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Abstract
The presence of particles on the surface of a tunnel slope renders it susceptible
to erosion by water flow, which is a major cause of soil and water loss. In this study,
a nonlinear mathematical model and a mechanical equilibrium model are developed
to investigate the distribution of flow fields and particle motion characteristics of
tunnel slopes, respectively. The mathematical model of flow fields comprises three
parts: a runoff region, a highly permeable soil layer, and a weakly permeable soil
layer. The Navier‒Stokes equation controls fluid motion in the runoff region, while
the Brinkman‐extended Darcy equation governs fast and slow seepage in the highly
and weakly permeable soil layers, respectively. Analytical solutions are derived for
the velocity profile and shear stress expression of the model flow field under the
boundary condition of continuous transition of velocity and stress at the fluid‒solid
interface. The shear stress distribution shows that the shear stress at the tunnel‐slope
surface is the largest, followed by the shear stress of the soil interface, indicating that
particles in these two locations are most vulnerable to erosion. A mechanical
equilibrium model of sliding and rolling of single particles is established at the fluid‒
solid interface, and the safety factor of particle motion (sliding and rolling) is derived.
Sensitivity analysis shows that by increasing the runoff depth, slope angle, and soil
permeability, the erosion of soil particles will be aggravated on the tunnel‐slope
surface, but by increasing the particle diameter, particle‐specific gravity, and particle
stacking angle, the erosion resistance ability of the tunnel‐slope surface particles will
be enhanced. This study can serve as a reference for the analysis of surface soil and
water loss in tunnel‐slope systems.

KEYWORDS

particle erosion, particle motion, runoff‐fast (slow) seepage coupling, shear stress profile, tunnel‐slope
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Highlights
• Nonlinear models were used to study the flow field distribution and particle
motion on slopes.

• The model includes three regions: runoff, highly permeable soil, and weakly
permeable soil.

• Sensitivity analysis indicates that erosion is affected by runoff depth, slope
angle, soil permeability, particle diameter, specific gravity, and stacking angle.

1 | INTRODUCTION

In recent years, soil and water loss has become a growing
problem (Liu et al., 2021; Tsai et al., 2022), with tunnel‐
slope erosion being a direct cause of this phenomenon
(Ciampalini & Torri, 1998; Dunkerley, 2015; Lin et al.,

2022; Shen et al., 2019). Tunnel‐slope erosion is highly
likely, random, and dangerous, which adversely affects
environmental protection (Akgun & Turk, 2011), hinders
traffic development (Guo et al., 2010), and threatens
people's life and property. A large number of engineering
cases have shown that tunnel‐slope systems are prone to
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particle erosion under the action of water flow in the initial
stage, followed by instability and failure in the later stage
(Chen et al., 2022; Jiao et al., 2022; Wei et al., 2023).
Therefore, it is imperative to develop a model to evaluate
particle erosion in tunnel slopes.

Richard's equation is commonly used to describe the
unsaturated seepage in the initial period of rainfall on
tunnel‐slope surfaces, while runoff gradually forms on the
slope surface with the increase of the rainfall intensity. The
probability of slope erosion increases as the runoff depth
increases (Arnau‐Rosalén et al., 2008). Although the
scouring of riverbeds has been studied extensively (Piqué
et al., 2016; Xiong et al., 2017; Zhao et al., 2019), scouring
problems of highway slopes, tunnel slopes, and reservoir
banks continue to emerge with the continuous develop-
ment of transportation and water conservancy (Chehlafi
et al., 2019; Liu et al., 2010; Wang et al., 2020).

Compared with clay tunnel slopes, sandy slopes have
almost negligible particle cohesion, thus being more prone to
soil erosion (Liu et al., 2019). The effects of tunnel‐slope
gradients on scouring rate have been studied by Fox and
Bryan (2000), who found that the runoff velocity and soil
loss are positively correlated with the tunnel‐slope gradient
during rainfall scour tests. Berger et al. (2010) conducted
rainfall simulation indoor scouring experiments on slopes
with varying slope gradients and rainfall intensities, dis-
covering that the change in rainfall intensity has a more
significant impact on sediment yield than the slope gradient.
Mendes et al. (2007) noted that the critical erosion shear
stress, which is affected by slope gradient, hydrostatic
pressure, and water density, can determine whether particles
will move or not. Patricia et al. (1987) studied the particle
motion of homogeneous/heterogeneous particles and derived
an analytical solution of the critical shear stress for
noncohesive sediment based on the force balance of a single
particle. Xie et al. (2009) proposed a formula for the critical
shield number used to evaluate the incipient motion of
cohesionless particles, which increases with the slope angle
and hydraulic gradient of seepage. When water acts on
tunnel‐slope particles, additional forces, such as drag force,
lift force, and buoyancy force, come into play, leading to
particle instability (He & Tafti, 2018; Sugioka &
Komori, 2007; Zastawny et al., 2012). Seepage force can
also promote particle initiation and intensify slope erosion,
particularly when the slope has high permeability (Liu &
Chiew, 2012; Yergey et al., 2010). Theoretical models for
judging particle initiation are primarily derived from
mechanical equilibrium (Guo et al., 2019; Zhai et al., 2020).
The critical shear stress, critical velocity, critical water depth,
and particle start‐up safety factor are commonly used
parameters to identify particle scouring, while the influence
of vegetation on slope particle erosion has also been studied
(Cheng et al., 2020; Kim et al., 2015, 2018).

Currently, the tunnel slope is regarded as a homoge-
neous soil layer in studies on flow field characteristics
and scouring erosion (Agudo & Wierschem, 2012;
Rabinovich & Kalman, 2009), with no reports on
double‐layer rock and soil mass slopes with different
permeability characteristics. Moreover, the coupling
effect of runoff and seepage is not considered in current
studies on slope particle erosion (Cui et al., 2019).

In this study, a nonlinear mathematical model is
proposed to investigate the effects of free runoff on the
tunnel‐slope surface coupled with saturated seepage in
tunnel‐slope bodies, including highly and weakly permeable
soil layers. The runoff is governed by the Navier–Stokes
equation, while the seepage is described by the Brinkman–
extended Darcy equation. Analytical solutions of pressure,
velocity, and shear stress are derived for cases where the
interface velocity and shear stress remain continuous.
Based on a single‐particle mechanical equilibrium model,
in this study, the effects of various slopes, runoff depths,
and permeability on velocity and shear stress, as well as the
particle motion of the tunnel‐slope surface are analyzed.
The expressions of the particle motion safety factor are
derived based on a sliding model and a rolling model, and
the parameter sensitivity of the particle rolling safety factor
is discussed.

2 | THEORETICAL ANALYSIS
OF THE FLOW FIELD

Tropical and subtropical regions are home to a significant
number of eluvial soil‐strongly weathered rock stratum
slopes (Ma et al., 2018; Zhan et al., 2013). The cross‐
section of the tunnel‐slope system is illustrated in
Figure 1a, where the surface soil of the tunnel slope is
eluvial soil with high hydraulic conductivity ability.
Underneath the eluvial soil layer lies a strongly weathered
rock stratum, which can be regarded as a weakly
permeable layer. The bottom of the strongly weathered
rock stratum is an impermeable rock stratum. A locally
enlarged model of the studied tunnel slope is shown in
Figure 1b, which comprises three parts, that is, the runoff
region, the highly permeable soil layer (eluvial soil), and
the weakly permeable soil layer (strongly weathered rock
stratum). The fluid in the runoff region is unconstrained
free flow. However, the fluids in highly/weakly permeable
soil layers show fast/slow seepage, respectively. The model
length and total width are L and H, respectively; the slope
angle is θ; the runoff depth is h; the velocities of runoff, fast
seepage, and slow seepage along the x direction are vrx,
vsx1, and vsx2, respectively; vsy1 is the fast seepage velocity
along the y direction; vi is the interface velocity between
runoff and fast seepage; v is the actual seepage velocity;
and the widths of the highly/weakly permeable soil layers
are b1 and b2, respectively. As the fluid motion of runoff
and seepage in slopes is a complex problem, the theoretical
derivations are based on the following assumptions.

1. The highly/weakly soil layers are isotropic and
homogeneous porous media (Zhang & Liu, 2023).

2. The seepage flow is statured seepage (Ye et al., 2019).
3. Runoff and seepage are steady and laminar (Yuan

et al., 2019).
4. The fluid is an incompressible Newtonian fluid (Wei

et al., 2018).
5. The dissolution of chemicals and the formation of

bubbles in the fluid are ignored.
6. The fluid motion in the z direction is ignored (Liu

et al., 2023).
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2.1 | Governing equation

Based on the fundamental laws of fluid mechanics and soil
mechanics, in this study, the parameters written in the text
as governing equations to describe the physical behavior
of the tunnel‐slope system under the influence of water
flow are derived. Specifically, the Navier‒Stokes equation
is used to describe the fluid flow in the runoff region, and
the Brinkman‐extended Darcy equation is used to describe
the fast and slow seepage in the highly and weakly
permeable soil layers, respectively. The analytical solu-
tions derived from the governing equations provide insight
into the velocity profile and shear stress distribution of the
model flow field under different boundary conditions.

2.1.1 | Runoff flow on the slope surface

The incompressible runoff on the tunnel‐slope surface
obeys the continuity equation:

v
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z

0,x y zr r r∂
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+
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∂
= (1)

where vrx, vry, and vrz are the actual velocities along the x,
y, and z directions, respectively.

The fluid motion of the runoff is governed by the
Navier‒Stokes equation (Zhang, Ye, et al., 2021):
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where fx and fy denote the mass forces of runoff along the
x and y directions, respectively; ρ is the density of the
fluid; t is time; p0 is the runoff fluid pressure; and υ is the
kinematic viscosity of the runoff fluid.

According to the hypothesis of runoff laminar flow, the
runoff fluid only moves along the slope (x direction), that is,
the runoff velocity along other directions is 0 (vry= vrz=0).
Hence, ∂vry/∂y= ∂vrz/∂z=0. By substituting ∂vry/∂y=
∂vrz/∂z=0 into Equation (1), ∂vrx/∂x=0. This implies that
vrx does not change in the x direction, that is, ∂2vrx/∂x

2 = 0.
As the fluid motion in the z direction is ignored, it can be
concluded that ∂vrx/∂z=0. The mass force of the fluids only
contains gravity. The component of the mass force in the x
direction fx= g sin θ and in the y direction fy= g cos θ; g is
gravity acceleration. The velocity of fluid motion does not
change with time according to the steady flow assumption,
so ∂vrx/∂t=0. By substituting these conditions into Equation
(2), the Navier‒Stokes equation in the x direction can be
simplified as follows:

v
y

p

x
g sin 0,x

f
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2

0μ ρ θ
∂

∂
+
∂

∂
+ = (4)

where μf is the fluid dynamic viscosity and μf = ρυ.
Similarly, the Navier‒Stokes equation in the y direction

can be simplified as follows:

p

y
g cos 0.0 ρ θ

∂

∂
+ = (5)

2.1.2 | Fast seepage flow in the highly
permeable soil layer

The fast seepage in the highly permeable soil layer satisfies
the continuity equation and the Brinkman‐extended Darcy
equation (Zhang, Zhang, et al., 2021):
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FIGURE 1 Schematic diagram of the tunnel‐slope system showing runoff and seepage: (a) slope cross‐section and (b) locally enlarged model.
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where vsx1, vsy1, and vsz1 are the actual velocities of fast
seepage in the highly permeable soil layer along the x, y,
and z directions, respectively. K1 is the permeability of
the highly permeable soil layer. p1 is the fluid pressure of
the fast seepage; μeff1 is the effective viscosity of the fast
seepage; and n1 is the porosity of the highly permeable
soil layer.

As fast seepage is laminar flow moving along the
slope (x direction), the fast seepage fluid motion along
the other direction is 0 (vsy1 = vsz1 = 0), so ∂vsy1/∂y=
∂vsz1/∂z= 0. Substituting these conditions into Equation
(6), it can be concluded that ∂vsx1/∂x= 0, implying that
vsx1 does not change along the x direction., that is,
∂2vsx1/∂x

2 = 0. As the seepage flow only moves in the x and
y directions, ∂vsx1/∂z= 0. The mass force of the seepage
fluid only contains gravity. The component of the mass
force in the x direction fx= g sin θ and in the y direction
fy= g cos θ. The fast seepage is steady seepage; therefore,
∂vsx1/∂t= 0. By substituting these conditions into Equa-
tion (7), the governing equation of the fast seepage along
the x direction can be simplified in Equation (9):
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Similarly, the governing equation of the fast seepage
along the y direction can be simplified as follows:
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+ = (10)

2.1.3 | Slow seepage flow in the weakly
permeable soil layer

The slow seepage in the weakly permeable soil layer can
be described by the continuity equation and the
Brinkman‐extended Darcy equation:
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where vsx2, vsy2, and vsz2 are the actual velocities of slow
seepage in the weakly permeable soil layer along the x, y,
and z directions, respectively; K2 is the permeability of
the weakly permeable soil layer. p2 is the slow seepage
fluid pressure; μeff2 is the effective viscosity of the slow
seepage; and n2 is the porosity of the weakly permeable
soil layer.

Similarly, the governing equations of the slow seepage
in the x and y directions can be simplified as follows:
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2.2 | Pressure

By integrating Equations (5), (10), and (15), the pressures
of different regions for the present model can be
obtained, which are as follows:

The pressure profile of the runoff region:

p h y g y h( ) cos (0 ).0 ρ θ= − < < (16)

The pressure profile of the highly permeable soil layer
region:

p h y g b y( ) cos ( 0).1 1ρ θ= − − < < (17)

The pressure profile of the weakly permeable soil layer
region:

p h y g b b y b( ) cos ( ).2 1 2 1ρ θ= − − − < < (18)

In this model, it is known from Equations (16)–(18)
that the pressure profile is only a function of y and not x.
Thus, the derivative or rate of change of pressure p along
the x direction is 0:

p
x

0.
∂

∂
= (19)

2.3 | Velocity

The following dimensionless parameters can transform the
dimensional Equations (4), (9), and (14), which represent
the governing equations of free runoff and saturated
seepage, into their dimensionless form.
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where Y is the dimensionless position; M is the viscosity
ratio; Da is the Darcy number of the soil layer; S is the
particle shape coefficient; V is the dimensionless velocity;
and i is the ith soil number.

Furthermore, the viscosity ratio M is related to
the porosity n (Almalki & Hamdan, 2016): Mi =
f f f f/(3 3 tanh )i i i i− , where fi = ni/Dai, Dai and ni
are the Darcy number and porosity of the ith porous soil
layer (i= 1, 2), respectively.

The dimensionless expressions of the fluid motion
governing Equations (4), (9), and (14) are shown in
Equations (21), (22), and (23):

V
Y

Y
d
d

1 0 ( [0, ]),
2

r
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Y M
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2
2

2
s2 2 1∈ γ γ+ − = (23)

where Vr is the dimensionless runoff velocity and Vs1 and
Vs2 are the dimensionless seepage velocities in the highly
and weakly permeable soil layers, respectively; γ0, γ1, and
γ2 are the runoff–fast seepage interface, fast–slow seepage
interface, and slow seepage–impervious wall interface,
respectively.

By integrating Equations (21)–(23), the analytical solu-
tions of the dimensionless velocity profile are as follows:
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where X1, X2, X3, X4, X5, and X6 are undetermined
coefficients.

Substituting Equation (20) into Equations (24)–(26),
the dimensional analytical solutions of the runoff‐
seepage velocities are as follows:
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To obtain the expressions of the undetermined
coefficients X1–X6, the boundary conditions of the
present model for the runoff and seepage motion are as
follows:

1. At the interface between the weakly permeable soil layer
and the impervious bedrock wall (Y= γ2 =−(b1 + b2)/H),
the velocity does not slip:

V 0.s2 = (30)

2. At the interface between the weakly permeable
soil layer and the highly permeable soil layer
(Y = γ1 =−b1/H), the velocity and shear stress
remain continuous:

V V ,s2 s1= (31)

M
V
Y

M
V
Y

d
d

d
d

.2
s2

1
s1= (32)

3. At the slope surface (Y= 0), the velocity and shear
stress also remain continuous:

V V ,s1 r= (33)

M
V
Y

V
Y

d
d

d
d

0,1
s1 r− = (34)

4. At the runoff free surface (Y= γ0 = h/H), the runoff
velocity reaches its maximum values:

V
Y

d
d

0.r = (35)

Substituting dimensionless velocity expressions Equa-
tions (24)–(26) into Equations (30)–(35), the following
matrix equations can be obtained:

AX B,= (36)

where A is a 6 × 6 coefficient matrix; X is a column vector
of undetermined coefficients with six elements; and B is a
column vector with six elements.

(
( (

(

)
) )

)

A

X

M S M S M S M S

M S M S

X
X
X
X
X
X

M S

M S M S

M S

e e 0 0 0 0
e e e e 0 0

e e e e 0 0
0 0 1 1 0 1
0 0 1 0
0 0 0 0 1 0

,

,

1/

1/ 1/

0

1/

0

.

S S

S S S S

S S S S
2 2 2 2 1 1 1 1

1 1 1

1

2

3

4

5

6

2 2
2

1 1
2

2 2
2

1 1
2

0

2 2 2 2

2 1 2 1 1 1 1 1

2 1 2 1 1 1 1 1

Β

γ

=

− −
− −

−
− −

= =

−

−

−

γ γ

γ γ γ γ

γ γ γ γ

−

− −

− −

(37)

The expressions of X1–X6 can be solved using the
Gaussian elimination method:
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a a

M S S a

X
a a

M S S a

X
M S a

M S S a

X
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M S S a
X

X
a a

M S S a

e e

2

e e

2

2

4

2

4

,
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1
1 2

2 1 2
2

3

2
4 2

2 1 2
2

3

3
1 1

2
5

1 1
2

2 3

4
1 1

2
6

1 1
2

2 3

5 0

6
7 8

1 1
2

2 3

2 1 2 2

2 1 2 2











γ

=
− +

= −
+

= −
+

= −
+

= −

= −
+

γ γ

γ γ

− −

(38)

where a1–a8 are temporary variables.

a S M S S M S S[ cosh( ) sinh( )],1 1 2 2 1 1 1 1 1 1γ γ= + (39)

( )a M S S M S M S Ssinh( ),2 2 1 2
2

0 1 1
2

2 2
2

1 1γ γ= + − (40)

a M S S S S

M S S S S

cosh( )cosh( )

sinh( )sinh( ),
3 2 2 1 1 2 1 2 2

1 1 1 1 2 1 2 2

γ γ γ

γ γ γ

= −

− −
(41)

a S M S S M S S[ cosh( ) sinh( )],4 1 2 2 1 1 1 1 1 1γ γ= − (42)

(

(

)

)

a M S M S

S S M S M S

M S M S

S S M S M S

e e

( )

e e

( ) ,

S S S S

S S S S
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2 2
2

1 2 1 1 2 2 0

1 1
2

2 2
2

1 2 1 1 2 2 0

1 1 2 1 2 2 1 1

1 1 2 1 2 2 1 1



 





 




γ

γ

= − +

+ −

+ − +

− +

γ γ γ γ

γ γ γ γ

− − +

− + −

(43)

( )

( )
( )

a M S M S

S S M S M S

M S S

M S S
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e ( )

e 1 e

1 e ,

S S S S

S

S S S

S

6 1 1
2
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2

2
1 2 1 1 2 2 0

2 2
2

1 0

1 1
2

2 0 0

1 1 2 1 2 2 1 1

1 1

2 1 2 2 1 1

1 1



 





 




γ

γ

γ γ

= − +

+ −

+ +

− +

γ γ γ γ

γ

γ γ γ

γ

− − +

−

(44)

( )
a S S M S M S

S S S

cosh( )

1 cosh( ) sinh( ) ,

7 2 1 2 2 1 1
2

2 2
2

1 1 1 0 1 1



 




γ γ

γ γ γ

= − − +

− +
(45)

(
)

a M S S S S S

S S S

cosh( )

sinh( ) sinh( ) .

8 1 1 1 2 1 0 1 1

1 1 2 1 2 2



 




γ γ

γ γ γ

= + −

+ −
(46)

The porosity values of highly permeable soil layer n1
and weakly permeable soil layer n2 are set as 0.40 and 0.35,
respectively. The permeability of highly permeable soil
layer K1 is 3.57 × 10−8m2 and that of weakly permeable soil
layer K2 is 4.26 × 10−10m2. The height of the weakly/highly

permeable soil layers and the runoff depth are b2 = 0.5m,
b1 = 0.5m, and h= 0.01m, respectively. The slope ratio
Sr = 0.003; the fluid density is ρ= 1000 kg/m3; the gravity
acceleration is g= 9.81m/s2; and the fluid dynamic viscosity
is μf = 1.006 × 10−3 kg/(m·s). The velocity profiles under
various slopes, runoff depths, and permeabilities are
discussed.

The velocity profile of the present model under various
slopes is shown in Figure 2. The maximum velocity value
appears on the runoff surface. The greater the velocity
gradient, the closer the distance to the runoff surface; also,
the velocity value decreases sharply as the distance
approaches the soil and water interface. The velocity
profile in the highly permeable soil layer is similar to that
in the runoff region, while the velocity profile in the
weakly permeable soil layer is linearly distributed.
Generally, the model velocity increases with steeper
slopes, and the velocity in the runoff region is much
higher than that in the seepage region.

The runoff velocity increases as the runoff depth
increases (Figure 3a). This is because the increase in runoff
depth corresponds to an increase in fluid potential energy,
which is transformed into kinetic energy as the runoff
flows from high to low, leading to a continuous increase in
runoff velocity. Additionally, the seepage flow velocity
near the soil and water interface increases with an increase
in runoff depth (Figure 3b), which is attributed to the
viscosity of the fluid. In other words, a fast‐moving fluid
will drive a slow‐moving fluid. However, the seepage
velocity in the weakly permeable soil layer is almost
unaffected by varying the runoff depth (Figure 3c).

The model velocity distribution is shown in
Figure 4 when the permeability of the highly permeable
soil layer is different. With the increase in highly
permeable soil layer permeability, the runoff velocity
and seepage velocity in the weakly permeable soil layer
increase slightly, while the seepage velocity in the
highly permeable soil layer increases significantly. The
main reason for this is that the soil resistance to
particles decreases and the seepage velocity increases
when the soil permeability increases.

2.4 | Shear stress

The shear stress profile of the three regions for the
present model can be obtained by Newton's law of
internal friction (Equation (47)):

v
y

d
d

.fτ μ= (47)

By substituting Equations (27)–(29) into Equation (47),
the shear stress profile expressions can be shown as
follows:

( )X X g HS
y b b

e e sin ,
( [ , ]),

S y H S y H
s2 1

/
2

/
2

1

2 2

∈

τ ρ θ= −

− −

−
(48)

( )X X g HS
y b

e e sin ,
( ( , 0)),

S y H S y H
s1 3

/
4

/
11 1

∈

τ ρ θ= −

−

−
(49)
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y
H

X g H y hsin ( [0, ]).r 5 ∈


 


τ ρ θ= − + (50)

where τs2, τs1, and τr denote the shear stresses of seepage
in the weakly/highly permeable soil layers and runoff at
the surface, respectively.

The shear stress profile under various slopes is
shown in Figure 5. The shear stress is linearly
distributed in the runoff region and reaches its maxi-
mum value at the soil and water interface, indicating
that this is where particle scouring often occurs. The
shear stress profile undergoes a gradual linear‐to‐
nonlinear transition from the runoff region to the
highly permeable soil layer and then to the weakly
permeable soil layer. In the runoff and highly permeable

soil regions, the shear stress increases toward the
bottom. However, in the weakly permeable soil region,
the shear stress near the top and bottom interfaces is
high, while the shear stress in the central region of the
soil layer is low, indicating that the soil interface is often
the main area of seepage failure.

The shear stress profile under different runoff depths
is shown in Figure 6. The shear stress in the runoff region
shows a linear growth trend with the increase in runoff
water depth, and the shear stress on the water and soil
interface gradually increases (Figure 6a), implying that
the increase in runoff depth can intensify slope erosion.
In addition, the increase in runoff depth has a slight
effect on the shear stress distribution in the highly
permeable soil layer (Figure 6b), while it has almost no

FIGURE 2 Velocity profile under various slopes: (a) runoff flow; (b) seepage flow in the highly permeable soil layer; and (c) seepage flow in the
weakly permeable soil layer.

FIGURE 3 Velocity profile under various runoff depths: (a) runoff flow; (b) seepage flow in the highly permeable soil layer; and (c) seepage flow
in the weakly permeable soil layer.

FIGURE 4 Velocity profile under various permeabilities of the highly permeable soil layer: (a) runoff flow; (b) seepage flow in the highly
permeable soil layer; and (c) seepage flow in the weakly permeable soil layer.
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effect on the shear stress distribution in the weakly
permeable soil layer (Figure 6c).

The shear stress profile in the runoff region does not
change with increasing permeability of the highly permeable
soil layer (Figure 7a). With the increase in permeability for
the highly permeable soil layer, the shear stress within this
region gradually increases, and the closer it is to the region
bottom, the higher the shear stress value (Figure 7b).
Furthermore, an increase in K1 has a slight effect on the
shear stress distribution at the top of the weakly permeable
soil layer (Figure 7c).

3 | PARTICLE MOTION MODEL

From the previous analysis, it is known that the maximum
shear stress appears at the water‒soil interface, implying
that the particle in this interface is most likely to be
scoured. The force analysis of particles on the interface
between soil and water is shown in Figure 8. Choi and
Kwak (2001) noted that the incipient motion models of soil
particles under the runoff effect mainly include the sliding
model, the rolling model, and the lifting model. The
nonuniform particles on the slope surface are assumed to

FIGURE 5 Shear stress profile under various slopes: (a) runoff flow; (b) seepage flow in the highly permeable soil layer; and (c) seepage flow in
the weakly permeable soil layer.

FIGURE 6 Shear stress profile under various runoff depths: (a) runoff flow; (b) seepage flow in the highly permeable soil layer; and (c) seepage
flow in the weakly permeable soil layer.

FIGURE 7 Shear stress profile under various permeabilities of the highly permeable soil layer: (a) runoff flow; (b) seepage flow in the highly
permeable soil layer; and (c) seepage flow in the weakly permeable soil layer.
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be standard spherical particles. There are mainly two types
of particle instability at the interface, that is, the sliding
model (Figure 8b) and the rolling model (Figure 8c).

The particles on the slope surface are mainly subjected
to drag force FD, lift force FL, effective gravity FG,
support force FN, and friction force Ff under the action of
water flow, which are shown in Equations (51)–(55):

F C d v
1
8

,iD D
2

c
2ρ= π (51)

F C d v
1
8

,iL L
2

c
2ρ= π (52)

F d
1
6

( ) ,iG s w
3γ γ= π − (53)

F F F

d C d v

cos
1
6

( ) cos
1
8

,i i

N G L

s w
3

L
2

c
2

θ

γ γ θ ρ

= −

= π − − π
(54)

F F

d C d v

tan

1
6

( ) cos
1
8

tan ,i i

f N

s w
3

L
2

c
2









φ

γ γ θ ρ φ

=

= π − − π
(55)

where CD and CL are the drag force coefficient and the
lift force coefficient, respectively; CD=0.4 and CL= 0.2
(Kirchner et al., 1990; Wiberg & Smith, 1985); di is the
particle diameter; vc is the flow velocity at the particle center;
γs and γw are the unit weight of particle and the unit weight
of water, respectively; and φ is the internal friction angle.

The force balance equation of a single particle can be
expressed as follows when particle sliding instability
occurs in Figure 8b:

F F Fsin 0.D G fθ+ − = (56)

By substituting Equations (51)–(55) into Equation (56),
the critical velocity vcs of particle motion under the sliding
model can be calculated using Equation (57):

v
d

C C

4 ( )(cos tan sin )

3 ( tan )
.

i
cs

s w

D L

γ γ θ φ θ

ρ φ
=

− −

+
(57)

According to Equation (29), the runoff velocity
expression vrc at the sliding particle center on the slope
surface (y = di/2) is shown in Equation (58):

v d H
X

d H X g H
1
8

( / )
2

( / ) sin / .i irs
2 5

6
2

f







ρ θ μ= − + + (58)

The particle will slide when vrs > vcs. Therefore,
the particle sliding safety factor Ks can be defined as
follows:

K
v
v d H d H X g H( / ) ( / ) sin /

,

d G g
C C

i
X

i

s
cs

rs

4 ( 1)(cos tan sin )
3( tan )

1
8

2
2 6

2
f

i s

D L

5






ρ θ μ

= =
− + +

θ φ θ

φ

− −

+

(59)

where Gs is the particle‐specific gravity.
The moment balance equation of a single particle

at point O is as follows when particle rolling instability
occurs in Figure 8c:

F F l F l F l( cos ) sin 0.G L 1 D 2 L 3θ θ− − − = (60)

It can be inferred from geometric relations that
l d sin /2i1 α= , l d3 /4i2 = , l d cos /2i3 α= , where α denotes
the particle packing angle, which is in the range of 15°–40°
(Mitchell & Soga, 2005).

Substituting Equations (51)–(55) into Equation (60),
it can be concluded that

FIGURE 8 Particle incipient motion condition: (a) particle motion model; (b) force analysis of the sliding model; and (c) force analysis of the
rolling model.

d C d v d

C d v d C d v d

1
6
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1
8
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1
8

3 /4
1
8
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i i i

i i i i
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3
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2

c
2

D
2

c
2

L
2

c
2







γ γ ρ θ α

ρ ρ θ α

π − − π

− π − π =

(61)

The critical velocity vcr of the particle incipient motion
under the rolling model can be shown in Equation (62):
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C C

8 ( 1) sin

3[2 sin( ) 3 ]
.i

cr
s

L D

α

α θ
=

−

+ +
(62)

According to Equation (29), the runoff velocity
expression vrr at the rolling particle center on the slope
surface (y= 0) is shown in Equation (63):

v X g Hsin / .rr 6
2

fρ θ μ= (63)

The particle will roll when vrr > vcr. Therefore, the
particle rolling safety factor Kr can be defined as follows:

K
v
v X g Hsin /

.

g G d

C C
r

cr

rr

8 ( 1) sin

3[2 sin( ) 3 ]

6
2

f

is

L D

ρ θ μ
= =

α

α θ

−

+ + (64)

In fact, the particles on the slope surface are close to
each other. The rolling motion is almost always for
particle movement, while there are very few sliding
motions. Therefore, slope particle scouring focuses on
particle rolling. The slope particles are in a stable state,
and erosion will not occur when Kr > 1. The slope surface
soil particles are in a critical state when Kr = 1, while the
slope surface particles will lose stability and rolling
motion under the action of water flow.

4 | VALIDATION

To further validate the developed nonlinear mathemati-
cal models and mechanical equilibrium models, these
models are compared with existing models by setting
the properties of the two soil layers the same, as shown
in Figure 9. Figure 9a compares the vertical velocity
distribution of the models, where n1 = n2 = 0.35, K1 =
K2 = 6.12 × 10−10 m2, b1 = b2 = 0.005 m, h= 0.015m, and
Sr = 0.0002. The results of the current model are in good
agreement with the semianalytical solution model of
Hsieh and Yang (2013). Figure 9b compares the particle
mobilization safety factor of the models, where the basic
parameters are consistent with those of Liu et al. (2023).
The safety factor calculated by the current model is
identical to that of Ye et al. (2019), Yuan et al. (2019),

and Liu et al. (2023) (β= 0, which is the stress jumping
coefficient).

5 | ANALYSIS AND DISCUSSION

As shown in Equation (64), the particle rolling safety
factor Kr is mainly affected by the slope macroscopic
variables and particle mesoscopic parameters when the
tunnel‐slope surface particles undergo scouring. The
tunnel‐slope macroscopic parameters mainly include
runoff depth h, slope angle θ, and soil permeability of
the highly permeable region K1. The particle mesoscopic
parameters mainly include particle‐specific gravity Gs,
particle diameter di, and particle packing angle α. The
sensitivity analysis is conducted for the above 6 parame-
ters, whose ranges are listed in Table 1. Other parameters
are as follows: n2 = 0.35, K2 = 4.26 × 10−10 m2, and b1 =
b2 = 0.5 m.

Under the action of water scouring, the influence of
slope macroscopic parameters on the safety factor of
particle rolling was studied and is shown in Figure 10. As
the runoff depth increases, the rolling safety factor of
particles gradually decreases, and the particles transition
from a static state to a moving one (Figure 10a). The main
reason for this is that increasing the water depth of runoff
causes the shear stress of the slope surface to increase, and
the particles are more prone to rolling instability. The
rolling safety factor decreases with increasing slope angle
(Figure 10b), indicating that steeper slopes are more prone
to particle instability. Fu et al. (2011) and El Kateb et al.
(2013) have also reported similar conclusions. Increasing
the permeability of the highly permeable soil region
decreases the rolling safety factor (Figure 10c), as the
resistance of particles to water flow is negatively correlated
with permeability. This leads to an increase in the fluid
drag force on the surface particles, making particles
more prone to instability. Therefore, increasing slope
macroscopic parameters (runoff depth h, slope angle θ,
and permeability K1) can aggravate slope scoring erosion.

The influence of the particle mesoscopic parameters
on the particle rolling safety factor is shown in Figure 11.
The rolling safety factor of particles increases gradually

FIGURE 9 Model validation: (a) vertical velocity and (b) safety factor of particle motion.
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with increasing particle diameter on the slope surface
(Figure 11a), implying that the smaller the surface
particles, the more easily the particles are eroded. This
conclusion was reported by Li et al. (2019). The greater
the particle‐specific gravity, the greater the rolling safety
factor, and the stronger the scour resistance of the
surface particles (Figure 11b). With increasing particle
stacking angle, the rolling safety factor increases
(Figure 11c). The main reason for this is that the larger
the stacking angle of the particle, the greater the buried
depth of the particle, and the greater the binding force of
the surrounding particles on the target particle. Then, the
anti‐scouring ability of the target particle will thus be
stronger. Therefore, increasing the particle mesoscopic
parameters (particle diameter di, particle‐specific gravity
Gs, and particle packing angle α) is beneficial to soil and
water conservation of slopes.

Limitations and future work:

1. The highly/weakly soil layers are assumed to be
isotropic and homogeneous porous media. However,
in reality, the soil layers of tunnel slopes may be

anisotropic or heterogeneous, which could affect the
fluid flow and particle motion in the soil layers.
Future research could focus on investigation of the
effects of anisotropic and heterogeneous soil layers on
tunnel‐slope erosion and development of a more
realistic model that takes into account the anisotropy
and heterogeneity of the soil layers.

2. The seepage flow is assumed to be saturated
seepage. However, unsaturated seepage may also
occur in tunnel slopes and could have a significant
impact on the erosion process. Future research
could focus on the study of the effects of
unsaturated seepage on tunnel‐slope erosion and
development of a model that considers both
saturated and unsaturated seepage.

3. The runoff and seepage are assumed to be steady
laminar. However, in reality, the flow of water on
tunnel slopes may be turbulent, which could affect the
erosion process. Future research could focus on
investigation of the effects of turbulent flow on
tunnel‐slope erosion and development of a model
that considers both laminar and turbulent flow.

TABLE 1 Reference values of the parameters.

Slope macroscopic parameters Particle mesoscopic parameters

Basic value range h (10−3 m) θ (°) K1 (10
−7 m2) di (10

−3 m) Gs α (°)

Mean value 10 30 1.1 5 2.6 25

Parameter range 1–20 20–40 0.9–1.3 3–7 2.4–2.8 15–35

FIGURE 10 Influence of the slope macroscopic parameters on the particle state: (a) runoff depth h; (b) slope angle θ; and (c) permeability K1.

FIGURE 11 Influence of the particle mesoscopic parameters on the particle state: (a) particle diameter di; (b) particle‐specific gravity Gs; and
(c) particle packing angle α.
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6 | CONCLUSIONS

1. A nonlinear mathematical model was proposed to
investigate the velocity profile of the tunnel slope that
contains three parts, that is, runoff region, highly
permeable soil layer, and weakly permeable soil layer.
In the model, the Navier–Stokes equation was used to
govern runoff, while the Brinkman‐extended Darcy
equation was used to govern fast/slow seepage in the
highly/weakly permeable soil layer.

2. The expressions of the velocity profile and shear stress
were derived when the interface velocity and shear
stress are continuous. The analysis reveals that the
steeper the tunnel slope, the greater the velocity;
the overall velocity in the runoff region gradually
increases with increasing runoff depth, especially at
the runoff free surface; increasing permeability in the
highly permeable region only increases the velocity
and stress in that region; and the maximum shear
stress occurs at the water‒soil interface, followed by
the soil interface, and these interfaces are usually the
key areas for erosion.

3. A single‐particle mechanical equilibrium model was
established to study the particle motion on the tunnel‐
slope surface under coupling between flow and particle.
Safety factors of particle motion were derived based on
the sliding model and the rolling model. Parameter
sensitivity analysis shows that increasing runoff depth,
slope angle, and permeability can intensify slope‐
scoring erosion, whereas increasing particle diameter,
particle‐specific gravity, and particle packing angle can
enhance the erosion resistance of the slope surface.
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