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Abstract: Intensive urban land use is a strategy to enhance productivity and mitigate environmental
challenges in emerging regions, but its relationship with carbon emissions needs further city-level
investigation. This study investigates the impact of intensive urban land use on carbon emissions
across 153 cities in China, thus employing the STIRPAT model with the ordinary least square (OLS)
and geographical weighted regression (GWR) methods. The findings underscore the heterogenous
influence of intensive urban land use on carbon emissions across China’s urban landscapes: (1) R&D
investment intensity and population density show significant negative association with carbon
emissions in general. (2) Capital investment intensity positively affects carbon emissions in low-
income cities, R&D investment intensity shows negative effects on carbon emissions in middle-income
cities, and population density emerges as a substantial factor in reducing carbon emissions in both
middle- and low-income cities. (3) Capital intensity, labor intensity, and R&D investment intensity
exert positive effects on emissions in middle China and negative influences in northeastern and
southern China, whereas population density shows converse spatial effects. Based on the study’s
results, tailored policy implications are provided for urban planning authorities in emerging regions.
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1. Introduction

Cities are the most important carbon emitter, thereby generating about 75% of carbon
dioxide (CO2) [1,2]. As cities expand, urbanization accelerates, thus resulting in heightened
energy consumption, increased transport demands, and intensified industrial activities.
In particular, fast-growing cities in emerging countries have experienced unprecedented
expansion: 440 emerging-market cities will account for close to half of expected global
GDP growth by 2025 [3]. The rapid urbanization is often associated with unplanned
growth, thus resulting in congestion, sprawling suburbs, inefficient land use, and greater
reliance on fossil fuels [4]. These emerging urban areas are becoming focal points for
greenhouse gas (GHG) production, thus leading to deteriorating urban microclimates,
decreased urban population well-being, a reduced quality of life, and risking regional
sustainable development.

Consequently, for cities in emerging markets, the formulation of sustainable land
use strategies assumes paramount importance. These strategies play a critical role in
mitigating carbon emissions intensity while simultaneously balancing economic growth
with environmental resource demands [4–6]. Among the promising land use approaches,
intensive urban land use stands out [5,7]. This strategy involves concentrating activities,
populations, and infrastructure within a confined geographical area. Theoretically, it
enhances land use efficiency through practices such as mixed-use zoning and compact
development, thereby reducing the overall land area required for urban functions [8].
Consequently, it curtails the conversion of natural areas and preserves carbon-storing
ecosystems. Additionally, intensive urban land use contributes to the reduction of intracity
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travel distances, promoting industrial process efficiency and encouraging sustainable
transport modes like cycling and public transits [9], and ultimately leading to decreased
urban carbon emissions.

Over the past few decades, intensive land use has been widely adopted, particularly
in emerging Asian countries [7]. However, as more research focuses on the carbon emis-
sions impact of this strategy, debates on this topic are gaining attention from the academic
community and urban policymakers [8–10]. Various studies, each concentrating on specific
areas, hold divergent views. Some research suggests that this strategy can curb urban
carbon emissions through compact and resource-efficient design. For instance, Xie et al. [11]
reported an inhibitory effect of intensive urban land use indicators (research and develop-
ment, labor, and capital intensity) on carbon emissions. Based on a case of Jiangsu coastal
region, Chuai et al. [10] also support the strategy of intensive land use, such as restricting
the conversion of agricultural and forest land to urban development, which can mitigate
urban carbon emissions. However, other studies question the actual effectiveness of the
intensive urban land use strategy. Wang et al. [12] found a positive correlation between
land use intensity (economic, population, infrastructure, and public service intensity) and
carbon emissions.

Understanding the carbon emission implications of intensive urban land use in rapid-
developing regions is crucial for addressing the environmental challenges associated with
urbanization. By identifying the key sources and drivers of carbon emissions in these
regions, policymakers, urban planners, and stakeholders can develop targeted strategies
and interventions to promote sustainable urban development and mitigate the negative
environmental impacts. There is a lack of city-level evidence to examine the impact of
multidimensional land use intensity indicators on carbon emissions, especially with the
consideration of regional heterogeneity. This study is the first attempt to examine the
heterogenous city-level implication of comprehensive land use intensity indicators on
carbon emissions. Specifically, the research purposes include the following: (1) identifying
the intensive urban land use indicators, (2) revealing the impacts of the intensive urban
land use indicators on carbon emissions and the regional differences among their effects,
and (3) developing carbon emission interventions from perspectives of urban land use
intensity. To explore the impact of intensive urban land use on carbon emissions, this
research incorporates representative urban land use intensity indicators into the STIRPAT
(Stochastic Impacts by Regression on Population, Affluence, and Technology) model using
data from 153 cities in China.

This research can quantify potential regional differences in the effects of intensive
land use indicators on carbon emissions, thus allowing for targeted policy interventions.
The urban development trajectory of China holds important lessons for mitigating the
environmental impacts of urbanization for other emerging economies. This study provides
evidence-based recommendations for policymakers and urban planners to optimize urban
land use intensity and promote low-carbon development strategies. Also, the findings can
inform targeted policy interventions tailored to cities with different development levels,
thus considering the heterogeneity of the impacts of intensive land use indicators.

2. Literature Review

Urban land use intensity refers to the measure of the level of human activity and
development within a specific area of urban environment [13]. Urban land use intensity
is typically evaluated based on several indicators, including population density, building
density, infrastructure density, and economic activity levels. Intensive land use, in the
context of urban areas, refers to the high-density development and concentration of human
activities within a given area [14]. It is characterized by a high population density, dense
building patterns, and a significant presence of commercial, industrial, and transportation
infrastructure. Cities like Hong Kong and Singapore have provided successful examples of
the intensive land use concept during the latter part of the 20th century [7].
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Intensive land use is often associated with the efficient utilization of urban space;
however, evidence shows that it can also have significant implications for urban carbon
emissions. Previous research has shown interacting links between urban land use intensity
and CO2, thus encouraging the development of compact urban forms with high population
densities. Most of these studies focus on population density, which is one of the aspects of
urban land use intensity, while ignoring the other dimensions. For example, Yi, Wang [15]
explored the carbon emission effect of urban density and found that a significant negative
correlation existed between urban density and carbon emissions. In addition, the impacts
varied among cities of different sizes. Zhang, Wang [16] found that population density
was a big factor in restraining carbon emissions. Kang et al.’s [17] results show the land
use intensity had a bidirectional correlation with carbon emissions in most cities, but
the negative effect progressively spread. Liang el. al. [18] identified an inverted U-curve
association between carbon footprint and land use intensity at the middle and low quartiles,
while population clustering promoted carbon footprint mitigation at the upper quartiles.
Xiao et al. [19] discovered that land use intensity increased urban building carbon emissions
under new-type urbanization construction. Feng and Zhou [20] found that land use
intensity has a significant positive effect on carbon emissions per unit of GDP. Though
some studies developed indicators from multiple dimensions, e.g., Wang [12] selected the
proportion of built districts, urban construction, land use for living, land use for production,
land use for infrastructure, and information entropy of the land use structure, they have
still restricted the definition of intensity with respect to density. Xie [11] explored the
impacts of intensive land use on carbon emission reduction at a provincial level in China;
labor intensity, capital intensity, energy intensity, and R&D investment intensity were used
to represent the land use intensity metric. Similarly, only one dimension—the land input
level—was incorporated into the evaluation framework.

To fully understand the environmental implications of intensive land use, several
studies have adopted the input–density–output definition in describing the causal rela-
tionship. Hui, Wu [21] applied these three dimensions to evaluate urban land-intensive
utilization. The land input level was represented by investment, wage, and energy con-
sumption, the land use density was measured by population density and construction land
area per capita, and the land output benefit was evaluated using the GDP, industrial added
value, and green area per unit of urban land or capita. The work studied the relationship
between urban scale expansion and land use intensity. Xia, Dong [22] used fixed assets
investment and labor wage input per unit of urban land to represent the land input level,
urban population density to describe the land use density, and GDP per unit of urban land
as the indicator for the land output benefit; the work analyzed the spatial effect of urban
land use intensity on carbon emissions using the spatial Durbin model.

Though the environmental implications of intensive urban land use have been ex-
plored, there still exist research gaps. Firstly, there is a lack of city-level evidence to examine
the impact of land use intensity on carbon emissions. Secondly, few studies have investi-
gated the heterogeneous implications among different regions. To summarize, systematic
research examining the effects of urban land use intensity on carbon emissions with the
consideration of heterogeneity among cities is needed.

3. Method

The research framework diagram is shown in Figure 1. This study applied an input-
density-output framework to evaluate urban land use intensity and the STIRPAT model to
analyze its association with carbon emissions. Both the OLS and GWR models were used
to test the impacts. Finally, tailored policy implications have been proposed based on the
regression results.
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Figure 1. Research framework diagram.

3.1. Study Area

China is a typical emerging-market country that has experienced unprecedented ur-
banization over the past few decades, thus marked by rapid economic growth and massive
rural-to-urban migration. China’s urban landscape has undergone dramatic changes, with
cities expanding both vertically and horizontally to accommodate the influx of people
and economic activities [23]. The rapid pace of urbanization in China has raised concerns
about its environmental impact, particularly in terms of carbon emissions. Recognizing the
challenges posed by rapid urbanization, the Chinese government has emphasized the need
for sustainable urban development strategies. Intensive urban land use has emerged as a
promising approach to promoting compact, efficient, and environmentally friendly urban
growth [24–26]. By optimizing land use patterns, reducing sprawl, and improving infras-
tructure efficiency, intensive urban development aims to mitigate environmental impacts
while supporting economic growth and social well-being. The “Land Saving and Intense
Usage Rules” published by the Ministry of Land and Resources outlined a fundamental
“Five Regulations” policy of slower expansion, inventory optimization, flow efficiency, and
quality enhancement [27]. By increasing the effectiveness of industrial inputs, enabling the
treatment of pollutants, or reducing commuting time, intensive urban land use might aid
in the construction of low-carbon cities [16,25].

3.2. Data Description

Based on the literature review and data availability, this study adopted the input–
density–output framework to describe the urban land use intensity. Capital intensity, labor
intensity, and R&D investment intensity were selected as the land input levels. Population
intensity was selected to define the land density. Economic output per unit land area was
regarded as the land output intensity.

The data used in this study include the carbon emissions, urban land area, GDP,
population, number of labors, research and development investment, gross investment in
fixed assets, and energy consumption of the sample cities. The data sources are described
in Table 1.
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Table 1. Data sources.

Data Source

Carbon emissions China Emission Accounts and Data Sets (CEADs)

Urban land area
Land survey results sharing application service
platform developed by Ministry of Natural
Resources in China

GDP

China City Statistical Yearbook
Population
Wage of labors
R&D investment
Gross investment in fixed assets

Energy consumption [28]

Given the heterogeneity of development levels among China’s cities, we divided the
cities into three groups based on their development level, which was measured by per
capita GDP: this yielded a high development level, middle development level, and low
development level. According to data availability, 153 cities were selected as sample cities.

The data descriptive statistics are shown in Table 2. The wide range of carbon emis-
sions, socioeconomic data, and land use intensity levels among cities, as indicated by
the substantial standard deviations, suggests disparities in environmental performance
and sustainability practices across urban areas. The data description underscores the
importance of categorized exploration with consideration of city heterogeneity and tar-
geted policy interventions tailored to the specific characteristics and challenges faced by
individual cities.

Table 2. Data descriptive statistics.

VarName Description Unit Mean SD Min Median Max

CE Carbon emissions 106 tons 52.148 63.152 1.804 33.167 457.757
POP Population 106 persons 3.990 3.897 0.720 2.550 22.290
PCGDP Per capita GDP 104 yuan 101.368 36.691 25.476 93.267 208.464
EC Energy consumption intensity ton/104 yuan 60.141 41.129 8.036 49.403 298.600
KI Capital intensity 104 yuan/km2 62,798.369 24,691.143 5373.225 60,672.016 142,505.728
LI Labor intensity 104 yuan/km2 14,944.241 18,862.591 4419.651 10,665.803 191,161.483
RI R&D investment intensity 104 yuan/km2 455.877 487.395 14.318 325.203 3663.048
PI Population intensity Persons/km2 8965.525 2510.175 3668.224 8781.204 19,151.251
OI Land output intensity 104 yuan/km2 89,843.150 39,425.188 13,276.021 81,801.656 292,739.561

Data of carbon emissions and intensive urban land use indicators are presented in
spatial distribution in Figure 2. It is shown that the emissions and land use intensity vary
across regions greatly, which indicates a huge development gap among cities. Cities in
western China, which are usually regarded as lagging development regions, have high
carbon emissions, with high capital intensity and R&D investment intensity. On the
contrary, cities in eastern coastal China, which have good economic conditions, present
high urban land use intensity and low emissions.
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3.3. Model Development

The STIRPAT model, an acronym for “Stochastic Impacts by Regression on Population,
Affluence, and Technology”, has gained widespread popularity in assessing environmental
impacts and identifying the factors that influence carbon emissions [29,30]. This multiplica-
tive model is built upon the IPAT identity, which posits that environmental impact is the
product of population, affluence, and technology factors. By utilizing the STIRPAT model,
researchers in environmental studies can effectively examine the relationship between
population, economic development, and environmental impact factors. One significant ad-
vantage of the STIRPAT model, when compared to other approaches such as the IPAT model,
is its flexibility in incorporating representative drivers from various perspectives [31–34].
For instance, factors such as land use and urbanization can be integrated into the model
based on the specific requirements of the study. This allows for a more comprehensive
analysis of the relationships between population, economic factors, and environmental
impact. As a result of its ability to encompass diverse drivers, the empirical findings
derived from the STIRPAT model tend to be more reasonable and credible. Researchers
can tailor the model to their specific research context, thus ensuring that relevant factors
are included and contributing to a more accurate understanding of the complex dynamics
between population, economic development, and environmental outcomes.

This study used the STIRPAT model to analyze the impact of intensive urban land
use on carbon emissions in China’s cities. The specification of the STIRPAT model can be
expressed as follows:

Ii = aPb
i Ac

i Td
i ei (1)
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In the model, the constant term a serves as a scaling factor, while the exponents b, c,
and d represent the respective powers of the variables P, A, and T, which are estimated.
Additionally, the error term “e” accounts for unexplained variation. The subscript i signifies
that these variables (I, P, A, T, and e) vary among different observational units.

An additive regression model in which all variables are in logarithmic form facilitates
estimation and hypothesis testing:

ln I = a + bln P + cln A + dln T + ln e (2)

In this equation, the coefficients b, c, and d represent the proportional changes in envi-
ronmental impacts for each 1% change in population size, wealth level, and technology level.

With the representative drivers of intensive land use indicators added into the model
in this research, the extended STIRPAT model with the ordinary least squares (OLS) method
is denoted as follows:

ln CE =α0 + α1 ln POP + α2 ln PCGDP + α3 ln EC

+α4ln LI + α5ln KI + α6ln RI + α7ln PI + α8ln OI + ln e
(3)

where α0 denotes a constant; e denotes the error term; CE, POP, PCGDP, EC, LI, KI, RI, PI,
and OI denote the carbon emission, population, per capita GDP, energy use intensity, labor
intensity, capital intensity, R&D investment intensity, population density, economic output
intensity, respectively; and α1, α2, . . ., and α8 represent the parameters to be estimated.

The OLS model is a global parameter estimation technique that can only represent the
average contribution, because it assumes invariant coefficients [35]. However, carbon emis-
sions and their determinants have a tendency to be geographically autocorrelated [36,37].
The spatial nonstationarity of geographic elements is ignored by the OLS model, which can
easily provide biased findings or ineffective estimations [38]. The geographical weighted
regression (GWR) model can describe the spatial characteristics of impacts, while spatial
heterogeneity is taken into account by conducting local estimation [39]. The GWR model
can be expressed as follows:

yi = β0(ui,vi,) +
k

∑
j=1

βj(ui,vi,)Xij + ei (4)

where yi is the carbon emissions, and Xij are the jth independant variables at location i. β0
and βj are the estimated coefficients at location i; (ui,vi,) are the coordinates of location i,
and ei is the random error at location i.

4. Empirical Results

This section begins by presenting the findings of a Pearson correlation test, which
aims to uncover the relationships between the variables under investigation. Subsequently,
the regression results are provided, thus offering additional insights into the associations
among the variables.

4.1. Correlation between Variables

As shown in Table 3, this study applied correlation analysis to uncover the interrela-
tionships among the variables and to identify any significant associations that may exist.
The results show that carbon emissions (lnCE) had a positive correlation with population
(lnPOP) (r = 0.524, p < 0.001). This suggests that cities with larger populations tend to
have higher carbon emissions. lnCE exhibited a positive correlation with per capita GDP
(lnPCGDP) (r = 0.363, p < 0.001), thus indicating that cities with higher per capita GDPs
tend to have higher carbon emissions. In addition, lnCE had a negative correlation with
population density (lnPI) (r = −0.181, p < 0.05), and this conclusion aligns with previous
research, thus suggesting that compact urban form plays a beneficial role in mitigating
carbon emissions within cities. In addition, lnCE showed a positive correlation with land
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output intensity (lnOI) (r = 0.182, p < 0.05), which implies that a higher economic output of
land use can promote local carbon emissions.

Table 3. Correlation among variables.

lnCE lnPOP lnPCGDP lnEC lnKI lnLI lnRI lnPI lnOI

lnCE 1
lnPOP 0.524 *** 1
lnPCGDP 0.363 *** 0.364 *** 1
lnEC 0.033 −0.455 *** −0.654 *** 1
lnKI −0.001 −0.037 0.389 *** −0.332 *** 1
lnLI 0.123 0.329 *** 0.329 *** −0.363 *** 0.113 1
lnRI 0.087 0.494 *** 0.580 *** −0.748 *** 0.249 ** 0.342 *** 1
lnPI −0.181 * 0.312 *** −0.075 −0.374 *** 0.352 *** 0.322 *** 0.355 *** 1
lnOI 0.182 * 0.497 *** 0.771 *** −0.775 *** 0.544 *** 0.476 *** 0.702 *** 0.577 *** 1

Note: *** p < 0.001, ** p < 0.01, * p < 0.05.

The intensive land use indicators yielded significant correlations with each other
and the other controlled variables. Within the intensive land use indicator framework,
except for labor intensity (lnLI) and capital intensity (lnKI), all the other variables were
significantly positively related to each other. R&D investment intensity (lnRI) and lnOI had
a high correlation (r = 0.702, p < 0.001). lnOI had a medium correlation with lnKI (r = 0.544,
p < 0.001) and lnPI (r = 0.577, p < 0.001).

In terms of the relationship between the intensive land use indicators and the socioe-
conomic controlled variables, lnKI positively correlated with lnPCGDP (r = 0.389, p < 0.001)
and negatively correlated with lnEC (r = −0.332, p < 0.001). This implies that the better
economic condition that cities have, the higher the energy consumption intensity and the
lower the capital intensity they tend to own. lnLI showed a positive correlation with both
lnPOP (r = 0.329, p < 0.001) and lnPCGDP (r = 0.329, p < 0.001) and a negative correla-
tion with lnEC (r = −0.363, p < 0.001). This indicates that a larger population and higher
economic development level come with a higher labor intensity. lnRI showed a positive
correlation with lnPOP (r = 0.494, p < 0.001), lnPCGDP (r = 0.580, p < 0.001), and lnKI
(r = 0.249, p < 0.01), thus indicating that cities with higher R&D investment intensities tend
to have larger populations and higher per capita GDPs.

4.2. OLS Regression Results

After excluding the variables causing severe multicollinearity (VIF > 10), the regression
results are shown in Table 4. The regression analysis aimed to explore the relationships
between the dependent variable (lnCE) and several independent variables, namely lnPOP,
lnPCGDP, lnKI, lnLI, lnRI, and lnPI. Given the heterogeneity among China’s cities, the
sample was divided into three groups based on per capita GDP: high, middle, and low per
capita GDP cities. The results of the regression analysis reveal several significant findings.
The variance inflation factor (VIF) values ranged from 1.36 to 2.84, thus suggesting that
multicollinearity is not a major concern in the regression model. Population (lnPOP)
exhibited a positive and statistically significant relationship with all cities (b = 0.868,
p < 0.001). This indicates that across all cities, an increase in population is associated with
a significant increase in carbon emissions. In high per capita GDP cities, lnPCGDP had a
significant positive effect on lnCE (b = 2.260, p < 0.05), thus indicating that higher carbon
emissions are associated with higher economic development levels in cities with good
economic conditions. In low per capita GDP cities, lnKI exhibited a significant positive
relationship with lnCE (b = 0.654, p < 0.05). In the middle per capita GDP group, lnRI
showed a negative and statistically significant association with lnCE (b = −0.409, p < 0.05),
thus indicating that increases in R&D investment are helpful to reduce urban carbon
emissions in the middle development level city group. Finally, lnPI had a negative and
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statistically significant effect on lnCE in the middle- and low-development level city groups,
thus suggesting that a condensed urban population benefits carbon reduction.

Table 4. OLS regression results.

All Cities VIF High per Capita GDP
Cites

Middle per Capita GDP
Cities

Low per Capita GDP
Cities

lnPOP 0.868 *** 1.67 0.531 * 0.987 *** 0.848 ***
(9.067) (2.308) (6.914) (4.945)

lnPCGDP 0.479 2.84 2.260 * 1.182 −0.651
(1.874) (2.039) (1.114) (−1.179)

lnKI 0.286 1.82 −0.384 0.554 0.654 *
(1.748) (−0.812) (1.940) (2.436)

lnLI 0.029 1.36 −0.284 −0.004 0.389
(0.329) (−1.430) (−0.032) (1.550)

lnRI −0.285 ** 2.15 −0.329 −0.409 * −0.076
(−3.332) (−1.806) (−2.313) (−0.559)

lnPI −1.100 *** 2.22 −0.002 −1.110 * −1.929 **
(−3.792) (−0.004) (−2.555) (−3.190)

_cons 8.598 *** 1.117 3.260 12.606 **
(3.666) (0.123) (0.554) (3.290)

N 153 39 51 63
Adj. R2 0.454 0.349 0.502 0.292

Note: ***, **, and * denote p < 0.001, p < 0.01, and p < 0.05, respectively. t statistics are shown in parentheses. The
VIF value is obtained based on the data of all the 153 cities.

4.3. Spatial Regression Results

Using Global Moran’s I, this study first tested the spatial autocorrelation hypothesis
in this section. Table 5 displays the outcome. The Moran I value was found to be signif-
icant at the p < 0.001 level and to have positive z score values, thus indicating that the
data are spatially clustered. Hence, the GWR model was applied to further explore the
relationship between carbon emissions and land use intensity with the consideration of
spatial heterogeneity.

Table 5. Spatial autocorrelation results.

Indicator Value

Moran I 0.213
Z Score 7.418
p Value 0.000

The general performance of the GWR regression model is displayed in Table 6. The
adjusted R squared came out to 0.530, which is 16.74% higher than that in the OLS model,
thus indicating the better performance of the GWR model. The coefficient in the GWR
regression results is spatially visualized in Figure 3. The figure shows obvious spatial
distinction. For lnKI, the coefficients are positive in most sample cities except a few cities
in northeastern and southern China. The cities in the middle part of China own a high
coefficient cluster. For lnKI, most cities showed positive correlation, while the cities in the
northeastern China also showed negative impacts. The results of lnRI are very similar to
that of lnLI. In terms of lnPI, the results are the opposite. The cities in the northeastern
and southern China have a positive correlation, while the coefficients in middle China
are negative.
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Table 6. Model diagnostics of GWR regression.

Indicator Value

R2 0.624
Adj. R2 0.530
AICc 320.593
Sigma Squared 0.403
Sigma Squared MLE 0.323
Effective Degrees of Freedom 122.515
Adjusted Critical Value of Pseudo-t Statistics 2.467
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5. Discussion
5.1. Policy Implications

In the context of rapid-developing, emerging-market regions, such as in many parts
of East Asia, Southeast Asia, the Middle East, Sub-Saharan Africa, and Latin America, the
challenges of fast land urbanization, urban sprawl, and extensive land use have become
increasingly pronounced. These regions are experiencing rapid economic growth and
urbanization, thus leading to significant environmental challenges, including increased
carbon emissions and strains on natural resources. Intensive urban land utilization has
emerged as a promising strategy to enhance productivity and mitigate these challenges.

Based on the regression results, several implications for carbon emission reduction
through intensive land use in rapid-developing regions are discussed as follows: Firstly, it is
suggested to adopt differentiated emission reduction policies according to local conditions.
One key policy recommendation is to encourage intensive urban land use in high-density
areas, particularly in regions with medium and poor economies. This can be achieved
through measures such as promoting compact urban development, encouraging the use of
public transportation, implementing green building standards, etc.
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Another important recommendation is to encourage R&D investment in carbon re-
duction technologies and practices, particularly in moderately developed regions. By
incentivizing research and development in areas such as renewable energy, energy-efficient
building materials, and low-carbon transportation, policymakers can help promote innova-
tion and accelerate the transition to a low-carbon economy.

Optimizing fiscal incentive policies, broadening investment, and financing channels
can also play a key role in reducing carbon emissions, especially in low-income cities. This
can include policies such as tax incentives for companies that invest in renewable energy
or energy-efficient technologies, subsidies for energy-efficient building retrofits, and other
measures that encourage investment in carbon reduction initiatives.

Overall, by adopting differentiated emission reduction policies that take into account
local conditions and by implementing specific measures such as encouraging intensive
urban land use, promoting R&D investment, and optimizing fiscal policies, policymakers
can help to reduce carbon emissions in rapid-developing regions and promote a more
sustainable and livable future for all.

5.2. Limitations and Future Studies

One limitation of this study is that it used cross-sectional data to obtain the primary
estimation results. While cross-sectional data can provide valuable insights into the rela-
tionship between intensive urban land use and carbon emissions in China’s cities, it may
not capture the full extent of changes in emissions that occur over time. In particular, the
COVID-19 pandemic has caused significant social and economic influence in Asian coun-
tries [40]. Future studies would benefit from incorporating time series data and using panel
data to better understand the dynamic nature of the relationship between these variables.

Another limitation of this study is that it only examines the linear relationship between
intensive urban land use and carbon emissions. However, there are arguments in previous
studies that the impact of intensive urban land use on carbon emissions may be nonlinear.
For example, some studies suggest that carbon emissions may initially rise and then fall
with the level of economic development. As such, it may be important to examine the
nonlinear relationships between these variables in future studies to gain a more complete
understanding of the relationship between intensive urban land use and carbon emissions
in China’s cities.

6. Conclusions

Rapid-developing regions are experiencing significant urbanization and expansion,
thus resulting in environmental challenges and increased carbon emissions. The impact
of intensive urban land use on carbon emissions remains debated. Understanding the
implications of intensive urban land use in rapid-developing regions is crucial for devel-
oping targeted strategies and interventions to promote sustainable urban development
and mitigate environmental impacts. In this paper, we examined the impacts of the main
influencing factors on carbon emissions for China’s cities based on an extended STIRPAT
model with OLS and GWR regression, which incorporated representative intensive urban
land use indicators. The main conclusions are as follows.

The findings of this study suggest that intensive urban land use has a significant
impact on carbon emissions in China’s cities. Specifically, capital intensity, R&D invest-
ment intensity, and population density were found to be significant predictors of carbon
emissions in middle- and low-income cities. Our results indicate that increasing the capital
investment intensity can result in boosts of carbon emissions in low-income cities, with an
elasticity of 0.654. R&D investment can significantly reduce carbon emissions in middle-
income cities, with an elasticity of −0.409. Moreover, population density can significantly
reduce carbon emissions in middle- and low-income cities, with elasticities of −1.110 and
−1.929, respectively. Spatial heterogeneity of the effects also exists. Capital intensity, labor
intensity, and R&D investment intensity exert positive effects on emissions in middle China
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and negative influences in northeastern and southern China, whereas population density
shows converse spatial effects.

These findings have important implications for policymakers and urban planners in
China. The capital investment should shift the focus from emission-intensive industries to
green sectors. Increasing R&D investments in carbon reduction technologies and practices
can help to accelerate the transition to a low-carbon economy, while promoting compact
urban development and encouraging the use of public transportation can help to reduce
carbon emissions in densely populated areas. The spatially heterogeneous impacts imply
the need for regionally differentiated policies to optimize the emission reduction benefits
of land use intensification strategies.
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