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ABSTRACT This study introduces an innovative Temporal Action Detection (TAD) model that is
distinguished by its lightweight structure and capability for end-to-end training, delivering competitive
performance. Traditional TAD approaches often rely on pre-trained models for feature extraction,
compromising on end-to-end training for efficiency, yet encounter challenges due to misalignment with
tasks and data shifts. Our method addresses these challenges by processing untrimmed videos on a snippet
basis, facilitating a snippet-level TAD model that is trained end-to-end. Central to our approach is a novel
frame-level label, termed ‘‘action progressions,’’ designed to encode temporal localization information.
The prediction of action progressions not only enables our snippet-level model to incorporate temporal
information effectively but also introduces a granular temporal encoding for the evolution of actions,
enhancing the precision of detection. Beyond a streamlined pipeline, our model introduces several novel
capabilities: 1) It directly learns from raw videos, unlike prevalent TAD methods that depend on frozen,
pre-trained feature extraction models; 2) It is flexible for training with trimmed and untrimmed videos;
3) It is the first TAD model to avoid the detection of incomplete actions; and 4) It can accurately detect
long-lasting actions or those with clear evolutionary patterns. Utilizing these advantages, our model achieves
commendable performance on benchmark datasets, securing averagedmeanAverage Precision (mAP) scores
of 54.8%, 30.5%, and 78.7% on THUMOS14, ActivityNet-1.3, and DFMAD, respectively.

INDEX TERMS Action recognition, temporal action detection, video analysis.

I. INTRODUCTION
With the advancement of communication technology, video
has become the primary medium for consumer Internet traffic
and its proportion is continually increasing [1]. The rapid
growth of video content has led to a growing demand for
powerful AI techniques for automatic video understanding,
particularly human action recognition (HAR). The HAR
community has primarily focused on the task of action
classification, which aims to classify actions in videos that
have been trimmed to contain only action content [2], [3],
[4]. However, videos are usually unconstrained in practice,
containing a significant amount of temporal background
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content. Consequently, the temporal action detection (TAD)
task has drawn increasing attention. TAD requires detecting
actions from untrimmed videos in terms of both the categories
(classification) and the temporal boundaries (localization).
It’s challenging because an untrimmed video could contain
multiple action instances from different classes and substan-
tial temporal background, and the duration of actions varies
significantly.

Deep neural networks (DNN) are known to be powerful
feature learners [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15]. However, directly inputting a raw untrimmed video
into a DNN can result in an excessively large computation
and memory footprint for a single pass, potentially leading
to issues such as out-of-memory error. To overcome this
problem, some studies [16], [17], [18], [19] employ the
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FIGURE 1. Comparison of the proposed and conventional pipelines.
(a) The prevalent pipeline utilizes a video feature extraction model,
hindering the end-to-end training. (b) The conventional end-to-end TAD
pipelines detect actions in video segments independently, suffering from
a tension between detection precision and model complexity. (c) The
proposed pipeline adopts a lightweight and end-to-end trainable model
to solve the TAD problem.

intuitive ‘‘divide and conquer’’ paradigm to crop the lengthy
untrimmed videos into shorter video segments, and then
perform detection inside each video segments independently
and aggregate the results, as shown in Fig. 1(b). However, the
segmenting-based approach is merely a compromise that may
still face out-of-memory issues in extreme scenarios. More-
over, it presents a notable trade-off between computational
requirements and high-quality detection [20], [21].

Another prevalent strategy involves compressing untri-
mmed videos through pre-extraction of features [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34].
This kind of method typically employs an off-the-shelf video
feature extraction model, such as an I3D pre-trained on
Kinetics [35], across the temporal dimension of untrimmed
videos for spatial and short-term temporal feature extraction.
Subsequently, a TAD neural network is trained on these
extracted feature sequences for long-term temporal modeling,
as shown in Fig. 1(a). While this approach can mitigate some
computational challenges, its effectiveness heavily relies on
the quality of the feature extraction model. This reliance
limits the flexibility and detection accuracy, due to task
misalignment and discrepancy between the pre-training and
downstream datasets [36].
Departing from the two paradigms previously discussed,

our approach introduces a streamlined TAD framework that
processes untrimmed videos on a snippet-by-snippet basis,

effectively addressing the inherent complexity of untrimmed
videos, as shown in Fig. 1(c). This strategy enables us
to harness the benefits of both the segmenting-based
and feature pre-extraction methods, facilitating end-to-end
training within a lightweight model framework. Noteworthy,
several existing TAD techniques [23], [37], [38] employ the
snippet-wise classification scores to locate actions. However,
these detection results typically serve as preliminary temporal
action proposals due to their lack of comprehensive temporal
modeling.

To facilitate the learning of temporal information in a
snippet-level TAD model, we introduce the action pro-
gressions as a snippet-level concept that encodes temporal
context information into video snippets. Action progression
indicates the progression of an action, enabling a gran-
ular understanding of action evolution over time. Action
progressions could not only enhance temporal modeling
for our snippet-level TAD model but also offer a detailed,
continuous encoding of action stages, in contrast to the
discrete, three-stage approach typically found in boundary-
regression methods [27], [28], [30], [33]. This continu-
ous and fine-grained representation allows for accurate
action localization, leveraging the demonstrated effectiveness
of encoding action evolution patterns [39], [40], [41].
By adopting action progressions, our model addresses the
limitations of previous methods, providing a lightweight
end-to-end TAD model for high-precision temporal action
detection.

Leveraging the concept of action progressions, we devel-
oped the Action Progression Networks (APN), a tailored,
snippet-level model that is end-to-end trainable. Fig. 2
illustrates the proposed framework and demonstrates how an
APN addresses the TAD problem. Initially, each action frame
is assigned a progression label based on its chronological
position within the action, as depicted in Fig. 2(a). An APN is
then trained to predict the action frame’s action progression
and category label, as shown in Fig. 2(b). For inference,
the framework effectively pinpoints temporal boundaries
by identifying action progression sequences that linearly
escalate from 0% to 100%, illustrated in Fig. 2(c). Regarding
classification, the framework simply averages the predicted
class scores across frames within the detected action
boundaries.

The detection precision of our framework is intrinsically
linked to the precision in predicting the action progressions.
To enhance the APN’s precision, we employ two key tech-
niques. First, we treat the prediction of action progressions
as an ordinal regression problem [42], evaluating several
advancedmethods for this purpose. Among these, we identify
the threshold model [43] as the superior encoding scheme,
primarily because it accommodates the diverse spatial and
temporal patterns of actions. Second, we preprocess each
input frame into a ‘‘local video clip’’, refer to Fig. 2(b),
encompassing the target frame and its immediate neighbors.
This adjustment allows for short-term temporal modeling,
significantly reducing prediction errors. These strategic
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FIGURE 2. Overview of our framework. (a) Action progression labels (in %) are first generated for each action frame, based on the relative temporal
location of the frames within the action. (b) An artificial neural network, dubbed action progression network, is then trained to predict the action
progressions and categories from action frames. Each action frame is extended to include its neighboring frames before being fed to the model. (c) Using
the trained APN, we predict the action progression sequence and classification score matrix of a test video. A profile-matching algorithm is then applied
to the predictions to detect the temporal action boundaries and classification scores. OR: Ordinal Regression. CE: Cross Entropy.

improvements, as evidenced in our results in Table 2 and
Table 3, collectively contribute to reduced action progression
prediction error and heightened detection precision.

Our evaluation of the APN span three datasets, including
THUMOS14 [44], ActivityNet-1.3 [45], and the newly
introduced DFMAD.1 The APN demonstrates competitive
performance on three datasets. For example, it achieves
competitive accuracy (54.8% vs. 59.6% on THUMOS14)
with ten times less GPU memory consumption than Plus-
TAD [46], the leading end-to-end trainable TAD model.
The performance of APN on DFMAD was notably superior,
outpacing all existing TAD models in terms of both detection
accuracy and computational efficiency. Specifically, a variant
of APN attains an mAP of 85.7% at 6277 FPS, markedly
outperforming the ActionFormer [34], which achieves an
mAP of 84.0% at 198 FPS. It is noteworthy that the
comparison between the APN and other TAD models cannot
be exactly fair as the APN is trained with action frames only,
which could be categorized as weak supervision according
to [47]. Moreover, APN’s distinct ability to eschew the
detection of incomplete actions, see Fig. 6, represents a
novel contribution to temporal action detection, marking it
as potentially the first model to exhibit this capability.

Overall, we propose quantifying action evolution for tem-
poral action detection and make three contributions: (1) We
introduce action progressions as a novel supervision signal,
enabling the snippet-level TAD model to learn temporal
information and precisely encode action evolution. (2) We
design an effective yet straightforward TAD framework
characterized by its lightweight structure and capability for
end-to-end training exclusively on action frames. (3) The

1Code will be available at https://github.com/makecent/mmtad

proposed framework demonstrates outstanding performance
in detecting actions of long duration or with discernible
evolution patterns. (4) To the best of our knowledge, the
proposed framework is the first TAD method that could
explicitly avoid detecting incomplete actions.

II. RELATED WORK
A. TEMPORAL ACTION DETECTION
Temporal action detection (TAD) is a meaningful yet
challenging task. To avoid the extensive cost of annotations,
some approaches [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61], [62] tackle this
task in a weakly supervised manner by leveraging easily
available labels (such as video-level categorical labels).
Although weakly supervised methods reduce the burden of
labeling temporal annotations, their detection performance
is not satisfactory. On the other hand, fully supervised TAD
has higher interpretability and performance but requires
annotations of both the temporal boundaries and categories
of actions in untrimmed videos. Our work, utilizing action-
content-only supervision, aligns with the weakly supervised
category as discussed by [47]. Nonetheless, we position our
approach within the fully supervised domain, emphasizing
the necessity for manual annotations of temporal action
boundaries. Despite this, our method leverages the benefits
of action-content-only supervision: it allows for training on
extensive trimmed video datasets [47], [63] and facilitates
adaptation to unseen temporal backgrounds compared with
models that were biased by the temporal background in the
training dataset.

From the perspective of pipeline structures, existing TAD
methods commonly adopt multi-stage designs. One prevalent
approach, referred to as feature pre-extraction [36], involves
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leveraging off-the-shelf video feature extraction models,
such as sliding a pre-trained I3D model across the video’s
temporal axis to transform the untrimmed videos into feature
sequences that are more complexity manageable. [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. Further, stages such as temporal proposal genera-
tion [28], action classification [50], and refinement [64]
often function as separate components, leading to diverse
multi-stage configurations. Though multi-stage designs have
their benefits, they can also introduce complexity into the
detection workflow and potentially limit precision. Notably,
multi-stage TAD models often lack end-to-end training
capabilities, involving multiple independently trained DNNs,
which may impede the learning of robust representations.
For instance, TAD models relying on feature pre-extraction
could face substantial performance limitations when there are
pronounced domain shifts between the pre-training and target
TAD datasets. In contrast, the proposed APN is trained end-
to-end, similar to [26], [46], [65], [66], and [67] but using a
snippet-wise processing strategy to enable a lightweight TAD
model whose complexity is video duration-invariant.

From the perspective of encoding action boundaries, TAD
models often draw inspiration from the object detection
frameworks, employing anchor-based, anchor-free, or query-
based mechanisms. These approaches aim to identify
temporal action boundaries by predicting offsets to a
predefined set of 1-D anchors (for anchor-based [24], [25],
[26], [31], [65], [68], [69], [70], [71], [72] and query-
based [67], [73], [74], [75], [76], [77], [78] methods) or
points (for anchor-free methods, e.g., [34], [79], [80]). Their
effectiveness largely hinges on the initial reference objects’
quality, demanding prior knowledge of action distributions in
videos. In contrast, bottom-up approaches determine action
boundaries through snippet-wise characteristics. A naive
bottom-up strategy would be applying a grouping algorithm
on snippet-wise classification scores [23], [37], [66], which
lacks temporal modeling. Thus, boundary-regression meth-
ods [27], [28], [30], [33], [71] opt to predict boundaries
scores alongside classification scores, offering fine-grained,
snippet-level localization through dense prediction [66],
and demonstrating competitive outcomes. The APN intro-
duces a novel bottom-up TAD approach by (a) introduc-
ing the action progression as snippet-level characteristics,
(b) predicting snippet-wise characteristics independently,
and (c) deliberately avoiding learning from temporal
backgrounds.

B. ACTION PROGRESSION
The ‘‘action progression’’ or similar concepts have been
discussed in previous work [39], [40], [81], [82], [83],
[84], [85], [86], [87]. We would like to claim that ‘‘action
progression’’ is not a strictly defined terminology [82] and
our usage significantly diverges from others. The most
related work would be LAP-Net [41], LSTM-TAD [39],
and PR-RNN [40], all of which leverage action progres-
sion prediction for detection purpose. LAP-Net utilizes

action progressions to determine the sampling range of
future features for online action detection, LSTM-TAD
implicitly encodes them as non-decreasing detection scores
for regularization, and PR-RNN treats them as auxiliary
clues for linking action boxes. In contrast, our framework
uses explicitly encoded action progressions as the primary
clue for temporal action localization through a specialized
profile-matching algorithm. Moreover, while the cited works
rely on long-term temporal memory, our APN uniquely
forecasts action progressions for each snippet independently,
facilitating an efficient snippet-level TAD model.

C. ORDINAL REGRESSION
In our framework, predicting action progressions from video
frames is framed as an ordinal regression problem. A good
survey about ordinal regression methods can be found in [42].
According to the proposed taxonomy in [42], there are five
main ordinal regression methods. Among them, three are
naive methods: regression, nominal classification, and cost-
sensitive classification, and two are advanced methods –
ordinal binary decomposition and threshold models. We have
investigated all of these methods for the APN. The regression
and nominal classification are implemented by ourselves,
whereas the others are implemented with references to
the existing work. In particular, we implement ordinal
binary decomposition by referring to [88], cost-sensitive
classification by referring to [89], and threshold models by
referring to [43].
This paper extends our previous work [90] in several

aspects. First, we use a stack of adjacent frames instead
of a single frame as input to the APN, which improves
the accuracy of action progression prediction. Second, we
employ a single model for all action classes rather than
training one model for each class. Third, We utilize more
advanced loss functions and neural network designs. Fourth,
we conduct a more extensive range of experiments and
analyses, such as evaluating the APN on the THUMOS14
dataset to demonstrate its superior performance.

III. ACTION PROGRESSION NETWORKS
In this work, a neural network is trained to tackle a pretext
task – predicting the action evolution process in videos, rather
than detect actions in untrimmed videos directly. The action
localization is accomplished then by analyzing the patterns
of the predicted action evolution with a simple algorithm.
Since the algorithm is independent of the neural networks, its
description is left to Section IV. This section describes how
we train a network to recognize the action evolution in videos.
Specifically, we first explain how the action progressions are
quantitatively encoded as frame-level regression labels for
action evolution. After that, we present the architecture of the
network that predicts action progressions and categories from
action frames, i.e., the APN. Finally, we give the details of
five ordinal regression methods that have been investigated
for encoding the action progressions.
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A. ACTION PROGRESSIONS IN VIDEOS
To encode a complete action evolution process into
fine-grained stages and take their ordering into account,
we quantify a complete temporal action process on a numer-
ical scale. As shown in Fig. 2(a), we label each time point
in the action with a real number in the range 0% to 100%.
We call these regressive characteristics of action evolution as
action progressions. The ground truths of action progressions
can be derived without extra human labor on the annotation.
Specifically, we derive the action progression label for every
action frame based on their relative chronological positions
in the action instance, which can be easily determined based
on the original TAD annotations.

Formally, given an action instance comprising l frames
A = {f1, f2, . . . , fl}, we assign every frame fτ with an action
progression label pτ using the following formula:

pτ =

⌊
K

τ

l

⌉
, (1)

where ⌊·⌉ denotes the rounding-to-the-nearest integer, and
K is a constant controlling the number of ranks used to
dissect the action evolution. We observed an improvement
in detection performance with a larger K . However, the
gains diminish after surpassing a certain optimal point,
as illustrated in Fig. 4. We set K to 100 by default, resulting
in 101 action progressions, namely 0%, 1%, . . . , 100%. Par-
titioning an action instance into 100 intervals is sufficiently
fine for capturing most of the temporal structures of actions.
As only action frames have action progression labels, the
temporal backgrounds in the untrimmed videos are ignored
during training.

Noteworthy, for the action progression derived by Eq. (1)
to be reasonable and informative, some conditions must be
met. That is, the action should have an exact, rich, and
non-repetitive evolution pattern, which we call progressive
actions. In other words, our method is not suitable for
detecting non-progressive actions, e.g., the indeterminate
actions like painting, the ephemeral actions like hugging, and
the repetitive actions likewalking. The reward is that ourwork
can detect progressive actions precisely, as we will see in
Fig. 5.

B. NEURAL NETWORK ARCHITECTURE
We train a DNN named APN to predict the action progres-
sions and categories from video frames. Overall, an APN
takes as input a short-term video snippet, which could be as
short as a single video frame, and outputs a predicted action
progression and a vector of predicted classification scores,
as shown in Fig. 2(b).

1) INPUT
Although the APN aims to predict action progressions of
each frame, the prediction will be more accurate if the APN
receives contextual frames (instead of a single frame) as
input. Formally, the input volume Iτ of a frame fτ ∈ RD×W×H

at time τ is constructed as follows:

Iτ = {fτ−(l−1)d , . . . , fτ−d , fτ , fτ+d , . . . , fτ+ld }, (2)

where d is the temporal stride (in frames) between the
adjacent frames of the L = 2l frames contained in the
volume, andD,W , andH are the dimensions of the channels,
width, and height of the videos, respectively. We observed
that increasing the duration (L) and resolution (d) of the input
context window always benefits the detection precision for all
action types. However, setting them larger than their sweet
spots cannot improve the detection precision further. Also,
the ‘‘sweet spots’’ of different actions vary. We notice two
simple rules: (1) for long actions, a long context window (L)
is required; (2) for actions with complex temporal patterns,
a high temporal resolution is required (smaller d). We find
that L = 32 and d = 4 are suitable for almost all types of
actions in the three datasets, as wewill discuss in SectionV-C.

2) BACKBONE
We study the I3D [35] and the ResNet-50 [11] as the APN
backbone to extract features. The ResNet-50 is used when
the input is a single 2-D image, i.e., Iτ = fτ ; otherwise the
I3D is used. The output features of the I3D and the ResNet-
50 backbone after average pooling are of size 1024 and 2048,
respectively.

It is worth noting that the choice of backbones for the
APN is flexible. Thus, it is possible to incorporate the APN
with any other advanced models that are good at capturing
video dynamics, e.g., we find that using SlowFast [91] and
TimeSformer [92] as the backbone of APN result in higher
detection precision than I3D. Here, we only investigate the
commonly used backbones because our innovation lies in the
workflow rather than the network architecture.

3) SIBLING HEADS
The APN has two heads, the classification head and the
localization head, referring to as Cls and Loc heads in
Fig. 2(b). The classification head is a fully connected
layer outputting the classification scores trained with cross-
entropy loss. The localization head is designed to output the
action progressions. We investigated five different ordinal
regression methods for encoding the action progressions,
resulting in five types of localization heads. The details of
them are described in Section III-C. Formally, the sibling
heads output the predicted classification scores, ŝ ∈ RC

∩

(0, 1), and a predicted action progression p̂ ∈ R ∩ [0,K ],
where C and K are the number and action classes and
progression ranks, respectively.

C. ORDINAL REGRESSION HEADS
The action progressions are represented as a number of
ordered ranks, as derived by Eq. (1), for a fine-grained
encoding of the action evolution. An intuitive scheme would
be taking the prediction of action progressions as a regression
problem. Despite the simplicity of the regression encoding,
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it may offer a sub-optimal performance [42], [43], [88], [89],
[93] as the regression values set a fixed and equal distance
between the adjacent progression ranks. The regression
encoding couldworkwell on simple and short-lasting actions,
e.g., themodelmay somehow connect the progressions values
with the height of the barbell for action ‘‘Clean and Jerk’’,
see e.g., Fig. 2 (a). However, it could encounter issues
when comes to complex activities that consist of multiple
distinct phrases, known as the non-stationary problem [88].
For example, the action ‘‘High Jump’’ has a ‘‘run-jump-
land’’ temporal procedure. Thus it evolves in terms of
different characteristics at different phases, which could not
be well-represented by a homogeneous linear regression
range.

Since the prediction precision of action progressions sig-
nificantly affects the proposed APN’s detection performance,
to find a proper setting, we investigate five representative
ordinal regression methods for encoding action progressions
and building the localization head of APN, including regres-
sion, nominal classification, binary decomposition [88], cost-
sensitive classification [89], and the threshold model [43].
In the following, we suppose that an action frame fτ with the
ground truth action progression label p ∈ Z ∩ [0,K ] is input
to the APN.

1) REGRESSION
The regression head is an intuitive baseline that outputs an
action progression without encoding except for a normaliza-
tion operation. The mean absolute error is used for computing
the regression loss:

Lreg(o, p) =

∣∣∣G(o) −
p
K

∣∣∣ , (3)

where o ∈ R is the head’s output and G is a clamp
function that normalizes the output value to the range [0, 1].
During inferencing, the predicted rank p̂ is decoded from the
inference output ô based on the following formula:

p̂reg = KG(ô). (4)

2) NOMINAL CLASSIFICATION
Strictly speaking, nominal classification is not an ordinal
regression method because it ignores the continuity between
the ranks. We put it here as another baseline for consistency.
The head simply predicts the action progression as solving
a classification problem. Because there are K + 1 ranks, the
output of this head is a vector, o ∈ RK+1. The widely used
classification loss, cross-entropy (CE), is adopted:

Lncl(o, p) = − log(softmax(o)p) = − log
exp (op)∑K
j=0 exp (oj)

.

(5)

As for inference, instead of using the conventional arg-
max function, we compute the expected values to decode the

prediction result from the head’s outputs:

p̂ncl =

K∑
j=0

j× softmax(ô)j. (6)

Although the nominal classification head does not have
the non-stationary problem, it ignores the rank order. For
example, the classification losses of predicting rank-1 as
rank-2 and predicting rank-1 as rank-99 have the same
magnitude, which is not desirable.

3) COST-SENSITIVE CLASSIFICATION
This head shares the same output format and inference
formula as the nominal classification head, i.e., o ∈ RK+1,
Eq. (6). The difference is that it computes loss with soft
labels, instead of the one-hot labels, to encode the ordinal
relationship among adjacent classes. In our experiment,
we used the following formula to convert the original
regression label p to its soft label q ∈ RK+1:

q = [qj]Kj=0,where qj =
exp(−

√
|j− p|)∑K

k=0 exp(−
√

|k − p|)
. (7)

The above equation Eq. (7) assigns lower probabilities to
ranks as the distance between them to the target rank
increases. Following [89], we used the Kullback–Leibler
divergence to compute the loss of an output o when the soft
label is q:

Lcst(o, q) =

K∑
j=0

qj log
qj

softmax(o)j
. (8)

The derivation of soft labels is tricky and hard to determine
without prior knowledge of the datasets. In other words, using
a simple and unified formula Eq. (7) to encode the ordering
among action progressions is not optimal.

4) BINARY DECOMPOSITION
This head decomposes the ordinal regression problem into
multiple binary classification problems – ‘‘Is the progression
p greater than j?’’, where j takes value from all possible
ranks [0, 1, . . . ,K ]. Concretely, the output of the binary
decomposition head is o ∈ RK×2. The CE loss on each binary
classifier is computed, and their mean is taken as the final
loss:

Lbdc(o, p) = −

K∑
j=1

Jp ≥ j KF(oj)1 + Jp < jKF(oj)2, (9)

where the subscripts 1 and 2 are the indexes on the nodes of
each binary classifier. J·K is a Boolean test, which is equal
to 1 if the inner condition is true, and 0 otherwise. F is the
log-softmax activation function. The inference formula is:

p̂bdc =

K∑
j=1

Jsoftmax(ôj)1 ≥ 0.5K. (10)
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Binary decomposition converts a regression problem into
a series of binary classification sub-problems. This design
can help alleviate the non-stationary problem. However, the
decomposition head does not have any limit on the outputs of
different ranks, resulting in the inconsistency problem [43].
For example, it may answer Yes to the sub-problem ‘‘Is
p̂ ≥ 20?’’, and meanwhile answer No to the sub-problem ‘‘Is
p̂ ≥ 10?’’.

5) THRESHOLD MODEL
This head is created by simply adding K learnable bias terms
to the conventional regression head. Each biased result is
then transformed, by a sigmoid function, to the probability
of one binary classification problem (just like the binary
decomposition). Notably, unlike binary decomposition, the
threshold model performs binary classification by simply
outputting the probability of Yes to the question ‘‘Is p̂ ≥

rank j?’’. In this way, the binary cross-entropy (BCE) (rather
than CE) is applied to each element of the output o ∈ RK to
compute the loss:

Lthr(o, p)=−

K∑
j=1

Jp ≥ jK logA(oj)+Jp < jK log(1−A(oj)),

(11)

where J·K is the Boolean test and A is the sigmoid activation
function. The inference formula is:

p̂thr =

K∑
j=1

JA(ôj) ≥ 0.5K. (12)

The threshold modeling uses different thresholds (bias
terms) to encode different degrees of dissimilarity between
the samples of successive ranks, thus helping to solve the
non-stationary problem. Besides, the threshold model can
naturally learn bias that decreases monotonically from lower
ranks to higher ranks, solving the inconsistency problem
mentioned in the binary decomposition head.

IV. TEMPORAL ACTION DETECTION WITH APN
With the APN framework, the action progressions of video
frames can be learned and predicted. However, there remains
the question of how to use the predicted action progressions to
derive the temporal boundaries of actions in the videos. In this
section, we describe how to apply a trained APN for temporal
action detection. An overview of the detection workflow is
displayed in Fig. 2(c).

First, given an untrimmed test video with T frames,
we present the frames to the trained APN sequentially to
predict a sequence of action progressions p̂ ∈ RT and a class
score matrix Ŝ ∈ RC×T :

p̂ =
[
p̂1 p̂2 . . . p̂τ . . . p̂T

]
∈ RT ,

Ŝ =
[
ŝ1 ŝ2 . . . ŝτ . . . ŝT

]
∈ RC×T , (13)

where C is the number of action classes, p̂τ ∈ R∩ [0,K ] and
ŝτ ∈ RC

∩(0, 1) are the predicted action progression and class

scores of the τ -th frame, respectively. After that, we applied a
profile-matching algorithm to the progression sequence p̂ and
class score matrix Ŝ.

According to the definition of action progression, if a sub-
sequence in the predicted progression sequence p̂ close to an
arithmetic sequence starting with 0 and ending with K , it is
likely to cover an action instance. Algorithm 1 is designed
based on this principle.

Algorithm 1 Action Detection on Progression Sequence
Input:
Predicted action progression sequence: p̂ ∈ RT ;
Predicted classification scores: Ŝ ∈ RC×T ;
Parameters:
Minimum action length: Tlen
Maximum progression value for start frame: Pstart
Minimum progression value for end frame: Pend
Minimum IoU threshold in NMS: ηIoU
Initialization:
Number of frames: T
Number of action classes: C
Detected actions: 9 = {91 = ∅, . . . , 9C = ∅}

starts = {τ | p̂τ < Pstart }
ends = {τ | p̂τ > Pend }
1: for start in starts do
2: for end in ends do
3: actionLen = end − start + 1
4: if actionLen > Tlen then
5: candidate =

[
p̂τ

]end
τ=start

6: oracle = [Kτ/actionLen]actionLenτ=0
7: loc_score = E(candidate, oracle)
8: if loc_score > 0 then
9: cls_scores =

∑end
i=start ŝi/actionLen

10: for j in {1, 2, . . . ,C} do
11: cls_score = cls_scoresj
12: confidence = loc_score × cls_score
13: 9i ∪ {(start, end, confidence)}
14: for i in {1, 2, . . . ,C} do
15: 9j = NMS(9j, ηIoU )
Output:
Detected actions: 9

In Algorithm 1, NMS stands for the non-maximum-
suppression [94], which is used to reduce redundant detec-
tions; E(·) reflects the similarity between two profiles of the
same length, and it is used for evaluating the localization
scores (confidences). In practice, we compute E(·) based on
the Euclidean distance as follow:

E(v1, v2) = 1 −
MSE(v1, v2)
1666.66

, (14)

where 1666.66 is the mean square error (MSE) of random
pairs when K = 100 (See Appendix). 9j stands for the
detected results of action class j, which consists of tuples
(start, end, confidence) representing one detected action

VOLUME 12, 2024 126835



C.-K. Lu et al.: Action Progression Networks for Temporal Action Detection in Videos

instance in terms of starting time, ending time, and the
confidence score, respectively.

The current version of APN does not have a pre-processing
step to filter out or ignore non-progressive actions. It simply
takes all types of actions as progressive, and therefore, it may
produce incorrect detections for non-progressive actions.
However, for videos containing mainly progressive actions,
such as the video in the DFMAD dataset, the APN can detect
progressive actions precisely and quickly, as demonstrated
in Table 6. In short, we recommend using APNs to detect
progressive actions.

V. EXPERIMENTS
In this section, we first introduce the datasets utilized for
evaluation and the metrics used to assess performance.
Following this, we detail the implementation specifics.
Subsequently, we present an empirical analysis of the APN’s
performance, including comparisons with state-of-the-art
methods, and conclude with visualizations of detection
outcomes.

A. DATASETS AND PERFORMANCE METRICS
1) DATASETS
THUMOS14 serves as a benchmark dataset for tem-
poral action detection (TAD), featuring videos across
20 human action classes against temporal backgrounds. The
dataset is comprised of 2,756 trimmed videos for training,
200 untrimmed videos for validation, and 212 untrimmed
videos for testing, totaling 2,756, 3,007, and 3,358 anno-
tated action instances across the training, validation, and
test splits, respectively. Unlike conventional TAD meth-
ods, which are typically trained only on the validation
split due to their dependency on learning temporal back-
grounds, our APN utilizes action frames exclusively. This
enables the use of both training and validation splits for
model training, leveraging the comprehensive annotations
available.

ActivityNet-1.3 consists of 10,024 training videos (15,410
instances) and 4,926 validation videos (7,654 instances),
spanning over 200 action classes. In contrast to THUMOS14,
ActivityNet-1.3 often features videos with a single, exten-
sively annotated action instance, presenting a different set of
challenges for TAD.

DFMAD is a part of the DCD dataset [95] aimed at
children behavior research. It includes 63 untrimmed, long-
duration videos from a first-person perspective. Of these,
50 videos are designated for training and 13 for testing.
Each video encompasses eight complete (4+2+2) and five
incomplete (2+2+1) action instances across three action
classes. DFMAD is characterized by (1) precise annotations,
exclusively marking complete action instances, distinguish-
ing it from the more common practice in THUMOS14 and
ActivityNet of annotating incomplete actions or sequences
of multiple action instances, and (2) the extended duration
of both videos and actions, averaging 676 seconds and
31 seconds, respectively. These features make DFMAD

particularly suited for evaluating the efficacy of TAD
methodologies in complex, research scenarios.

In Fig. 3, sample images from the three datasets are
shown. It is evident that the videos have significant variety in
terms of camera settings and content, making temporal action
detection challenging.

2) METRICS
The evaluation of the APN framework’s performance lever-
ages several key metrics, detailed as follows:

Mean Absolute Error (MAE): is employed to assess
the APN’s accuracy in predicting action progressions. The
MAE values are normalized to a [0, 100] range to ensure
consistency with the action progression labels’ scale. For
instance, if the progression labels are divided into K =

50 categories, as specified in Eq. (1), the MAE is then
scaled by a factor of 2. The normalization facilitates direct
comparison and the baseline MAE is 25% of random
predictions.

Top-1 Accuracy (Acc.) is used to measure the classifica-
tion efficacy of the APN when the localization is correct.
This measure provides insight into the APN’s capability
to correctly classify action instances within the detected
temporal boundaries.

Mean Average Precision (mAP) is used to gauge
the overarching performance of temporal action detection,
incorporating both the aspects of correct classification and
precise localization. mAP under different thresholds of the
intersection of union (IoU) and their mean are measured
and denoted asmAP@IoU andAvg., respectively. Following
the common practice, the IoU thresholds [0.3:0.1:0.9] are
used for THUMOS14, [0.5:0.05:0.9] for ActivityNet-1.3, and
[0.5:0.1:0.9] for DFMAD.

B. IMPLEMENTATION DETAILS
Because one of the innovations of this work is attributed to
the novel TAD pipeline, we intentionally make a concise and
essential framework with few hyper-parameters to tune.
Procedures. In each training iteration, an action frame is

selected randomly as input to the APN, which then predicted
the frame’s action progression and category. For inference,
1,000 frames are uniformly sampled from the test video and
handled by the trained APN in sequence, and the resulting
predictions are processed by Algorithm 1 to determine the
final action detections.
Pre-processing. Data augmentation techniques are not

adopted. The input images are simply resized to a fixed
resolution of 224 × 224 via interpolation. To incorporate
more temporal information, each input frame to the APN is
extended to cover its neighboring L×d frames. The boundary
frames are repeated when L × d was beyond the temporal
range of actions.
Pre-training. Parameters of the I3D and ResNet50 back-

bones are initialized using weights pre-trained on Kinetics-
400 [35] and ImageNet [14], respectively, facilitating a robust
feature extraction foundation.
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FIGURE 3. Some randomly sampled images of THUMOS14, AcitivyNet-1.3, and DFMAD.

Two-streams. The APN is trained separately on RGB
images and TVL1 optical flow data [96], [97], implementing
a late fusion strategy to average classification scores and
action progression predictions from both streams.
Optimization.Network parameters are optimized using the

Adam optimizer [98] and a simple learning rate schedule is
adopted: A fixed learning rate 1e-4 for training the APN of
10 epochs.
Profile-matching. In Algorithm 1, Pstart and Pend were

set to 20 and 80, respectively, and ηIoU was set at 0.4.
Tlen was configured to 60 frames for THUMOS14 and
ActivityNet-1.3, and 600 frames for DFMAD, according to
the distribution of action lengths.

All hyper-parameters are determined by conducting a
grid search on a separate validation set for each dataset
individually. We find that the optimal hyper-parameters for
different datasets are similar, with the exception of Tlen.

C. STUDY ON ACTION PROGRESSION NETWORKS
We carried out a series of experiments to identify an optimal
configuration for the APN, validate the efficacy of our
proposed techniques, and gain deeper insights into temporal
action detection.

1) IMPACT OF END-TO-END TRAINING
We investigated the influence of end-to-end training. The
outcomes, detailed in Table 1, reveal that fine-tuning the

TABLE 1. Impact of end-to-end training. FT: Fine-tuning the backbone,
which is initialized with the weights pre-trained on Kinetics400.

backbone initialized with weights from prior training signif-
icantly enhances detection capabilities across all evaluated
methods. Besides, the improved performance when trained
with additional trimmed videos validates the APN’s unique
advantage of being trainable on trimmed videos. This
distinction also highlights the potential for further improving
the APN by training on large-scale action classification
datasets [99], [100].

2) COMPARISON OF ORDINAL REGRESSION METHODS
Five ordinal regression methods for encoding action progres-
sions were investigated, refer to Section III-C for details,
and the experimental results are summarized in Table 2.
We see that (1) The detection performance (mAP) is sensitive
to the precision of action progression prediction (MAE).
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TABLE 2. Comparison of ordinal regression methods (Section III-C) for
APN on the THUMOS14 Dataset.

FIGURE 4. The mean Average Precision (mAP) on THUMOS14 against the
number of ranks (K ) in the action progressions using the threshold model
as the regression method. Left: Increasing the number of ranks results in
higher mAPs, and encoding with the ordinal regression outperforms the
nominal classification. Right: The longer duration of the input (L × d in
the legend) the better the performance. The mAP drops as the number of
ranks rises to a certain value, which increases with the duration of the
input.

(2) All methods outperform the nominal classification,
demonstrating the importance of ordered encoding for
action evolution phases. (3) The threshold model encoding
achieved the best detection precision, and outperformed
the naive regression by 1.9% (40.8% vs 38.9%). Since
similar experimental results were obtained with ActivityNet-
1.3 and DFMAD, the threshold model is concluded to be a
reliable choice and was therefore used by default in other
experiments.

3) IMPACT OF THE NUMBER OF RANKS
In addition to considering the order of evolution stages,
another distinct characteristic of action progressions is that
they are obtained by dissecting the action evolution into many
stages, in contrast to the three stages used in the conventional
approaches. We investigated the impact of the number of
ranks, i.e., the value of K in Eq. (1). The experimental
results are summarized in Fig. 4. We found that increasing
the number ranks for the action progressions leads to
higher mAP on temporal action detection. This result further
validates the effectiveness of the proposed action progres-
sions. Because of the diminishing return from increasing
K , we set 100 as the default value of K in the subsequent
experiments.

TABLE 3. Impact of the temporal context of the APN’s input on
performance. L: Number of frames. d : Stride. Loc: Localization. Cls:
Classification.

4) IMPACT OF TEMPORAL CONTEXT OF THE INPUT
We tested the APNs at different temporal durations and
resolutions. Specifically, we investigated various settings of
the number of frames and strides (L and d in Eq. (2)) for
the APNs’ input. The experimental results are summarized
in Table 3. We have several observations: (1) Comparing
the performance of the same number of frames but different
strides, thereby different temporal duration, e.g., Rows
1 to 4, we found that longer temporal duration improves
the performance in terms of MAE, Acc., and mAP. This
is expected because a longer temporal duration contains
more information for action detection. (2) Comparing the
performances of the same temporal duration but different
strides, i.e., Rows 4 to 7, we found that the input volume
32 × 4 holds the best balance between performance and
the computational cost. The low performance of 128 ×

1 reflects that there is a lot of redundant information between
adjacent frames in the video, and the effectiveness of the
pre-trained weights is reduced when the downstream task
uses a different temporal stride. We set the default value of
L to 32 and d to 4 (i.e., one out of four from 128 consec-
utive frames) in the subsequent experiments unless stated
otherwise.

5) PERFORMANCE ON DIFFERENT ACTIONS
As introduced in Section III-A, the APN is especially suitable
for detecting progressive actions. To further investigate this,
we present the APN’s performance on different action classes
in Fig. 5. There are several observations: (1) The APN
outperforms SS-TAD [24] and SCNN [19], and all three
methods perform very differently on detecting different
actions. (2) The APN achieves high average precision when
detecting actions that have clear evolution patterns, e.g., the
APN achieves up to 85% precision on detecting action ‘‘High
Jump’’, whereas the other two methods only achieve about
20%. Similar situations also occurred in action ‘‘Diving’’,
‘‘Golf Swing’’, and ‘‘Throw Discus’’ and all these actions
have distinct evolution patterns in our manual observations.
(3) On the contrary, the APN achieves a poor perfor-
mance on indeterminate actions, e.g., ‘‘Billiards’’ (13.8%),
and ephemeral actions, e.g., ‘‘Cricket Shot’’ (15.4%) and
‘‘Tennis Swing’’ (19.5%). Despite of superior performance
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FIGURE 5. Average precision across various action classes in THUMOS14, presented in ascending order of the average durations. The proposed APN
demonstrates high precision in progressive actions that have clear evolutionary patterns (e.g., High Jump), yet shows reduced effectiveness in actions
with indeterminate characteristics (e.g., Billiards) and those that are brief in duration (e.g., Cricket Shot).

TABLE 4. Comparison with state-of-the-art methods on THUMOS14.

of the APN over the other two methods, the performance
gap is narrowed considerably on these non-progressive
actions.

D. COMPARISON WITH STATE-OF-THE-ART
Our initial comparisons of the APN on the THUMOS14
dataset are summarized in Table 4. The APN demonstrated
competitive performance, notably when trained end-to-end2

and under weak supervision [47]. Specifically, the APN
achieved an average mAP of 54.8%, closely approaching
the 59.6% achieved by PlusTAD [46]. Remarkably, the

2End-to-end training refers to the simultaneous training of all model
parameters.

TABLE 5. Comparison with state-of-the-art methods on ActivityNet.

APN significantly surpassed ActionBytes [47] (30.3% vs.
3.7%), which was also trained on action frames without
incorporating temporal background knowledge.

On ActivityNet-1.3, as shown in Table 5, the APN
also achieved competitive detection accuracy, with narrower
performance gaps between different TAD methods than
observed in THUMOS14. Here, the APN recorded an average
mAP of 30.5%, holding its ground against PlusTAD’s 33.1%
and ActionFormer’s 35.6% [34].

The detection precision of end-to-end training and
multi-stage training TAD methods are close except for
the outstanding ActionFormer [34], likely due to its
incorporation of attention mechanism [12] and modern
techniques like exponential Moving Average (EMA), score
voting [104], distribution-aware initialization [105] and
so on. Our approach, focusing on a novel pipeline and
action progressions, intentionally avoids these complex
implementations.

VOLUME 12, 2024 126839



C.-K. Lu et al.: Action Progression Networks for Temporal Action Detection in Videos

TABLE 6. Comparison of our method with other state-of-the-art
approaches on the DFMAD dataset.

Nevertheless, the advantages of APN have not been
fully exhibited based on the comparison of THUMOS14
and ActivityNet. The experimental results on DFMAD
are summarized in Table 6. In this dataset, the APN
outperforms all the other investigated methods, including
the ActionFormer and PlusTAD in terms of both detection
precision and computational efficiency. Concretely, APN
obtained a mAP@IoU = 0.9 of 44.2%, significantly outper-
forming the 20.7% and 34.9% achieved by the ActionFormer
and PlusTAD. Moreover, by implementing more stringent
parameter adjustments (Pstart = 10, Pend = 90 of APN-
strict), we achieved an enhanced precision of mAP@IoU =

0.9 of 48.5% at a high-quality detection threshold, at the
expense of reduced precision in lower-quality detection
thresholds (mAP@IoU = 0.5). Impressively, even with
a lighter 2D backbone (ResNet-50), the APN maintained
superior detection accuracy while operating up to 30 times
faster (6277 vs. 175 FPS).3

We attribute the exceptional performance on the DFMAD
dataset to the APN framework’s effectiveness and efficiency.
The APN, along with other end-to-end trained TADmethods,
surpasses the ActionFormer – the leading method on
THUMOS14 and ActivityNet – mainly due to the stark
domain shift between the Kinetic400 pre-training dataset
and the DFMAD downstream dataset. This substantial shift
underscores the critical need for fine-tuning the feature
extraction backbone. Additionally, the APN’s success can
be linked to the nature of the DFMAD actions, which
are prolonged and exhibit distinct evolution patterns. These
properties allow the APN to fully leverage its capability
to intricately dissect action evolution, contributing to its
superior performance.

E. QUALITATIVE RESULTS
To have clear observation of the performance of APN on
temporal action detection, we visualize the detection results
and ground truths of some example videos in Fig. 6. Although

3FPS performance evaluated with a 2080Ti NVIDIAGPU. Comparison in
FLOP is omitted due to variable video processing cycles for different TAD
methods.

FIGURE 6. Qualitative results of the APN on (a) THUMOS14 and
(b) DFMAD. Each rectangular block represents one action instance,
different colors represent different action classes, and the blocks with
hatch stand for incomplete action instances.

the test videos are complicated, our APN can detect the
temporal boundaries and categories of actions precisely.
Moreover, as shown in Fig. 6 (b), the APN ignored the
incomplete action instances in the test videos.

VI. LIMITATIONS
The proposed APN framework exhibits several limitations,
detailed below:
Difficulty in detecting non-progressive actions.As outlined

in Section III-A, the APN could struggle with identifying
actions lacking distinct evolution patterns, such as inde-
terminate actions (e.g., painting), ephemeral actions (e.g.,
clicking), and repetitive actions (e.g., walking).
Lack of long-term temporal modeling. Given that the APN

processes short-term video snippets, it inherently lacks the
capacity for long-term temporal analysis. The long-term
modeling is partially accomplished in the profile-matching
algorithm, which models progression sequences but may
fall short in scenarios requiring intricate long-term temporal
relationships.
Computational efficiency under large prediction errors.

Although the computational cost of Algorithm 1 is low
for most cases, it becomes non-negligible when the APN’s
prediction error (MAE) is large, e.g., MAE = 18. This
algorithm should still have a lot of room for optimization.
Inability to detect incomplete actions. This characteristic

can be seen both as a strength and a limitation of the
APN, depending on the research objective or application’s
needs. The framework consistently omits incomplete action
instances, which might be not desirable for certain analyses
when incomplete actions need to be detected.

VII. CONCLUSION
In this paper, we introduce a pioneering approach to temporal
action detection, featuring a novel pipeline that enables
end-to-end training of a snippet-level model, the Action
Progression Network (APN). Central to our framework is
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the concept of action progressions that quantitatively encode
the action evolution process into ordered ranks. Action
progressions enrich our model with temporal context and
allow for the construction of detailed temporal models
for actions that could facilitate precise action localization.
Through rigorous evaluation of three benchmark datasets,
the APN has demonstrated competitive performance against
existing methodologies. Notably, the APN shows exceptional
capability in identifying actions characterized by prolonged
durations or distinct evolutionary patterns, achieving substan-
tially higher precision at speeds up to 30 times faster than
competing models.

Two distinctive features of the APN further underscore
its practical utility: its adaptability to training with trimmed
videos and its designed avoidance of incomplete action detec-
tions. These aspects significantly broaden the applicability
of our model in practical settings. We envisage that the
introduction of action progressions will spur advancements
in temporal action detection, steering future models towards
simplicity and greater real-world applicability. It is our hope
that this work will inspire the action detection community to
explore new directions and further leverage the concept of
action progressions.

APPENDIX
THE MINIMUM ERROR OF THE RANK PREDICTION
WITHOUT PRIOR KNOWLEDGE
Given a set of ranks that uniformly spread across a limited
range, what is the minimum prediction error we can obtain
without any prior knowledge except for the range? Assume
that the range is [0,K ] and the set’s size is infinite. The mean
absolute error (MAE) and mean squared error (MSE) can be
derived as follows.

Without knowledge of the ground truth value, one may
randomly take values from the range [0,K ] as the predicted
ranks. In this case, the errors are:

EMAEr =
1
K

∫ K

0

1
K

[∫ p̂

0
(p̂− p)dp+

∫ K

p̂
(p−p̂)dp

]
dp̂=

K
3

,

(15)

EMSEr =
1
K

∫ K

0

1
K

∫ K

0
(p̂− p)2dpdp̂ =

K 2

6
, (16)

where p and p̂ are the ground truth and predicted rank,
respectively.

In addition to random prediction, onemay use a fixed value
as the predicted rank. In this case, the errors are:

EMAEf =
1
K

[∫ p̂

0
(p̂− p)dp+

∫ K

p̂
(p− p̂)dp

]

=
p̂2

K
− p̂+

K
2

, (17)

EMSEf =
1
K

∫ K

0
(p̂− p)2dp

= Kp̂2 − K 2p̂+
K 3

3
. (18)

It is easy to derive their minimum with respect to p̂:

minEMAEf =
K
4

, when p̂ =
K
2

, (19)

minEMSEf =
K 3

12
, when p̂ =

K
2

. (20)

We set K = 100 in our experiments; therefore, the
minimum MAE should be the minEMAEf = 100/4 = 25,
and the minimum MSE should be the EMSEr = 1002/6 =

1666.66. The former can be used as a baseline to compare the
MAE obtained by the APN, i.e., MAE in Tables 1, 2, and 3.
The latter is where the 1666.66 in Eq. (14) comes from.
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