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Individuals experience varying levels of social vulnerability to power grid outages caused by disasters.
Neglecting social vulnerability in energy resilience strategies can lead to uneven recovery, which has
become amajor concern in the U.S. However, few studies consider environmental and infrastructural
factors in their social vulnerability analysis. Here we introduce a conceptual Power Outage-Risk
integratedSocial Vulnerability Index (PO-RSVI) to assess vulnerability of small residential communities
to prolonged outages. The proposed index comprises dimensions of prolonged outage susceptibility,
community coping capacity, and community accessibility, each with indicators evaluating social
hardship during power outages. Additionally, an extensive analysis investigates the relationship
between PO-RSVI and willingness to pay for emergency power supplies during such event. Through
an extensive analysis of three Texas communities using survey and online datasets, PO-RSVI
effectively highlights disparities missed by conventional assessments and provides valuable insights
for policymakers and energy resilience planners.

The increasing impact of climate change has changed behaviour of power
outages, including frequency and duration. Climate change and severe
weather have been recognized as the primary cause of extended outages
throughout the U.S1,2. Power disruptions can lead to breakdown of essential
services, including water treatment centres and health services, which can
affect various public sections even migration policies over time3. One
example is Winter Storm Uri (2021) that affected 25 states in the U.S. and
over 150 million Americans4. Uri caused widespread power and water
disruptions across the nation, with Texas experiencing the most impact5.
The power outages lasted for up to five days and left tragic loss of hundreds
of lives due to carbon-monoxide poisoning, extreme cold, exacerbation of
health conditions, and many more6. Another example is Hurricane Beryl
(2024) that swept through southeast Texas, causing widespread damage to
the power system. The hurricane left nearly 2.3 million customers without
electricity for several days during the intense heat7. Near one third of
fatalities associated with Beryl were due to heat exposure for a long time8.

Following power disruptions, riskmitigation strategies are undertaken
to fortify critical electricity infrastructures. The effectiveness of such stra-
tegies has been thoroughly investigated inmultiple studies9,10 andhas shown

promising results in preventing and mitigating impacts of widespread
outages. However, social vulnerability (SV) is often overlooked. Vulner-
ability is a system’s susceptibility to possible future harm11,12. From a social
perspective, vulnerability determines the extent to which individual’s life
and possessions are prone to harm of hazards due to a lack of adapting
capacity13. Individuals usually exhibit varying degrees of vulnerability to
power disruptions, which initiate from diverse demographic and socio-
economic characteristics. It is widely acknowledged to take SV into account
when formulating and implementing such fortifying strategies.

Over the past few years, there has been a growing emphasize on
measuring SV in the scope of power outages. Flanagan et al.14 proposed a
census tract-level Social Vulnerability Index (SVI) for disastermanagement
that has been inspired by other researchers in the context of power outages.
The authors proposed an SVI using fifteen census variables that can be
categorized into socioeconomic status,minority status/language, household
structure/disability, and housing/transportation. Nejat et al.15 utilized the
aforementioned SVI structure and applied it to Texas counties. The authors
then analysed county-level outage/recovery data from Winter Storm Uri
2021 to explore potential links between county attributes and their share of
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outages.Montoya-Rincon et al.16 developed another SV structure for power
outages, incorporating indicators from the SVI alongside three additional
indicators: road density, proximity to supermarkets and hospitals, and the
presence of private vehicles. They employed this vulnerability index to assess
the efficacy of two power grid strengthening strategies implemented in
Puerto Rico. Using a different structure, Dugan et al.17 proposed a three-
dimensional metric for long-duration power outages, which explores SV
through dimensions of health, preparedness, and evacuation, purely
focusing on socio-economic and demographics. Through an inductive
structural design, principal component analysis and pareto ranking were
employed to identify the most influential factors that included socio-
economic and demographic features.

The existing literature mostly considers population characteristics for
SV. Nevertheless, it has recently been suggested that conventional analysis
need to be updated and incorporate environmental and infrastructural
characteristics of areas17. Power outages typically result in injuries, food/
water shortage, limited medical aid access, and more. During these times,
individuals’ accessibility to food/water supplies and health services is
necessary tomeet their needs and ensure survival.Having said that, the level
of individuals’ access to such facilities is often uneven during outages.
Accessibility of services depends on both individuals’ socio-economic status
and the proximity of such facilities. Despite being a crucial aspect of social
vulnerability, accessibility is underrepresented in literature. Moreover, uti-
lities often provide data illustrating how power restorations are influenced
by various factors such as restoration priorities, maintenance plans,
redundancy, etc.18–20. Disparities in the duration of outages and restorations
can intensify social suffering by exposing communities toprolongedoutages
and heightening overall social vulnerability. While vulnerability reflects the
coping capacity of individuals, here exposure refers to the degree to which
individuals may experience longer-duration outages. Although exposure
and social vulnerability are distinct concepts, Adger (2006) highlights their
interconnectedness and suggests that integrating exposure into assessments
of social vulnerability can provide a better understanding of the risks faced
by communities13. Thus, the literature suggests that integrating accessibility
and exposure factors into social vulnerability assessments appears to enable
a more comprehensive evaluation.

Willingness to pay (WTP) is an economical term that is utilized in
regulatory decisions for enhancingquality of power supplies andprice to the
customers21. WTP is defined as the maximum amount an individual is
willing to pay to secure the change in a product or service supply22. Study of
WTP provides essential evidence for service providers to support their
expenditure plansbefore regulators, addressingbothnormal gridoperations
and emergency power supplies. For grid normal operations, WTP analysis
reveals which aspects of service quality customers value the most and how
much they are willing to pay for these attributes, helping to set appropriate
prices. In emergencies, WTP helps determine how much customers are
willing to pay for enhanced reliability, resilience, or quicker restoration
times. UtilizingWTP, service providers canmake informed decisions about
investments for both scenarios21.

The literature review on WTP highlights extensive research, particu-
larly in the residential sector, and showcases the development of multiple
methods for estimatingWTP23–25. In this regard,Morrissey et al.26 employs a
mixed logit model combined with socio-demographic and household
variables to analyse WTP heterogeneity for consistent electricity supply
during power outages across different households. The authors found that
gender, age, employment status, and heating system type significantly affect
WTP heterogeneity. Irfan et al.27 analysed the influencing factors in con-
sumers’ intention andWTP for renewable energy (RE) through household
surveys. Their findings show attitude, perceived behavioural control, and
subjective norms positively moderate the relationship between consumers’
intention andWTP for renewable energy, while environmental concern has
no significant effect. However, belief about RE costs moderates this rela-
tionship negatively. Using contingent valuation (CV), Deutschmann et al.28

presented new evidence on WTP for service quality improvements in
Senegal. Their findings reveal that while households and firms are willing to

pay more for uninterrupted electricity, WTP for marginal improvements is
notably lower, indicating the necessity for significant quality enhancements
to justify tariff increases.Wen et al.29 investigated residential preferences and
WTP for improving electricity supply quality across different attributes
including daily supply hours, unplanned power-cuts, appliance diversity
(peak capacity), and monthly fees. Their findings show that reduction of
power cuts is less prominent than other attributes, with main-grid house-
holds showing higherWTP for improved electricity, while preferences vary
significantly by gender, age, education, and income. Baik et al.24 imple-
mented a survey-based method to estimate residential WTP for back-up
electricity during long duration power outages in winters. Their study
provided three major implications including impact of previous outage
experiences on WTP, households’ mutual support, and impact of outage
cause on WTP.

While the existing literature on WTP provides invaluable insights on
consumers preferences andbehaviour shapingWTP,wedidnotfind studies
analysing the relationship between SV to power outages and WTP for
emergency power supplies. Understanding this relationship could be ben-
eficial for developing equitable energy policies and improving service
quality. It allows utilities and decisionmakers to target resources effectively,
justify infrastructure investments, design policies that address the specific
needs of vulnerable communities, and decide the value of backup services to
socially vulnerable customers24,30. By aligning investments with the financial
capabilities and risks of these communities, utilities can enhance resilience,
promote social equity, and ensure that all areas receive the support theyneed
and can afford during power outages.

This study contributes to the literature by proposing a three-
dimensional Power Outage-Risk integrated Social Vulnerability Index
(PO-RSVI) for small residential communities in which area suscept-
ibility to prolonged outages ðSI1Þ, community coping capacity ðSI2Þ, and
community accessibility ðSI3Þ comprise the index. We build on the
widely utilized concept of community coping capacity SI2

� �
and pro-

pose two new dimensions based on community operational, infra-
structural, and environmental characteristics where SI1 addresses the
likelihood of facing extended outages and SI3 evaluates the level of
community accessibility to essential and emergency centers during
power outages. In this structure, SI1 plays as a risk of facing extended
outages, which is believed to further exacerbate social suffering. The
proposed PO-RSVI differs from existing studies using a multi-faceted
approach that provides a more holistic view of a community’s vulner-
ability and needs, offering deeper insights into their capacity to cope
with power disruptions.

In addition to developing the PO-RSVI, we employ the CVmethod to
assess residentialWTP for emergency power supplies during outages. In our
study, we employ CV and present individuals with a hypothetical scenario
involving an extended power outage and inquiring their willingness to pay
for renewable emergency power supply. Unlike existing approaches that
emphasize precise monetary amounts, we evaluate WTP relative to
households’ current electricity rates, expressed as a percentage increase. By
evaluating WTP, our research explores its relationship with PO-RSVI,
identifying key household features correlated with WTP. We also apply
advanced machine learning techniques to analyse how PO-RSVI house-
hold-related indicators impactWTPestimation, providing valuable insights
for decision-makers in modelling and determining WTP for targeted
consumers.

Our PO-RSVI andWTP analysis focus on small communities to allow
for detailed data collection, particularly for environmental and infra-
structural factors, and precise assessment of localized vulnerabilities, which
might be overlooked in larger-scale.Additionally, small communities enable
direct resident engagement and manageable pilot testing, facilitating effec-
tive validation and refinement before scaling up. To extend the study to
larger communities, data collectionmethods should be scaled up to include
broader populations, while incorporating variations in risk factors and
needs. Insights frompilot testing should also be used to refine and adapt the
index for different community sizes.
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Our analysis of PO-RSVI, compared to the traditional SVI, reveals
significant differences in identifying socially vulnerable communities by
incorporating prolonged outage susceptibility and accessibility factors. The
observed negative relationship between PO-RSVI and willingness to pay
(WTP) underscores the importance of addressing disparities in resilience
strategies. Key factors such as medical aid access, food/water access,
household leadership, andchildren influenceWTPestimations.Overall, our
PO-RSVI framework provides critical insights for policymakers and energy
resilience planners, advocating for tailored strategies to enhance energy
resilience across diverse communities.

Modelling PO-RSVI
The concept of vulnerability, a central theme in the literature on natural
hazards, is used to examine the potential impacts of various typesof hazards.
Vulnerability encompasses three primary elements: exposure, sensitivity,
and adaptive capacity12. Exposure refers to the potential for impact from a
specific hazard, sensitivity denotes the magnitude of potential harm should
the hazard occur, and adaptive capacity describes the ability to mitigate
either exposure, sensitivity, or both12,31. Building on these foundational
elements, we propose a model to quantify SV of small residential commu-
nities to power outages using three sub-indices: prolonged outage sus-
ceptibility (SI1), community coping capacity ðSI2Þ, and community
accessibility ðSI3Þ.

The inclusion of prolonged outage susceptibility dimension (SI1),
which represents the risk of exposure to prolonged outages, aligns with
multiple studies that provide empirical evidence of social and spatial dis-
parities in exposure to prolonged power outages during climate hazards32,33.
These extended outages are one of major contributor to heightened social
and health damages during such events34,35. For example, during Hurricane
Ida’s outages, non-coastal, lower-income zip codes had a 1.00-day longer
median recovery time, while areas with a higher percentage of Black
population had a 2.00-day longer recovery32. These disparities, that can be
attributed to policy-operational, infrastructural, and logistical factors, can
lead to heightened health risks and increased economic burdens in vul-
nerable communities17,36,37. In this regard, studies suggest that incorporating
an exposure factor into SV assessment, can provide a more comprehensive
approach to developing effective resilience strategies.

The community coping capacity dimension (SI2) is regarded as a
fundamental and conventional component of the proposed PO-RSVI.
Studies on multiple major blackouts in the U.S. have shown that socio-
economic and demographic factors, such as age, gender, race, health con-
dition, income, education, and language, are among the most influencing
determinants of individuals’hardships during outages15,38,39. This dimension
is widely recognized in the social vulnerability literature as a key factor for
assessing vulnerability to various hazards, including power outages, and is
considered the most basic yet crucial component for identifying at-risk
populations14,16,17.

Lastly, the community accessibility (SI3) dimension is well-justified in
the literature as a critical component of vulnerability to power outages.
Prolonged outages can substantially disrupt access to essential services and
facilities, disproportionately affecting vulnerable populations1,35,37. Studies
show that a lack of access to healthcare and critical facilities and services
during outages can exacerbate health and safety risks, particularly for those
with chronic conditions and disabilities34. Hence, the inclusion of accessi-
bility in SV assessments is widely recognized as enhancing the accuracy of
identifying at-risk populations14,40.

The key difference between proposed PO-RSVI and traditional hazard
risk indices is that ourmodel integrates the risk of prolonged power outages
directly into the social vulnerability calculation. Traditional hazard risk
indices typically focus on assessing the likelihood and intensity of hazardous
events (e.g.,flooding or power outages)41,42, whereas our PO-RSVI combines
the risk of prolonged outages with social vulnerability factors. This inte-
gration allows our index to provide a more comprehensive measure of
community vulnerability, considering both the physical threat posed by
outages and the social conditions that may exacerbate or mitigate their

impact. This approach enables the identification of communities that are
not only exposed to risks but also less equipped to handle the consequences,
offering a more holistic framework for resilience planning40.

The complementary nature of these dimensions in the proposed PO-
RSVI is further supported by Hinkel and concept of layered vulnerability,
which suggests that vulnerability within a specific context is determined by
the compounded impact of multiple characteristics12. The PO-RSVI model
captures this layered approach, addressing both the physical risk and social
factors that contribute to overall vulnerability. Furthermore, non-overlap
property of dimension is reinforced by the distinct focus of each sub-index.
This separation ensures that each dimension contributes unique informa-
tion to the vulnerability assessment, avoiding overlap in the model.

Prolonged outage susceptibility
Power outages arise from diverse causes, encompassing planned events like
load shedding and unplanned incidents such as equipment failures, supply
shortages, natural disasters, cyberattacks, physical attacks, and wildlife
interference43. Planned outages occur during scheduled maintenance or to
manage demand and are often guided by energymanagement policies, grid
reliability standards, and regulatory frameworks aimed at preventing
widespread power failures. For unplanned outages, utility maintenance
crews are dispatched after detection to identify the root cause(s) and begin
restoration efforts. Besides the severity of damages, studies show that
restoration duration varies across regions due to restoration policies,
availability of maintenance crews, and transportation conditions44.
Regardless of the category, prolonged outages can exacerbate social hard-
ship of affected individuals by subjecting them to extended disruption of
essential services.

Here, we explore the various factors influencing the duration of power
outages, which collectively contribute to the dimension of prolonged outage
susceptibility. Through a comprehensive review of the literature and widely
referenced online sources, we examine the policy-operational, infra-
structural, and environmental factors affecting outage durations. Key con-
tributors to SI1 are identified, including load-shedding policies, power
restoration policies, power supply redundancy, proactive measures, and
transportation.

Load shedding policies
A balance between power supply and demand is required for stability and
reliability of electrical power systems. When electricity demand exceeds
supply, load shedding is employed to maintain the power system stability45.
Load shedding is the procedure of selectively and rotationally powering
down regions that may be grouped together based on some predefined
criteria. To maintain the power system stability, certain areas are strategi-
cally designated for regular and extended load-shedding19,46. Several factors
may influence load shedding policies, including population density, crime
rate, and critical facilities47. Regionsmarked by high population density and
heavy traffic flow, such as business districts, typically have a reduced
probability of load shedding47,48. This is primarily due to the substantial
electricity demandwithin these areas. Furthermore, neighborhoods situated
near high population density regions may also benefit from reduced risk of
load shedding, as they often share critical infrastructure components such as
transmission lines, substations, and distribution networks. In some coun-
tries, such as South Africa, load shedding policies may exempt neighbour-
hoods with a high crime rate from rolling blackouts since the absence of
electricity makes it easier to break into private properties. Finally, public
well-being and safety facilities, including hospitals and police stations, are
typically exempted from rotational load shedding due to their critical
nature19,49.

Building upon the factors above, we propose three indicators: com-
munity population density, neighbours’ population density, and critical
facilities within the community. As discussed earlier, higher population
density tends to prioritize power consumption in an area, thereby reducing
the likelihood of experiencing load-shedding schemes. The number of
neighbouring communities with higher population density is proposed as
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an indicator, as shared critical infrastructuremay help reduce the frequency
anddurationof load shedding in the target community.Wealsopropose the
number of critical facilities within a community as the third indicator, as it
further decreases the probability of load shedding.

Power restoration policies
During unplanned widespread outages, utilities implement specific policies
to prioritize areas for power restoration efforts. In case of extended outages,
utilities are the sector who are blamed by residents for their inefficient
policies3. These policies can lead to a swift restoration of power within a few
hours for some areas, while others experience outages for days. In this
regard, Fig. 1 illustrates the uneven power restoration across counties in
Texas during Winter Storm Uri (2021). Restoration policies first mandate

that critical facilities, including hospitals and health centres, police and fire
stations, as well as water treatment centres, be assigned the highest priority
for restoration49. Consequently, areas hosting these facilities are the first to
undergo the power restoration. In addition, recent studies on extensive
outages and restoration times reveal that regions with low population
density, neighborhoods predominantly inhabited by Hispanic and African
American/African households, and residents served by municipally-owned
or rural cooperative utilities encounter considerably delayed and uneven
restorations36,41,50.

Based on the factors discussed, we propose two indicators for power
restoration policies sub-index: race/ethnicity composition and the dom-
inance of municipal and cooperative utilities within the community. The
race/ethnicity composition indicator quantifies the percentage of

Fig. 1 | The customer hours of outage caused byWinter StormUri (2021).Customer hours of power outage in Texas counties in (a) February 11-the day the storm struck,
(b) February 16-when the blackouts were at the peak, (c) February 18 and (d) February 20 during power restorations (publicly available dataset: HARC&PowerOutage.US).
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households that are Hispanic or African/African-American, with higher
percentages indicating a greater risk of experiencing slower power
restoration. The dominance of municipal and cooperative utilities serves as
the second indicator, as communities primarily served by these types of
utilities are at a higher risk of slower restoration processes. Although the
presence of critical facilities does influence restoration efforts, it is not
included in this sub-index to avoid redundancy, as it is already considered in
the load shedding factor.

Redundancy
Redundancy in power supply is a proactive technical action to enhance a
power system functionality, reliability, and operation safety51. Redundancy
can potentially reduce the duration of power outages by providing alter-
native pathways for electricity toflow if a primary line fails43. In the event of a
fault in a primary power line, a redundant system allows electricity to be
rerouted through alternative routes, minimizing the disruption. This can
helpmaintain power supply evenwhenone part of the grid is compromised.
Redundancy canalso enable faster restorationby allowing the gridoperators
to isolate the faulty section and continue supplying power through alternate
lineswhile repairs aremade.Redundant systems can share the electrical load
more effectively, preventing overloading of any single line, which can
otherwise lead to failures. Redundancy plays a crucial role in reducing the
impact of power outages, particularly for socially vulnerable populations.
Research shows that communities with higher social vulnerability are more
susceptible to prolonged power disruptions1. Redundant power supplies,
including backup generation and network interconnections, help ensure
continued access to electricity during outages, reducing the burden on
vulnerable groups whomay lack alternativemeans to access critical services
like healthcare, food, and communication32. While implementing redun-
dancymay involve complexity and substantial costs, regions equipped with
multiple power sources experience reduced risk of extended outages, ben-
efiting the affected communities.

We propose using the number of distinct transmission lines passing
through a community or its boundaries as an indicator of redundancy. This
measure reflects the capacity of the power grid to offer alternative pathways
for electricity in case of a failure, ensuring amore reliable and resilient power
supply. Communities with more transmission lines are better positioned to
maintain service duringdisruptions, reducing thedurationof power outages
and lessening their negative impacts.

Proactive measures
Failure to take proactive measures, such as regular maintenance and vege-
tation trimming plans can lead to prolonged power outages41,52,53. Studies
show that these proactive measures are unevenly applied across regions,
leading to disparities in outage durations and recovery times54. Optimal
functionality of a distribution system requires regular maintenance of
infrastructure alongside modernization efforts43. This involves power dis-
tribution system inspection for equipment defects, replacing worn-out
components, and incorporating automation using the latest technology.
Neglecting such measures makes power restoration time-consuming and
challenging. Additionally, the proactive measure of vegetation trimming
near power lines is crucial to minimize potential damages. Vegetation
growth into power lines presents a substantial risk, as contact with the lines
can ignite fires and result in supply disruptions55. The uneven application of
such proactivemeasures increases social vulnerability by disproportionately
affecting lower-income communities, which rely more on public infra-
structure and have less capacity to mitigate prolonged outages. This dis-
parity deepens systemic inequities in service provision and recovery times56.

For proactive measures, we include two indicators: equipment main-
tenance and vegetation trimming. These indicators assess whether a com-
munity regularly receives any proactivemaintenance for power distribution
equipment and vegetation trimming around power lines. If a community is
receiving regular proactivepractices, then itmaynot face prolongedoutages.
Obtaining accurate data for these indicators can be challenging due to the
potential lack of records on the frequencyof such actions.However, through

community engagement and input from local leaders, it is possible to esti-
mate the current level of proactive practices.

Transportation
Power outages typically disrupt transportation, particularly in high traffic
density areas, leading to extended restoration times36. During an outage,
elements of transportation such as traffic lights, fare collection equipment,
and road lighting systems fail to function properly18. Additionally, in the
event of area isolation due to flooding or landslides, transportation diffi-
culties are further exacerbated. Transportation blockage disrupts not only
the community daily life, but also the prompt efforts of maintenance crews
to reach affected areas and resolve damages41. Transportation issues also
pose difficulties for community residents to meet their essential needs and
seek assistance. Studies on post-disaster transportation and public health
demonstrate that transportation difficulties are closely linked to social
vulnerability, as disruptions create additional challenges for residents in
accessing critical medical services, employment, healthcare, food resources,
and social activities57,58.

Here, we consider the history of transportation blockages in the cor-
responding community as the indicating variable. The indicator is suitable
as it reflects past challenges in accessing the community, which can predict
future risk of blockages. Areas with frequent blockages are likely to face
prolonged outages due to difficulties in both maintaining and restoring
services. This historical data provides a practical measure of how trans-
portation disruptionsmight impact the community’s social hardships from
power outages.

Community coping capacity
In the community coping capacity (SI2), our focus is on individuals’ capacity
to cope appropriately with harm of power outages. Power outages leave a
range of physical and psychological impacts on affected individuals in an
un-uniform manner. Outages commonly give rise to various medical
complications and exacerbation of existing health conditions, disruption of
livelihoods, and psychological health damages38. After a comprehensive
reviewof relevant studies, we identify the key social factors that greatly affect
individuals’ coping capacity during power outages. Based on these factors,
we establish the relevant indicators and corresponding measures of SV.

Extensive research demonstrates that age stands out as one of the
foremost factors influencing individuals’ capacity to cope with the harm of
power outages31,39,59,60. The findings indicate older adults aged over 65 and
children under 5 are particularly susceptible to experiencing adverse effects
from extreme indoor temperatures caused by the absence of power. Chil-
dren are alsomore susceptible to combined risks of food, water, and carbon
monoxide (CO) poisoning, which occurs when generators or burning
firewood are used inappropriately as sources ofwarmthduringwinter37. CO
poisoning is also more prevalent among immigrants and people of color37.
From a medical standpoint, individuals who rely on electricity-dependent
medical equipment, those with mobility limitations, and individuals with
specific health conditions such as heart disease and diabetes are at risk of
experiencing adverse health conditions during power outages34,38,59–61.
Understanding the mental preparedness of individuals during power
outages has been investigated in various studies. Research on power outage
preparedness and concern among NewYork City residents show that older
individuals expressed greater health and preparedness concern, but concern
appeared to be greater for older respondents who lived alone61. Research on
power blackouts caused by Winter Storm Uri (2021) and Hurricane Irma
(2017) reveals that larger households with children and those with non-
English speaking members reported more stress and pressure39,61–63. Addi-
tionally, research indicates that Hispanic and African/African-American
households often face challenges in preparedness for disasters due to limited
availability of resources, and cultural differences that affect both the per-
ception of risk and the communication strategies used by emergency
response and preparedness planners64–66. Other studies detail how a higher
level of education (specifically over high-school) is linked to increased
preparedness in recovering from power outages67,68 and higher income
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facilitates the purchase of non-perishable food, generators, and fuel, and is
linked to reduced stress during blackouts39,61. The study on households’
response toHurricane Irma (2017) also show that female adults and female-
headed households are less prepared in disasters and consequent
blackouts67,68. The community crime rate and fear of looting is another
factor that impacts levels of stress experienced by individuals during power
outages, as the absence of power provides a favourable environment for
people to break into private properties48,69. Finally, studies indicate that
having generators contributes to feeling of preparedness for power outages
and reduces corresponding levels of concern39,70.

Building upon the information above, we categorize factors affecting
community coping capacity into socio-economic status, health sensitivity,
and emergency management. In each factor, there will be multiple indi-
cating variables quantifying the level of community’s ability to cope with
harm of power outages.

Socio-economic status
Socio-economic status factor examines socio-economic indicators that
influence households’ coping capacity, and they include education level and
income. A higher level of education correlates with greater preparedness,
while higher income enables households to access and store non-perishable
food, create safe and comfortable accommodations, and evacuate effectively
in emergencies.Weuse the percentage of householdswithhigh school as the
highest educational attainment to quantify education level and the median
annual income of the head of the households to assess income.

Health sensitivity
Health sensitivity factor evaluates how health issues affect individuals in the
community during power outages. This factor includes two age-related
indicators and health impairments. For age, the percentage of households
with children under 5 and seniors over 65 quantifies vulnerability, with
higher percentages indicating increased risk of health-related issues such as
CO poisoning, food poisoning, and extreme temperature issues. For health
impairments, we consider the percentage of households with members
experiencing physical, mental, or sensory disabilities or diseases. A higher
percentage reflects greater community vulnerability to serious health con-
ditions and, in the worst cases, fatalities.

Emergency management
Emergency management assesses how individuals manage emergency
situations in terms of stress, anxiety, and appropriate adaptation. Based on
the reviewed studies, we use the following indicators: gender of the head of
household, language, race/ethnicity, crime rate, and presence of generators.
For the gender of the head of household, we consider the percentage of
households led by females, as they are less prepared for emergencies, with a
higher percentage indicating greater vulnerability. Language is assessed by
the percentage of households where English is not their primary language,
reflecting increased vulnerability. The percentage of households with
members of Hispanic or African/African-American is used to represent
racial/ethnicdiversity, asminority races often experiencehigher stress levels.
The crime rate indicator is the history of property crime per 1000 indivi-
duals, reflecting the increased fear of looting and property damage. Lastly,
the presence of emergency generators is considered, as households with
generators are better equipped to meet their power needs during outages,
reducing their stress and increasing preparedness. Income, age, and edu-
cation also impact emergency management but are covered in socio-
economic status and health sensitivity to avoid redundancy.

Community accessibility
In community accessibility (SI3), we focus on the level of community access
to essential and emergency facilities to meet their needs during power
outages. The availability of essential resources such as cleanwater, food, and
medical assistance becomes increasingly strained during outages, especially
for low-income households and families with children61. These groups often
possess inadequate storage of essential supplies in their household, leaving

them less equipped to cope with long power outages59. Individuals who do
not owna vehicle, face greater difficulties in accessing the resources andmay
struggle with timely evacuation during emergencies as well71,72. Public
transportation is crucial in providing with access to those services and
resources, thereby supporting individuals’ ability tomeet essential needs and
effectively respond to emergencies1,73. Availability and accessibility of shel-
ters equipped with backup generators, as well as suitable locations such as
schools that can serve as shelters, play a crucial role in either reducing or
exacerbating the vulnerability of individuals, especially during blackouts
caused by disasters39,74.

For this dimension, we consider three key factors: essential supplies,
emergency facilities, and transportation. For essential supplies, we evaluate
community access to food, water, and health resources using two indicators:
the number of supermarkets and the number of hospitals within a 5-mile
radius. Additionally, we quantify households’ self-reported difficulty in
accessing these resources using two other indicators of access level. The
reason for including self-reported difficulties is to assess how households
perceive their access to resources and estimate their efforts to meet their
needs. Lower number of resources and lower self-reported access is asso-
ciated with higher SV. For emergency facilities, we quantify the commu-
nity’s access to shelters and schools, which can be used as shelters. Similar to
essential supplies, we use two indicators: the number of such facilitieswithin
a 5-mile radius and self-reported difficulties in reaching them. The same
relationshipwith SVholds for these indicators. Lastly, for transportation,we
quantify household access to transportation means using three indicators:
the percentage of households with private vehicles, the number of bus
stations within a 5-mile radius, and the history of transportation blockages.
A lower percentage of households with vehicles, fewer bus stations, and
record of transportation blockages indicate higher SV.

The PO-RSVI dimensions and the contributing factors are presented
in Table 1, with Table 2 providing a detailed description of the corre-
sponding indicators. The relationship between the indicators and the PO-
RSVI is illustrated by assigning positive ðþÞ and negative ð�Þ signs. A
positive ðþÞ sign is used for indicatorswhere a higher value indicates greater
vulnerability, such as crime rate, household size, and past transportation
blockages. Conversely, a negative ð�Þ sign is assigned to indicators where a
higher value signifies lower vulnerability, such as median income, com-
munity population density, and redundancy in power supply.

Once the vulnerability indicators are determined, normalization,
weighting, and aggregation are applied to construct the sub-indices. Nor-
malization ensures that all indicators are placed on a dimensionless mea-
surement scale43. This process allows for meaningful comparisons and
aggregation of indicators that may have different units. Here we utilize
popular method min-max scaling to transfer the data into the range [0, 1]
and preserve the distance between data points. Regarding weighting,
although it ensures that indicating variables are reflecting their relative
importance, assigning precise weights to indicators requires a

Table 1 | Proposed PO-RSVI dimensions and the
corresponding contributing factors

PO-RSVI Dimension Contributing Factors

Prolonged Outage Susceptibility (SI1)
The degree at which a community is at risk of
experiencing prolonged power outages.

Load shedding
Power restoration
policies
Redundancy
Proactive measures
Transportation

Community Coping Capacity (SI2)
The capacity of the community to effectively copewith
the potential harm of power outages and achieve a
prompt recovery.

Socio-economic status
Health sensitivity
Emergency
management

Community Accessibility (SI3)
The degree at which the community households have
access to essential and emergency facilities in case of
power outages.

Essential supplies
Emergency facilities
Transportation
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comprehensive understanding of their relationships and impact on overall
index. Since capturing these relationships are challenging, we use the
alternative but reasonable approach of assigning equal weights to all indi-
cating variables. For constructing the sub-indices, we utilize L2-norm
method due to its distance-based properties and providingmore reasonable
basis for comparison. Lastly, the overall PO-RSVI is constructed using the
proposed model provided in Methods. The construction steps are depicted
in Fig. 2.

Theway the three sub-indices construct the over PO-RSVI index is the
multiplication of prolonged outage susceptibility (SI1) by the aggregation of
community coping capacity (SI2) and community accessibility (SI2). The
rationale behind the structure is that the susceptibility to prolonged outages
plays as a multiplier that exacerbates or mitigates the effects of the com-
munity’s coping capacity and accessibility. For example, if two sub-indices
SI2 and SI3 have a small value, but SI1 is relatively large, then the vulner-
ability further increases comparing with simple aggregation. This for-
mulationhighlights themultifacetednature of our SV index in the context of
power outages.

Lastly, to validate the credibility of the proposed PO-RSVI and provide
a comparative perspective, we calculate the SVI proposed by Flanagan using
the available data and compare itwith thePO-RSVI.Thedata collection and
construction process for the SVI is detailed in the Methods section. This

comparison highlights the added value of incorporating power outage-
specific factors, demonstrating how the PO-RSVI offers a more nuanced
assessment of social vulnerability in the context of prolonged outages.

WTP Estimation
In this study, willingness to pay (WTP)—representing the monetary
amount households are willing to pay to avoid power outages—is deter-
mined through structured surveys designed for community households.
The survey evaluates households’ WTP for electricity during a simulated
power outage scenario, presenting price increases ranging from 10% to
100% above their current utility rates. This approachminimizes the impact
of absolute income differences since the WTP is evaluated relative to an
individual’s baseline cost. In addition, it inherently normalizes the WTP
values relative to eachhousehold’s existing electricity costs in the same range
across communities, mitigating the need for additional normalization
methods.

To ensure that WTP accounts for disparities among respondents, we
employmultiple stratificationanalysis basedonPO-RSVI, income level, and
size of households. Thefirst step involves stratifying the data by PO-RSVI to
examine how varying levels of social vulnerability influence WTP. Fol-
lowing this, income and household size stratifications are applied either to
the entire dataset or within each community, depending on the outcomes of

Table 2 | Proposed PO-RSVI contributing factors and corresponding indicating variables with their description

Factor Indicating Variable Description

Load shedding �ð ÞCommunity population density36,47,48,50 Number of people per square mile in the community census tract

�ð Þ Neighbours’ population density47,48 Number of neighbouring communities (census tracts) with a higher population density,
measured in people per square mile, than the target community

ð�Þ Critical facilities within community19,49 Number of critical facilities (police and fire stations and hospitals) within 5-mile radius from the
community

Power restoration policies ðþÞ Race/ethnicity36,50 Percentage of Hispanic and African/African-American households in the community

ðþÞ Municipality and cooperative
utilities36,50

Dominance of municipal-owned or cooperative utilities serving the community

Redundancy ð�Þ Redundancy in transmission lines43 Number of transmission lines passing the community or community boundaries

Proactive measures ð�Þ Equipment maintenance52,53 Receiving regular maintenance measures of power equipment in the community

ð�Þ Vegetation trimming52,55 Receiving regular vegetation trimming around power lines in the community

Transportation ðþÞ History of transportation blockage18 Past community blockage of transportation system due to severe weather

Socio-economic status ð�Þ Income37,61,67,68 The median income of households within the community

ðþÞ Education49,50 Percentage of households with high school degree or lower as their highest educational
attainment

Health sensitivity ðþÞ Age (under 5)37,39,59,60 Percentage of households with children under 5

ðþÞ Age (over 65)34,39,59–61 Percentage of households with seniors over 65

ðþÞ Health impairment34,38,59–61 Percentage of households with members having any health impairments

Emergency management ðþÞ Head of household67,68 Percentage of households headed by females

ðþÞ Language39,61–63 Percentage of households speaking a language other than English

ðþÞ Race/ethnicity37,62,70 Percentage of Hispanic and African/African-American households in the community

ðþÞ Crime rate48,69 The community’s average property crime per 1,000 individuals

ð�Þ Power generators39,70 Percentage of households with power generators in their household

Essential supplies ð�Þ Food/water resources39,71,72 Number of supermarkets within 5-mile radius from the center of community

ð�Þ Medical aid resources39,71,72 Number of health centres within 5-mile radius from the center of community

ð�Þ Food/water access39,71,72 Household’s self-perception of the level of access to sources of food and water

ð�Þ Medical aid access39,71,72 Household’s self-perception of the level of access to health centres

Emergency facilities ð�Þ Emergency facility resources39,74 Number of shelters and schools within 5-mile radius from the center of community

ð�Þ Emergency facility access39,74 Household self-perception for the level of access to emergency facilities within 5-mile radius
from the center of community

Transportation ð�Þ Private vehicles71,72 Percentage of households with private vehicles

ð�Þ Public transport1,73 Number of bus stations within 5-mile radius from the center of community

ðþÞ History of transportation blockage18 The community isolation experiences in the past due to severe weather
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the PO-RSVI stratification. This stratification process serves as a tool to
assess whether WTP accurately reflects respondents’ true willingness,
independent of financial constraints.

To further explore the relationship between WTP and household
features, we examine correlations between the obtained WTP and various
household characteristics, such as education level and household size, using
appropriate correlationmethods to account for the specific types of available
data. This approach helps identify features that are significantly correlated
with WTP and their incorporation into WTP estimation provide more
accurate results.

Lastly, to estimate WTP, we employ various machine learning classi-
ficationmethods, usinghouseholddata as features andWTPas the response
variable. The reason for adopting classification is that theWTP values span
anordinal discrete range.Theadopted classifiers includeLogisticRegression
(Logit), Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA),RandomForest (RF), andSupportVectorClassifier (SVC).

Logit is a linear classifier used for binary classification, which can be
extended to multi-class problems. In this study, Logit is used with key
hyperparameters: regularization strength (C = 1.0), solver type (solver =
‘lbfgs’), penalty (penalty = ‘l2’), and multi-class classification mode
(multi_class = ‘ovr’). LDA is a linear classifier used for dimensionality
reduction while maximizing the separation between multiple classes. In
this study, LDA is employed to model the relationship between input
features and class labels. The model key hyperparameters include sol-
ver = ‘lsqr’ and regularization strength (shrinkage= ‘auto’). QDA is a
probabilistic classifier that models the covariance structure of each class
separately. It is suitable when classes have different covariance matrices.
In this study, QDA is used with hyperparameter regularization strength
(reg_param = 0.1). RF is an ensemble classifier that builds multiple
decision trees and aggregates their results for classification. It is robust to
overfitting and well-suited for multi-label classification tasks. Here, RF is
used with hyperparameters: number of trees in the forest (n_estima-
tors=100), maximum depth of the trees (max_depth = 10), minimum
samples required to split a node (min_samples_split = 2). Lastly, SVC is a
powerful classifier that works well in high-dimensional spaces, such as in

multi-label classification. In this study, SVC is employed with hyper-
parameters: radial basis function (kernel = ‘rbf’), regularization strength
(C = 1.0), kernel coefficient (gamma = ‘scale’), and multi-label classifi-
cation strategy (decision_function_shape = ‘ovr’).

To validate the performance of these classifiers, a 10-fold cross-vali-
dation process was employed, ensuring robustness, and minimizing
potential biases. The dataset was split into 80% for training and 20% for
testing, with shuffling applied prior to the split. The performance is then
evaluated using accuracy and F1-score to assess predictive performance
comprehensively (seeMethods). Thesemetrics provide insights into overall
predictionaccuracyand thebalance betweenprecisionand recall (F1-score).
The fittest model is then trained by the best combination of hyperpara-
meters, and the final model performance is evaluated using five metrics:
accuracy, recall, precision, F1 score, and log-loss (see Methods). Lastly, the
most influential features are extracted from the predictor list and an analysis
is applied on the outcomes.

Results
PO-RSVI numerical analysis
The proposed PO-RSVI is applied to three small residential communities in
Texas,withdata collectiondetails (e.g., power transmission lines as shown in
Figure 3) described in the Data Availability section. Figure 4 provides the
distribution of indicators contributing to the PO-RSVI for each community
and Table 3 reports the normalized scores in eachdimension. By examining
this figure, conclusions can be drawn regarding the in-detail aspects of PO-
RSVI. In the domain of prolonged outage susceptibility, it is evident that
Rogers Washington stands out as the most vulnerable community to
extended power outages ðSI1 ¼ 1:0Þ. Most influential indicators to this
elevated sub-index are low population density, absence of proactive main-
tenance, a dominance ofmunicipality-owned/cooperative utilities, and past
transportation blockage experiences. For Dove Springs ðSI1 ¼ 0:56Þ,
besides the two latter influencing variables for Rogers Washington, low
population density of neighbouring communities, low number of critical
facilities in 5-mile radius, and high proportion of non-white households
affect the sub-index. Sunnyside exhibits the lowest vulnerability score in this

Fig. 2 | PO-RSVI construction process. Construction starts with min-max scaling
to standardize all indicatorswithin each factor across all communities. Subsequently,
within each dimension, the scaled indicators undergo L2-norm, resulting in sub-

indices. Vulnerability score is calculated by min-max scaling the scores obtained by
the adopted model.
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domain (SI1 ¼ 0:00). Nevertheless, the contributing factors influencing its
L2-norm include the lowest population density, a population composed
entirelyofnon-white residents, andanotable absenceof proactivemeasures.

Concerning community coping capacities, Dove Springs demonstrates
the highest ðSI2 ¼ 1:0Þ. This heighted sub-index primarily stems from low
median income, low education level, presence of children under 5, and
prevalence of non-English speaking households. Furthermore, female-
headed households, non-white population, and less households with gen-
erators make moderate contributions to this sub-index. In the case of
Sunnyside ðSI2 ¼ 0:97Þ, the most influential indicators include a high
prevalence of health impairments, a greater number of female-headed
households, a high composition ofAfrican race, and a notably high property
crime rate. Median income, educational attainment below high school, and
the presence of more seniors in households play as moderate variables.
Lastly, Rogers Washington exhibits the lowest population coping capacity
vulnerability score (SI2 ¼ 0:00). The most influential indicators affecting
this score aremore householdswith seniors over 65 andwithout generators.
It is worth noting that households inRogersWashington display the highest
median income and a higher level of education in comparison to the other
communities. This observation reduces its vulnerability in this respect.

Within the accessibility dimension,Dove Springs ðSI3 ¼ 1:0Þ is ranked
as themost vulnerable, with Sunnyside following closely in second place. In
nearly all indicators, Dove Springs confronts with insufficient accessibility.
The most influential factors for this community encompass access to
essential resources, number of schools within a 5-mile radius, availability of
private vehicles, and history of transportation blockage. Moderately influ-
ential factors include number of supermarkets and shelters within a 5-mile

radius, as well as access to public transport. Regarding Sunnyside
ðSI2 ¼ 0:68Þ, lower number of supermarkets, shelters, and bus stations
within a 5-mile radius, and lower self-reported access to shelters are the
primary contributors. Conversely, forRogersWashington (SI2 ¼ 0:00), it is
evident that the community exhibits the highest level of accessibility across
nearly all indicators, making it the least vulnerable.

After combining the three sub-indices, the overall PO-RSVI is derived
(Table 3). The results reveal that Dove Springs exhibits a high vulnerability
in both coping capacity and accessibility, coupled with a moderate risk of
experiencingprolonged outages. This results in the highest PO-RSVI¼ 1:00
among the cases. Conversely, Rogers Washington faces the greatest risk of
prolonged outages but has the lowest vulnerability in terms of coping
capacity and accessibility, making it the least vulnerable community with
PO-RSVI¼ 0:00. Lastly, Sunnyside households show significant SV while
being at low risk for extended outages, positioning it as a medium-
vulnerability case study with PO-RSVI¼ 0:59:

A comparison between the proposed PO-RSVI and popular SVI
developed by Flanagan (2011) for disastermanagement reveals a significant
divergence in the assessment of community vulnerability. Based on Flana-
gan’s SVI, Sunnyside community is ranked as themost vulnerable, followed
by Dove Springs in second place. However, the PO-RSVI ranks Dove
Springs as themost vulnerable community, with Sunnyside coming second.
This difference arises because the PO-RSVI indicators are specifically tai-
lored to assess vulnerability in the context of power outages. In contrast, the
SVI incorporates a broader range of indicators that may not be directly
related to power outages, such as housing factors. Furthermore, the PO-
RSVI incorporates the risk of prolonged outages, a factor that is quite

Fig. 3 | Electricity transmission lines passing the communities. The community
boundary is presented using a purple-filled bordered polygon in the map. The lines
laying on the topographic map depict types of power transmission lines. Maps are

used to determine the redundancy in power supply (publicly available dataset:
Homeland Infrastructure Foundation-Level Data (HIFLD)).
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Fig. 4 | The spider plot of indicators in PO-RSVI. a Sunnyside, (b) Dove Springs, (c) Rogers Washington communities. Each spider plot illustrates the distribution of
vulnerability over all indicators in each dimension. A higher value signifies greater vulnerability.

Table 3 | Numerical results for overall PO-RSVI and sub-indices

Communities SVI PO-RSVI Degree SI1 Degree SI2 Degree SI3 Degree

Sunnyside 1.00 0.59 Medium* 0.00 Low 0.97 Very high 0.68 High

Dove Springs 0.58 1.00 Very high 0.56 Medium 1.00 Very high 1.00 Very high

Rogers Washington 0.00 0.00 Very low 1.00 Very High 0.00 Very low 0.00 Very low
*The degree is classified as follows: [0.0, 0.2) very low, [0.2, 0.4) low, [0.4, 0.6) medium, [0.6, 0.8) high, [0.8, 1.0] very high.
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pronounced for the Dove Springs community. When combined with other
high-scoring dimensions, this results in a higher PO-RSVI score, reflecting a
more precise and context-specificmeasure of vulnerability compared to the
broader, less focused SVI.

This observation is supported by Cutter (2003)40 explaining that social
vulnerability can vary substantially depending on the specific hazards and
the scope of the vulnerability factors included. This distinction underscores
the utility of the PO-RSVI in more precisely addressing the specific risk
factors associated with power outages, which is crucial for communities like
Dove Springs, where prolonged outages are more likely due occur and the
population lacks sufficient capacity.

WTP numerical analysis
Here, we explore the stratified analysis of the relationship betweenWTP and
the calculated PO-RSVI. Due to the small number of PO-RSVI values, sta-
tistical correlation analysis is not feasible. Therefore, we use boxplots of WTP
to visualize the relationship. As shown in Fig. 5, RogersWashington, with the
lowest PO-RSVI, exhibits the highest average WTP (WTP ¼ 51:57). In
contrast, despite aWTP similar to Sunnyside (WTP ¼ 27:64), Dove Springs,
the most vulnerable community, shows the lowest average WTP
(WTP ¼ 27:64). This suggests that more vulnerable communities are less

willing to pay for emergency power supply during power outages, in other
words, social vulnerability plays an important role in influencing WTP.

The stratification analysis of incomewithin each community shows that
while higher WTP is associated with higher income in Rogers Washington,
the variations do not follow a clear pattern in both Dove Springs and Rogers
Washington (Fig. 6). This suggests that financial constraints may not be the
main factor influencing WTP, and there are other factors influencing its
value. Similarly, stratification based on household size reveals no prominent
trend between WTP and household size, as shown in Fig. 7. This indicates
that WTP values are not influenced by income or household size, but rather
reflect respondents’ true willingness to pay for power.

These observations suggest that the WTP data, with PO-RSVI inclu-
ded, across all communities can be aggregated for further analysis, such as
machine learning models, which is the focus of this study. Therefore, the
subsequent analysis will be conducted on the aggregated dataset across
communities with PO-RSVI added as an influencing feature. Although all
household features and their relationship with vulnerability are already
captured in this index, PO-RSVI inclusion allows theMLmodels to capture
policy/operational, infrastructural, and environmental factors incorporated
in the PO-RSVI assessment.

WTPmachine learning estimation
Prior to applying ML, the data obtained from household surveys is pre-
processed, and a correlation analysis withWTP is conducted to retain only
the features that greatly contribute to the model. The available features are
either categorical, such as health impairment, or ordinal, such as education
level. Categorical features are transformed into dummy variables, while
ordinal features are transformed into the appropriate format using staircase
coding. The correlation between features is determined using Cramer’s V
statistic and is reported in Table 4 in a descending order. Features with a
Cramér’s V value less than 0.2 are removed, as they show no major corre-
lationwithWTP. The dataset is split into training and testing sets, with 80%
allocated for training and 20% for testing, following a random shuffling of
the data to eradicate order patterns.

In Table 4, we observe that WTP is highly correlated with indicators
medical aid access levels 4 (Corr ¼ 0:73) and 3 (Corr ¼ 0:69), white race
ðCorr ¼ 0:71Þ, food and water access ðCorr ¼ 0:67Þ, female headed
households ðCorr ¼ 0:64Þ and no children under 5 in household
ðCorr ¼ 0:62Þ, and female household head ðCorr ¼ 0:61Þ. The association
of PO-RSVI comesnextwithCorr ¼ 0:58 supporting the observation in the
stratification analysis. The results show a strong relationship between the
features above and WTP, highlighting their potential influence on WTP
estimation. The correlation between income andWTP is 0.53, indicating a
moderately strong relationship. However, this supports the unbiased nature
of theWTPdata collection, suggesting thatWTP is not solely determinedby

Fig. 5 | Boxplots of the variations inWTP with the corresponding PO-RSVI. The
box represents the interquartile range (IQR), with the orange line indicating the
median and the black triangle representing the mean.

Fig. 6 | Boxplots illustration of the variation in WTP across different income
levels within each community. aWTP variations in Sunnyside community. bWTP
variations in Dove Springs community. c WTP variations in Rogers Washington

community. The box represents the IQR, with the orange line indicating the median
and the black triangle representing the mean. Whiskers extend to 1.5 times the IQR,
and circles denote outliers.
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income levels and is also influenced by various non-income-related factors.
We retain only those features with a Cramér’s V value greater than 0.2 for
theML classificationmodel. Features with lower values are excluded as they
show little to no impact on WTP estimation. Including them could
potentially degrade model performance by introducing noise and mis-
leading the classifier.

To identify the most suitable classifier, we perform 10-fold cross-
validation on the previously introduced models, using data with features
selected through correlation analysis. The models are evaluated in terms of
performance using two scoring metrics: 1) accuracy, which measures the
proportion of correctly classified instances among the total instances, and 2)
F1-score, the harmonic mean of precision and recall, which balances the
trade-off between false positives and false negatives and is particularly
helpful when there is an imbalance in the data. The higher value for both
scores indicates better performance. The performance of the classifiers is
presented in Table 5. Random Forest achieves the highest scores in both
accuracy and F1metrics, establishing it as themost effectivemodel forWTP
estimation. While SVC and Logistic Regression (Logit) are also viable
options, the slightly higher accuracy and F1-score of RandomForestmake it
the more promising choice.

To determine the optimal architecture for the RF classifier, hyper-
parameter tuningwas conductedmanually. This process involved iteratively
adjusting key parameters and evaluating the model’s performance on both
training and testing sets. The parameters considered during tuning included
the number of estimators, impurity criterion, maximum tree depth, and the
minimumnumber of samples per leaf. Themost accurate configurationwas
selectedbasedon its performance, as reported inTable 6. Thehigh values for
performance metrics including accuracy, recall, and precision indicate that
the model is making accurate predictions. Additionally, the small gap
between training and testing performance suggests that the model gen-
eralizes well to unseen data. The elevated F1-score reflects a well-balanced
trade-off between precision and recall. Although the cross-entropy loss
(Log-Loss = 0.870) indicates an acceptable goodness-of-fit for the available
data, it also suggests that the model lacks sufficient confidence in its pre-
dictions, whichmight initiate from the small size of dataset. Addressing this
issue could be explored as a potential avenue for future research.

Figure 8 showcases the top 15 features ranked by their importance, as
determinedby theRandomForestmodel. The results reveal thatmedical aid
access level 4with feature importance FIð Þ 0:120 has the greatest importance
in the purity of branching in themodel. This feature’s high correlation with
WTP (Corr ¼ 0:73) supports the conclusion that households with better
access to healthcare services place high value on resolving health issues
promptly and this influences the estimation of WTP. The second most
important feature, PO-RSVI ðFI ¼ 0:095Þ, further emphasizes the critical
role of social vulnerability in shaping WTP. also emerges as a key factor,
indicating that access to essential resources strongly influences households’
WTP. Food/water access level 4 (FI ¼ 0:080) also emerges as a key factor,
indicating that access to essential resources strongly influences households’

Fig. 7 | Boxplot illustration of the variation in WTP across different household
sizes within each community. aWTP variations in Sunnyside community. bWTP
variations in Dove Springs community. c WTP variations in Rogers Washington

community. The box represents the IQR, with the orange line indicating the median
and the black triangle representing the mean. Whiskers extend to 1.5 times the IQR,
and circles denote outliers.

Table 4 | The Cramer’s V correlation (only above 0.2) between WTP and household survey data

Feature Corr. Feature Corr. Feature Corr. Feature Corr.

Medical Aid (4) 0.73 Household Head (Male) 0.52 Race (Hispanic) 0.46 Generator (Yes) 0.38

Race (White) 0.71 Household Size (3) 0.52 Household Size (4) 0.45 Education (Undergraduate Degrees) 0.38

Medical Aid (3) 0.69 Education (High School) 0.51 Language (Spanish 0.43 Generator (No) 0.38

Food/Water (4) 0.67 Language (English) 0.51 Education (Below High School) 0.41 Food/Water (1) 0.38

Household Head (Female) 0.64 Income ($25k-$50k) 0.5 Food/Water (2) 0.4 Impairments (Yes) 0.35

Children (No) 0.62 Seniors (No) 0.5 Food/Water (3) 0.4 Medical Aid (2) 0.3

PO-RSVI 0.58 Seniors (Yes) 0.48 Household Size (1) 0.39 Income (<$25k) 0.26

Income ($50k-$75k) 0.53 Impairments (No) 0.46 Shelter (Yes) 0.39 Medical Aid (1) 0.26

Race (Afr./Afr.-Amr.) 0.53 Shelter (Not aware) 0.46 Household Size (2) 0.38 Shelter (No) 0.25

Table 5 | The average accuracy of classifiers obtained through
separate 10-fold cross validation techniques

Classifier Logit LDA QDA RF SVC

Accuracy Score 0.714 0.686 0.579 0.729 0.721

f1 Score 0.692 0.666 0.519 0.691 0.690
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WTP. Overall, these findings suggest that access to healthcare and food/
water resources, besides social vulnerability to power outages significantly
impact WTP, underlining the necessity of considering these factors by
decision makers for more accurate WTP predictions. The next group of
features with moderate importance includes household head (female), race
(African/African-American), no childrenunder 5 in the household,medical
aid access level 3, and race (white). These features exhibit considerable
correlations with WTP, reinforcing the conclusion that they play a mean-
ingful role in the estimation of WTP.

Discussion
While numerous studies have assessed SV to power outages14–17, few have
considered policy-operational, environmental, and infrastructural factors
into estimations. Additionally, community accessibility to essential
resources has been observed to influence SV but has been neglected in the
literature. Our Power Outage-Risk integrated Social Vulnerability Index
(PO-RSVI) analysis incorporates these two aspects and highlights several
key implications in this regard. First, our analysis highlights disparities in the
risk of extended power outages among communities, driven by various
policy-operational, environmental, and infrastructural factors. By con-
centrating on these disparities, at-risk communities can be identified more
efficiently. This focus allows for the development of targeted strategies and
solutions to mitigate risk by addressing the most influential factors and
indicators. Secondly, in addition to assessing households’ coping capacity
that is the foundation, we evaluate SV through accessibility—a dimension
that has been narrowly studied in the literature and is gaining attention16.
Our findings indicate that analysing disparities in accessibility can enhance
the identification of communities with limited access to essential resources,
offering a more comprehensive assessment of vulnerability.

The study comparison between PO-RSVI and the traditional Social
Vulnerability Index (SVI) highlights a key limitation of the SVI—it fails to
account for power outage-specific factors, leading to mis-assessment of
social vulnerability levels. While the SVI provides a broader perspective on
vulnerability, it does not capture the nuanced risks associatedwith extended
power outages. As a result, communities like Dove Springs, which are
particularly susceptible to prolonged outages,may be overlooked in broader

assessments. PO-RSVI, with its tailored focus on power outage risks and
accessibility to essential resources, offers a more accurate and context-
specific vulnerability measure. This refinement enables decision-makers to
better identify at-risk communities and design more targeted, effective
strategies for enhancing resilience to power disruptions.

Despite existing research onWTP for electricity and emergency power,
the relationship between WTP and SV has not been extensively explored.
Additionally, there is limited research on how household characteristics
impact WTP estimates. Our study addresses these gaps and provides
valuable contributions to the literature. Firstly, a negative relationship
between the proposed PO-RSVI and WTP reported by households was
observed. We note that the estimated average WTP for the studied com-
munities is 25.67%, 27.64%, and 51.57% higher than the current electricity
price for the Dove Springs, Sunnyside, and Rogers Washington commu-
nitieswithPO-RSVI1:00, 0:59; 0:00, respectively.The stratificationanalysis
between WTP and two household features income and household size
indicated that financial constraints are not a leading factor in this negative
relationship. This implication suggests a need for equitable policies and
pricing strategies that consider social vulnerability of vulnerable households
during power outages. This is crucial because studies have shown that an
unfair distribution of renewable energy policies and pricing noticeably
influence people’sWTP and engagement in these initiatives75. This suggests
that unfair policy and pricing mechanisms for socially vulnerable com-
munities may further decrease their WTP for emergency power and
negatively impact related investments. Note that our study is pioneering in
investigating the relationshipbetweenPO-RSVI andWTPspecifically in the
context of power outages. Therefore, future research can further explore this
topic and examine how these dynamics vary across different service areas.

Secondly, this study elucidates the influence of various environmental
and socio-demographic features onWTPestimation.Buildingon the results
from the machine learning Random Forest classifier, the most influential
features for WTP include medical aid access, PO-RSVI, food/water access,
head of households, race, and children under 5. Some of these findings align
with literature24,29,76, while others, including all access level-related features,
health impairments, and presence of generators represent pioneering con-
tributions in exploring the targeted relationship. These disparities, alongside

Table 6 | The evaluation metrics of implementing Random Forest classifier on test data to estimate the WTP

n-estimators = 80, criterion = ‘entropy min-samples-leaf = 4, max-depth = 7 Accuracy Recall Precision F1 Log-Loss

Train 0.864 0.860 0.885 0.860 0.792

Test 0.800 0.838 0.788 0.792 0.870

Absolute Train-Test Gap 7.44% 2.47% 10.95% 7.89% 9.95%

Fig. 8 | The importance of features used by Random Forest classifier. This figure illustrates the relative contribution of each feature in making predictions, with higher
values indicating greater influence on the model’s decision-making process.
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the findings for relationship betweenWTP and PO-RSVI, further highlight
the need for tailored approaches that address the varying capacities and
needs of different communities, ensuring that policies are equitable and
effectively support those most affected by power outages.

A key difference between our estimates and those from prior work on
in the residential sector is that we used percentage values rather than exact
monetary amounts for WTP. Using percentages provides a clearer under-
standing of the relative value households place on electricity compared to
their current expenditure, making it easier to compare across different
contexts and adjust for varying price levels. Finally, direct comparison of the
results fromthis studywithestimates reported inother studies is challenging
due to variations in the scales of study, study designs, utilized techniques, as
well as underlying assumptions.

The proposed PO-RSVI and the research findings for WTP offer
invaluable insights that can be inspired not only for Texas communities, but
globally and in larger scale, if modified accordingly. By investigating mul-
tiple dimensions of vulnerability, the PO-RSVI provides a more general
framework that can be applied in different socio-cultural and geographical
settings. Among the proposed dimensions, susceptibility to prolonged
outages serves as the newly proposed domain which can be efficiently
generalized to and evaluated for various communities around theworld.We
also note that additional factors related to geographical and infrastructural
differences in the studied areamay influence this dimension. For instance, in
South Africa, crime rates influence load shedding policies, whereas such
policies are not implemented in the U.S. Hence, it is suggested that these
factors be explored and reflected in the PO-RSVI. The insights from this
research emphasize the importance of community-tailored strategies to
enhance energy resilience in the face of power disruptions.

Despite the existing literature on the impact of various indicators on
the susceptibility to prolonged power outages, there are currently no studies
that incorporate these factors into vulnerability assessments. As such, this
study primarily relies on evidence from online resources and reports pro-
vided by utilities and related organizations to derive these factors. This
approach is innovative in that it pioneers the integration of such indicators
into vulnerabilitymodels, offering a framework that can be further explored
and refined in future research.

Additionally, we acknowledge several limitations that could influence
the interpretation and generalizability of our findings. First, biases in data
collectionmay arise from our reliance on publicly available online resources
and reports for some indicators. While surveys help mitigate bias, these
sources may not fully capture community diversity or the most recent data,
potentially impacting the accuracy of the vulnerability assessment. Second,
the method used to collect data on proactive measures and transportation
factorsmay lackaccuracy.Although surveysof community leaders provided
valuable insights, future research could exploremore precise data collection
methods.Third, thefindings are basedon specific communities, and caution
is neededwhengeneralizing to larger,morediverse populations, as exposure
to prolonged outages may vary across geographic regions and socio-
economic groups. Lastly, validating the proposed PO-RSVI is challenging
due to its data-driven approach, which lacks labelled ground truth for direct
validation.Observing community behaviour during power outages could be
a potential solution, but such an approach would be costly and demanding,
requiring careful planning.

Methods
Data collection
The community selection is applied through initial engagement meetings
involving several community leaders in Houston and Austin metropolitan
areas. Three residential communities are then chosen for the empirical
investigation. The selected communities include Sunnyside situated in
Harris County on the southern periphery of Houston city, covering Block
Group 3312001-2, Dove Springs located in Travis County on the south-
eastern fringes of Austin, Census Tract 002412-3, and RogersWashington-
HolyCross located inTravisCounty on the east ofAustin as a part ofCherry
Wood neighbourhood, Block Group 000402-3. The chosen communities

are actively pursuing the integration of solar energy and energy storage
solutions for residential use during power outages. Furthermore, they
express concern for the safety of residents during severe weather conditions
and the occurrence of power outages. These distinguishing characteristics
significantly facilitated the research team’s efforts in gaining interest and
securing active participation.Themethodologyutilized in this study for data
collection is divided into categories: 1) surveys designed for households, 2)
surveys designed for community leaders, and 3) online datasets.

Household surveys
Fully structured household surveys collect the majority of indicators for SI2
and SI3 dimensions. The reason for selecting a fully structured survey is
ensuring the consistency and comparability of the responses. These surveys
were conducted in-person, each taking a duration of 10-15min, during
special events organized by community leaders and authorities. In total, the
team surveyed 17 individuals from Sunnyside, 37 individuals from Dove
Springs, and 19 individuals fromRogersWashington communities. The key
questions were formed by an extensive review of the literature on vulner-
ability of populations to prolonged power outages34,37–39,59–62,67,68,71,72,77. To
uphold the anonymity and confidentiality preferences of the subjects,
households were not identified by name. Most of the respondents filled out
the surveys in-site during the events with few completing it in their con-
venience. Supplementary Table S1 provides the profile of participants in
household surveys.

Community leader surveys
Establishing contact with community representatives proved to be an
important asset for this study, facilitating outreach to households within the
community. Given that community leaders serve as widely recognized and
trusted representatives, they were able to furnish valuable insights into the
community’s status and prevailing concerns. Using a comparable metho-
dology, structured surveys were conducted with community leaders or
representatives. The community leaders are well-informed about the
community’s previous experiences of transportation blockage resulting
from severe weather conditions and subsequent power outages. Therefore,
the survey questions included addressing and gathering this information. In
addition, gathering data about the primary utilities supplying electricity to
the community is a challenging task. Nonetheless, community leaders
possess a thorough understanding of the predominant utilities serving the
community, and as such, these details are also addressed during the surveys.
Lastly, the community leader surveys included inquiring about the equip-
ment and vegetation trimming maintenance plans implemented by utility
services in the community. Supplementary Table S2 provides the data
collected through this type of surveys.

PO-RSVI model
We utilized min-max scaling to normalize indicators in each dimension
across all communities (Eq. (1)), assigned equal weights for weighting
process, and use L2-norm for calculating each domain score due to its
distance-based nature (Eq. (2)). The overall PO-RSVI is calculated as
described in Eq. (3).

VIj;k ¼
Ij;k �minj2J k

fIj;kg
maxj2J k

fIj;kg �minj2J k
fIj;kg

; 8k2K :¼f1; 2; 3g; j 2 J k ð1Þ

SIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2J k

VI2j;k

s
; 8k2K ð2Þ

PO� RSVI ¼ SI1ðSI2 þ SI3Þ ð3Þ

Where Ijk andVIj;k are theunscaled and scaled indicator j in domain k, SIk is
the sub-index of domain k, and PO� RSVI is the overall vulnerability
index. In Eq. (3), population coping capacity SI2

� �
and accessibility SI3

� �
sub-indices are aggregated and multiplied by prolonged outage

https://doi.org/10.1038/s43247-025-02278-1 Article

Communications Earth & Environment |           (2025) 6:294 14

www.nature.com/commsenv


susceptibility SI1
� �

because they both contribute to vulnerability when the
community confronts a prolonged outage. Using this formulation, if two
communities have equal population coping capacities and service
accessibilities, but one faces a higher degree of facing prolonged outages,
it will be assigned a higher vulnerability score.

SVI calculation
Flanagan’s SVI consists of 12 distinct indicators across four categories:
socioeconomic factors, household composition, minority status and lan-
guage, and housing and transportation. For indicators such as poverty rate,
income, education level, age (65+ ), health impairment, and vehicle own-
ership, we used survey data specific to our study. For other indicators not
included in the surveys, we approximated values using Block Group data
from the United States Census Bureau’s American Community Survey for
each community. The indicators were then standardized and aggregated
following the steps outlined by Flanagan et al. (2011) to construct the final
SVI scores for each community, which were used for comparison with the
proposed PO-RSVI.

Machine learning evaluation metrics
Using the confusion matrix, representing the type of predictions which
include True-Positive (TP), True-Negative (TN), False-Positive (FP), and
False-Negative (FN) the evaluation metrics are calculated for classifiers as
follows:

Accuracy ¼
P

c2CTPc
∣C∣ ð4Þ

Recall ¼
P

c2C
TPc
Pc

∣C∣
ð5Þ

Precision ¼
P

c2C
TPc
Rc

∣C∣
ð6Þ

F1 ¼ 2ðRecall×PrecisionÞ
Recallþ Precision

ð7Þ

Log� Loss ¼
X
c2C

� 1
jN j

X
i2N

yi;c � ln pi;c

� �
ð8Þ

Where N is the set of test samples, C set of classes, Pc total number of
samples in class c 2 C, Rc total number of samples predicted for class c, yi;c
the unit vector indicating the true class of sample i, and pi;c the probability of
assigning sample i to class c by the classifier. The log-loss metric can take
values in ½0;þ1�, with 0 representing the ideal performance.

Ethical considerations
This study complies with all relevant ethical regulations for research invol-
ving human participants. The study protocol was reviewed and approved by
the University of Houston, Division of Research, Institutional Review Board
(IRB) under IRB ID: STUDY0000459. Household surveys were conducted
with prior oral informed consent obtained from all participants, ensuring
their agreement to the use of their data for research purposes.

Data availability
Most datasets used in the study are publicly available. For neighbourhood
population characteristics, including factors like population density and
neighbouring communities, public datasets sourced from the US Census
Bureau, American Community Survey 5-Year Data (2009-2023)78 were
utilized. The study drew upon public dataset provided by Texas Water
Development Board79, which includes critical infrastructure locations, such
as hospitals, fire stations, national shelters, and schools. Data of super-
markets were collected through Google Maps API. The paths of transmis-
sion lines passing through the communitieswere determinedusingEsriU.S.

Federal Datasets, U.S. Electric Power Transmission Lines80. For the location
of bus stations, public data provided by City of Houston81 and City of
Austin82 were utilized. The 2023 public datasets provided by the Houston
Police Department83 and the Austin Police Department84 were leveraged to
gather relevant data regarding property crime incidents within the com-
munities. According to FBI definition for property crime, incidents falling
into categories such as burglary, larceny-theft,motor vehicle theft, andarson
were taken into account to determine the crime level in communities85.
Lastly, survey data used in this study is publicly available in the Figshare
database under the https://doi.org/10.6084/m9.figshare.28582940.
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