation. the eVi is used to 

reduce the impact of atmospheric factors and to 
consider differences in the arrangement of vegeta-
tion, resulting in more precise evaluations of vegeta-
tion conditions. the equation (table 2) includes the 
following components: l, which represents the can-
opy background adjustment with a value of 1.0; C1 
and C2, which are the coefficients of the aerosol 
resistance term with values of 6.0 and 7.5, respec-
tively; and G, a scaling factor with a value of 2.5. 
SaVi is particularly successful in regions with limited 
vegetation or high soil brightness because it reduces 
the impact of soil reflectance. in this study, a 
soil-adjusted factor (l) of 0.5 was utilized, with higher 
values indicating healthier vegetation. the MnDWi is 
particularly effective in identifying variations in sur-
face water over a period of time. Water had higher 
positive values, while soil and vegetation continued 
to have negative values in the observations. this is 
because soil reflects more SWir light than 
near-infrared light, whereas vegetation reflects even 
more SWir light than green light. BSi can differenti-
ate between exposed soil and vegetation, rendering 
it highly useful for monitoring agricultural regions. 
elevated values indicate the presence of bare soil, 
whereas lower values indicate the existence of vege-
tated areas.

2.2.2.  Land surface temperature retrieval
lSt was calculated using corrected thermal infrared 
images from landsat thematic Mapper (tM) for 
1990, 1995, 2000, and 2009, and from landsat 8 
oli for 2014, 2018, and 2022. the calculation of 
lSt involves the use of thermal infrared bands 
derived from remote sensing data (Sohail et  al., 
2023). the Stefan-Boltzmann law (equation 1) are 
frequently employed in mathematical expressions 

Table 1. dataset used for the study by their characteristics with sensor and related information.
datasets Characteristics Sensor temporal extent Source

Blue Spectral bands landsat 5 tM & landsat 8 oli
30 meters resolution

1990
1995
2000
2009
2014
2018
2022

uSgS
united States geological 

Survey
green
red
nir
SWir
ndVi Spectral vegetation and 

non-vegetation indices
derived from landsat 5 and 

landsat 8eVi
SAVi
MndWi
BSi
lSt Surface temperature
Population Population density landScan global & Census 2000 – 2022 https://landscan.ornl.gov/

https://www.pbs.gov.pk/
https://www.citypopulation.de/

Sample data Signatures Field observations-google earth & 
Phenological Profiling

Field Visit 2022 -
temporal Signature VHr 

- google earth

–

Statistical data Crop statistics – – CrS

https://landscan.ornl.gov/
https://www.pbs.gov.pk/
https://www.citypopulation.de/
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(Kafy et  al., 2021; Qadri et  al., 2023; Ullah et  al., 
2019). Consequently, adjustments for emissivity (ε) 
are required based on the characteristics of land 
cover (equation 2). to consider the impact of veg-
etation on thermal infrared values, this study also 
employed the fractional vegetation (FV) index. the 
FV (equation 3) the index is computed using a 
mathematical calculation, and the computation of 
FV relies on the nDVi measurements in order to 
improve the precision of estimating lSt.

the lSt for the retrieval of surface temperature, 
including the fractional vegetation (FV), was evalu-
ated using the following equations:

 LST TB
TB

= + × × ( )






















 −/ .1 273 15λ

ρ
ln ε  (1)

 ε = × +a FV b (2)

 FV min

max min

= −
−



 




NDVI NDVI

NDVI NDVI

2

 (3)

where TB brightness temperature of sensor, λ 
emitted radiance wavelength,  constant value 
obtained from Boltzman and ε is emissivity. in the 
upper equation FV is the fractional vegetation index, 
a and b are constants, the NDVI

min
 is the lowest nDVi 

value, and NDVI
max

 is the highest nDVi value.
When nDVi readings were below 0.2, the surface 

was predominantly covered with bare soil. in this 
case, an emissivity value of 0.97 is applied. the nDVi 
values ranging from 0.2 to 0.5 indicate a combina-
tion of soil and vegetation cover (J. a. Sobrino et  al., 
2004; orhan & Yakar, 2016; Jose a. Sobrino et  al., 
2008). to determine the emissivity value for such 
mixtures, the following equations are utilized: nDVi 

values exceeding 0.5, indicating full vegetation cov-
erage on the surface, and an emissivity value of 0.99 
is assigned in such cases.

 ε = × +0 004 0 986. .FVC  (4)

these calculations were used to approximate the 
surface temperature and emissivity (equation 4) 
Using thermal infrared data collected from satellites 
or aerial sources. they play a crucial role in applica-
tions, such as environmental monitoring, agriculture, 
and urban heat island studies.

2.3.  Training and feature data selection for 
cropland extraction (CLE) with LULC classes

the study combined landsat spectral bands (blue, 
green, red, nir, and SWir) with five key spectral indi-
ces and lSt data using the mega file data cube 
(MFDC) for the rabi (winter-spring) and Kharif 
(summer-autumn) seasons, which used the MFDC 
process of prior research (raza et  al., 2024). these 
datasets spatial resolution has been set at 30 m and 
cover the period 1990–2022 for both seasons; each 
observed year starts from november for MFDC. these 
datasets were integrated together using an MFDC; 
this method is particularly effective in remote sens-
ing (Gumma et  al., 2020; raza et  al., 2024), as it is 
useful for the analysis of diverse datasets and 
improves the precision of classification. the com-
bined spectral and thermal bands helped the classi-
fiers distinguish differences between cropland, other 
vegetation, and built-up areas. this integration 
improved both the accuracy and reliability of the 
classifications. Seasonal temperature variations of lSt 
can align with crop phenology (i.e. sowing, flowering, 
harvesting stages). the thermal data also has the 
ability to detect surface temperature variations com-
plemented by the spectral indices. Meteorological 
variables, such as temperature, have a very smooth 
gradient as compared to other variables, and it is not 
abruptly changed in nature until there is a huge vari-
ation in terms of elevation and land uses. the classi-
fication requires distinguishing between spectrally 
similar classes with different thermal behaviors (i.e. 
cropland vs. barren soil). the lUlC classification algo-
rithms used in this study were based on a sample 
dataset gathered in 2022 supplemented by temporal 
lUlC dynamics, which were also derived from VhrGe. 
a field survey was also conducted in 2022 for lUlC 
assessment in the study area for precise feature iden-
tification using remote sensing sensors (Zhang et  al., 
2019) as a training dataset (Figure 3). the dataset is 

Table 2. indices driving equation used for landsat 5 tM and 
landsat 8 oli.
Sr index Satellite equation reference

1 ndVi landsat 05
thematic 

Mapper
landsat 08
operation 

land 
imager

nir- red/ nir+ red (rouse et  al., 
1973)

2 eVi g × ((nir - red) / 
(nir + C1 × red 
– C2 × Blue + l))

(Moura et  al., 
2012)

3 SAVi (nir - Blue) / 
(nir + Blue + l) × 
(1 × l)

(Huete, 1988)

4 MndWi green- SWir/ 
green + SWir

(H. Xu, 2006)

5 BSi (Blue + SWir) - (nir+ 
red) / 
(Blue + SWir) + 
(nir + red)

(Piyoosh & 
ghosh, 
2018)

*ndVi: normalized difference vegetation index; eVi: enhanced vegetation 
index; SAVi: soil-adjusted vegetation index; MndWi: modified normal-
ized difference water index; BSi: bare soil index; nir: near-infrared; SWir: 
shorter-wave infrared.
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highly comprehensive and offers intricate data on 
subclasses within the study region, which forms a 
strong basis for subsequent supervised classification 
techniques.

the sample data necessary for these methods 
were obtained from landsat satellite images, nota-
bly landsat 5 tM and landsat 8 oli, which cover the 
period 1990–2022. Meticulous selection and organi-
zation of the training dataset are crucial for achiev-
ing precise and widely applicable model results. in 
this research, feature selection data were gathered 
during the field survey and from Google earth 
high-resolution imagery. Feature sample data selec-
tion for temporal images has taken place through 
the integration of multiple spectral images, the 
comparison of rGB false color composites of 
multi-temporal and multi-sensor landsat scenes, 
and Ge high-resolution imagery. thus, the feature 
selection process was based on the spectral and 
temporal features of the study area, with some con-
straints. in addition to the nDVi (- to +1), the maxi-
mum values indicate forest cover areas and healthy 
vegetation, including cropland, and the lowest val-
ues indicate artificial surface and water bodies. 
Soil-adjusted vegetation index (SaVi) has been used 
to reduce the influence of soil on vegetation in 
mixed-pixel areas (da Silva et al. 2020). the enhanced 
vegetation index (eVi) was used for canopy 

greenness in an area (Jafari et  al., 2017), which was 
further used to discriminate among several vegeta-
tion types. the bare soil index (BSi) (liu et  al., 2022) 
and modified normalized difference water index 
(MnDWi) (hossain et  al., 2024) spectral responses 
show distinctions between bare soil and water bod-
ies and highlight the areas with fluctuations in their 
spectral responses, respectively. every sample in the 
training dataset was linked to distinct land-cover 
categories, including cropland, barren land, built-up 
land, vegetation, forest, and water (table 3). Careful 
curation and preprocessing of the training data are 
crucial for guaranteeing the precision and applica-
bility of the model (r.-C. Chen et  al., 2020). this pro-
cedure entails instructing the machine learning 
algorithm on the complex connections between 
input characteristics, such as spectral bands and 
indices, and their corresponding land-cover classes. 
By using the training data for all land use land cover 

Figure 3. Field sample data location in the observed area with photos taken during the survey in 2022.

Table 3. Classified classes hierarchy with subclasses and id 
information used in the classification.
Code Classes Subclasses

0 Agriculture Cultivated land, Crop land
1 Built up Settlement, urban, rural
2 Barren land uncultivated, Bare Soil, Barren
3 Vegetation Shrubs, grass, Sparse Vegetation, orchards
4 Water river, Canal, Ponds, Fish Farm
5 Forest Forest cover, included trees Species
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classes on landsat satellite utilizing the Gee plat-
form, the model’s capacity to discern subtle differ-
ences among different land cover categories within 
the designated research area was observed.

2.4.  Machine learning algorithms for cropland 
extraction (CLE) with LULC classes

Classification, in the context of machine learning, 
refers to a type of supervised learning in which a 
given dataset is analyzed and a model is con-
structed to categorize the data into a predeter-
mined number of classes (Goldblatt et  al., 2018). 
this study provides a thorough evaluation of vari-
ous machine learning methods (rF, SVM, and Cart) 
used to classify temporal agricultural patterns from 
1990 to 2022, utilizing satellite images from landsat 
5 and landsat 8 with several spectral indices. these 
algorithms have been selected because of their dis-
tinct capabilities and advantages regarding classifi-
cation, particularly in cropland and lUlC extraction, 
by an insightful understanding of previous method-
ologies (adam et  al., 2014; le et  al., 2022; rana & 
Venkata Suryanarayana, 2020; tariq et  al., 2023; 
Zhao et  al., 2024). to maintain the overall distribu-
tion in the study region, a random sampling method 
was used to ensure the distribution of sample data. 
Whereas, a split of 0.8 has been used for the classi-
fication of satellite data, with 80% of the sample 
used for training and 20% for the validation of the 
data. the training sample dataset of six lUlC classes, 
including cropland, was applied to satellite images 
using three Ml algorithms for classification, as 
described below.

2.4.1.  Random forest
the rF algorithm is an Ml technique that utilizes a 
collection of independent decision trees known as 
rF classifiers. these decision trees were created by 
randomly selecting subsets of the original dataset 
and then combining their predictions into categories 
of new data points. the mode of all decision-tree 
predictions serves as the basis for the final classifica-
tion (Z. Sun et  al., 2024). as the number of trees 
increased, the general precision of the classification 
improved without overfitting. each tree inde-
pendently classifies the input and selects the most 
common class through voting (F. Zhang & Yang, 
2020). in addition, rF utilizes a bagging technique in 
which each tree randomly chooses a subset of fea-
tures and training data with the possibility of replace-
ment (Breiman, 2001). additionally, the rF provides 

insight into the features of the raster data with the 
contribution of spectral indices (aeman et  al., 2023) 
such as nDVi, SaVi, eVi, MnDWi, and BSi with lSt 
layer. the random forest Ml algorithm is an ensem-
ble constructed from the components of the multi-
ple trees to make a decision for the resultant layer. 
Furthermore, (Feng et  al., 2015) noticed that the rF 
with selected 200 decision trees in their study had 
higher performance. the algorithm is a supervised 
Ml method that operates on defined decision trees 
to assign classification.

2.4.2.  Support vector machine
it is a pivotal classifier in the field of pattern recog-
nition, which is a highly popular and dynamic area 
of research among scholars (Mountrakis et  al., 2011; 
Zhao et  al., 2024). SVM is a very efficient classifier 
that seeks to create an optimal hyperplane for dis-
tinguishing between distinct classes, with the goal 
of minimizing the number of incorrectly classified 
cases throughout the training process (Shih et  al., 
2019). the hyperplane divides the data into sepa-
rate predetermined classes using kernels based on 
training data. the SVM employs a kernel to convert 
nonlinear datasets into a feature space of greater 
dimensions. additionally, variables such as the 
choice of training samples, the size of the sample, 
and the variety of data all have an impact on the 
accuracy of these complex systems are (ayat et  al., 
2005). Based on the research of M. pal (2008), it is 
beneficial to select parameter C using an exponen-
tially expanding sequence to obtain more accurate 
results. C is a scale parameter that improves the 
performance of the model by improving the approx-
imation of the optimal values. the SVM also pro-
vides high-dimensional suitability for remote 
sensing data with several spectral bands. to over-
come the issue of large-scale data, this study also 
utilized an efficient training sample distribution 
with parameter tuning to mitigate the risk. 
additionally, hyperparameter tuning with the grid 
search and cross-validation process ensured the 
accuracy of the model. this study also achieved an 
effective and comprehensive approach for temporal 
cropland and lUlC extraction, with accurate and 
interpretable results. previously, the highest kappa 
value was obtained for SVM using a principal com-
ponent analysis (pCa) based approach (rana & 
Venkata Suryanarayana, 2020). in addition, SVM has 
gained popularity as a classification approach owing 
to its strong theoretical foundations and ability to 
enhance classification.
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2.4.3.  Classification and regression tree
Cart methodologies are commonly employed in the 
remote sensing field to classify, plot, and model data. 
regression trees are used to analyze the relationship 
between a single continuous response variable and 
multiple explanatory variables, which can be contin-
uous or discrete. this is achieved through a process 
called binary recursive partitioning, where the data 
are split into increasingly homogeneous nodes using 
combinations of rules that best differentiate the vari-
ation in the response variable (Y. Wang et  al., 2021). 
the method functions by repetitively partitioning the 
node until it reaches the terminal nodes according to 
a pre-established edge (Choubin et  al., 2018). 
although Cart may exhibit a propensity to overfit 
the model to some extent, its rapid performance and 
precise results have established it as one of the most 
frequently employed classifiers for lUlC (Zhao et  al., 
2024). in this study, the cloud platform with input 
parameters “classifier. smileCart” is used for catego-
rizing lUlC with training data and its versatility in 
handling classification and regression tasks 
(Feizizadeh et  al., 2023).

2.5.  Validation and accuracy assessment

the accuracy of the three Ml algorithms (rF, SVM, 
Cart) results was observed using the confusion 
matrix accuracy assessment method using the valida-
tion data samples (S. pal & Ziaul, 2017). the user, 
producer, and overall accuracy were assessed for all 
three temporal Ml classifier results separately with 
validation kappa. this process helps evaluate the effi-
ciency of these classifiers in the test case of the 
observed study area. later, the accuracy of 
wheat-grown area was assessed using the same con-
fusion matrix method across all temporal datasets. 
the identified temporal wheat area was also com-
pared with the available statistical data from the 
punjab agriculture Department, pakistan.

2.6.  Temporal cropland pattern distinctions

the categorized data were employed to derive crop-
land layers throughout several time periods, encom-
passing 1990–2022. the temporal analysis aimed to 
detect variations (akinyemi et  al., 2016; Zewude 
et  al., 2022) in cropland areas throughout several 
time intervals: 1990–1995, 1995–2000, 2000–2009, 
2009–2014, 2014–2018, and 2018–2022, and at two 
specific points in time: 1990 and 2022. Spatial analy-
sis of land cover transitions (SalCt) and land change 

trajectory (lCt) methodologies were used to identify 
and analyze changes in cropland patterns over the 
observed period. Moreover, cropland pattern distinc-
tions were observed in two categories: one that 
determined the cropland gain loss (Zhong et  al., 
2022) and the other that determined the cropland 
transformations (Drummond et  al., 2012).

2.7.  Wheat acreages assessment method using 
CLE mask

this study focused on socioeconomic growth, partic-
ularly in regions where wheat was cultivated. landsat 
5 and 8 satellites were used because of their 
well-known ability to capture a wide range of land 
cover changes, moderate spatial resolution, and 
temporal multispectral capabilities (Wulder et  al., 
2019). the acquisition of wheat is observed through 
the nDVi of the wheat crop season, which occurs 
from november to May. Wheat is sown from 
november to December, while heading to flowering, 
ripening, and maturity stages occur during the 
months of January, February, and March, and 
april-May as harvesting months. the subsequent 
procedure entailed computing nDVi using a series 
of landsat images taken during the winter wheat 
growing season (l. Sun et  al., 2021), which spans 
from november to May. By observing the changing 
patterns of the nDVi profiles over time, it was pos-
sible to find unique reflectance patterns that were 
connected to the growth stages of winter wheat 
(Zhu et  al., 2023) to establish the threshold by the 
field sample with nDVi profiling. the wheat area was 
examined and identified using phenological profil-
ing, spectroscopy data, processing and modeling of 
satellite data (G. Yang et  al., 2021), which is based 
on variations in phenological patterns and spec-
trometer  field measurements. these measurements 
have also been used to generate the field sample 
data of previous years.

the sample data were generated using the nDVi 
profiling curve and spectroscopic measurements for 
wheat identification by observing the behavior of 
wheat crop trends and growth from the cultivation 
to the harvesting stage. in addition, in the observed 
region, the wheat crop season can easily be com-
pared with other crops because of seasonal variation, 
which can reduce the redundancy of multiple crops. 
the phenological observation of wheat crops shows 
that in the crop season months of January, February, 
and March, the nDVi behavior is much higher than 
that of other crops (Duan et  al., 2017), as the 
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measurements from spectrometer  based nDVi were 
0.92, 0.85, and 0.74 for these months, respectively. 
additionally, the winter season reduces the impact of 
other crops (due to phenological cycle), including 
vegetation, compared to the summer season crops. 
the nDVi values of other vegetation, such as forest, 
grass, and shrub areas, were lower than those of 
wheat during the peak growth (January-February) 
stage (C. Zhang et  al., 2019). region-specific nDVi 
thresholds were established based on field survey 
samples and ground information (Figure 13) with 
phenological segmentation. the wheat crop signa-
ture behavior in peak month reports was greater 
than 0.57 in nDVi observations. the figure also iden-
tifies the detailed threshold observation for the rest 
of the months, along with the respective peak and 
trough of the signature, for all wheat fields that have 
been observed. later, these were used in the classi-
fied seasonal cube for wheat identification. 
additionally, the nDVi profile has been identified 
with a pure field signatures verified with a spectrom-
eter peak curve and phenological regional crop cycle, 
which has fluctuation in the chlorophyll throughout 
the phenological cycle observed to define the thresh-
old as an input parameter for classification with 
landsat spectral bands. after threshold identification 
using the field data, all values are set to zero except 
the values of the defined threshold for the wheat. 
the method (WaaM) utilized the landsat spectral 
bands, nDVi thresholds layer with SaVi and eVi layers 
in conjunction with the Cle mask to minimize false 
positive errors. Cle (cropland extraction) mask was 
generated using an rF classifier applied to the entire 
study area. the Cle mask was used to improve clas-
sification robustness by eliminating non-agricultural 
land and its impact on the spectral mixing of pixels 
to improve the wheat fields identification. landsat 
spectral bands, including red, green, blue, nir, SWir, 
nDVi thresholds, SaVi, and eVi layers, are purely used 
to support the rF classification.

nir and SWir are crucial for identifying vegeta-
tion health and moisture content, whereas the visi-
ble bands are also useful for wheat discrimination in 
the rabi season. these images were designed to 
highlight the unique spectral properties of blooming 
and actively growing wheat (Cao et  al., 2018). the rF 
classifier was trained using both nDVi profiles and 
landsat spectral bands to differentiate wheat from 
other crops. the purpose of this process was to facil-
itate the supervised classification of wheat signa-
tures, which were derived from nDVi profiling and 
spectroscopic measurements. to streamline the 

identification process, a supervised machine learning 
method was utilized, specifically, the random Forest 
classifier. the wheat signatures were used for train-
ing and validation for 2022, where training data 
were prepared by nDVi phenological observations 
(758 samples) and validated using field data gath-
ered in 2022 (425 samples) for classification. Whereas, 
for the rest of the years, the generated wheat sam-
ple was divided by split (0.7), in which 70% of signa-
tures were used for training and 30% for validation. 
the sample size was set at 623, 616, 651, 525, 483, 
and 504 for training and 267, 264, 279, 225, 207, and 
216 for validation in the persistent time period, that 
is, 2018, 2014, 2009, 2000, 1995, and 1990, respec-
tively. the wheat area for each observed year is 
identified in km2 and acres due to the small farming 
practices. the accuracy of the categorization was 
evaluated by comparing it to the ground truth 
points obtained from field surveys and phenological 
observations. the accuracy assessment using the 
confusion metric accuracy method was computed by 
utilizing an independent validation dataset obtained 
from field data. this method was applied using the 
crop-masked layer prepared earlier to reduce the 
effect of other land-use classes for accuracy enhance-
ment. the integration of phenological profiling, nDVi 
calibration with SaVi, eVi, and Cle masking ensures 
its reliability and practical applicability for agricul-
tural monitoring. the method demonstrates the abil-
ity to enable precise wheat classification across 
diverse agro-ecological zones and according to their 
respective time periods.

2.8.  Socio economic distinctions

2.8.1.  Predictive population growth
the growth pattern in the study area was observed 
using landScan population density data for further 
evaluation (raza et  al., 2024) and forecasting of the 
population growth analysis utilized by the exponen-
tial growth model (eGM), which is represented in 
equation 5 (hobbie & roth, 2007; olanrewaju et  al., 
2020). the basis for extrapolating population esti-
mates for the past and current year census data for 
1981, 1998, 2017, and 2023. this model was used to 
forecast population growth by projecting the popu-
lation from 2023 to 2030. the model (equation 5) 
shows the predicted results for population growth, 
that is, X

t
 is the population at time t.

 X X r
t

t= +( )0
1  (5)
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where X
o
 is the initial population at the observed 

time and r and t represent the growth rate and time, 
respectively, as shown in the equation above.

2.8.2.  Socio economic developments and wheat 
demand—supply
a thorough assessment of socio-economic progress 
and possible risks to food security requires a detailed 
examination of the patterns of wheat cultivation 
selected by considering threats. the wheat crop 
areas for 1990, 1995, 2000, 2009, 2014, 2018, and 
2022 were determined using satellite images and 
available agricultural departmental data. the evalua-
tion examined the health of seasonal wheat crops 
during their growth period using surface tempera-
ture data to assess the thermal conditions during 
important growth stages as a primary indication. the 
analysis also employed agricultural statistics by 
including socio-economic elements, such as the 
yearly per capita wheat consumption, which was set 
at 124 kg per capita (USDa, 2015). a socioeconomic 
analysis was conducted to assess the population, 
wheat requirement, and production (kg/t), and the 
per capita availability of each year was estimated 
(table 4). the purpose was to identify any surplus or 
prospective deficiencies in the wheat supply. this 
study utilized a dynamic forecasting method to pre-
dict the annual per capita wheat consumption in the 
study area to determine the overall wheat demand 
in 2030 (t) by employing the methodology (Mottaleb 
et  al., 2022) using equation 6 aggregated wheat 
demand (aWD).

 AWD PC PP
t t t
= ×  (6)

where t represents the time or year, PC
t
 is measured for per 

capita wheat consumption in kilograms, and PP
t
 represents 

the population in a year.
the comprehensive approach employed in this 

study allowed for a detailed understanding of the 
wheat farming environment and facilitated the detec-
tion of possible risks to food security. the concept of 
the two-step floating catchment area (2SFCa) model 
(Kuo, 2021; tao et  al., 2020), in this research, spatial 
demand and supply relationships were identified with 
defined catchment boundaries (X. Chen & Jia, 2019; 
Bell et  al., 2013), which shows the location-based 
demand and supply distribution with wheat crop 
accessibility in the union council (UCs) level catch-
ments that have been threatened by land use and 
reduction of wheat cultivation. this was the first study 
to analyze wheat demand and supply using popula-
tion dynamics, demand, and supply variables for the 

year 2022. in the first step, the landScan gridded 
1*1 km dataset was generated within each defined 
union council (UC) level catchment and corporate 
with the classified built-up data as demand locations 
and supplies from the wheat grown area of a 1 km 
square box to reduce the redundancy and catching 
smoothness of data. in the first step (equation 7), the 
supply to-demand ratio Rj is determined by dividing 
the capacity of a facility Sj (wheat area–supply) by 
the total population Pk (population–demand) located 
within a specified distance d

0
 (UC boundary area–cal-

culated by each 1 × 1 grid within UCs). the second 
step involves calculating accessibility index Ai for the 
demand point by summing the Rj values obtained in 
the first step, as shown in equation (8).

 R
S
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j
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the aggregated demand that comes from differ-
ent locations is identified and aggregated supply 
(wheat production; calculated by yield average 34.5 
Â maund per acre, where 1 maund = 40 kg defined 
by the agriculture department and classified wheat 
grown area in each UC) coming from different loca-
tions. in the second step, the accessibility ratio of 
each UC is calculated using aggregated demand and 
supply data. Utilizing satellite data, analyzing con-
sumption trends, and considering population dynam-
ics are essential methods for predicting and tackling 
past, present, and future issues related to food secu-
rity. the data sources used for the socioeconomic 
development assessment are shown in table 4.

3.  Results

3.1.  Comparative CLE layers and accuracy 
assessment

the land cover classification results for Sahiwal were 
obtained using three machine-learning algorithms: 

Table 4. Socio-economic indicators by remote sensing and 
statistical data from the years 1990 to 2022.
Sr. no data Source

1 Population egM
2 Crop Health ndVi
3 temperature lSt
4 Wheat grown Area remote Sensing/ Crop 

reporting Service5 Annual Per Capita 
Consumption (kg/person)

6 Production
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rF, SVM, and Cart. the classification outcomes are 
displayed in square kilometers for each land cover 
category for the years 1990, 1995, 2002, 2008, 2013, 
2018, and 2022 (Figure 4). the algorithms were used 
to classify the study region into six main categories: 
cropland (Cl), barren land (Bl), built-up (BU), 

vegetation (Ve), water (Wt) and forest (Fr) (Figure 5). 
as seen in the accuracy assessment (Figure 6), the 
classification results showed better accuracy in the 
temporal classification scenario with rF, the observed 
highest accuracy of 95.22%, with kappa of 0.94, com-
pared to the SVM and Cart. the cropland area 

Figure 4. Comparative outcomes of three Ml Algorithms i.e. rF-SVM-CArt using temporal landsat 5 tM and landsat 8 oli 
satellite images.
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dedicated to agriculture in Sahiwal was approxi-
mately 2510.40 square kilometers in 1990, with a 
modest growth observed in 1995. the Cl area 
reached its highest point in 2002, measuring 
2667.15 sq. km, and fluctuated in the following years, 
ultimately decreasing to 2601.10 sq. km by 2022.

3.2.  Temporal cropland pattern transformation

this study observed variations in the area of culti-
vated land in Sahiwal across certain periods, mea-
sured in square kilometers (sq. km) and acres. 
Between 1990 and 1995, the cropland declined by 
104.74 square kilometers, which is equivalent to 
25,881.78 acres. however, it was consistent with 
594,449.70 acres and showed a gain of 143.65 sq. km 

as 35,496.63 acres during the same era. Subsequent 
intervals showed similar patterns, with oscillations in 
the agricultural areas. From 1995 to 2000, there was 
a loss of 19,093.80 acres, followed by a rise of 
48,212.66 acres. the aforementioned time frames of 
2000–2009, 2009–2013, 2013–2018, and 2018–2022 
consistently demonstrated trends that indicated sig-
nificant fluctuations in Sahiwal’s cropland area. the 
cropland changes from 1990 to 2022 provide an 
overview of the total changes in the cropland area 
for the entire period. it indicates a net rise of 201.33 sq. 
km (49,749.65 acres) and a consistency of land on 
2309.07 sq. km (570,582.69 acres) with a crop pattern 
shift or increase of 72162.07 acres. this comprehen-
sive analysis offers useful insights into the changing 
patterns of croplands in Sahiwal over time (Figure 7).

this analysis provides a more detailed view of the 
changes in agricultural land. in addition, geographi-
cal analysis revealed the conversion of cropland into 
different types of land use, providing useful informa-
tion for the planning and control of land use. the 
8.01% cropland transformation to built-up and other 
land use was also observed from 1990 to 2022, the 
total area of cropland converted into built-up and 
other lU up to 15108.06 and 34641.65 acres, respec-
tively. in the temporal observation from 1990 to 
1995, 1995 to 2000, 2000 to 2009, 2009 to 2014, 
2014 to 2018, 2018 to 2022 it was converted into 
built-up by 883.98, 780.85, 1479.84, 1512.28, 1821.88, 

Figure 5. Comparative temporal area by rF, SVM, CArt Ml algorithms in square km from 1990 to 2022.

Figure 6. Accuracy assessment chart with validation kappa 
for three Ml algorithms, rF—SVM—CArt, where, oA: overall 
accuracy, K: kappa.
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and 1949.66 acres, respectively. Whereas 24,997.14, 
18312.95, 41988.08, 21043.46, 26425.41, and 16585.69 
acres area were converted into other land uses in the 
observed time span temporally (Figure 8).

3.3.  Cropland variations on LST and spectral 
indices

the dataset included a series of satellite-derived 
indices and lSt measurements for Sahiwal over a 
span of seven years. nDVi, eVi, SaVi, MnDWi, BSi, 
and lSt were calculated, and temporal patterns 
were observed using temporal landsat satellite 
data (table 5). nDVi and eVi displayed variations in 
vegetation vitality, whereas SaVi, MnDWi, and BSi 
emphasized alterations in soil and water dynamics. 
Furthermore, lSt measurements depict fluctuations 

in surface temperature over time. in 2022, nDVi 
varies between -0.02 and 0.75, which signifies 
changes in the health of vegetation. in Figure 9, 
insight observation shows cropland development 
and degradation patterns, as in the a and b areas 
along with the river, agricultural activity increased, 
which did not exist in 1990. Compared to the out-
puts of region B, the cropland area was occupied 
by other land uses, such as built-up, barren, and 
fish farms. their behavior is shown in the observed 
index categories, which exhibit a temporal transfor-
mation. on the other hand, the lSt reported from 
25.99 °C to 37.94 °C, signifying differences in lSt 
(Figure 10).

the heat-map matrix shows how the cropland 
confronted the lSt and vegetation and non-vegetation 
index variations over the observed period with 

Figure 7. temporal cropland pattern shifts with gain-loss in Cl area from 1990 to 2022.
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interesting patterns (Figure 11). Significantly, there 
was a negative association between the lSt and 
nDVi, eVi, and SaVi. this indicates that the cropland 
area is rich in crop health and soil fertility because 
lower temperatures are associated with more robust 
vegetation (hussain et al., 2022; Marzban et al., 2018).

3.4.  Wheat demand and supply—geographical 
indicators

3.4.1.  Wheat acreages grown area
By visually interpreting the classified outcomes and 
nDVi profiles, the results showed variation in 

Figure 8. Cropland transformation to built-up and other land use classes from 1990 to 2022.

Table 5. Satellite derived indices annual temporal deviations with minimum and maximum ranges.

Years

ndVi eVi SAVi MndWi BSi

Min Max Min Max Min Max Min Max Min Max

2022 −0.02 0.75 −0.02 0.62 −0.01 0.57 −0.51 0.43 −0.29 0.25
2018 −0.05 0.69 −0.01 0.50 −0.06 0.66 −0.32 0.43 −0.22 0.18
2014 −0.15 0.72 −0.04 0.59 −0.05 0.55 −0.30 0.47 −0.32 0.20
2009 −0.13 0.64 −0.12 0.76 −0.09 0.64 −0.27 0.45 −0.28 0.23
2000 −0.19 0.64 −0.10 0.63 −0.11 0.58 −0.28 0.43 −0.26 0.16
1995 −0.17 0.68 −0.13 0.68 −0.24 0.95 −0.36 0.57 −0.30 0.18
1990 −0.28 0.72 −0.15 0.88 −0.16 0.62 −0.30 0.51 −0.29 0.17
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temporal wheat, which was visualized by thorough 
analysis (Figure 12). the result is an all-encompassing 
map that depicts the spatial patterns of winter 

wheat farming in Sahiwal, providing vital knowl-
edge for the temporal monitoring and control of 
agriculture, even with minimal resources (Figure 13). 

Figure 9. Satellite derived indices temporal behavior to analyses the rate of change and pattern shift of cropland from 1990 
to 2022, region a and b presenting gain and loss in cropland areas.
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the results showed that wheat-grown areas have 
been reduced because of the cultivation of maize 
instead of wheat practices, as shown in table 6. the 
classified and statistical areas of wheat will decrease 
by 2022. the rF results showed that the area of 
wheat was 392,383 acres in 1990, which was 
reduced to 274,264 acres by 2022. in comparison to 
statistical data from the agricultural department, 
the reported winter maize-grown area in 2009 was 
45,600 acres which rapidly increased to 126000 
acres by 2022.

in the wheat-grown area, a possible decrease of 
28% has been noticed in 2022. Whereas the overall 
accuracy for the temporal wheat-grown area was 
estimated in the confusion matrix process and it 
observed that 96.17%, 95.21%, 93.33%, 94.42%, 
95.84%, 92.79%, and 91.87% for the years 2022, 2018, 
2014, 2009, 2000, 1995, and 1990, respectively.

3.4.2.  Predictive population growth and patterns
Urbanization is an unavoidable outcome of economic 
advancement, resulting in a substantial increase in the 
urban population and demand for residential facilities 
(X. Q. Zhang, 2016). the exponential growth model 
predicts that Sahiwal’s population will experience a 
substantial increase, reaching an estimated 3,347,799 
by 2030 (Figure 14). the forecast, based on the model, 
shows a significant increase compared with earlier 
census data of 2,881,811 (2023), 2,513,011 (2017), 
1,843,194 (1998), and 1,281,526 (1981). the model 
forecasts indicate a persistently rising trajectory, high-
lighting the region’s demographic vitality. the high 
r-squared value of 0.97 indicates that Bl has a strong 
correlation with the observed population statistics in 
Sahiwal. the high degree of connection between the 
model’s forecasts and the actual population data sig-
nificantly strengthens the reliability of the projections, 

Figure 10. land surface temperature temporal behavior.

Figure 11. Correlation assessment using heat-map matrix lSt and vegetation and non-vegetation indices on cropland area.
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hence strengthening confidence in the predicted pop-
ulation of 3,347,799 by the year 2030, with an increase 
of 112% as compared to 1990.

the landScan data also illustrate a temporal rise 
in the population pattern of Sahiwal from 2000 to 
2022 (Figure 15). landScan population data provide 
a detailed and thorough representation of the spatial 
and temporal distribution of people in Sahiwal. the 
sustained increase in population during this time-
frame indicates a significant change in population 
structure, possibly driven by causes such as urbaniza-
tion, economic progress, or patterns of migration.

3.4.3.  Socio-economic transformation—threaten to 
food security
Socio-economic table 7 offers a thorough summary 
of wheat cultivation, agricultural productivity, and 
the corresponding socio-economic variables over 
several years, where a wheat area has varied in the 
observed years, showing a dramatic decline through-
out the years and reaching 279,000 acres in 2022. 
the crop chlorophyll observed presents the average 
nDVi values, which indicate the overall health and 
vitality of the wheat crops throughout their growth 
season, and the highest mean value was recorded in 
1995. a greater nDVi value often indicates more 
robust vegetation than a low nDVi value. table 7 
provides the essential metrics for wheat production, 
such as wheat required, yield, production, and per 

capita availability and surplus. these statistics illus-
trate the per capita demand, production, and acces-
sibility of wheat and provide insights into the food 
security state of the region (table 7). the surplus col-
umn displays the excess amount of wheat available 
above the per capita requirement. this column 
demonstrates the potential for local sustenance, as 
well as the surplus that can be used for trade or 
storage purposes because punjab province is rich in 
cropland and wheat productivity. it has decreased 
from 116.41 to 12.51 kgs per capita per head up to 
2022 which is alarming (Figure 16).

this socio-economic table 7 is an excessive 
resource for comprehending the interplay between 
wheat output, population growth, and food security. 
the socioeconomic chart illustrates the complex 
interplay between population dynamics, wheat out-
put, and per capita availability, emphasizing the dif-
ficulties and consequences of food security in 
Sahiwal.

the results of our method using the concept of 
2SFCa (Zeng et  al., 2023) with the defined catchment 
area, where the wheat accessibility ratio showed high 
and low demand for the year 2022. a value of less 
than 1 indicated a low accessibility ratio (Bell et  al., 
2013) resulting in high demand but less availability of 
wheat, and a value greater than 1 showed a balanced 
and high availability of wheat (Figure 17). this inte-
grated method for food demand and consumption 

Figure 12. Comparison chart of remote sensing calculation with claimed statistics by Agriculture department, government 
officials in sq. km.
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Figure 13. Wheat grown area results using ndVi profiling and supervised Ml classification by wheat seasonal behavior 
observations.

Table 6. temporal cropland and wheat grown area comparing of remote sensing and CrS stats.

Years

remotely sensed—classified Agriculture department stat

Cropland area—rF Wheat area—rF Wheat area—CrS

Sq. km Acre Sq. km Acre Sq. km Acre

2022 2601.10 642744.82 1109.9 274,264 1,129.1 279,000
2018 2605.27 643775.24 1396.4 345,071 1,432.6 354,000
2014 2610.05 644956.41 1456.1 359,804 1,448.8 358,000
2009 2576.19 636589.43 1432.7 354,030 1,493.3 369,000
2000 2667.15 659066.10 1487.7 367,621 1,452.8 359,000
1995 2549.31 629947.25 1561.8 385,934 1,521.6 376,000
1990 2510.40 620332.39 1587.9 392,383 – –

CrS: Crop-reporting services, agriculture department.
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has a significant influence on precision agriculture and 
sustainable farming to overcome food security issues. 
however, this research has some limitations regarding 

the availability and accuracy of satellite data, as well 
as socio-economic factors that require significant com-
putational resources.

Figure 14. Population dynamic graph from 1980 to 2023 with projected population till 2030 and temporal increase in built-up 
from 1990 till 2022 in sq. km (r2 = 0.97).

Figure 15. geographical representation of population dynamics temporal pattern with increasing population trends using 
landScan population density data.
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4.  Discussion

the study period involved quantifying changes in 
cropland areas, including their consistency, gain, and 
loss. this thorough examination illuminates the com-
plex patterns of land cover changes in Sahiwal, offer-
ing a significant understanding of the transitions 
between cropland, urban areas, and other land use 
categories during the observed periods. the integra-
tion of remote sensing, machine learning and 
socio-economic data analysis highlights significant 
challenges and scenarios for agriculture productivity 

and food security in the region with rapid urbaniza-
tion. the analysis reveals intricate patterns of trans-
formation of agricultural land into urban expansion 
and other land uses across time, providing valuable 
insights into the evolving environment. From 1990 
to 2022, approximately 8.01% of Sahiwal’s cropland 
was converted to non-agricultural land. the expan-
sion of urban areas indicates a rise in urbanization, 
population concentration, and infrastructure devel-
opment, emphasizing the significant changes in 
cropland for non-agricultural activities in the region. 
this trend is consistent with global patterns where 

Table 7. Socioeconomic development under wheat per capita requirement from a past-present-future perspective threatens 
food security.

Years

Wheat grown area
crs/classified

Mean 
lSt 

wheat 
season

Crop 
health 
wheat 
season PoP Wheat required Production

Per capita availability & 
surplus, kgs

Acres Sq. km oC
Mean 
ndVi Count Kgs tons Kgs tons Availability Surplus

2022 279,000 1,129.1 30.39 0.48 2,820,344 349,722,656 349,723 385,000,000 385,000 136.5 12.51
2018 354,000 1,432.6 30.58 0.43 2,574,478 319,235,272 319,235 497,000,000 497,000 193.0 69.05
2014 358,000 1,448.8 28.33 0.45 2,407,250 298,499,000 298,499 464,000,000 464,000 192.8 68.75
2009 369,000 1,493.3 26.74 0.46 2,230,983 276,641,892 276,642 460,000,000 460,000 206.2 82.19
2000 359,000 1,452.8 23.78 0.47 1,913,701 237,298,924 237,299 478,000,000 478,000 249.8 125.78
1995 376,000 1,521.6 23.7 0.50 1,744,076 216,265,424 216,265 419,000,000 419,000 240.4 116.41
1990 392,383 1587.9 22.64 0.40 1,578,880 195,781,120 195,781 – – – –
2030 3,347,799 415,127,076 415,127
*Annual per capita consumption (kg) = 124.

Figure 16. Wheat crop requirement, production, availability, and surplus observed statistical chart in kilograms.
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urban expansion increasing pressure on cultivable 
land, thereby reducing agricultural productivity and 
challenging food security (he et  al., 2017; rahimi 
et al., 2021). the high classification accuracy achieved 
through machine learning approach, particularly 
with the rF algorithm. rF enhances accuracy with-
out overfitting, making it a valuable tool for tempo-
ral land-cover studies (Zhao et  al., 2024), while the 

highest achieved accuracy was 95.22% in this study. 
additional prominent land-cover categories, includ-
ing BU, Bl, Ve, Wt, and Fr, revealed diverse patterns 
of change throughout the study period. there is an 
inverse relationship between the vegetation indices 
and surface temperature (Sohail et  al., 2023), with 
little variation in the temporal observation due to 
crop pattern changes.

Figure 17. Spatial distribution of wheat accessibility identified (A) acquired data, (B) spatial availability of wheat in Kgs, (C) 
demand per uC in Kgs, (d) identified accessibility ratio, and (e) built-up and wheat grown area evaluation in each uC.
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the use of satellite indices such as nDVi, SaVi, BSi, 
MnDWi, and eVi in this study provided significant 
observations of vegetation health and soil condi-
tions, which align with the general advantages these 
indices offer in assessing cropland dynamics and soil 
moisture across temporal spans (hussain et  al., 2023; 
raza et  al., 2024). however, there are positive con-
nections between lSt, MnDWi, and BSi, which indi-
cates a possible link between higher temperatures 
and non-vegetation indices. Moreover, a precise 
examination of the negative associations between 
lSt and MnDWi in 1995, 2009, and 2018 shows tem-
poral variations in the interaction between tempera-
ture cropland behavior over time. this thorough heat 
map study offers useful insights into the many rela-
tionships that influence the agricultural environment 
and its response to climatic factors. this extensive 
dataset offers a detailed comprehension of 
time-based changes in Sahiwal’s land cover and envi-
ronmental circumstances. however, an increasing 
trend was reported in the lSt, and an inverse rela-
tionship exists with the vegetation index, including 
nDVi (Marzban et  al., 2018). population expansion in 
Sahiwal has significant consequences for urban 
development, infrastructure planning, and the neces-
sity of implementing sustainable practices to support 
the growing population. temporal growth is exam-
ined along with other socioeconomic and environ-
mental factors and can offer useful insights into the 
dynamics of the region in this research. population 
growth was also observed in the landScan spatial 
pattern, which was low in 2000, but in 2022, the 
whole district faced high population clusters. the 
results also revealed that the presented scenario 
depicts the development of urban land in Sahiwal 
during the analyzed years. the assembled cluster 
presented a growth scenario, as clearly observed in 
the landScan population density data. the popula-
tion showed an increasing trend, which may also 
affect crop cultivation practices and cause tempera-
ture fluctuations (hou et  al., 2021; Sohail et  al., 2023).

the wheat-grown area has been decreasing as the 
demand for wheat has risen day by day compared to 
1990. the reported decrease of 28% in wheat- 
cultivated areas, along with a significant surge in 
population (79% between 1990 and 2022 and pro-
jected to exceed 112% by 2030), demonstrates how 
socio-economic growth strains food production and 
security systems. in pakistan, high pressure also exists 
in punjab province because it is a fertile and agriculture- 
rich province (tariq et  al., 2023). additionally, it sup-
plies wheat to neighboring provinces, including 
Baluchistan and KpK, which have less suitable areas 

for wheat crops (tahir & Khaliq, 2018). therefore, it is 
necessary to meet the needs of the entire country. 
the surplus needs to increase in line with the popu-
lation, but it is decreasing due to the growing popu-
lation, which poses a threat to food security (S. Yang 
et  al., 2023). the socio-economic analysis revealed 
that Sahiwal’s rapid population growth, projected to 
surpass 3.3 million by 2030, will continue to drive 
wheat demand. it is necessary to fulfil the needs of 
the entire country; the surplus can increase as per the 
population, but it reduces as an increasing trend in 
population, which becomes a threat to food security. 
the 2SFCa model in this study provided spatial 
insights into wheat demand and accessibility. previous 
studies demonstrate the utility of the 2SFCa model in 
mapping food accessibility and addressing supply- 
demand gaps with other utility assessments (X. Chen, 
2019; X. Chen & Jia, 2019; Bell et  al., 2013). the find-
ings emphasize the challenges posed by population 
growth in guaranteeing food security, highlighting 
the need for proactive implications. on the other 
hand, wheat crop production with other parameters 
is nearly stagnant from 2000 observations, but the 
demand is increasing rapidly and the wheat grown 
area is decreasing as well. the year 2030 depicts a 
projected scenario forecasting a substantial rise in 
population and the corresponding implications for 
wheat farming and accessibility. the results also 
revealed that the availability of wheat decreased by 
two factors due to land use, land cover, and crop pat-
tern shift (cultivation of wheat crop reduced by 
maize). examination of changes in crops revealed 
substantial modifications in agricultural trends, distin-
guishing between regions experiencing expansion, 
contraction, and consistency (hou et al., 2021; hussain 
et  al., 2022). this study’s approach supports the 
United nations’ Sustainable Development Goal 2 (Zero 
hunger) by offering a robust framework for food 
security assessment in rapidly urbanizing regions. the 
examined effects of land dynamics on local commu-
nities, livelihoods, and the overall economy, revealing 
the complex relationship between these factors, show 
that a consistent decrease in per capita availability is 
a serious threat to food security. the results offer a 
crucial direction for resource allocation and urban 
planning to handle changing environmental and 
socioeconomic issues for food sustainability.

5.  Conclusion

this study improves agricultural monitoring tech-
niques and land management, and provides import-
ant information for the formulation of policies 
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affecting sustainable development. the integration of 
remote sensing and socioeconomic data with demo-
graphic and statistical information increases the reli-
ability of the study, especially for the evaluation of 
food security-related issues. this study employed a 
thorough approach to comprehend the complex 
dynamics of Sahiwal’s landscape development. 
through a comparative application of machine learn-
ing techniques, rF is the most efficient model for 
categorizing land cover, including cropland, with the 
observed highest accuracy of 95.22%. in addition, 
the use of indicators collected from satellites allowed 
for a thorough understanding of the temporal trends 
and correlation patterns in the study area. this inves-
tigation primarily examined the transformation of 
agricultural land into developed areas and other land 
uses, providing significant observations on the evolv-
ing trends of urbanization in 2022. the 15108.06 
acres and 34637.52 acres area of cropland change 
into built-up and other land use, respectively. the 
wheat grown area achieved the highest accuracy of 
96.17% in the results of phenological and spectro-
scopic based modeling using Cle-WaaM methodol-
ogy. however, the study on socio-economic effects 
highlighted the significant consequences of changes 
in cropland, especially for wheat crops as of 2022. a 
total of 349,722,656 kg of wheat is required, which 
will increase to 415,127,076 kg by 2030. By contrast, 
the proposed methodology interactively supports 
linked factors that are helpful for the investigation of 
the 2SFCa model with integrated data. the accessi-
bility ratio of demand and supply from <1 to 0 indi-
cated high demand and low supply due to the flux 
of urbanization. this research showed the capacity 
for regional self-sufficiency, as well as the excess that 
may be utilized for trade or storage due to the abun-
dant cropland and high wheat output in the punjab 
provinces. on the other hand, the wheat crop’s yield, 
production, and area, along with other parameters, 
have remained relatively unchanged since 2000, 
while demand has experienced rapid growth. this 
integrated and improved methodology for land man-
agement, population analysis, and food security 
investigation will be beneficial for future analytical 
observations. For a better understanding and impli-
cation of the SDG goal (zero hunger), this methodol-
ogy will help in the spatial pattern assessment of 
food consumption and supply in any region using 
open access data in a time-efficient manner. this 
highlights the significance of meticulous strategies 
and interventions to guarantee sustainable and eco-
logically conscious progress regarding this issue. this 
study provides a comprehensive framework that 

assists decision makers and scholars engaged in sus-
tainable land management and agricultural planning.
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