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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Segregated and aligned BNNS in PVA 
matrix are achieved using sequential 
freeze-casting.

• The sequential freeze-casting involves 
infiltrating BNNS into the micro-
channels of PVA aerogel followed by hot 
pressing.

• The unique structure yields 267% 
higher thermal conductivity than con-
ventional composites with dispersed 
BNNS.

• The nanocomposite films possess high 
in-plane thermal conductivity, good 
electrical resistivity, and low dielectric 
loss.

• These unique properties make the com-
posite film an ideal candidate for heat 
dissipation in microelectronics.
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A B S T R A C T

High interfacial thermal resistance (ITR) between thermally conductive nanofillers and polymer matrix, and lack 
of good orientation of nanofillers are primary limiting factors in harnessing their inherent thermal conductivity 
in polymer nanocomposites. Thus, exploiting ultrahigh thermal conductivities of nanofillers involves developing 
methods or mechanisms that can minimize the ITR. In this work, boron nitride nanosheets (BNNS)/polyvinyl 
alcohol (PVA) nanocomposite films with segregation-induced interconnection among BNNS are fabricated by a 
sequential unidirection freeze-casting (UFC) technique. A PVA aerogel is first made by UFC followed by infil-
trating functionalized BNNS into its pores and microchannels which is subjected to a second UFC process. The 
composite aerogel is subsequently hot pressed to compact the available pore channels for reduced ITR arising 
from better contact between the segregated BNNS cell walls. The resulting segregated BNNS/PVA (SBP) nano-
composite film with 40 wt% BNNS exhibits high thermal conductivity of 5.2 W/mK, which is about 267 % higher 
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than the nanocomposite film containing dispersed BNNS made by conventional UFC. The SBP film also possessed 
high electrical insulation characteristics and a very low dielectric loss of 10− 2 at a frequency of 1 kHz, properties 
arising directly from the segregated BNNS. The sequential UFC provides an effective method to incorporate 
aligned and interconnected BNNS through segregation for enhanced thermal conductivity and electrical re-
sistivity for thermal management in microelectronics and integrated circuits.

1. Introduction

The ever-increasing heat generation from power microelectronics 
and electronic devices as a result of miniaturization necessitate efficient 
thermal management to dissipate the heat so as to ensure their perfor-
mance, safety and extended service life [1–5]. Conventional metals with 
high thermal conductivities (TCs) and their composites are not suitable 
for these applications because of their high densities, rigid structures 
and high electrical conductivities. Thus, polymer-based composites are 
considered alternatives, thanks to their lightweights, flexibility, low 
costs and ease of processing [6–9]. The majority of polymers possess 
very low TCs, often below 0.5 W/mK [10,11], thus requiring rein-
forcement of thermally conducting fillers for heat dissipation [1,12]. 
Thermal interface materials (TIM) must possess a minimum TC of 1 W/ 
mK [13]. Many different materials have been explored as composite 
fillers to enhance TCs of polymer composites: they include carbon-based 
nanomaterials, such as graphene [13,14] and carbon nanotubes [15], 
MXene [16], and metallic nanoparticles (NPs), such as Cu NPs [17] and 
Ag NPs[18,19], and ceramics fillers like boron nitride (BN) [2,20–22], 
silicon nitride (Si3N4) [23], aluminum nitride (AlN) [24], magnesium 
oxide (MgO) [25], alumina (Al2O3) [24], zinc oxide (ZnO) [26] and 

silicon carbide (SiC) [27]. These nanofillers have been incorporated as 
single or hybrid nanofillers comprising a mixture of carbon and ceramic- 
based fillers. However, the drawback of hybrid structures consisting of 
carbon-based fillers lies in their high electrical conductivities [28]. 
Moreover, the large interfacial thermal resistance (ITR) between fillers 
and polymer matrices because of phonon mismatch at their interfaces is 
the key limiting factor to improve TCs of composites [5,29]. Therefore, 
efforts have been continuously made through developing or modifying 
fabrication processes and designing new composite structures to ensure 
that the promising thermal properties stemming from the nanofillers are 
better harnessed without sacrificing the electrical insulation properties 
[7,11,30]. These approaches are centred around reducing the ITR be-
tween the nanofillers and matrix and enhancing the orientation of 
nanofillers within the composite by using ceramic nanofillers [31].

In order to reduce the ITR while enhancing the reinforcing effect of 
nanofillers in the polymeric matrix, nanofillers are often functionalized 
to improve their adhesion with the polymer. The composites with 
functionalized nanofillers were reported to possess higher TCs than the 
non-functionalized counterparts [32,33]. The alignment of 2D nano-
fillers in the polymer matrix is another positive approach minimizing the 
resistance of phonon transport by utilizing the high in-plane TCs. Several 

Fig. 1. Schematic diagram illustrating the fabrication of nanocomposite aerogels using (a) one-pot UFC and (b) sequential UFC, followed by compaction to produce 
DBP and SBP composites films, respectively.
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enabling techniques have been devised for the alignment of nanofillers, 
such as electrospinning [2,21], magnetic alignment [34–36], applica-
tion of electric field [37], unidirectional freeze casting (UFC) 
[3,14,38,39], infiltration [14,40], shear force [41] and vacuum-assisted 
filtration [42–44]. UFC, in particular, exploits the ice crystals grown 
from the cold source as templates to realize ordered 3D structures con-
taining anisotropic pores using an aqueous solution containing nano-
fillers [7]. The technique has been adopted for directional heat 
dissipation or heat insulation, thereby preventing heat localization in 
the composite [45–47]. However, the conventional UFC uses mixture 
solution of 2D nanofillers and matrix for freeze-casting, resulting in 
dispersed nanofillers which are physically separated by the polymer 
matrix (Fig. 1a). This inevitably imposes significant ITR. A new tech-
nique based on UFC is needed to allow direct interconnection between 
2D nanofillers so that the TC of composite can be further improved.

Here, we develop a sequential freeze-casting technique to fabricate a 
BNNS/polyvinyl alcohol (PVA) composite film with highly aligned and 
segregated BNNS in the PVA matrix. BNNS is chosen due to its useful 
properties, such as inherently high TC of about 400 W/mK, good elec-
trically insulating properties, low coefficient of thermal expansion, 
excellent antioxidation and flame retardant characteristics 
[7,30,38,48–50]. Distinctively different from the conventional freeze- 
casting where mixed solution of fillers and matrix is used (Fig. 1a), 
our technique first construct a neat PVA aerogel with highly-aligned, 
porous structure by UFC, and BNNS were infiltrated through the 
microchannels in a second UFC (Fig. 1b). After freeze-drying and 
compaction, BNNS were segregated in between PVA matrix, giving rise 
to direct physical contact between individual BNNS and thus reducing 
the ITR. The TC of segregated composite was 267 % higher than 
dispersed BNNS/PVA composite made by conventional UFC, reaching 
5.2 W/mK in the in-plane direction [51]. The segregated composite film 
also possessed high electrical insulation characteristics and a very low 
dielectric loss of 10− 2 at a frequency of 1 kHz, properties arising directly 
from the BNNS and potentially useful for applications in integrated 
circuits and storage systems that requires a dielectric loss below 0.015.

2. Experimental methods

2.1. Exfoliation of BNNS

Hexagonal boron nitride (h-BN, 325 mesh and 99.5 %) was supplied 
by Alfa Aesar. BNNS were exfoliated from h-BN and simultaneously 
functionalized according to our previous work [45] based on an urea- 
assisted ball-milling process which minimized the mechanical stress 
on the BNNS lattice [52]. h-BN powders and urea at a weight ratio of 
1:60 were put in a planetary ball mill and reacted at 400 rpm for 24 hr. 
Subsequently, the ball-milled mixture was dispersed in deionized (DI) 
water and centrifugated at 2000 rpm for 20 min. To eliminate any 
unreacted urea, the supernatant was washed four times at 10000 rpm 
with DI water before being freeze-dried to produce 2D BNNS. The 
schematic for the exfoliation of BNNS is shown in Fig. S1.

2.2. Fabrication of BNNS/PVA nanocomposite aerogels and films

To understand the effect of BNNS distribution on the resulting 
thermal conductivity, two UFC processes were adopted to fabricate the 
composite films with completely different morphologies, as shown in 
Fig. 1. In both approaches, BNNS of a predetermined weight percentage 
(10, 20, 30 and 40 wt%) were added to the PVA solution with a con-
centration of 25 mg/ml. The designation of the nanocomposite films 
prepared from both processes is shown in Table 1. The samples were 
fabricated using either one-pot or sequential UFC technique, which 
created a large temperature gradient for directional ice growth using 
liquid nitrogen as coolant. The composite monolith was then dried in a 
freeze-drying machine at a pressure of 3 Pa, yielding anisotropic cellular 
pore structure. The two UFC techniques are discussed in Section 3.1.

2.3. Characterization and Measurements

The exfoliated BNNS were examined by the Raman spectroscopy 
(RamanMicro300, Perkin Elmer) while the chemical compositions of h- 
BN, BNNS and PVA were evaluated by the Fourier transform infrared 
spectroscopy (FTIR, Bruker Vertex 70 Hyperion 1000) over a frequency 
range of 400 – 4000 cm− 1. The morphologies of the composite films and 
BNNS were characterized using scanning electron microscopes (SEM 
JEOL JSM-6390 and JSM-6700F) and their chemical compositions were 
examined using the energy dispersive spectroscopy (EDX). The thickness 
and lateral size of BNNS were estimated by the atomic force microscopy 
(AFM, Nanoscope Illa/Dimension 3100) while their crystal structures 
were characterized by the X-ray diffraction (XRD) analysis. The TCs of 
the composite films were determined using the thermal constant 
analyzer (TPS 2500S, Hot Disk) at room temperature based on the 
transient plane source of anisotropic mode using ~ 0.68 mm thick 
samples [46]. Four samples from each composition were tested and the 
average result was reported. The thermal performance was also 
measured using a thermocouple inserted in a closed chamber, which was 
placed on a hot plate. The electrical resistance, dielectric constant and 
dielectric loss were measured on an inductance (L), capacitance (C), 
and resistance (R) (LCR) meter at a frequency of 1 kHz.

3. Result and Discussion

3.1. Design of nanocomposite film with aligned and segregated BNNS

The fabrication processes for BNNS/PVA composite films are shown 
in Fig. 1. In the conventional one-pot UFC approach (Fig. 1a), func-
tionalized BNNS and PVA precursor were mixed in DI water at 90 ◦C to 
form a homogeneous dispersion, which was then followed by freeze- 
casting and freeze-drying to obtain BNNS/PVA composite aerogels. 
Hot pressing the composite aerogels at 20 Psi and 150 ◦C yielded 
nanocomposite films, which we designated as dispersed BNNS/PVA 
(DBP) film because BNNS were dispersed in the PVA matrix due to the 
pre-mixing of BNNS and PVA before the freeze-casting process.

To achieve interconnected BNNS and thus reduced ITR, we devel-
oped a sequential UFC approach (Fig. 1b) involving two-step UFC with 
each constituent incorporated separately. Neat PVA solution was first 
freeze-cast and freeze-dried to form PVA aerogels with aligned micro-
channels and open pores. Subsequently, BNNS solution was infiltrated 
into the microchannels of the PVA aerogel by osmotic active absorption, 
which was freeze-cast followed by freeze-drying once more to form 
composite aerogels. The above two-step UFC was aimed to form segre-
gated BNNS on the pre-formed PVA aerogel skeleton in an effort to 
create highly interconnected BNNS networks within the PVA matrix in 
the final product. The aerogels were hot pressed to form nanocomposite 
films under the same condition as the first approach, designating 
segregated BNNS/PVA (SBP) films. Both DBP and SBP composite films 
contained aligned BNNS in the freeze-casting direction. However, a 
major difference lies in the distribution of BNNS in the PVA matrix. For 
DBP, BNNS was dispersed in the PVA solution before freeze-casting, 

Table 1 
Designations and Constituents of BNNS/PVA Nanocomposite Films.

PVA Concentration 
(mg/ml)

BNNS Incorporation 
Method

BNNS Content 
(wt%)

Designation

25        One-pot UFC 0 Neat PVA
10 DBP10
20 DBP20
30 DBP30
40 DBP40

Sequential UFC 10 SBP10
20 SBP20
30 SBP30
40 SBP40
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resulting in a spatially uniform distribution of BNNS within PVA. For 
SBP, by contrast, BNNS was dispersed in DI water before infiltration into 
a neat PVA aerogel to form highly segregated BNNS. This approach 
resulted in BNNS aligning on the surfaces of PVA walls, ultimately giving 
rise to spatially interconnected BNNS networks in the PVA matrix after 
hot pressing.

3.2. Morphologies and properties of nanocomposite films

The morphologies and other chemical and crystallographic proper-
ties of exfoliated BNNS are shown in Fig. S2. The SEM image (Fig. S2a) 
indicates lateral sizes of BNNS at several hundred nanometers. The shift 
in Raman peak from 1364 to 1366 cm− 1 after exfoliation (Fig. S2b) can 
be attributed to weakened interactions between the individual BNNS, 
confirming exfoliation of bulk h-BN into few layers of nanosheets [53]. 
The FTIR spectra (Fig. S2c) reveals additional peaks at 1677 and 3340 
cm− 1 in the BNNS spectrum, corresponding to N–H vibration and thus 
confirming the introduction of amino (–NH2) functional groups on BNNS 
during ball milling [54]. The –NH2 group enhanced the dispersion of 
BNNS in water. The XRD spectra (Fig. S2d) show identical peaks at 26.8◦

and 55.3◦, but the broader and lower-intensity (002) peak of BNNS than 
the h-BN counterpart indicates thin BN sheets further confirming suc-
cessful exfoliation of BNNS [52].

The morphologies of PVA aerogel before incorporating BNNS during 
the sequential UFC are shown in Fig. 2a and e. Fig. 2a presented aligned 
PVA cell walls and transversely connecting ligaments. The width of the 
microchannels formed between the cell walls was less than 10 µm and 

extended along the freezing direction. The top-view SEM image (Fig. 2e) 
showed the presence of open pores in the PVA cell walls.

The neat PVA aerogels were hot pressed to form PVA films of 
thickness ~ 14 % of the aerogels before compaction (Fig. S3). The pores 
were eliminated after compaction, showing stacked layers of PVA micro- 
sheets resembling that of nacre (Fig. 2b). The open pores on the top 
surface were also consolidated after hot pressing, as shown in Fig. 2f. 
Similar layered structure was observed in the DBP film containing 40 wt 
% BNNS, as shown in Fig. 2c. The BNNS were dispersed randomly and 
sandwiched between PVA matrix layers as a result of solution mixing 
before UFC. The top-view SEM image of DBP film showed rougher sur-
faces than the neat PVA film because of the inclusion of BNNS. The SBP 
film of the same BNNS loading of 40 wt% presented much similar cross- 
sectional and top-surface morphologies to those of the DBP film, as 
shown in Fig. 2d and 2 h. In general, however, SBP40 exhibited better 
closure of cell wall nanopores than the DBP counterpart, as shown in the 
high magnification SEM images of DBP40 and SBP40 (Fig. S4). The 
corresponding SEM images of the DBP and SBP films with other com-
positions are shown in Fig. S5 and S6, respectively. The DBP films 
retained their inherent layered structures originating from the UFC 
process, whereas the SBP films showed more closely packed structures 
than the DBP films because of the segregation of BNNS.

The segregated structure was further confirmed by analyzing 
compositional differences between DBP40 and SBP40 by the energy 
dispersive X-ray (EDX) mapping (Fig. S7). The top-view EDX mapping 
images show that more BNNS appeared in the SBP than DBP films, as 
indicated by the higher intensities for B and N elements in the former. 

Fig. 2. SEM images showing the (a-d) cross-sectional views and (e-h) top views of (a, e) PVA aerogel; (b, f) PVA film; (c, g) DBP film; and (d, h) SBP film. EDX maps of 
the top-view SEM images showing relative elemental compositions for the (i – l) DBP and (m − p) SBP films. The mapping images of C, O, N and B are shown in (i, m), 
(j, n), (k, o), and (l, p), respectively.

M.H. Adegun et al.                                                                                                                                                                                                                             Composites Part A 192 (2025) 108802 

4 



Similarly, the cross-sectional elemental maps shown in Fig. 2i-2p also 
confirm that the B and N elements were more abundant in the SBP than 
the DBP films. These observations serve as evidence that the BNNS were 
segregated in the SBP film whereas those in the DBP were dispersed. The 
distributions of other elements like C and O were essentially similar 
between the two films.

3.3. TCs of composite films

The TCs of the DBP and SBP films were measured in the in-plane and 
through-the-thickness directions, as shown in Fig. 3a. The TCs of both 
films increased with increasing BNNS loading, and significant anisot-
ropy was observed with much higher in-plane values than those in the 
through-the-thickness direction. The SBP films showed consistently 
higher in-plane TCs than the DBP films, reaching 5.20 W/mK at 40 wt% 
of BNNS, about 15 times that of the neat PVA film. In comparison, the TC 
of DBP film of the same BNNS loading was only 1.95 W/mK.

The higher TC of SBP than DBP can be explained by the completely 
different distributions of BNNS fillers, as illustrated in Fig. 3b. The DBP 
films were fabricated by UFC of BNNS dispersed in the PVA matrix to 
form composite aerogels which were subjected to freeze-drying and hot 
pressing. Thus, it is envisaged that the functionalized BNNS were uni-
formly dispersed in the PVA matrix, and the thermal transport in the 
DBP film was therefore mainly through the BNNS-PVA interfaces. These 
structural features of the DBP composite film limit the phonon transport 
in the plane direction because of the high ITR between the individual 
BNNS and PVA, although they were reasonably well aligned in the in- 
plane direction because of UFC and hot pressing.

In sharp contrast, the SBP films were made by infiltration of BNNS 
solution into the microchannels created in the neat PVA aerogel. Thus, 
the BNNS were assembled onto the PVA cell walls, giving rise to 

segregated BNNS in the PVA matrix after hot pressing. This segregated 
structure offered continuous nanofiller conducting pathways as phonons 
were transported through the interconnected BNNS [55–58]. The ther-
mal contact resistance among the segregated BNNS was much lower 
than that between BNNS and PVA, generating less resistance to phonon 
transport and thus much higher TCs of SBP than DBP films. To confirm 
the effect of BNNS distribution on ITR, ITR of both films were predicted 
based on the Foygel’s model and the effective medium theory (EMT) 
[20], whose details are provided in Supporting Information. The SBP 
film’s ITR was estimated to be 1.6 × 10-9 m2K/W, which was only about 
half of the DBP film of 2.8 × 10-9 m2K/W (Fig. S8). The lower ITR of SBP 
than DBP substantiates the positive effect of interconnected BNNS in 
promoting interfacial thermal transport, ultimately translating into a 
much higher in-plane TC of the SBP films.

Given the unique segregated and aligned BNNS layers in the PVA 
matrix which is analogous to a unidirectional fiber composite consisting 
of continuous fibers and a matrix whose overall properties are the result 
of the volumetric or weighted average of the individual components, we 
adopted the rule of mixtures (RoM) to predict the TC of the composite 
according to Equation (1).

λc = λm(1− Vf ) + ( λb

1+λb
Ck
d

)* Vf (1).

where λm is the TC of PVA, λb is the effective TC of BNNS, d is the 
thickness of BNNS, and Ck is the ITR among BNNS [59]. The conduction 
between BNNS and PVA was assuming to be negligible so that phonons 
were transported mainly through the BNNS networks. Fig. 3c shows the 
comparison between the experimental and theoretical TCs obtained 
from the model. Only considering the ITR between BNNS yielded good 
agreement between the experiment and prediction, partly confirming 
the advantage of segregated BNNS structure in the SBP films.

The practical thermal dissipation performance of the films was also 
evaluated by monitoring the temperature changes of the films placed on 

Fig. 3. Thermal properties of BNNS nanocomposite films. (a) TC of composite films; (b) schematics of thermal transport mechanisms in PVA film and DBP and SBP 
nanocomposite films; (c) comparison between experimental and theoretical TCs for SBP nanocomposite films; (d) variations of temperature of nanocomposite films 
when placed on a hot plate at 100 ◦C; (e) setup for thermal performance tests.
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a hot plate at 100 ◦C, as shown in Fig. 3d. The digital image of the 
experimental setup is shown in Fig. 3e while the schematic representa-
tion of the setup is shown in Fig. S9. The SBP film attained a higher 
temperature in a shorter period of time than both the DBP and pristine 
PVA film counterparts. Further, the SBP film showed 26.0 % and 14.6 % 
higher saturated temperatures than those of the PVA and DBP films, 
respectively. These observations signifies the superior thermal dissipa-
tion capacity of the SBP films over their DBP counterparts, indicating the 
potential for practical thermal management applications [60].

3.4. Dielectric properties

For potential applications of the nanocomposite films as TIMs in 
electronics, their dielectric properties were also examined, as shown in 
Fig. 4. Dielectric properties such as dielectric constant, volume re-
sistivity and dielectric loss are crucial for energy storage in electric 
power systems and advanced electronics [54]. It has been reported that 
high TCs of dielectric materials imply improved heat dissipation and low 
potential for thermal runaway, which in turn can contribute to 
improvement in energy storage capacity [61]. Thus, a good dielectric 
material is expected to possess excellent electrical resistance and very 
low dielectric loss [49]. The volume resistivity of PVA film is measured 
to be 9 × 1012 Ω•cm as shown in Fig. 4a. The volume resistivity 
increased with increasing BNNS content because of the excellent elec-
trically insulating properties of BNNS. Interestingly, the SBP films with 
20 wt% and above showed consistently over 40 % higher volume 

resistivity than the DBP films, as shown in Fig. S10. This is because the 
SBP composite structure with segregated BNNS offer enhanced electrical 
resistance than the DBP counterpart in which the BNNS is intertwined 
with PVA molecule as a result of the solution mixing process before UFC. 
The SBP film with a BNNS loading of 40 % showed the highest volume 
resistivity of 3.6 × 1013 Ω•cm.

The dielectric constants of the PVA and nanocomposite films were 
also examined at 1 kHz, as shown in Fig. 4b and Fig. S11. The PVA film 
exhibited a low dielectric constant of 1.34. The dielectric constants of 
the composite films decreased with increasing BNNS loading because of 
the electrically insulating characteristics of BNNS which offered strong 
barriers to charge polarization [62]. The DBP films showed higher 
dielectric constants than SBP films of the same BNNS loading. Despite 
the relatively low dielectric constants, the introduction of BNNS 
significantly contributed towards suppression of dielectric loss. Fig. 4c 
shows the dielectric loss of the SBP and DBP films measured at a fre-
quency of 1 kHz. The dielectric loss values of nanocomposite films 
containing different BNNS contents are shown in Fig. S12. The SBP film 
with 40 wt% BNNS exhibited a dielectric loss of about 10− 2, which was 
better than the DBP film and 86 % lower than that of the neat PVA film. 
The low dielectric loss can be attributed to the exceptional electrically 
insulating property of BNNS due to its wide bandgap, serving as elec-
trical barriers for charge conduction and leakage current within the 
composite film [2,14]. A very low dielectric loss is essential for high 
voltage applications to minimize the heat generated from high- 

Fig. 4. Electrical and dielectric properties DBP and SBP composite films. (a) Volume resistivity; (b) Dielectric constant; and (c) Dielectric loss of composite films. (d) 
Comparison of TC and dielectric loss of SBP nanocomposite films with other boron nitride dielectric composites.
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frequency alternating currents which often lead to breakdown of di-
electrics [63–65].

The dielectric loss and TC of the SBP film with 40 wt% BNNS are 
compared with other composite films made from BNNS as shown in 
Fig. 4d. All the composite films, except PU/BNNS [20], were formed by 
dispersion of h-BN, BNNS or boron nitride nanoparticles in the polymer 
matrix, whereas the PU/BNNS [20] composite was fabricated using heat 
to spray BNNS on a PU web thereby yielding a structure similar to 
segregated BNNS within the PU matrix. Although it had a high in-plane 
TC but its dielectric loss was high, about 10-fold higher than the SBP40 
composite film. Further, among the nanocomposite films fabricated by 
dispersion of BNNS in the polymer matrix, only PVDF/BNNS [2] and 
Epoxy/BNNS-Al [9] formed by stacking of a number of layers exhibit 
higher in-plane TC values higher than 6 W/mK. However, their through- 
thickness TCs are poor, lower than 0.5 W/mK. The SBP40 film showed a 
higher TC in the through-thickness direction with a low dielectric loss. 
The high in-plane TC of Epoxy/BNNS-Al [9] was achieved by incorpo-
rating alternating layers containing electrically conductive Al. This 
means that the presence of electrically conductive Al in the matrix may 
pose a possible electrical short circuit during service. For integrated 
circuits, energy storage systems and capacitors, a very low dielectric loss 
of below 0.015 is desired for optimal performance. Thus, the high TC of 
SBP40 combined with a low dielectric loss can make it an ideal dielectric 
material for applications in sensor devices, microelectronics, energy 
storage systems and capacitors.

4. Conclusion

We developed a sequential freeze-casting technique in an effort to 
induce aligned and segregated BNNS in the PVA matrix for reduced ITR. 
The SBP nanocomposite films fabricated from infiltration of BNNS into 
the microchannels created by UFC of neat PVA showed better TC than 
those fabricated by conventional UFC involving solution mixing of PVA 
and BNNS. The SBP40 films exhibited a TC of 5.2 W/mK in the in-plane 
direction, which is about 1400 % improvement over the neat PVA film. 
This finding was achieved by the presence of interconnected BNNS 
which offered unimpeded pathways for phonon transport with less 
thermal resistance. The SBP40 film delivered 26 % enhancement in heat 
dissipation over the neat PVA film. In addition, the SBP composite film 
also maintained a dielectric constant close to unity along with excellent 
suppression of dielectric loss to about 10− 2. The excellent TC coupled 
with enhanced thermal stability, and the very low dielectric loss makes 
the SBP40 film an excellent candidate for heat dissipation, and as 
dielectric composites in energy storage devices and capacitors where a 
very low dielectric loss is required.
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