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Abstract—The self-scheduling energy-intensive enterprise 
(EIE) has great potential to participate in demand response (DR) 
regulations. However, the multi-period self-scheduling model with 
the DR will bring computational burdens, since there are lots of 
binary decision variables. To address this challenge, this paper 
proposes a convex hull model for the self-scheduling model with 
the DR. Specifically, it presents the self-scheduling model of EIE 
as an integer programming (IP) model, then transforms this IP 
model into a dynamic programming (DP) model, and finally 
reformulates this DP model into a linear programming (LP) 
model. Furthermore, the proposed LP model is theoretically 
proved to be the convex hull of the self-scheduling EIE with the 
DR. Moreover, the benefits of the convex hull model are discussed, 
and extensive numerical experiments are carried out to 
demonstrate the excellent performance and efficiency of the 
convex hull model. 

Index Terms—Convex hull, energy-intensive enterprise, self-
scheduling model, demand response 

NOMENCLATURE 

Sets 

Π Set contains all discrete operation points of 
the energy-intensive enterprise 

Σ State space contains all states of the energy-
intensive enterprise 

Σfrom(i) Set contains all possible states that can 
transfer from the state i. 

Σto(i) 
Set contains all possible states that can 
transfer to the state i. 

Parameters 

πt Electricity budget at the period t 

λt Real-time electricity price at the period t 

β Cost of each start-up and shut-down action 

R Ramping rate of the energy-intensive 
enterprise 

TR 
Maximum time as the energy-intensive 
enterprise remains the increasing state or the 
decreasing state 

TM Minimum time as the energy-intensive 
enterprise remains the maintenance state 

T Time scale 

|Π| Number of load operation points 

V(i,1) Payoff when the energy-intensive enterprise 
remains the state i at the first period 

V(i,j,t+1) Payoff when the energy-intensive enterprise 
remains the state j at the period t+1 

Decision Variables 

pt 
Load demand of the energy-intensive 
enterprise at period t 

ut/ui 
ut/ui=1 when the energy-intensive enterprise 
increases its load demand at period t/i; 
otherwise ut/ui=0 

dt/di 
dt/di=1 when the energy-intensive enterprise 
decreases its load demand at period t/i; 
otherwise dt/di=0 

mt/mi 
mt/mi=1 when the energy-intensive enterprise 
maintains its load demand at period t/i; 
otherwise mt/mi=0 

v(i,1) 
Maximum payoff from the first period to the 
end when the energy-intensive enterprise 
remains the state i at the first period 

v(i,t) 
Maximum payoff from the period t to the end 
when the energy-intensive enterprise remains 
the state i at the period t 

z Payoff for the entire self-scheduling period 

Functions 

δ(•) 
Function of the relationships between the 
load demand change and the number of the 
start-up/shut-down actions 

p(•) Function of the relationships between the 
state and the load demand 

u(•) Function of the relationships between the 
state and the load-increasing state 

d(•) Function of the relationships between the 
state and the load-decreasing state 

x(•) Function of the relationships between the 
state and the load-maintaining state 

I. INTRODUCTION

NVIRONMENTAL concerns with climate change and 
energy portfolios [1] have encouraged an energy transition 

that signifies an increasing proportion of clean energy [2]. 
Inevitably, the increasing penetration of renewable energy 
sources (RESs) requires more flexibilities of the power system. 
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Without enough flexible resources, the potential power 
imbalance [3] and transition instability [4] at some periods 
when renewable energy is fluctuating will arise. Thus, it would 
be imperative to provide adequate flexibility as power systems 
are proliferated with RES. Indeed, improving the installed 
generation capacity [5], ramp rate [6], peak load regulation [7], 
etc., are effective ways to provide generation flexibility as 
opposed to allocating redundant resources to cope with 
uncertainty [8]. Demand response (DR) offered by end-use 
customers, which has been considered to provide extra 
regulation resources, is considered an alternative approach [9], 
[10]. Ref. [11] analyzed the DR features and summarized the 
DR modeling for peaking and improving RES consumption. 
Ref. [12] proposed a day-ahead scheduling model considering 
the hourly DR for decreasing the operation cost. The DR 
uncertainty was investigated in [13], which enhances the unit 
commitment solution process. Ref. [14] suggested that the DR 
can be further utilized to reduce investment costs. 

An energy-intensive enterprise (EIE), such as the electrolytic 
aluminum plant and the steel plant, is considered an end-use 
customer that consumes a lot of electricity [15]. Since the 
electricity cost is the main production cost, these EIEs are 
extremely sensitive to electricity prices. Therefore, they are 
significant potential participators in the DR [16]. Ref. [17] has 
investigated the EIE technical and economic potentials for the 
provision of the DR and pointed out that EIE can replace 
conventional plants to provide flexibility and economic benefits 
to electricity markets. However, most EIEs were not motivated 
to respond to the DR because of the lack of proper tools for 
measuring the DR merits [18]. Some scholars made progress in 
substantiating the EIE operations toward benefiting from the 
DR merits. Ref. [19] presented a model for electrolytic process 
industries to reduce electricity consumption to attain additional 
payoff during the period when electricity was expensive. Ref. 
[20] designed a coordinated scheduling approach between the 
EIE and the power system to achieve the final settlements. Ref. 
[21] constructed the merit-based self-scheduling model for the 
EIE as a mixed-integer programming (MIP) problem, which 
helped the EIE reduce its electricity consumption cost. Ref. [22] 
proposed a decision-making tool for EIEs to change their 
consumption patterns that would guide them to gain additional 
payoff. Recently, there were still a lot of papers on EIEs. Ref. 
[23] suggested that the EIE can enhance efficiency by 
production scheduling and presented a mixed-integer linear 
programming model for scheduling to improve the energy 
efficiency. Some other researchers also acknowledged that the 
EIEs will have a greater potential to participate in the friendly 
interactions between power supply and demand for lower 
electricity costs [24]-[26]. Besides, some researchers employed 
EIE self-scheduling to accommodate more RESs in [27]. 
However, these self-scheduling EIE problems are mainly 
established as MIP models that may bring low computational 
efficiency when addressing a large number of binary variables 
resulting from multiple periods. 

In recent studies, several integer programming (IP) or MIP 
models were solved by their convex hull formulation (i.e., their 
convex hull model) to improve their computational efficiency. 

Such the idea was widely applied to the unit commitment 
problems, and brought its benefits. Ref. [28] presented the 
single-unit commitment (1UC) problem as a dynamic 
programming (DP) model and further reformulated this model 
into a linear programming (LP) model, enabling it to be solved 
in Ο(n3). Ref. [29] refined this Ο(n3) approach and developed a 
convex hull formulation of the 1UC problem, called extended 
formulation, to provide the unit commitment solution in Ο(n2). 
Accordingly, a complete convex hull model was introduced for 
the 1UC problem with a pumped hydro storage unit [30]. Such 
significant performance of the convex hull model in 
computational efficiency motivates us to apply it in the EIE 
self-scheduling. 

As there is a lack of an efficient convex hull model to quickly 
provide a scheduling strategy for the self-scheduling EIE, this 
manuscript investigated a general convex hull framework for 
the EIE self-scheduling with the DR. The main contributions of 
this paper are summarized as follows. 

1) A self-scheduling EIE is established as an IP model to 
represent the specific EIE operational requirements. However, 
there will be a large number of binary variables that will affect 
the computational performance of the proposed model. To 
address this problem, a convex hull of the self-scheduling EIE 
model with the DR is proposed, which gives an LP model and 
does not need any binary variable. The convex hull of the self-
scheduling EIE with the DR is derived by transforming the 
proposed IP model into a DP model, and eventually 
reformulating the DP as an LP model.  

2) The proposed LP model is strictly and theoretically proved 
to be the convex hull of the proposed self-scheduling EIE 
model. Moreover, the physical interpretation of the convex hull 
model for the self-scheduling EIE is presented to align the 
proposed convex hull model with practical applications. 

This paper is organized as follows: Section Ⅱ introduces the 
mathematical formulation of priced-based DR regulations and 
its corresponding convex hull. Section Ⅲ provides several case 
studies. Finally, Section Ⅴ concludes this paper. 

II. CONVEX HULL FORMULATION OF SELF-SCHEDULING EIE 
First, a self-scheduling EIE model is formulated as an IP to 

maximize the EIE’s payoff by regulating its load demand in 
response to real-time prices considering several operational 
requirements. Second, a framework is established that can 
provide the convex hull of the self-scheduling EIE model. 

A. IP Model for self-scheduling EIE 
An EIE usually conducts self-scheduling as a price taker to 

improve its payoff. It aims to seek a solution by regulating the 
EIE load for the maximum payoff while satisfying the EIE 
operational requirements. Documented evidence suggested that 
frequent and uninterrupted load regulations tend to shorten the 
equipment service life and reduce product quality [31]. Thus, 
the frequent and uninterrupted load demand regulations should 
be avoided. This operational requirement can be satisfied with 
the following rules: 1) we can set a long enough maintenance 
time (i.e., TM in Fig. 1) between these two consecutive load 
regulations to avoid the frequent regulations; 2) we can set a 
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suitable regulation time for load demand regulations to avoid 
uninterrupted regulation (i.e., TR in Fig. 1). Such representative 
requirements of the self-scheduling EIE with the DR are 
clarified in the following Fig. 1. 

Furthermore, the load demand changes of the EIE are often 
accompanied by the start-up and shut-down actions of its 
devices. Therefore, the load demand cannot be continuously 
regulated. As a result, the self-scheduling EIE should operate at 
several discrete operation points [32]-[33], which are contained 
in the set Π. The start-up and shut-down costs due to the load 
demand changes can be calculated by the function δ(•), which 
determines the number of start-up and shut-down actions due to 
the operation point changes. Moreover, it is also important to 
note that the shutdown of the entire production line must be 
avoided, as it would take several weeks or months for the entire 
production line to recover production [34]. By incorporating the 
electricity costs, the electricity budgets, and the start-up/shut-
down costs into the objective function, the following IP model 
can be established for the self-scheduling EIE with the DR 
based on the operational requirements mentioned above: 

 
Fig. 1. Self-scheduling process of a single EIE 

 ( )1
11 1 1max T T T

t t t t t tt t tp p p pπ βδλ −
+= = =

− − −∑ ∑ ∑  (1a) 
s.t. ( ) ( ) { }1 1 1 1,..., 11 ,t t t tp p x R d t TR ε+ + +− ≤ ∈− − −+  (1b) 

 ( ) ( ) { }1 1 1 1,...,1 , 1t t t tp p x R u t TR ε+ + +− ≤ ∈− − −+  (1c) 

 { }1,...,,t
ii

TR
t TR T TRu t+

=
∈≤ −∑  (1d) 

 { }1,...,,t
ii

TR
t TR T TRd t+

=
∈≤ −∑  (1e) 

 ( ) { }11 1,. ,, ..t TM
ii t t tm MtTM m m T T+

= ++
−≥ ∈ −∑  (1f) 

 ( )( ) { }1 1 , ,1t
T
i t tim TtT t m m MT T+= +

∈≥ − +− −∑  (1g) 
 { }1 1,..., 11,t t t Tu d+ ∈+ ≤ −  (1h) 
 { }1 1,..., 11,t t t Tu d + ∈+ ≤ −  (1i) 
 { }1,., ..,1t t t t Tu d m ∈+ + =  (1j) 
 { }, , , , , 0,1 ,t t t i i i tu d m u d m p∈ ∈P . (1k) 

where constraints (1b)-(1c) are ramping rate limits, where ε in 

them denotes an arbitrarily small positive number. This small 
positive number restricts the load demand to keep regulating 
during the regulation time. Constraints (1d)-(1e) limit the 
maximum regulation time for the load demand regulations. 
Constraints (1f)-(1g) limit the minimum maintenance time 
between these two consecutive load demand regulations. 
Constraints (1h)-(1j) restrict the logical relationships of the 
EIE’s operational states, which only allows the load demand to 
turn its state from maintenance to regulation or from regulation 
to maintenance. Constraints (1k) restrict the values of the load-
increasing states, the load-decreasing states, the load-
maintaining states, and the load demands.  

B. Mathematical Formulation of Convex Hull 
Since all EIE operational states are described as the load-

increasing states, the load-decreasing, and the load-maintaining 
states, the self-scheduling solution of the EIE can be 
represented as a combination of these states. Thus, the self-
scheduling EIE model with the DR can be formulated as a DP 
model. Then, we reformulate this DP model as its equivalent 
LP model, and the convex hull of the self-scheduling model of 
the EIE will be obtained. Specifically, the construction of the 
convex hull model is summarized in the following three parts:  
(i) State Transition Process of EIEs 

Here, all operational states of the EIE can be uniquely 
denoted as the tuple (p,u,d,x,l), whose components present the 
load demand, the load-increasing state, the load-decreasing 
state, the load-maintaining state, and the duration for the current 
state, respectively. 

1) When the load demand is increasing, any corresponding 
states are involved in: 
 ( ) { }0, , , , 1 0 1,...,p Rx l Tu d ∈ × × × ×P  (2) 

2) When the load demand is decreasing, any corresponding 
states are involved in: 
 ( ) { }1, , , , 0 0 1,...,p Rx l Tu d ∈ × × × ×P  (3) 

3) When the load demand is maintaining, any corresponding 
states are involved in: 
 ( ) { }0, , , , 0 1 1,...,p Mx l Tu d ∈ × × × ×P  (4) 

The state space of the EIE consists of these above three sets, 
which can be denoted as Σ. With this state space Σ, all possible 
state transitions can be derived as the following rules based on 
the operational limits, which are described in model (1): 

1) As the EIE is increasing its load demand and TR = 1, the 
following state transition is true: ① when the state is (p,1,0,0,1), 
it only can transfer to the state (p,0,0,1,1); 

2) As the EIE is increasing its load demand and TR > 1, the 
following state transitions are true: ①  when the state is 
(p,1,0,0,1), it can transfer to the state (p,0,0,1,1) or it also can 
transfer to the state (p′,1,0,0,2) with 0 ≤ p′ − p ≤ R; ② when 
the state is (p,1,0,0,l) and 1 < l < TR, it can transfer to the state 
(p,0,0,1,1) or it also can transfer to the state (p′,1,0,0,l+1) with 
0 ≤ p′ − p ≤ R; ③ when the state is (p,1,0,0,TR), it only can 
transfer to the state (p,0,0,1,1); 

3) As the EIE is decreasing its load demand and TR = 1, the 
following state transition is true: ① when the state is (p,1,0,0,1), 
it only can transfer to the state (p,0,0,1,1); 
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4) As the EIE is decreasing its load demand and TR > 1, the 
following state transitions are true: ①  when the state is 
(p,0,1,0,1), it can transfer to the state (p,0,0,1,1) or it also can 
transfer to the state (p′,0,1,0,2) with 0 ≤ p − p′ ≤ R; ② when 
the state is (p,0,1,0,l) and 1 < l < TR, it can transfer to the state 
(p,0,0,1,1) or it also can transfer to the state (p′,0,1,0,l+1) with 
0 ≤ p − p′ ≤ R; ③ when the state is (p,0,1,0,TR), it only can 
transfer to the state (p,0,0,1,1); 

5) As the EIE is maintaining its load demand and TM = 1, the 
following state transition is true: ① when the state is (p,0,0,1,1), 
it can transfer to the state (p,0,0,1,1) or it also can transfer to the 
state (p′,1,0,0,1) with 0 ≤ p′ − p ≤ R and state (p′,0,1,0,1) with 
0 ≤ p − p′ ≤ R;  

6) As the EIE is maintaining its load demand and TM > 1, the 
following state transitions are true: ①  when the state is 
(p,0,0,1,1), it only can transfer to state (p,0,0,1,2); ② when the 
state is (p,0,0,1,l) and 1 < l < TM, it only can transfer to the state 
(p,0,0,1,l+1); ③ when the state is (p, 0,0,1,TM), it can transfer 
to state (p,0,0,1,TM) or it also can transfer to the state 
(p′,1,0,0,1) with 0 ≤ p′ − p ≤ R and state (p′,0,1,0,1) with 0 ≤ p 
− p′ ≤ R; 

The following is a diagram to roughly describe these above 
state transitions, i.e.,: 

( ,1)i

(1,1)

(| |,1)




( , )i t

(1, )t

(| |, )t




( , )i T

(1, )T

(| |, )T




 *( ,0)i

*( ,1)i *( , )i t *( , )i T   
Fig. 2. State transitions diagram 

where the tuples describing the states of the EIE are uniquely 
denoted as 1,…, i,…,|Σ| in the Fig. 2, and the (i,t) represents the 
EIE remains state i at period t. It should be mentioned that the 
arrow in this figure represents the transition between the states 
that are connected together, and this arrow is realized only if the 
conditions mentioned above are satisfied between these states. 
(ii) DP Model for the Self-scheduling EIEs 

The self-scheduling EIE model aims to maximize the payoff. 
To realize this goal, the EIE can construct the Bellman 
equations for its DP model using the following formulations of 
optimal state value functions and rewards. First, the optimal 
state value functions are represented by state variables (i.e., 
v(i,t)/v(j,t)), where all states in the state space Σ are uniquely 
represented as i/j. These state variables are further applied to 
indicate the maximum payoff from period t+1 to the end T when 
the EIE is in the state i/j at period t. Second, the rewards are 
represented by V(i,j,t+1), which contain any possible payoffs 
when the EIE is in the state i/j at period t+1, respectively. Then, 
with the optimal state value functions and the rewards, we 
obtain the bellman equation for the DP model of the EIE as: 

 
( )

( )
( ) ( ){ }

{ }
from

                                         , , 1,..., 1

, max , , 1 , 1
j i

v i t V i j t v t

i t T

j
∀ ∈

= + + +

∈ ∈ −
S

S
 (5) 

where Σfrom(i) denotes a set, which contains all possible states 
that can transfer from the state i. These rewards, i.e., V(i,j,t), are 
called payoff blocks henceforth, which can be  expressed as: 

 ( ) ( ) ( ) ( ) ( )( )11, , 1 = ttV i j t p j p i p jπ λ β δ+ ++ − − −  (6) 
where p(i) and p(j) in (6) indicate the load demands when the 
EIE remains the states i and j, respectively.  

Assuming that the EIE has been maintaining enough time 
and satisfying the maintenance limitation before the first period, 
the maximum payoff of the whole self-scheduling model 
according to these bellman equations (2) can be represented as: 

 ( ){ }max ( ,1) ,1 |z V i v i i= + ∈S  (7) 
where z in (7) refers specifically to the maximum payoff that 
the EIE can earn from the whole scheduling duration. V(i,1) 
denotes the payoff of the EIE when it remains state i at the first 
period. Then, the DP model of the self-scheduling EIEs is 
described as follows:  
 ( ){ }max ( ,1) ,1 |z V i v i i= + ∈S  (8a) 

 
( )

( )
( ) ( ){ }

{ }
from

, max , , 1 ,

1

1

                             , 1, .. .           , ,
j i

v i t V i j t v j

i T

t

t
∀ ∈

= + +

∈

+

∈ −
S

S
 (8b) 

(iii) Convex Hull for the Self-scheduling EIE Model 
Notice that all state transitions, which are denoted in the DP 

model (8), exist the formulation, “v =max{v1,…, vN }”. It can be 
equivalently replaced as “min{v | v ≥ v1,…, v ≥ vN}”. With this 
replacement, the DP model (8) can be reformulated into the 
following LP model: 

 min z  (9a) 
s.t. ( )( ,1) , 1),( ,1 :z V i v i iiw≥ + ∈S  (9b) 

 ( ) ( ) ( )
{ }from

( , , 1)
                        , ( ), 1,..., 1

, , , 1 , 1 :
,

v i t V i j t v j t
i

w i j t
i Tj t

≥ + + +

∈ ∈ ∈ −

+

S S
 (9c) 

where w(i,1) and w(i,j,t+1) are the dual variables of the 
corresponding inequalities.  

This LP model (9) can provide the maximum payoff, which 
is the optimal value of its objective function, but the optimal 
self-scheduling solution is still unknown. This is because the 
optimal solution of this LP model corresponds to the optimal 
state value functions (i.e., v(i,t)/v(j,t)) of the DP model instead 
of the optimal self-scheduling solution of the EIE. It is 
challenging to recover the optimal self-scheduling solution of 
the EIE from the optimal state value functions. Fortunately, 
some payoff blocks in the LP model (9) (i.e., V(i,j,t+1)) can help 
derive the optimal self-scheduling solution (see the following 
Proposition 1). Specifically, these payoff blocks (i.e., 
V(i,j,t+1)) not only indicate the payoff between consecutive 
states, but also denote the states of the EIE at the period t+1. 
Since the maximum payoff is composed of these payoff blocks, 
the optimal self-scheduling solution can be derived from the 
combination of the specific states denoted by these payoff 
blocks. 
Proposition 1: The maximum payoff of the model (9) is 
composed of payoff blocks (i.e., V(i,j,t+1)). 
Proof: Since there are all recursions in the LP model, the state 
value functions (i.e., v(i,t)) can be eliminated as follows: 

 ( ) ( ) ( )
{ }from                        , ( ), 1,..., 1

, , , 1 , 1
,

v i t V i j t v j t
ti Tj i∈ ∈ ∈ −

⇒ + + +

S S
 (10) 
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We can perform the above elimination process repeatedly 
until any “v(i,t)” on the right-hand side is replaced by 
“V(i,j,T)+v(j,T)”. Then, except “v(j,T)”, all state value functions 
(i.e., v(i,t)) are eliminated, and the LP model (9) will be 
reformulated as: 

 [ ]{ }1 1min ,n nz z P P P P Τ≥ + + ∈Q  P  (11) 
where Pn in the model (11) expresses the payoff blocks (i.e., 
V(i,j,t)) and ΘP is a set involving all elimination results.  

Note that the optimal value of (11) comprises these payoff 
blocks. Since the LP model (9) is equivalent to (11), the 
maximum payoff (i.e., the optimal value of the LP model (9)) 
also comprises payoff blocks (i.e., V(i,j,t)), proving the 
Proposition 1 statement.  

(Q.E.D) 
Proposition 1 means that the maximum payoff of the model 

(9) is composed of an exact payoff block combination (i.e., an 
exact combination of V(i,j,t)). However, this exact combination 
is still not directly extracted from the LP model (9). Its dual 
model can provide the exact combination, as mentioned in 
Proposition 2. This is because the dual model can present the 
same optimal value of the objective function as the LP model 
(9) (i.e., maximum payoff) since strong duality always holds for 
a feasible LP model [35]. Meanwhile, for the dual model, the 
objective function coefficients are composed of these constant 
terms, i.e., payoff blocks, which are the constant terms on the 
right-hand sides of constraints in the original LP model. This 
means the dual objective function presents a combination of 
payoff blocks for maximizing the payoff. Therefore, solving the 
dual model of the LP model (9) (i.e., model (12)), its optimal 
solution can provide the exact combination of payoff blocks for 
maximizing the payoff, which can derive its optimal self-
scheduling solution. 

( ) ( )( )from2max ,1 ( ,1) , , ( , , )i t i
T

jw i V i w i j t V i j t
=∈ ∈

 + ∑ ∑ ∑S S  (12a) 

s.t. ( ),1 1i w i
∈

=∑ S  (12b) 

 ( )( )from
, ,21) ,, 0( j i w i j iw i

∈
− =+ ∈∑ S S  (12c) 

 
( )( ) ( )( )

{ }
to from

, , , , 1 0

      1                                      , , 2,...,
k i j iw k i t w i j

T

t

i t
∈ ∈

− +

∈ ∈ −

+ =∑ ∑S S

S
 (12d) 

 ( ) ,,1 0 iw i ≥ ∈S  (12e) 
 ( ) { }from0 , ( ), 1,..., 1, , 1 ,w i ti j t i j T∈+ ≥ ∈ ∈ −S S  (12f) 

Proposition 2: The optimal solution of dual model (12) (e.g., 
w*(i,1) and w*(i,j,t+1)) will provide the exact combination of 
payoff blocks for maximizing the payoff, deriving the optimal 
self-scheduling solution. 
Proof: After representing the LP model (9) by (11), the 
resulting equivalent model and the dual form of this equivalent 
model can be expressed as (13) and (14), respectively: 

Equivalent model： 
 { }min : ,i iiz z αΤ ∈≥ 1 QPP P  (13) 

Dual form of the equivalent model: 
 ( ){ }0m x ,a 1

i i
i i iiα α α

∈ ∈
Τ = ≥∑ ∑1Q QP PP PP  (14) 

where αi indicates the dual variable of its corresponding 
inequality, Pi indicates one of all possible payoff block 

combinations, and ΘP denotes all possible combinations of 
payoff blocks.  

Since a feasible LP model always satisfies the strong duality, 
the problems stated in (13) and (14) have the same optimal 
values, such that 

 ( )* * *
i

iiz α Τ
∈

Τ= = ∑1 1QPPP P  (15) 

where z* is the optimal value of (13), P* denotes the exact 
combination of payoff blocks for maximizing the payoff (i.e., 
1TP*=z*), and αi

* is the optimal solution of (14). 
Moreover, since 1TP* indicates the optimal value of (13), 

then 1TPi≤1TP*, where Pi∈ΘP. Combining this with (15) and 
with the given ∑Pi∈ΘPαi

*=1 and αi
*≥0, we have 

( )** * **( )=
i i

i i iα α
∈

Τ Τ Τ
∈

Τ≤= ∑ ∑1 1 1 1Q QP PP PP P P P  (16) 

This indicates that ∑Pi∈ΘPαi
* (1TP*)=∑Pi∈ΘPαi

*(1TPi), which 
can be rewritten as: 
 * *( ) 0

i
i i iα Τ

∈
Τ− =∑ 1 1QPP P P  (17) 

Since αi
*≥0 and (1TP*−1TPi)≥0, then αi

*(1TP*−1TPi)≥0. 
Combining αi

*(1TP*−1TPi)≥0 with equality (17), then we have 
αi

*(1TP*−1TPi)=0. Then, we further present the following 
discussion to determine αi

*. To avoid any confusion, subscripts 
j and k are applied to distinguish these two situations: 

1) if 1TP*−1TPj≠0, then αj
*=0; 

2) if 1TP*−1TPk=0, then αk
*=1. 

where αj
*/αk

* and Pj/Pk are involved in αi
* and Pi, 

respectively. For the first situation, 1TP*−1TPj≠0 requires that 
αj

*=0 because αi
*(1TP*−1TPi)=0. For the second situation, 

αk
*=1 can be proven by a contradiction method. Since P* is the 

unique exact combination of payoff blocks for maximizing the 
payoff, it suggests that 1TP*−1TPk=0 if and only if Pk=P*. 
Suppose that 1TP*−1TPk=0 while αk

*≠1, and this αk
*≠1 requires 

that there must exist one αj
*>0 when 1TP*−1TPj≠0 under the 

given condition of ∑iαi
*=1. However, this result is a 

contradiction since αi
*(1TP*−1TPi)=0 for any αi

*. Therefore, 
this case suggests that if 1TP*−1TPk=0, then αk

*=1. So far, both 
situations (i.e., if 1TP*−1TPj≠0, then αj

*=0 and if 1TP*−1TPk=0, 
then αk

*=1) are always true.  
Since αk

*=1 corresponds to 1TP*−1TPk=0 (where if and only 
if Pk=P*) and αj

*=0 corresponds to 1TP*−1TPj≠0, then the exact 
combination of payoff blocks for the maximum payoff can be 
provided by 

 
{ }/

* * *= =
i k i

j k ik j iα α
∈ ∈

= +∑ ∑Q QP PP P PP P P P P  (18) 

We accordingly have the following two conclusions. First, 
the optimal solution of the dual model (12) can provide the 
exact combination of payoff blocks for maximizing the payoff. 
Second, these payoff blocks (i.e., V(i,j,t+1)) also can denote the 
load-increasing, the load-decreasing, and the load-maintaining 
states of the EIE during the period t+1. Then, the optimal 
solution of the dual model (12) can derive the optimal self-
scheduling solution. 

(Q.E.D) 
According to Proposition 2, we further summarize the 

physical interpretation of dual variables in Table I, which can 
guide the self-scheduling EIE to earn the maximum payoff. 
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TABLE I. PHYSICAL MEANING OF DUAL VARIABLES IN (12) 
Var. Physical Interpretation 

w(i,1) When w(i,1)=1, the EIE is required to remain the 
state i at period t; otherwise w(i,1)=0 

w(i,j,t+1) 
When w(i,j,t+1)=1, the EIE is required to remain the 
state j at period t+1; otherwise w(i,j,t+1)=0 

Based on these physical meanings of dual variables, we can 
infer the load demand, the load-increasing states, the load-
decreasing states, and the load-maintaining states as follows: 

 
( )

( )( ) { }
to

( ) ,1 1

( ) , , 2,...,j i i

i
t

p i w i t
p

p j w i j t t T
∈

∈ ∈

==  =

∑
∑ ∑

S

S S

 (19) 

 
( )

( )( ) { }
to

( ) ,1 1

( ) , , 2,...,j i i

i
t

u i w i t
u

u j w i j t t T
∈

∈ ∈

==  =

∑
∑ ∑

S

S S

 (20) 

 
( )

( )( ) { }
to

( ) ,1 1

( ) , , 2,...,j i i

i
t

d i w i t
d

d j w i j t t T
∈

∈ ∈

==  =

∑
∑ ∑

S

S S

 (21) 

 
( )

( )( ) { }
to

( ) ,1 1

( ) , , 2,...,j i i

i
t

m i w i t
m

m j w i j t t T
∈

∈ ∈

==  =

∑
∑ ∑

S

S S

 (22) 

where p(i) and p(j) are load demands when the EIE remains the 
states i and j, respectively; u(i) and u(j) are load-increasing 
states when the EIE remains the states i and j, respectively; d(i) 
and d(j) are load-decreasing states when the EIE remains the 
states i and j, respectively; m(i) and m(j) are load-maintaining 
states when the EIE remains the states i and j, respectively. 
Based on the interpretations (19)-(22), the convex hull model 
can be denoted as the following formulation: 

 ( )1
11 1 1max T T T

t t t t t tt t tp p p pπ βδλ −
+= = =

− − −∑ ∑ ∑  (23a) 
s.t. (12b)-(12f) (23b) 

 (19)-(22) (23c) 
This is the final convex hull model of the self-scheduling 

EIE. With this proposed convex hull model, the maximum 
payoff and its optimal scheduling of the self-scheduling EIE can 
be quickly obtained with an average Ο(K[|Σ|×T]) computational 
time complexity by this convex hull constructed through this 
proposed LP model [36]. Here, K[•] in “Ο(K[|Σ|×T])” indicates 
the relationship between the number of variables and the time 
complexity, T is the time scale, |Σ| is the number of the states in 
the state space of the self-scheduling EIE. 

Discussions: Replacing the IP model (1) with this equivalent 
convex hull (12) for the self-scheduling EIE model will present 
several advantages. 

1) Time Complexity: The EIE manufacturing requirements 
usually introduce many binaries in its self-scheduling model, 
making its solution hard. The time complexity will be limited 
in the polynomial time complexity by constructing the convex 
hull for the self-scheduling EIE model. This supports the more 
complex and elaborate the EIE modeling. 

2) Strong Duality: The marginal costs would guide the self-
scheduling EIEs to make a payoff. Usually, marginal costs can 
be obtained by calculating the dual variables of the original 
problem. However, strong duality does not hold due to IP. For 
the convex hull model, the original IP model is equivalently 
reformulated into an LP model, which is a convex optimization. 

The strong duality always holds if the model is feasible and the 
dual information is easily obtained. This will help guide the 
self-scheduling EIE. 

Ⅳ. CASE STUDY 
In this section, the proposed convex hull provided by the LP 

model (12) is investigated to substantiate its performance in 
precision and computational efficiency. Moreover, this convex 
hull is eventually utilized in benefits analysis, illustrating the 
potential value of the self-scheduling EIE in response to the DR. 
All experiments are built with Python 3.11 and GUROBI 10.0.2 
on a desktop equipped with an 13th Gen Intel(R) Core (TM) i7-
13700K and a 32GB RAM. 

A. Parameter Description 
These critical parameters are provided in Table Ⅱ for a self-

scheduling EIE (i.e., an electrolytic aluminum plant [34]) 
composed of the load demand range, the ramp-up/ramp-down 
rate, the start-up/shut-down cost, the regulation time, and the 
maintenance time. Other major parameters including time 
granularity and electricity budget are presented in Table Ⅲ. In 
addition, all these load demand setpoints are listed as 
665MW+n×8.75MW (where n∈{0,1,2,3,4,5,6,7,8}), which are 
contained in the set Π involving all discrete operation points. 

TABLE Ⅱ. CRITICAL PARAMETERS OF SELF-SCHEDULING EIE 
Parameter Value 

Minimum Load Demand (MW) 665 
Maximum Load Demand (MW) 735 

Ramp-up/ramp-down Rate (MW/h) 35 
Start-up/shut-down Cost ($/8.75WM) 100 

Regulation Time (h) 1 
Maintenance Time (h) 2 

TABLE Ⅲ. MAJOR PARAMETERS IN THE MODELS 
Parameter Value 

Time granularity (h) 0.25 
Electricity Budget ($/MW) 50 

B. Precision of Convex Hull Provided by LP Model 
The precision of the convex hull provided by the LP model 

(12) can be estimated by comparing the relative solution errors 
between the IP model (1) and the convex hull. The relative 
errors are defined as: 

 
LP IP

IP
z zerror

z
−

=  (24) 

where zLP and zIP denote the optimal costs, which are obtained 
by the LP model (12) and the IP model (1), respectively. This 
subsection calculates 1000 relative errors according to 1000 
random electricity price series and presents the frequency and 
the probability density function of relative errors in Fig. 3. Note 
that the relative errors approximately obey the truncated 
distribution, with its probability density function shown in Fig. 
3 that is fitted by a normal distribution, i.e.: 

 ( )
( )

2

2

2, 2
2

x

f x e
µ
σµ σ

σ π

−
−

=  (25) 

where µ and σ, which indicate the location parameter and the 
scale parameter of this normal distribution, are −1.7113×10−13% 
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and 6.1187×10−12%, respectively. 
Based on the Pauta criterion, there are more than 99.73% of 

relative errors are located in the interval [−1.8527×10−11%, 
1.8185×10−11%]. Specifically, the maximum relative error is 
5.9610×10−11%. This suggests that the relative solution error 
between LP and IP models is small enough to be ignored, 
indicating that the self-scheduling solution proposed by the 
convex hull is valid for the self-scheduling EIE operation. 

 
Fig. 3. Frequency histogram of the relative errors. 

C. Computational Efficiency of the Convex Hull Model 
The model size and computational time are discussed in this 

subsection to illustrate that the convex hull is efficient. Here, 
Table Ⅳ lists the numbers of constraints and variables in the 
LP (12) and IP model (1) for different time scales, including 1 
week, 2 weeks, …, and 12 weeks. 

TABLE Ⅳ. NUMBER OF CONSTRAINTS AND VARIABLES 

Time scales 
No. of 

Constraints 
No. of Variables 

LP IP LP  IP  
15min×4×24×7×1 14207 1137 20432 768 
15min×4×24×7×2 28415 2289 40784 1536 
15min×4×24×7×3 42623 3441 61136 2304 
15min×4×24×7×4 56831 4593 81488 3072 
15min×4×24×7×5 71039 5745 101840 3840 
15min×4×24×7×6 85247 6897 122192 4608 
15min×4×24×7×7 99455 8049 142544 5376 
15min×4×24×7×8 113663 9201 162896 6144 
15min×4×24×7×9 127871 10353 183248 6912 

15min×4×24×7×10 142079 11505 203600 7680 
15min×4×24×7×11 156287 12657 223952 8448 
15min×4×24×7×12 170495 13809 244304 9216 

As Table Ⅳ presents, the numbers of constraints in LP and 
IP models are approximately equal. However, the LP model 
will contain a greater number of continuous variables, 
indicating that more continuous variables are required when 
providing this convex hull. Although this LP model contains 
more continuous variables than the IP model, it is still well-
performed and computationally efficient because the LP model 
does not need any integer variable. Fig. 4 shows the LP model 
superiority of the computation time and model sizes between 
LP and IP models. Note that the size of LP and IP models is 
stated as the product of NC and NV, denoting the numbers of 
constraints and variables, respectively. As Fig. 4 shows, with 

the time scale growing from 1 week to 12 weeks, the LP model 
increases its size from 2.903×108 to 4.165×1010 and the IP 
model increases its size from 7.928×106 to 1.273×108. 
Concerning the model sizes, the LP model is much greater than 
the IP model. However, the computational time of LP and IP 
models present linear and exponential growth with the time 
scale increasing, respectively. The results indicate that the 
computational time for solving the IP model will increase faster 
than that of the LP model with the growth of the time scale. For 
instance, it will take about 0.090s to solve the LP model on the 
1 week time scale and about 1.972s on the 12 weeks time scale, 
while solving the IP model on the 1 week time scale will take 
about 0.144s and about 859.939s on the 12 weeks time scale.  

Fig. 5 illustrates this result through the computational time 
proportions of the LP model to the IP model. As the proportion 
fitting result in Fig. 5 shows, the proportions are decreasing 
with the growth of time scale, indicating that the LP brings 
increasingly obvious improvement in computational efficiency 
as the model size expands. This suggests that the convex hull 
provided by the LP model performs well in computational 
efficiency, which will become more apparent as the model size 
increases when dealing with more complex EIE models. 

 
(a) LP model 

 
(b) IP model 

Fig. 4. Computation time and model size of the models. 
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Fig. 5. Computation time relation for the models. 

Furthermore, we employ a case, whose time scale is ranging 
from 1 week to 52 weeks (i.e., a whole year), to test the 
performance of our convex hull model in computational 
efficiency. The computational time is shown in Fig.6. The 
convex hull model is very efficient, even though the time scale 
is 52 weeks (i.e., a whole year), which completes its solving in 
only 6.983s. Moreover, as the time scale is ranging from 1 week 
to 52 weeks, the required computational time of the convex hull 
model is ranging from 0.090s to 6.983s. This suggests that 
increasing the model scale will not lead to an explosion in the 
computational time. This evidence further validates that the 
application prospect of the convex hull model in improving 
computational efficiency. 

 
Fig. 6. Computation time for the convex hull model with varying time 
scales. 

D. Merits of Self-Scheduling EIE with DR 
This subsection utilizes a comparison example to show that 

self-scheduling EIE can respond to the DR to gain more payoff 
and provide additional flexibility to the power system. There 
are two examples in the comparison example. One is that the 
self-scheduling EIE takes the DR into consideration. This self-
scheduling EIE can regulate its load demand according to the 
real-time electricity price to maximize its payoff. Another is the 
self-scheduling EIE without considering the DR, and its load 
demand is always maintained at the middle level, i.e., 700MW. 
The time resolution of these examples is set as 15 minutes, and 
the whole time scales are both 24 hours. That is, these examples 
are both single-day scheduling problems with 96 operational 
horizons. Among them, the applied real-time electricity prices 
are taken from MISO’s public data [37]. Considering the DR, 
the self-scheduling EIE is willing to decrease its load demand 
when the electricity is expensive and increase its load demand 
when the electricity is cheap. TABLE Ⅴ denotes the start-up and 
shut-down costs corresponding to the load demand regulation 

of these two examples. Furthermore, as Fig. 7 shows, the self-
scheduling EIE decreases its load demand from 735 MW to 700 
MW during the periods from 5:30 a.m. to 6:30 a.m., and from 
700 MW to 665 MW during the periods from 9:30 a.m. to 10:30 
a.m.. On the contrary, the self-scheduling EIE increases its load 
demand from from 665 MW to 700 MW during the periods 
from 2:30 p.m. to 5:30 p.m., and from 700 MW to 735 MW 
during the periods from 7:30 p.m. to 8:30 p.m.. Moreover, the 
load demand regulation motivated by the varying electricity 
prices can seek ±35 MW extra flexibilities to the power system, 
which indicates that the EIE can provide the flexibilities to the 
system through self-scheduling to respond to the DR. 

TABLE Ⅴ. START-UP/SHUT-DOWN COST AND LOAD DEMAND 
REGULATION 

Period 
(×15min) 

Cost 
($) DR (MW) Period 

(×15min) 
Cost 
($) 

DR 
(MW) 

23 100 -8.75 67 100 8.75 
24 100 -8.75 68 100 8.75 
25 100 -8.75 69 100 8.75 
26 100 -8.75 70 100 8.75 
39 100 -8.75 79 100 8.75 
40 100 -8.75 80 100 8.75 
41 100 -8.75 81 100 8.75 
42 100 -8.75 82 100 8.75 

What’s more, the payoff of the self-scheduling EIE has been 
investigated. Fig. 8 shows that the extra payoffs can be earned 
from the DR, where “Payoff with DR” and “Payoff without 
DR” denote the payoffs that the EIE presents at each period 
when the EIE considers and does not consider the DR, 
respectively; “Cumulative Extra Payoff” denotes the 
cumulative extra payoffs between the EIEs with and without the 
DR from the start period to the current period. After taking the 
DR into account, the total payoff of the self-scheduling EIE will 
increase by 4708.6 $ compared to that without the DR.  

 
Fig. 7. EIE self-scheduling results with the DR. 

 
Fig. 8. Extra payoff earned from the DR. 
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V. CONCLUSION 
The convex hull theory is increasingly attractive because it 

can be solved efficiently to provide precise dual information, 
which cannot otherwise be provided by IP. This paper proposes 
a convex hull model for the self-scheduling EIE with the DR. 
This framework transforms the presented basic model of self-
scheduling EIE with the DR into a DP model and then 
reformulates the DP model into an LP model. Eventually, this 
LP model describes the convex hull of the self-scheduling EIE 
with the DR. Numerical cases are carried out to demonstrate the 
precision and computational efficiency of the proposed convex 
hull. For precision, the proposed convex hull is consistent with 
the IP model since more than 99.73% of relative errors are 
located in [−1.8527, 1.8185]×10−11%. For computational 
efficiency, the computation time of the LP model presents a 
linear growth as the model size increases, while the original IP 
model presents an exponential growth. This means that the 
proposed convex hull will perform better in computational 
efficiency as the model size is expanded beyond that of the IP 
model. In addition, the proposed convex hull is utilized to 
illustrate the benefits of the self-scheduling EIE in response to 
the DR. Numerical results show that, motivated by varying 
electricity prices, the self-scheduling EIE with the DR will 
regulate its load, better than that without the DR, to make an 
extra payoff and provide extra flexibilities to the power system.  
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