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Abstract
Real-time fire hazard estimation is an essential step for smart firefighting practice. This 
paper introduces the Fire Vigilance Pocket Edition application (FV Pocket), which is 
designed to enable automatic fire identification and quantification using computer vision 
and deep learning techniques, for real-time fire surveillance. The application comprises 
four main functions, namely, fire detection, fire segmentation, fire measurement, and fire 
calorimetry. Fire detection is performed by YOLOv5, which localizes the fire source in 
the image and marks the location of the flame area. Subsequently, the detected fire area is 
input into the Swin-Unet model to separate the flame and background, enabling the real-
time display of the fire area. Additionally, image-based fire measurement techniques are 
used to determine the flame height and the flame area according to the estimated reference 
scales, which also facilitates the rescaling of raw images. Finally, the rescaled images are 
fed into a pre-trained fire calorimetry model to identify the heat release rate of the fire. 
The models used in FV Pocket, their design, and main features are discussed, and the 
application is demonstrated using real fire events under various scenarios. The potential 
uses and limitations of FV Pocket are also addressed in this work.

Keywords Fire safety · Smart firefighting · Fire calorimetry · Computer vision · Deep 
learning

1 Introduction

Fire detection and hazard quantification play a crucial role in safeguarding lives, property, 
and the environment away from the devastating fire disasters. A timely fire detection 
allows for swift evacuation of occupants, activation of fire suppression systems, and the 
initiation of appropriate emergency response procedures [1, 2]. The detected fire signal can 
also trigger the building automatic fire services system to rapidly reduce the spread and 
intensity of fires, limiting the damage and potential loss of life [3]. Moreover, the local fire 
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brigade will be alerted to prepare the firefighting and rescue operations, which has been 
standard practice globally.

Current fire detection methods (Fig. 1), including the human surveillance [4], automated 
systems [5], or the combination of human and sensors [6]. Human surveillance relies 
on trained individuals to actively monitor an area for signs of fire or the occupants’ 
observation when they are near the fire scene. However, it suffers from limitations such 
as limited coverage, potential for human error, and high cost associated with employing 
sufficient human observers [7]. Automated systems utilize sensors and cameras to detect 
fires and trigger alerts, but they are prone to false alarms, lack adaptability, and require 
frequent maintenance. Most modern fire detection practices integrate human surveillance 
with automated systems to leverage their respective strengths. For example, once a fire 
detector sends an alarm, the property manager can further check the surveillance camera 
or patrol the area to confirm the fire alarm and reduce the false alarm. Despite the high 
complexity and cost of the current fire detection system, it can neither provide quantitative 
fire information to monitor the fire evolution [8, 9] nor reduce the manpower and false fire 
alarm [10].

To address these drawbacks, ongoing research focuses on improving accuracy and 
reliability of fire detection system [6], developing advanced algorithms and computer 
vision methods for automatic fire detection [11], and exploring emerging technologies 
such as drones and remote sensing [12]. Dampage et  al. [13] adopted a wireless sensor 
network combined with a machine learning regression model to detect forest fires at their 
early stages, aiming to improve the accuracy of fire detection. Vikram et al. [14] proposed 
a novel localization technique that employed the Support Vector Machine and wireless 
sensor network for early prediction of forest fires. Sharma et  al. [15] designed an early 
fire detection system using sensor network and Unmanned Aerial Vehicle technology to 
mitigate fire incidents. Other researchers looked into the fuel distribution [16] and human 
behaviors [17] to evaluate the real-time fire risk [18]. Today, deep learning models such 
as Convolutional Neural Networks (CNN) [19–21], Faster R-CNN [22–24], and YOLO 
[25–27] have been widely employed to improve the fire detection.

Though these approaches contribute to enhancing fire detection capabilities, most of 
them can only judge the occurrence of the fire (i.e., Y/N) [28] without more quantitative 
information for fire hazard evaluation. The measurement of flame height [29], flame area 
[30], and fire heat release rate (HRR) [31, 32] is of paramount importance in quantifying 
fire hazard and assessing its potential consequences. To be more specific, flame height 
provides valuable information about the vertical extent of the fire, indicating the potential 
fire spread to the ceiling and higher floors. The burning area quantifies the spatial coverage 
of the fire, which determines the potential impact on surrounding fuels and structures. The 
fire HRR or its power is considered the most critical parameter of fire, aiding in assessing 

Fig. 1  Fire inspection and detection by humans, automated sensors and surveillance camera systems
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the destructive potential of fire spread and the associated  risk of structural failure. 
However, only limited studies have attempted to quantify these critical fire parameters. For 
example, Zhang et al. [8, 33] utilized temperature sensor network and artificial intelligence 
to track the real-time fire growth and forecast the risk and moment of critical fire events 
like flashover and backdraft. Cao et  al. [34] proposed an LSTM-Kriging neural network 
model that utilizes temporal data from fire sensors to generate real-time indoor fire threat 
fields. Zhang et al. [35] developed a CNN-BiLSTM-based fire location detection model to 
address challenges in firefighting strategies for extrawide immersed tunnels. Reddy et al. 
[35] proposed an AI-based recurrent neural network optimized with a whale optimization 
algorithm (AI-RNN-WO) for early fire hazard detection in smart cities. Shadrin et al. [36] 
utilized remote sensing data and a neural network based on the MA-Net architecture to 
predict wildfire spread over 1–5  days, focusing on environmental and climate data with 
spatial distribution features.

Despite the utility of sensor data, particularly time-series data, these methods often 
suffer from limitations such as low spatial resolution, restricted coverage, and susceptibility 
to sensor malfunctions in extreme conditions. In contrast, image-based methods provide 
richer spatial–temporal information, enabling more detailed and interpretable analyses. 
More recently, we proposed the AI-image fire calorimetry method, which uses smoke and 
fire images to feed the AI model for measuring the fire HRR [37–40], these approaches 
demonstrate the potential to overcome the limitations of sensor-based methods and 
highlights the robustness of using image data. However, such a  method has not been 
integrated into a portable tool to support daily fire safety management and firefighting 
operations.

This work introduces Fire Vigilance Pocket Edition application (FV Pocket), a web 
version designed for real-time intelligent fire monitoring and quantification of fire 
hazards. This smart tool incorporates image-based deep learning models to perform fire 
identification and quantification, providing crucial information for decision-making 
processes. Unlike many existing fire models, which are often restricted to internal use by 
researchers or specific teams, FV Pocket is the first to openly share its advanced fire models 
with all users. This open-access approach bridges the gap between fire model development 
and practical applications, making these tools accessible to a wider audience. Additionally, 
FV Pocket features an intuitive interface and user-friendly design, ensuring that even non-
expert users can effectively utilize its functionalities.

We describe the development process, design considerations, and key features of FV 
Pocket, highlighting its effectiveness through demonstrations using real fire events. 
Furthermore, the limitations and assumptions associated with the application’s usage, 
as well as potential avenues for future improvements are discussed. By maintaining 
continuous vigilance for fire hazards, implementing proactive fire prevention measures, 
and promptly responding to fire incidents, fire vigilance plays a crucial role in ensuring life 
safety and the preservation of valuable assets.

2  Methodology

In this study, the FV Pocket system employs established deep learning models in 
computer vision to fulfill distinct objectives. Firstly, YOLOv5 [39] is utilized for fire 
detection, enabling the identification and localization of fire sources. Secondly, Swin-
Unet [40, 41] is employed for fire segmentation, facilitating the precise delineation of 
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flames from the background. Lastly, VGG [37, 38, 42] is employed for fire calorimetry, 
enabling the estimation of the transient heat release rate (HRR) based on the captured 
fire images. To establish the correspondence between image dimensions and actual 
dimensions, a reference scale is incorporated. Furthermore, the flame segmentation 
process is expedited by leveraging the outcomes of fire detection, as the fire-monitored 
flame regions are input into the fire segmentation model to reduce the effect of flame 
reflections. The framework of the FV Pocket is shown in Fig. 2, details on the specific 
AI models can be found in the reference.

2.1  Fire Detection

Fire detection plays a crucial role in ensuring the safety of people and property in 
various settings. It serves as an early warning system that alerts individuals to the 
presence of a fire, enabling timely evacuation and response actions. By detecting fires at 
their early stages, potential risks and damages can be minimized.

This study employs YOLOv5 (Fig.  3) as an automated fire detection system 
to overcome the constraints of human vigilance. YOLOv5 incorporates a deep 
convolutional neural network as its underlying architecture to extract hierarchical 
features across various scales. Additionally, it incorporates a neck component to 
enhance feature representations by aggregating multi-scale features. The detection 
head of YOLOv5 is responsible for generating predictions, including bounding box 
coordinates and class probabilities, for the identified objects in the input image.

YOLOv5 offers several advantages over traditional methods, including continuous 
and consistent operation, thereby  eliminating the impact of human factors such as 
fatigue and distractions. The system is capable of monitoring large areas in real-time, 
enabling swift response to fire incidents. The algorithm is trained on diverse datasets, 
enhancing its ability to accurately identify fire patterns and differentiate them from 
other objects or false alarms.

Furthermore, YOLOv5 demonstrates robust performance in detecting fires even in 
challenging environments with limited visibility. By analyzing the bounding box of the 
detected fire instances, the flame height  can be calculated when the camera captures 
an orthogonal view of the flame. This information provides valuable insights into the 
fire’s behavior, intensity, and potential hazards. Overall, integrating YOLOv5 into 
fire vigilance efforts can significantly improve the overall safety and efficiency of fire 
detection, facilitating early detection and timely interventions.

Fig. 2  Framework of the FV 
Pocket
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2.2  Fire Segmentation

When a fire occurs, in addition to promptly raising an alarm, it is crucial to keep track 
of the development of the fire in real time. This necessitates the analysis of critical fire 
parameters.

In the context of fire analysis and understanding, accurate fire segmentation plays 
a critical role in tracking the development of fires and analyzing their parameters. 
By effectively delineating the boundaries of the fire region in images or videos, fire 
segmentation enables precise measurement and quantification of various fire-related 
parameters, such as size, shape, and spatial distribution. These parameters are essential for 
assessing the intensity, spread, and potential hazards associated with fire.

Swin-Unet (Fig.  4) is adopted for real-time fire segmentation. It is a variant of the 
U-Net architecture that incorporates the Swin Transformer as its backbone. All images are 
divided into 224 × 224 blocks as input to Swin-Unet. The input is passed through the initial 
layers of the Swin Transformer, which extract high-level spatial representations. These 
representations are then passed through a series of encoder and decoder blocks, similar 
to the U-Net architecture, to capture multi-scale features. Skip connections are used to 
concatenate features from the down-sampling path with the up-sampling path, enabling the 
integration of both local and global information. The final output is a segmentation map 
that assigns class labels to each pixel in the input image.

Fig. 3  The architecture of YOLOv5 for fire detection
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Compared to traditional methods, Swin-Unet eliminates the need for manual threshold 
setting by training on diverse fire datasets, enabling flexible and adaptive fire segmentation. 
Additionally, its fast segmentation capability provides real-time fire information, greatly 
supporting decision-making in fire-related scenarios.

In our FV Pocket, two modes are employed for fire segmentation, namely the global 
mode and the fast mode (Fig. 5). In the global mode, the entire raw image is utilized as 

Fig. 4  The architecture of Swin-Unet for fire segmentation

Fig. 5  Two modes of fire segmentation, fast mode and global mode
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input. The image is divided into small blocks of size 224 × 224, which are then fed into 
the Swin-Unet model for segmentation. This mode ensures accurate identification of all 
regions containing flames; however, its drawback lies  in the time-consuming process of 
segmenting each small block individually. In addition, the global mode may misidentify 
flame reflection as actual flame area, resulting in overestimation of the flame area. To 
address these issues, the fast mode is introduced to enhance the segmentation speed and 
mitigate the impact of flame reflections. In this mode, only the flame area detected by 
the YOLOv5 model is considered as input to Swin-Unet, while the remaining regions are 
assumed to be flame-free. This approach significantly accelerates the segmentation process 
while still maintaining satisfactory accuracy. Moreover, by combining fire detection with 
flame segmentation, the overestimation of the flame area (e.g., flame reflection or objects 
with flame-like color) by the model can be effectively reduced.

2.3  Fire Measurement

Following fire detection and segmentation, the pixel values corresponding to flame height 
and area can be calculated. However, relying solely on raw  pixel measurements can be 
challenging for users to accurately assess fire parameters in real-world contexts. Therefore, 
it is necessary to convert these pixel values into specific, real-world parameters.

Real-world parameters refer to physical measurements, such as meters for height and 
square meters for area, which are essential for practical fire analysis and safety assessments. 
To determine the real fire parameters, a reference scale  (Rs) is required, which defines 
the actual length that each pixel represents in the images. Using this reference scale, the 
flame height can be determined by multiplying the pixel count of the flame height by 
the reference scale (H =  Hp ×  Rs, where H is actual flame height and  Hp is flame height 
in pixels), and the flame area can be calculated by summing the flame pixels and then 
multiplying by the square of the reference scale (A =  Ap ×  Rs

2, where A is actual flame area 
and  Ap is flame area in pixels).

There are several methods available to determine the reference scale: pre-calibration, 
human estimation, and the use of a binocular camera. Table 1 provides a comparison of 
these methods. The pre-calibration method provides high estimation precision but requires 
site-specific calibration, and once calibrated, the camera must remain stationary. This 
method typically involves placing objects of known dimensions (L) in the camera’s field of 
view and establishing the pixel-to-real-world relationship  (Rs = L/Lp, where  Lp is the length 
in pixels). The human estimation method can be applied in any environment with reference 
objects, but the accuracy depends on the user’s experience. This approach involves using 
familiar objects in the scene, such as doors, windows, or standardized equipment, as 
reference points. Additionally, if the camera moves, each frame will need to be manually 
assessed, leading to a high workload. The binocular camera method combines the 
advantages of the previous two methods but requires a specialized binocular camera, which 
also needs to be calibrated prior to use. This method uses stereoscopic vision principles 
to automatically calculate distances (D = B × f/d, where D is the distance to object, B is 
the baseline between cameras, f is focal length, and d is disparity) similar to human depth 
perception.

For general-purpose applications, our system allows the direct input of the reference 
scale, ensuring that it can be applied to various video types and is accessible to all 
users regardless of the environment or camera setup. This flexibility allows users to 
input reference scales obtained through any of the aforementioned methods or other 
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reliable sources, making the system adaptable to different scenarios while maintaining 
measurement accuracy.

2.4  Fire Calorimetry by Computer Vision

Heat release rate (HRR) is a fundamental parameter that determines the fire’s energy output 
and potential hazard. By quantifying the HRR, fire calorimetry enables the evaluation of 
fire size and growth, which is important in fire vigilance. However, traditional lab-based 
methods such as mass balance and oxygen calorimeter are not applicable in real fire 
scenarios. Therefore, image-based fire calorimetry has emerged as a necessary alternative.

In this process, a modified Visual Geometry Group (VGG) network (Fig.  6), trained 
on the NIST Fire Calorimetry Database (FCD) [43], is employed for fire size estimation. 
The VGG network is a deep convolutional neural network commonly used for image 
classification tasks. Modifications are made to the network architecture to meet the specific 
requirements of fire calorimetry. These include adjusting the last fully connected layer to a 
single output layer with linear activation, and reducing the number of hidden nodes in the 
initial layers to reduce training parameters.

The raw images captured from the videos are resized based on the reference scale to 
ensure that the input video maintains a consistent scale with the images used for model 
training. Consequently, the identified HRR can be accurately determined and output using 
the trained AI model.

2.5  Other Functions

In addition to its primary capabilities of fire detection, segmentation, measurement, 
and calorimetry, the web  application offers several advanced features to enhance user 
experience and data analysis. The webpage allows users to create images or videos from the 
processed detection and segmentation results, providing a clear and intuitive representation 
of the fire analysis that makes it easier for users to understand and interpret the data. Users 
can also generate graphs depicting the variation of flame measurements and calorimetric 
data over time. These graphs are crucial for tracking the progression and intensity of the 
fire, providing insights into the fire’s behavior and development.

All processed data, including flame measurements and calorimetric results, are saved 
in CSV format and can be downloaded for further analysis. For instance, quantified heat 
release rate data can be imported into Computational Fluid Dynamics (CFD) software for 
detailed fire reconstruction and modeling. By providing downloadable data, the webpage 
supports users in conducting in-depth analysis and research. This feature is particularly 

Fig. 6  The architecture of VGG for image-based fire calorimetry
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beneficial for fire safety engineers and researchers who need precise data for simulations 
and predictive modeling.

3  APP Design and Discussion

In order to integrate all the aforementioned functionalities into a comprehensive app, a 
web application called FV Pocket was developed. This web app is designed to be platform-
independent, allowing users to access and utilize it on various devices and operating 
systems as long as they have a web browser. This eliminates the requirement for users 
to install and maintain specific software on their individual devices, thereby enhancing 
convenience and accessibility. Additionally, the web app can be updated and maintained 
centrally. By hosting the application on a server, updates and bug fixes can be implemented 
at the server level, ensuring that all users automatically benefit from the latest version 
without needing to perform individual software updates. Furthermore, this centralized 
maintenance approach guarantees consistency across all users and devices, enhancing the 
overall user experience.

3.1  APP Design

The development of the web application involves the utilization of Flask as the web 
framework and Nginx as the web server. Flask was chosen due to its lightweight and 
flexible architecture, offering a solid foundation for Python-based web application 
development. It facilitates the definition of routes, handling of requests and responses, 
and management of application logic. On the other hand, Nginx serves as an efficient web 
server, responsible for managing incoming requests and serving static files.

The integration between Flask and Nginx is established by running the Flask application 
with Gunicorn, which acts as the interface between Flask and Nginx. Gunicorn enables 
the seamless connection between the Flask application and Nginx, allowing for efficient 
request forwarding, load balancing, and caching. The combination of Flask and Nginx 
provides a robust and efficient solution for developing and deploying the FV pocket.

3.2  APP Framework

The developed application is presented as a web-based platform, offering two distinct 
modes: demo mode and app mode, as illustrated in Fig.  7. In demo mode, users are 
provided with two example cases to explore the app’s capabilities: a box fire from the NIST 
fire calorimetry database and a bin fire sourced from the internet. After selecting a fire 
case, users must select the specific functions they wish to perform, including fire detection, 
segmentation, measurement, and calorimetry. The results of fire measurement are 
contingent upon fire detection and segmentation. If only fire detection or fire segmentation 
is selected, the fire measurement will be limited to either flame height or flame area. If 
neither is selected, no measurement results will be available. Conversely, if both are 
selected, comprehensive measurement results will be provided.

The output includes both video and text-based results. For video output, the processed 
videos showing fire detection, fire segmentation, and measurement results are displayed 
directly on the webpage. Additionally, the system generates temporal plots displaying the 
variations of flame height, flame area, and heat release rate over time. The text-based output 
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is saved in CSV format, containing frame numbers along with corresponding flame height, 
flame area, and heat release rate values for each frame. All generated results, including 
the processed videos, plot images, and CSV files, can be downloaded through dedicated 
download buttons on the webpage for further analysis.

In app mode, the process is similar to demo mode, with the key difference being that 
users can upload their own videos. After entering the reference scale parameter and 
selecting the desired functions, the webpage processes the uploaded file and generates the 
results. Users can then download their processed files in the same format as in demo mode, 
including both the video visualizations and CSV data files containing frame-by-frame 
measurements of fire parameters.

3.3  Demonstration with a Lab Fire Test

In order to validate the efficacy of the web application, a fire test case sourced from the 
NIST database was chosen for demonstration purposes [43]. The fire test involved igniting 
a cardboard box measuring 0.3 m × 0.4 m × 0.3 m, containing crinkled paper as fuel. Four 
acetone wicks, each soaked in 10 mL of acetone, were strategically placed at the base of 
each face of the box. The results obtained from the Fire Vigilance (FV) pocket application 
at various time intervals are depicted in Fig. 8. A more detailed running process of the FV 
pocket for the box fire test is demonstrated in Video S1.

All the results are rescaled according to the reference scale (the size of the box). The 
FV pocket yields four distinct outcomes, namely fire detection, fire segmentation, fire 
measurement, and fire calorimetry. The fire detection results furnish the bounding box 
encompassing the flame, alongside its precise spatial coordinates within the images. The 
fire segmentation outcomes quantify the area occupied by the flame within the images. 
Additionally, the fire measurement results offer pertinent data concerning the flame’s 
height and area, while the fire calorimetry outcomes provide comprehensive information 
pertaining to the fire’s size and thermal characteristics.

Fig. 7  framework of the developed APP
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Fig. 8  The results of FV pocket for the box fire. (see Video S1)
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The overall performance of the fire test is presented in Table  2 and shown near the 
burnout in Fig. 8b. Table 2 outlines the key metrics, including frames per second (FPS) 
and latency, for both fire detection and fire segmentation tasks under different modes of 
operation. It is important to note that the latency reported here is primarily caused by 
processing speed, with communication speed excluded, as it can vary depending on the 
network connection. For fire detection, the model achieves an impressive performance with 
a high FPS of 103 and minimal latency of 0.01  s, indicating its capability for real-time 
detection. In contrast, the fire segmentation task demonstrates a trade-off between accuracy 
and speed, with two distinct operational modes. The "Global" mode, optimized for detailed 
segmentation, operates at a significantly lower FPS of 0.65 and a higher latency of 1.54 s. 
This mode is likely suited for scenarios demanding higher precision. Meanwhile, the "Fast" 
mode offers a balanced approach, achieving an FPS of 18 with a latency of 0.06 s, making 
it suitable for scenarios where quicker response times are critical. In this work, the “Fast” 
mode is adopted in the application for real-time fire vigilance.

The FV pocket demonstrates its ability to accurately identify the progression of fire 
based on fire images. The models effectively locate the fire source on the map and utilize 
the detected flame area to generate a binary map exclusively containing the flame region. 
Through fire detection and segmentation, the changes in flame height and area during fire 
development are easily obtained. Notably, the maximum flame height identified by the fire 
detection model is 1.29 m, which closely aligns with the maximum flame height of 1.37 m 
reported by NIST [44], thereby validating the model’s efficacy.

Regarding fire heat release rate (HRR), the identified HRR is compared with the actual 
HRR measured using an oxygen calorimeter. Overall, the image-based estimation of fire 
HRR closely corresponds to the measured values, exhibiting a coefficient of determination 
 (R2) of 0.73. These findings highlight the model’s effectiveness in fire calorimetry, further 
demonstrating its capability to accurately assess fire power and hazards.

3.4  Demonstration with Real Fire Events

Following the validation of the model through NIST fire tests, real-world fire incidents 
are subsequently employed to illustrate the practical viability of the application. It is 
noteworthy that in comparison to the controlled fire experiments within the NIST database, 
real fire events encompass heightened complexity attributable to diverse fire sources, 
backgrounds, and lighting conditions. Additionally, disparities in the view angles of video 
capture, camera configurations, and shooting distances further contribute to the increased 
difficulty associated with the identification and quantification of parameters when 
compared to laboratory fire tests.

To substantiate the robustness of the web application’s functionality, a rubbish bin fire 
has been chosen to serve as a representative exemplar of actual fire scenarios, as depicted 
in Fig. 9. The processing speeds of different models are shown in Table 3 and the detailed 
process is shown in Video S2. In the bin fire scenario, the fire detection model achieved a 
stable FPS of 96 with a latency of 0.01 s. Similarly, the global mode for fire segmentation 

Table 2  The overall performance 
for the paper box fire (Intel Xeon 
Gold 6126 and Tesla P100)

Model performance Mode FPS Latency (s)

Fire detection – 103 0.01
Fire segmentation Global 0.65 1.54

Fast 18 0.06
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Fig. 9  The results of FV pocket for the rubbish bin fire. (see Video S2)
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maintained a consistent FPS of 0.64 and latency of 1.55 s, comparable to the performance 
observed in the paper box fire test. Notably, in the fast mode, the FPS increased to 13 
with a latency of 0.08 s. This improvement in FPS reflects the efficiency of the fast mode, 
where only the detected fire regions are segmented. While larger fire regions require more 
processing time, the system’s performance remains well within the requirements for real-
time applications.

In order to harmonize with the scale requirements of the deep learning model, all fire 
scene images have been meticulously rescaled and resized in accordance with a predefined 
reference scale. The comprehensive scrutiny of genuine fire progression, as presented in 
Fig.  9b, reveals intricate insights into the identification and quantification of actual fire 
dynamics. Visual assessments affirm that the web application proficiently aligns with the 
qualitative patterns observed in the video, thereby effectively discerning and quantifying 
the fire source in real-world fire events.

In summary, the developed web application can effectively identify and quantify the 
transient fire development within the proposed fire detection, segmentation, measurement 
and calorimetry model regardless of the background, fire source, or camera settings.

3.5  Future Improvements

In addition to its primary capabilities of fire detection, segmentation, measurement, and 
calorimetry, the webpage could offer several advanced features to further enhance user 
experience and data analysis. Future versions of the webpage might allow users to upload 
their data to the system, designed to assist in the ongoing optimization and iteration of the 
fire detection models. By contributing their data, users could help improve the accuracy 
and reliability of the system, ensuring that it evolves, trains and adapts to new fire scenarios 
and datasets. The uploaded data would be used by developers to refine and enhance the 
model, addressing any shortcomings and incorporating new findings. This collaborative 
approach would ensure that the system remains cutting-edge and effective in various fire 
detection and analysis contexts.

Another potential enhancement could be an error reporting feature that allows users to 
manually upload results if they encounter any inaccuracies in flame data processing. This 
feedback mechanism would be essential for developers to promptly identify and rectify 
issues, ensuring that the model is continuously improved and updated based on real-world 
user experiences. By providing a direct channel for error reporting, the webpage would 
ensure that developers receive timely and accurate feedback, facilitating quick adjustments 
and improvements to the model, thus enhancing its overall performance and reliability.

These future improvements would not only enhance the user experience but also 
contribute to the ongoing development and refinement of fire identification and 
quantification technologies. By offering robust data export capabilities, and mechanisms 

Table 3  The overall performance 
for the bin fire (Intel Xeon Gold 
6126 and Tesla P100)

Model performance Mode FPS Latency (s)

Fire detection – 96 0.01
Fire segmentation Global 0.64 1.55

Fast 13 0.08
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for user feedback and model optimization, the webpage could stand as a valuable tool for 
both practical fire management and advanced research.

3.6  Discussion

The FV Pocket system, as an automatic fire vigilance tool, presents certain limitations that 
necessitate further refinement and integration with advanced technologies to enhance its 
effectiveness and broaden its application in real-world firefighting scenarios. A critical 
challenge lies in the accurate measurement of fire parameters, such as flame height, flame 
area, and heat release rate (HRR), which currently depends on the presence of a reference 
scale. Without such a scale, these measurements become unreliable, underscoring the need 
for an automatic distance measurement method. The integration of technologies such as 
LiDAR or stereo vision could facilitate the automatic acquisition of reference sizes, thereby 
improving the accuracy of these essential fire parameters.

Another significant limitation is the dependency of flame height and area acquisition 
on the shooting angle, which requires the camera to be orthogonally aligned with the fire 
source. This requirement can be impractical in dynamic fire scenarios, suggesting that 
future developments should focus on either adjusting the camera angle automatically or 
developing robust angle correction algorithms. Utilizing gimbal-stabilized cameras or 
AI-based angle correction techniques could ensure accurate measurements even when the 
camera is not ideally positioned.

Furthermore, the AI model has been primarily trained using data from open fires in 
open environments. This limiation leads to a reduced accuracy when analyzing indoor fires, 
where factors such as confined spaces, reflections, and different lighting conditions come 
into play. Additionally, the model’s current training database is limited in terms of fire size, 
primarily covering fires with heat release rates below 4 MW. This upper limit restricts its 
ability to accurately analyze larger fire scenarios. To address these limitations, the training 
dataset should be expanded to include diverse indoor fire scenarios and a broader range of 
fire sizes, taking into account variations in room size, wall materials, lighting conditions, 
and fire dynamics.

Fig. 10  Smart firefighting 
ecosystem based on fire vigilance 
software
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The current implementation also assumes that the flame is fully captured within the 
camera’s field of view. However, in real-world scenarios, smoke and obstacles often 
partially obstruct the flame, leading to incomplete or inaccurate measurements. Future 
improvements should focus on developing robust algorithms that can estimate fire 
parameters even when the flame is partially obscured. This could involve incorporating 
smoke detection and modeling capabilities, as well as methods to compensate for various 
types of visual obstacles.

When the FV system is deployed for real-time fire scenario assessment, the management 
of communication and computational resources becomes a critical concern. The system 
can leverage the advanced communication infrastructure provided by 5G technology to 
transmit the collected video streams to cloud servers for processing, while the client-side 
is responsible for the simple rendering and display of the results. Moreover, to further 
enhance system efficiency and responsiveness, model compression techniques such as 
knowledge distillation can be employed. By compressing a large, complex model into a 
more compact and efficient version, the computational burden is significantly reduced, 
enabling real-time processing at the local level. Additionally, the implementation of edge 
computing allows data to be processed at the source, proximate to the fire incident, thereby 
minimizing latency and reducing dependence on continuous cloud connectivity.

Beyond addressing these technical challenges, the FV Pocket system holds considerable 
potential for integration with emerging technologies and application in various firefighting 
contexts as shown in Fig. 10. For instance, equipping Unmanned Aerial Vehicles (UAVs) 
with the FV Pocket system could enable real-time aerial surveillance of large fire scenes, 
providing critical data from multiple angles. Edge processing capabilities on UAVs would 
be essential for timely analysis and decision-making, independent of potentially unstable 
data transmission networks. Cloud processing could complement this by offering detailed 
post-mission analysis when UAVs return to base stations or connect to reliable networks.

Furthermore, the FV Pocket system is designed to address scenarios with limited 
computational resources, such as those encountered on mobile devices. All computationally 
intensive processes, including fire detection, segmentation, measurement, and calorimetry, 
are performed on cloud servers. Mobile devices serve as display interfaces, showing results 
and enabling user interactions without the need for significant local processing power. This 
cloud-based architecture ensures that the system remains lightweight and accessible on 
a wide range of devices, including smartphones and tablets, regardless of their hardware 
capabilities.

Moreover, the FV Pocket will also offer a mobile application for use by bystanders, 
enabling them to report fire risk recognition to the fire service department. This 
functionality facilitates the provision of supplementary information about the fire 
following the initial alarm. Given the fact that fires are frequently detected and reported 
by passersby, this feature constitutes a critical element within the FV smart firefighting 
ecosystem. Together with the automatic fuel-load quantification by computer vision [45], 
the real-time fire hazards can be further quantified to support fire emergency response.

Firefighters could also benefit from handheld or helmet-mounted devices running 
the FV Pocket system, providing immediate feedback on fire dynamics, such as flame 
height and HRR. Integration with augmented reality (AR) glasses could further enhance 
situational awareness by overlaying critical fire parameters and safe exit routes in real-
time. Furthermore, deploying the FV Pocket system in firefighting robots could enable 
autonomous navigation and analysis in hazardous environments. As claimed, these robots 
could leverage edge processing for real-time decisions, such as identifying intense fire 
areas or locating victims, while cloud processing would support more comprehensive data 
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analysis when network connectivity is available. The incorporation of additional sensors, 
such as thermal cameras or gas detectors, could further enhance the system’s capabilities 
by providing a multidimensional analysis of the fire scene.

In summary, addressing the current limitations of the FV Pocket system and integrating 
it with advanced technologies such as 5G connectivity and IoT sensors could significantly 
enhance its utility in various firefighting applications. These enhancements would improve 
the accuracy and reliability of fire detection and measurement while expanding the 
system’s applicability to UAVs, firefighters, and firefighting robots, making it a versatile 
tool for both immediate fire response and in-depth post-incident analysis.

4  Conclusions

This study presents the development and demonstration of an automatic fire vigilance 
system named FV pocket. The system integrates key functionalities such as fire detection, 
fire segmentation, fire parameter estimation, and fire calorimetry (power and heat release 
rate) to enable effective fire vigilance. Experimental evaluations using real fire scenarios 
demonstrates that the system’s outputs are comparable to real measurements.

In future work, we aim to address limitations related to distance measurement and angle 
correction to further enhance the performance of the FV pocket. We plan to integrate more 
advanced technologies, such as edge processing, 5G connectivity, and IoT sensors, into the 
system, making it feasible for real-time fire detection and quantification. With its inherent 
portability, the FV pocket holds immense potential for utilization in conjunction with 
portable cameras and unmanned aerial vehicles (UAVs), thereby facilitating the real-time 
acquisition of vital fire-related information. The proposed approach offers an automated 
and adaptable solution for the precise measurement of various fire parameters, thus 
presenting extensive applicability in the domains of firefighting operations and decision-
making processes.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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