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1. Introduction

First responders frequently encounter haz-
ardous and life-threatening environments,
which pose significant risks to their safety.
Firefighters, for instance, may face the dan-
ger of becoming trapped in hazardous con-
ditions, such as loss of location, trapped in
places with smoke. Data collected by the
Ministry of Emergency Management of
the People’s Republic of China revealed
that, in the past four years, a total of 177
firefighters lost their lives in China.
Given the critical need to rescue and evac-
uate individuals from burning or collapsed
structures, it becomes imperative for emer-
gency responders to enhance their situa-
tional awareness.

In search and rescue operations, it is cru-
cial to accurately track the location of first
responders and provide a comprehensive
map of the unfamiliar environment with
semantic understanding.[1] This capability
not only enhances the effectiveness of rescue
and exit for first responders themselves, aid-

ing them in making informed decisions, maintaining situational
awareness, and navigating the environment more effectively, but
also allows commanders and other teammates outside the imme-
diate vicinity to have a clear visualization of the situation.[2]

Furthermore, key features such as exit routes can be highlighted,
assisting in effective navigation and evacuation strategies.

Although self-contained positioning in indoor environments
has been largely addressed, the existing perception solutions unfor-
tunately do not meet the requirements of first responders in such
settings. Presently, mainstream mapping and perception methods
rely on camera or light detection and ranging (LiDAR) technology
to perform visual odometry,[3,4] visual simultaneous localization
and mapping,[5,6] visual-inertial odometry,[7] or LiDAR localization
and mapping.[8–11] However, camera-based methods are suscepti-
ble to degradation or failure in visually degraded environments,
such as those filled with heavy smoke in a burning building.
Similarly, LiDAR-based solutions encounter obstacles due to the
absorption and scattering of laser beams by smoke particles, lead-
ing to challenges in accurate object detection and measurement
behind the smoke. Furthermore, the scattered light creates inter-
ference, resulting in inaccuracies in distance measurements and
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First responders often face hazardous and life-threatening situations in envi-
ronments filled with smoke, posing significant risks to their safety. The existing
perception solutions, such as camera or light detection and ranging (LiDAR)-
based methods, are inadequate when faced with visually degraded conditions
caused by smoke. In this work, SmokeNav, a novel system that combines data
from an inertial sensor and millimeter-wave (mmWave) radar, is proposed to
enhance situational awareness for first responders in smoky environments.
SmokeNav utilizes an inertial positioning module that exploits the humanmotion
constraints with a foot-mounted inertial measurement unit to provide accurate
user localization. By integrating this location information with mmWave radar
data, it employs a probabilistic occupancy map construction to reconstruct an
accurate metric map. To enable semantic understanding of the environment, a
DNN-based semantic segmentation model that incorporates radar reflectivity
and employs focal loss to improve performance is introduced. Herein, extensive
real-world experiments in smoky environments is conducted to demonstrate that
SmokeNav precisely localizes the user and generates detailed maps with
semantic segmentation. In this work, potentials are held for enhancing the safety
and effectiveness of first responders in hazardous conditions.
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making it difficult to distinguish between obstacles and smoke.
Consequently, the reliability of mapping and object detection capa-
bilities for first responders in smoky environments is diminished.
Moreover, it is crucial for the sensor used in these scenarios to be
small sized, lightweight, and energy efficient, as it must align with
the limitations of human operators.

With recent advancements in single-chip millimeter-wave
(mmWave) radar technology, it has emerged as a promising
perception option for first responders due to its low cost (less than
300 dollars), energy efficiency (around 2W), and lightweight design
(less than 0.03 kg). Additionally, mmWave radar demonstrates reli-
able performance in challenging environmental conditions such as
smoke, fog, and dust. However, a key challenge lies in the sparsity
and noise levels of the point clouds generated by single-chip
mmWave radar, which are notably inferior to those produced
by LiDAR. Consequently, accurately determining location and
creating maps solely using mmWave radar presents difficulties.
Existing mapping approaches based on mmWave radar[12–15] pre-
dominantly rely on bulky mechanical radar systems designed for
outdoor environments, rendering them unsuitable for our specific
requirements. Although Lu et al.[16] combines wheel odometry with
mmWave radar data, this approach is limited to robotic applica-
tions and cannot be directly applied to first-responder scenarios.

To tackle these challenges, we propose SmokeNav, a system
that integrates data from an inertial sensor and mmWave radar.
By leveraging the location information obtained from an inertial
positioning module, which utilizes a foot-mounted IMU and
exploits human motion constraints, SmokeNav enables the recon-
struction of an accurate metric map from mmWave radar data
through probabilistic occupancy map construction. To achieve
semantic understanding of the environment, we introduce a
deep-neural-network-based semantic segmentation model that
incorporates radar reflectivity to enhance performance. To address
the issue of data imbalance, we employ focal loss. To validate the
effectiveness of our proposed SmokeNav system in smoky envi-
ronments, we conducted extensive real-world experiments. The
experimental results demonstrate that SmokeNav achieves precise
user localization and generates reliable maps of the environment
with semantic segmentation in smoky environments.

In summary, our contributions are as follows. 1) We propose
SmokeNav, a novel system that combines inertial sensor, and
mmWave radar to accurately localize user and reconstruct a metric
map in visual-degraded environments. 2) We present a novel deep
neural network framework that achieves object semantic segmen-
tation in smoky environment using very sparse point clouds from
mmWave radar, by incorporating radar reflectivity to enhance
semantic understanding and utilizing focal loss to address data
imbalance problem. 3) Extensive real-world experiments confirm
SmokeNav’s ability to precisely operate under smoky conditions.
Our work holds potentials for enhancing the safety and effective-
ness of first responders in hazardous conditions.

2. Related Work

2.1. Milliwave Radar Mapping

Recent advancements in small-size mmWave radar have brought
forth exciting possibilities for mapping applications. mmWave

radars, renowned for their wide bandwidth in the GHz range
and modulation schemes optimized for range estimation rather
than communication (e.g., frequency-modulated continuous
wave [FMCW]), have proven successful in object imaging.[12,15]

However, these endeavors have predominantly relied on bulky
mechanical radar systems engineered for outdoor settings,
where multipath noise has minimal impact. In refs. [14,17],
model training was conducted based on simulated mmWave
radar input, accurately generating depth images of objects like
cars using mmWave radar data. Engelhardt et al.[13] employed
a vehicle-mounted setup encompassing mmWave radar,
LiDAR, and depth camera to collect concurrent data; leveraging
the LiDAR and depth camera data for training an actual environ-
ment model; and applying mmWave radar for outdoor environ-
ment mapping. Brodeski et al.[18] proposed an approach that
directly operates on mmWave echo information, establishing
an end-to-end network called RadarNet that transforms the echo
information into an actual point cloud, thus bypassing traditional
radar echo signal processing. Presently, mmWave radar finds
primary usage in outdoor autonomous driving for obstacle avoid-
ance. Lu et al.[16] introduced a generative neural network model
based on mmWave data to generate indoor maps. However, this
approach still requires wheel odometry information for mapping
assistance, making it unsuitable for first responders in our spe-
cific context. Thus, there exists a significant gap in investigating
the potential of single-chip mmWave radars for imaging indoor
environments, marking a critical and unexplored realm of
research.

2.2. Pedestrian Inertial Navigation

Strapdown inertial navigation systems (SINS) have been a
subject of extensive research for several decades.[19] Initially,
these navigation systems relied on expensive, bulky, and high-
precision IMUs, thereby limiting their application to vehicles
in motion, such as automobiles, ships, aircraft, submarines,
and spacecraft. However, recent advancements in micro-
electromechanical system (MEMS) technology have revolution-
ized IMU production, resulting in significant cost, size, and
energy consumption reductions. In the realm of pedestrian track-
ing, attaching an IMU to the user’s foot presents an opportunity
to leverage zero-velocity updates (ZUPTs) to compensate for the
inherent error drifts of inertial systems.[20] ZUPTs offer a means
to mitigate the cubic error growth associated with standalone
SINS by exploiting the stationary intervals during normal gait.[21]

To detect zero-velocity phases and effectively apply ZUPTs within
foot-mounted inertial navigation, several approaches have been
explored. These methods encompass empirical step-length
estimation in navigation systems,[22,23] motion constraints
assuming walking on a flat surface,[24] systematic sensor error
estimation,[25] gait cycle segmentation,[26] and discussions on
the challenges of step detection at varying gait speeds.[27]

These diverse strategies have contributed to enhancing the accu-
racy and reliability of zero-velocity detection in foot-mounted
inertial navigation systems.

To the best of our knowledge, there is currently no existing
research focused on the application of ZUPTs-based inertial
positioning to facilitate mmWave radar mapping. While previous

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2400241 2400241 (2 of 14) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 12, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400241 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [13/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


studies, as mentioned earlier, primarily concentrate on providing
location information, our proposed SmokeNav goes beyond that
by offering comprehensive environmental information, includ-
ing maps and semantic segmentation of objects. By combining
ZUPT-based inertial positioning with mmWave radar mapping,
SmokeNav not only provides accurate location data but also
equips responders with valuable contextual information essential
for effective decision-making and navigation in challenging
environments.

3. Method

As shown in Figure 1, our proposed SmokeNav system consist-
ing of ZUPT-based pedestrian inertial positioning (Figure 1a),
mmWave radar mapping assisted by inertial positioning
(Figure 1b), and focal-loss-enhanced semantic segmentation
using mmWave radar data (Figure 1c). This section will discuss
these modules in details separately.

3.1. ZUPT-Based Pedestrian Inertial Positioning

3.1.1. IMU Integration

In an SINS, the gyroscope in the IMU provides angular velocity
output, which is utilized to determine attitude information. In
contrast, the accelerometer in the IMU yields specific force out-
put, enabling the calculation of position information. Once the
initial position, attitude, and velocity of the foot-mounted IMU
are determined, real-time recursive estimation allows for contin-
uous navigation updates.

Initially, the attitude of the foot-mounted IMU is computed.
The attitude angle can be represented using Euler angles, qua-
ternions, or direction cosine matrices. However, for computa-
tional convenience, the quaternion differential equation is
commonly employed to update the attitude:

qnkbk ¼ qnknk�1q
nk�1
bk�1

qbk�1
bk

(1)

where qbk�1
bk

denotes the quaternion update of the rotation in the

carrier coordinate system between adjacent moments, while qnknk�1

represents the quaternion update in the navigation coordinate

system. The quaternion update of the rotation, qnk�1
bk�1

, corresponds
to the posture at time k� 1 in the navigation coordinate system,
and qnkbk represents the updated posture at time k in the navigation
coordinate system.

The terms qbk�1
bk

and qnknk�1 can be inferred via

8>>>>><
>>>>>:

qbk�1
bk

¼
cos σ

2
sinðσ=2Þ

σ σ

" #

qnknk�1 ¼
cos ξ

2
sinðξ=2Þ

ξ ξ

" # (2)

In these equations, ξ represents the rotation vector in the nav-
igation coordinate system at adjacent moments, while σ corre-
sponds to the rotation vector in the carrier coordinates. These
vectors can be computed as follows:
8>>><
>>>:
ξ ¼

Z
tk

tk�1

ωn
in dτ

σ ¼ Δθ1 þ Δθ2 þ
2
3
ðΔθ1 � Δθ2Þ

(3)

Here, ωn
in ¼ ωn

ie þ ωn
en represents the rotational angular veloc-

ity of the navigation coordinate system relative to the inertial
space coordinate system. Furthermore, Δθ1 and Δθ2 denote
the angular increments of the gyroscope output between time
ðtk�1, tk�1 þ tk�tk�1

2 Þ and ðtk�1 þ tk�tk�1
2 , tkÞ, respectively.

Subsequently, the current speed is determined using the
following equation:

vnk ¼ vnk�1 þ Δvsfk þ vg=cork (4)

Here, vnk represents the velocity at the current timestep, vnk�1

denotes the velocity at the previous timestep, Δvsfk ¼ ∫ tk
tk�1

f n dt
corresponds to the specific force integral increment, and
vg=cork ¼ ∫ tk

tk�1
½gn � ð2ωn

ie þ ωn
enÞ � vne � dt represents the integral

increment of gravitational acceleration and Coriolis acceleration.
By combining the previous speed and the current speed,

the pedestrian position L can be obtained using trapezoidal
integration:

Figure 1. An overview of our SmokeNav framework, consisting of A) ZUPT-based pedestrian inertial positioning, B) mmWave mapping assisted by
inertial positioning, and C) focal loss-based semantic segmentation for mmWave radar.
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Lk ¼ Lk�1 þ
vk þ vk�1

2
ΔT (5)

In this equation, ΔT represents the time interval between con-
secutive solution steps.

3.1.2. Error Model and Kalman Filtering

Based on the principles discussed in the previous part regarding
strapdown inertial navigation, the error model for the inertial
navigation solution can be derived as follows:
8>>>><
>>>>:

δṗ ¼ δv

δv ¼ ½f n��Ψþ Cn
bδf

b � ð2ωn
ie þ ωn

enÞ � δv

�ð2δωn
ie þ δωn

enÞ � v� δgn

ψ
: ¼ �ωn

in �Ψþ δωn
in � Cn

bδω
b
ib

(6)

In this system of equations, δṗ, δv, and ψ
:
represent the error

terms for position, velocity, and attitude, respectively. δf b denotes
the accelerometer error term, ωb

ib represents the gyroscope error
term, and δgn signifies the gravitational disturbance term.

Consequently, a 15D state Kalman filter can be designed to
constrain the error drifts of inertial system:
�
δẋ ¼ Fδxþ Gu

z ¼ Hxþ v
(7)

where δẋ represents the time derivative of the error state vector, F
represents the system matrix, G represents the control matrix, u
represents the control input vector, z represents the measure-
ment vector, H represents the observation matrix, x represents
the error state vector, and v represents the measurement noise.

Specifically, the state error vector, δx, is a 15D vector given by

δx ¼ ½δψ δv δr δηb Δb �T (8)

It comprises attitude error, speed error, position error,
gyro bias, and accelerometer bias. In contrast, the error term
for gyro zero bias and accelerometer zero bias is represented
by the vector:

u ¼ ½ηb Δb �T (9)

To effectively estimate the system error and mitigate the diver-
gence of navigation error, it is crucial to carefully select an appro-
priate observation value, denoted as z.

3.1.3. Zero-Velocity Detection and Drifts Compensation

The schematic process of the human body movement cycle con-
sists of four stages: zero-speed rest, lift-off from the ground,
swing, and touch the ground.[28] During the foot’s resting phase,
ideally, the IMU’s speed output should be zero. However, due to
inherent device errors and cumulative errors, the speed obtained
from the inertial navigation solution deviates from zero. To
address this, the speed when the foot is at zero speed is artificially
set to zero and utilized as a virtual observation to timely correct
the system error. This corrective measure aids in suppressing the

accumulation of inertial navigation errors and enhancing posi-
tioning accuracy.

The key to implementing this approach lies in acquiring zero-
speed gait information. In our work, the statistical value denoted
as T serves as the basis for assessment:

T ¼ 1
W

XnþWþ1

k¼n

1
σ2a

����yak � g
yan
kyank

����þ 1
σ2ω

kywk k (10)

Here, n represents the initial moment of the sliding window,
W denotes the sliding window size, and σ2a and σ2ω correspond to
the measurement noise variance of the accelerometer and gyro-
scope, respectively. Additionally, g symbolizes the acceleration
due to gravity, and yan denotes the measured acceleration value
output by the IMU at the sliding window’s initial moment.
Furthermore, yak and yωk represent the acceleration and angular
velocity measurements output by the IMU at time k, respectively.

By employing a predetermined threshold τ, the current
moment can be classified as either a zero-speed (stationary) state
or a stepping (swinging) moment using the following formula:

δ ¼
�
stationary, T <¼ τ,
swinging, T > τ

(11)

Here, the threshold τ is established in advance based on body
characteristics and motion behavior.

Once the zero-speed moment is detected, the observation
quantity of the system becomes

z ¼ δvk ¼ vk � ½0 0 0 � (12)

. Furthermore, the observation matrix H of the system is
defined as

H ¼ ½03�3 I3�3 03�3 03�3 03�3 � (13)

By utilizing the prediction equation and update equation of
the Kalman filter, the navigation error during the zero-speed
stage of pedestrians can be corrected, leading to an enhancement
in pedestrian positioning accuracy.

3.2. mmWave-Mapping-Assisted by Inertial Positioning

3.2.1. mmWave Data Preprocessing

In our solution, the employed 77GHz small single-channel
mmWave radar operates as a continuous wave radar utilizing
an FMCW transmission signal. The primary measurements per-
formed by themmWave radar encompass distance (range), veloc-
ity (velocity), and angle of arrival (angle) estimation for objects
located in front of the radar. Through the mmWave radar signal
processing flow, the distance, velocity, and angle are estimated,
and the signal-to-noise ratio is calculated using the energy peak
value to generate point cloud data.

Upon receiving the point cloud acquired by the data receiving
module of the mmWave radar board, the data preprocessing
module initiates an input-level filtering process. This step is nec-
essary due to potential deviations in the point cloud’s positional
accuracy caused by factors such as the radar board’s placement or
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echo processing. To rectify the point cloud’s generation, the
point cloud correction module is employed to align the points
with their correct positions. Subsequently, the filter module elim-
inates noise points generated by external disturbances affecting
the mmWave, retaining only the relevant environmental infor-
mation crucial for accurate mapping purposes.

3.2.2. Occupancy Map Construction

Given accurate sensor measurements and location information
L, local map can be directly mapped to the world coordinate sys-
tem, allowing for the rapid creation of a global map. However,
both sensor data z from adopted mmWave radar sensor and the
acquired pedestrian location L from Equation (5) contain inevi-
table errors and noises, necessitating the use of probabilistic
occupancy grid mapping as a solution.[29,30]

In the occupancy grid mapping, each point is assigned one of
two states: occupied (represented by 1) or free (represented by 0),
corresponding to the presence or absence of obstacles, respec-
tively. However, in the occupancy grid map, instead of binary
values, probabilities are employed to represent the states of
the points. Specifically, pðs ¼ 1Þ denotes the probability of a point
being in the free state, while pðs ¼ 0Þ represents the probability
of it being in the occupied state. These probabilities sum up to 1,
and their ratio is introduced as the measure of the point’s state:

mapðsÞ ¼ pðs ¼ 1Þ
pðs ¼ 0Þ (14)

For each point, a measurement observation z � ð0, 1Þ is incor-
porated, and subsequently, the status of the measurement obser-
vation is updated. Prior to obtaining themeasured value, the state
of the point is denoted as mapðsÞ, which is updated using the
following formula:

mapðsjzÞ ¼ pðs ¼ 1jzÞ
pðs ¼ 0jzÞ (15)

Applying Bayes’ formula yields8>>><
>>>:
pðs ¼ 1jzÞ ¼ pðzjs ¼ 1Þpðs ¼ 1Þ

pðzÞ
pðs ¼ 0jzÞ ¼ pðzjs ¼ 0Þpðs ¼ 0Þ

pðzÞ
(16)

By substituting Equation (16) into Equation (15), the following
expression is obtained:

mapðsjzÞ ¼ pðzjs ¼ 1Þ
pðzjs ¼ 0ÞmapðsÞ (17)

By taking the logarithm of both sides of the equation, the fol-
lowing expression is obtained:

logmapðsjzÞ ¼ log
pðzjs ¼ 1Þ
pðzjs ¼ 0Þ þ logmapðsÞ (18)

Since only the term log pðzjs¼1Þ
pðzjs¼0Þ incorporates the measurement

observation, it is defined as the measurement model (measure-
ment model):

meas ¼ log
pðzjs ¼ 1Þ
pðzjs ¼ 0Þ (19)

For the measurement model meas, it exhibits two states,
namely “free” and “occupied”:
8>>><
>>>:
free ¼ log

pðz ¼ 0js ¼ 1Þ
pðz ¼ 0js ¼ 0Þ

occu ¼ log
pðz ¼ 1js ¼ 1Þ
pðz ¼ 1js ¼ 0Þ

(20)

By introducing the state variable S to represent the position s,
the update rule can be further simplified as follows:

Sþ ¼ S� þ log
pðzjs ¼ 1Þ
pðzjs ¼ 0Þ (21)

Here, Sþ represents the state of grid s after incorporating the
measurement value, and S� represents the state of grid s before
the measurement value. The initial state of a grid is denoted as
Sinit. Since the default probabilities for grid being idle or occu-
pied are both 0.5, we have

Sinit ¼ log
pðs ¼ 1Þ
pðs ¼ 0Þ ¼ 0 (22)

After constructing the model and updating each grid state
through a series of transformations, only simple addition is
required:

Sþ ¼
�
S� þ free, or
S� þ occu

(23)

3.2.3. Occupancy Map Update

To update the global map, radial insertion is employed based on
the point cloud data from our adopted mmWave radar, as
depicted in Figure 2. The black region in the figure represents
the grid containing an obstacle. Initially, a frame of mmWave
radar data is acquired, along with corresponding location infor-
mation L from Equation (5) using a foot-mounted IMU. By cal-
culating the grid number associated with the IMU position
within the frame, each scan point in the mmWave radar data
is traversed. The grid serial number of every obstacle hit within
the pixel coordinate system is determined, connecting the

Figure 2. The process of probabilistic occupancy grid map update.
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current pedestrian location’s grid serial number to the grid serial
number of the mmWave radar scanning point with a line. This
line signifies an empty raster marker and records the position
within the collection.

This process is repeated for each identified obstacle point,
resulting in a set of blank grids based on each frame’s point
cloud. Grids containing obstacles are marked as occupied within
this set. Simultaneously, within the set of empty grids, any grids
previously marked as occupied due to the addition of an obstacle
point are removed. After inputting each IMU location and its cor-
responding sensor point cloud, the global grid is iteratively
updated using this procedure, ultimately completing the update
of the occupancy grid map.

3.3. Focal-Loss-Enhanced Semantic Segmentation Using
mmWave Radar Data

Inspired by PointNetþþ,[31] we design an encoder–decoder-
based semantic segmentation framework that inputs mmWave
radar map from Equation (14)–(23) of last subsection and radar
intensity, and outputs semantic map, as depicted in Figure 3.
PointNetþþ is a well-suited framework for processing
point cloud data, owing to its hierarchical structure that effec-
tively captures features at various scales. However, unlike
LiDAR data (with ten thousands of points), point clouds
obtained from mmWave radar are considerably less abundant
(with only hundreds of points), making it challenging to perform
semantic segmentation according to object shape alone. To
address this problem, along with point clouds, we incorporate
the radar’s signal intensity, which provides complementary
information about material properties and object surface, into
our semantic segmentation neural network model. This
integration enables a more robust discrimination between
different object classes based on their radar reflectivity
characteristics. Additionally, to mitigate the data imbalance
issue, we introduce focal loss[32] as an auxiliary during the train-
ing process.

3.3.1. Semantic Segmentation Framework

As shown in Figure 3, the feature encoder module of our
mmWave semantic segmentation framework performs multi-
level downsampling using set abstraction structures to extract
point-wise features at different scales,[33] from a combination
of mmWave point clouds and radar intensities as input. Set
abstraction consists of three modules: sampling, grouping,
and feature extraction. First, farthest point sampling is used
to downsample the point set, reducing its scale while ensuring
uniformity. Grouping creates local neighborhoods by finding
neighbors for each key point. Feature extraction module pro-
cesses these neighborhoods, producing an output of feature.
This downsampling characterization process is repeated at each
level of set abstraction, generating smaller point sets.

The decoder module for the segmentation task employs an
upsampling process. This is achieved through reverse interpola-
tion and skip connections, enabling the acquisition of both local
and global point-wise features to enhance the discriminative
nature of the final representation. This framework introduces
a reverse interpolation method to implement the structure of
the upsampling decoder and obtain discriminative point-wise
features through reverse interpolation and skip connections.
By iteratively performing reverse interpolation and incorporating
skip connections, the decoder progressively samples local and
global point-wise features. The resulting global point-wise fea-
ture, which captures discriminative characteristics, is then uti-
lized for the segmentation task.

3.3.2. Optimization Loss

The original PointNetþþ is trained with the cross-entropy loss
function (CE Loss), defined as

CE Loss ¼ �
XC
i

ti logðsiÞ (24)

Figure 3. The deep-neural-network-based semantic segmentation model for processing mmWave radar data in our proposed SmokeNav framework.
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where C represents the number of categories, ti denotes the true
value, and si refers to the predicted score.

Our map semantic segmentation algorithm, using mmWave
radar point cloud and reflectivity information, achieves favorable
results when categorizing the point cloud map into two classes
(e.g., walls, obstacle boxes), as these two classes are different in
their shapes. However, further categorization into three and
more classes (e.g., walls, paper boxes, and metal boxes) poses
challenges due to imbalanced samples, leading to varying
weights within the training model, in our experiments. To
address this data imbalance problem in the segmentation task,
focal loss[32] is employed, assigning higher weights to

challenging examples and mitigating the impact of imbalanced
data. Specifically, in our model, the focal loss function is intro-
duced, improving upon the weighted CE Loss and ensuring a
balanced allocation of penalties across different categories.
Specifically, focal loss is formulated as

Focal Loss ¼ �
XC
i

ð1� siÞγ ti logðsiÞ (25)

where ð1� siÞγ represents the weight factor, where γ ≥ 0. This
factor is used to reduce the penalty for correctly classified cate-
gories, effectively adjusting the balance of the categories without
increasing computational complexity. By employing the focal
loss function, the issue of data imbalance in the segmentation
of mmWave radar point clouds can be addressed.

4. Experimental Section

In this section, we conducted extensive experiments to demon-
strate the effectiveness and robustness of our proposed

Table 1. The comparison of mmWave radar and LiDAR in terms of their
cost, weight, and power.

Cost [$] Weight [Kg] Power [W]

LiDAR (Livox Avia) 1000 0.5 9

mmWave radar (TI IWR-1843) 200 0.03 2

Figure 4. Comparing our proposed d) mmWave/IMU-based mapping with a) floor map, b) LiDAR/IMU-based mapping, and c) mmWave/odometry-
based mapping in a corridor.
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SmokeNav system in complex real-world situations. First, an
evaluation of the system’s performance in localizing and map-
ping was conducted in a long corridor. Then, we investigated
the system’s generalization ability in smoke-filled environments,
assessing its mapping and semantic segmentation capabilities
across diverse rooms. Finally, we extended our evaluation to
encompass more intricate scenarios, specifically those featuring
obstacles composed of various materials.

4.1. Experimental Platform

Figure 1 illustrates our proposed SmokeNav system, comprising
a small-sized mmWave radar and a MEMS IMU (MIMU). We
used TI IWR 1843 as mmWave radar in our SmokeNav system.
The participant was equipped with a MIMU sensor affixed to
their feet and a compact single-channel mmWave radar mounted
on their body. Our methodology was compared against a repre-
sentative LiDAR-inertial odometry algorithm, i.e., Fast-LIO2,

[10]

as well as a typical mmWave-odometry-based solution.[16]

These algorithms served as baselines in our localization and
mapping experiments.

We compared the cost, weight, and power consumption of the
mmWave radar and LiDAR devices used in our experiments. As
shown in Table 1, the single-chip mmWave radar was relatively
low cost, lightweight, and energy efficient compared to solid-state
LiDAR. Therefore, mmWave radar was more suitable for

integration into wearable localization and mapping systems
for first responders.

In the context of semantic segmentation, commonly utilized
evaluation metrics included Intersection over Union (IoU) and
Mean Intersection over Union (Mean IoU). These metrics pro-
vided an assessment of the segmentation results’ quality. The
segmentation algorithm assigned a predicted semantic label to
each point within the point cloud, which was then compared
to the ground-truth label. Regarding category labels, three met-
rics were computed: true positive, false positive, and false nega-
tive. The intersection ratio represents the ratio of the intersection
between the prediction result of a specific category and the actual
value to the union. The IoU was calculated via

IoU ¼ TP
TPþ FPþ FN

(26)

4.2. Test 1: Localization and Mapping in Corridor

To assess the localization and mapping performance of our pro-
posed SmokeNav system, we initially conducted experiments
within a 100m long corridor. Two boxes, representing obstacles,
were strategically positioned at the opposite corners of this cor-
ridor. We selected five positioning marks to evaluate the accuracy
of our system’s positioning, which are illustrated in the plan map
depicted in Figure 4a.

Figure 5. The obstacles are placed in experimental scenes. (Up) Real scene, (middle) LiDAR-generated map, and (down) mmWave-radar-generated map
from our proposed SmokeNav.
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Figure 4 show cases the mapping results generated by three
different methods: our SmokeNav system employing mmWave
radar and IMU (referred to as “mmWaveþ IMU”), FastLIO2[10]

utilizing LiDAR and IMU, and a conventional mmWave radar
mapping solution that utilized mmWave radar and wheel odom-
etry (referred to as “mmWaveþ odometry”). LiDAR sensors
were capable of producing a substantial amount of precise point
cloud data, enabling more dense and accurate mapping com-
pared to mmWave-radar-based mapping. In contrast, the
mmWave radar sensor we employed was relatively small, light-
weight, and cost-effective when compared to LiDAR sensors.
Our SmokeNav system generated maps with contours similar
to those generated by LiDAR, whereas the map produced by
the “mmWave radarþ odometry” solution exhibited noticeable
shape changes, attributed to localization drifts in odometry.

Furthermore, to evaluate the obstacle detection capability of
our SmokeNav system, we introduced two boxes as obstacles
within the experimental scene, as depicted in Figure 5 (up).
Notably, both our SmokeNav system and the LiDAR/IMU-based
solution accurately depicted the obstacles in the resulting map, as
demonstrated in Figure 5 (down) and (up).

Subsequently, we conducted an evaluation of the positioning
performance exhibited by our proposed SmokeNav system in
comparison to other baseline methods. The trajectories gener-
ated by our SmokeNav system utilizing mmWave radar and IMU
(mmWaveþ IMU), FastLIO2[10] employing LiDAR and IMU, and
the “mmWave-radarþ odometry”-based solutions are depicted in
Figure 6. Both our SmokeNav system and FastLIO2[10] demon-
strated trajectories that closely resembled the ground-truth trajec-
tory, while mmWaveþ odometry solution saw a large localization
drifts. To gather quantitative results, we carefully selected five
positioning marks. The positioning results of our SmokeNav sys-
tem and the baseline methods are summarized in Table 2. Our
proposed method achieved a positioning accuracy of 2.32m,
which closely aligned with the accuracy of 2.53m attained by
the “LiDARþ IMU”-based method. Importantly, when compared
to the positioning accuracy of 10.03m obtained by fusing
mmWave radar with wheel odometry, our approach combined
data from mmWave radar and IMU, resulting in an approximate
2.33-fold increase in positioning accuracy.

4.3. Test 2: Mapping in Smoky Environment

We proceeded to evaluate the performance of our proposed
SmokeNav system in smoky environments.

We first evaluated the mapping performance in an outdoor
area with seven randomly placed obstacles. As shown in
Figure 7, our SmokeNav system consistently produced reliable
mapping results, while the LiDAR system struggled to map
the obstacles due to the smoke, which obstructed the LiDAR sig-
nal and caused the obstacles to appear cloudlike.

We then conducted a mapping experiment indoors. The data
collection took place in two distinct rooms, Room A and Room B.
To evaluate the system’s generalization capability in unfamiliar
settings, we trained a deep-neural-network-based semantic seg-
mentation model on data gathered from Room A and tested it
in Room B.

Figure 8a provides a visualization of Room B under
smoke-free conditions, while Figure 8b showcases Room B in
an environment filled with smoke. Initially, we employed a
“LiDARþ IMU”-based solution to map the surroundings.
However, it was evident that LiDAR-based mapping failed to distin-
guish obstacles from smoke. This limitation arose from the absorp-
tion and scattering of LiDAR’s laser beams by smoke particles,
impeding accurate object detection and measurement behind the
smoke. Moreover, the scattered light created interference, resulting

Figure 6. The generated trajectories from our proposed mmWaveþ IMU-based (i.e., our SmokeNav), LiDARþ IMU-based (i.e., FastLIO2
[10]), and

mmWaveþ odometry-based solutions.

Table 2. The localization results (m) of our proposed SmokeNav
(i.e., mmWaveþ IMU) comparing with LiDARþ IMU and mmWaveþ
odometry in the corridor experiment.

Point LiDARþ IMU mmWaveþ odometry mmWaveþ IMU (ours)

1 2.66 6.14 1.91

2 3.27 5.72 1.84

3 1.74 9.36 2.90

4 2.87 10.72 2.24

5 1.73 15.16 2.56

Average 2.53 10.03 2.32
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Figure 7. Obstacles are randomly placed in an outdoor area with smoke. (Top) Real scene, (middle) LiDAR-generated map, and (bottom) mmWave-
radar-generated map from our proposed SmokeNav system.

Figure 8. LiDAR/IMU-based mapping in the environments a) without or b) with smoke.
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in distance measurement inaccuracies and making it arduous to
differentiate between obstacles and smoke. Consequently, this
diminished the reliability of mapping and object detection capabili-
ties for first responders in smoky environments.

This test setup required the segmentation of objects into two
distinct categories: walls and obstacles. Figure 9 exhibits the
semantic segmentation outcomes obtained from mmWave-
radar-based mapping in smoky Room B. Our proposed
SmokeNav system utilizing mmWave radar and IMU was com-
pared against the “mmWave radarþ odometry”-based mapping
approach. To demonstrate the effectiveness of introducing reflec-
tivity, we compared the recognition accuracy of these methods
with and without the utilization of reflectivity. It was apparent
that the introduction of reflectivity significantly enhanced the
accuracy of semantic segmentation recognition under typical
smoky conditions, regardless of whether mmWave radar/
odometry-based or mmWave radar/IMU-based method was
employed. The quantitative results of semantic segmentation
in this test configuration are presented in Table 3. Our
SmokeNav system notably outperformed the other baseline
methods. It was worth noting that SmokeNav was trained in
Room A but successfully tested in Room B, thus highlighting
its effectiveness in real-world unfamiliar environments.

4.4. Test 3: Semantic Mapping to Detect Obstacles with
Different Materials

In addition to the generalization test discussed in the previous
subsection, Test 3 aimed to assess the performance of

semantic mapping in both Room A and Room B under
more complex setups. Specifically, the objects were required
to be categorized into walls, carton boxes, and metal boxes.
This evaluation intended to demonstrate the effectiveness of
incorporating focal loss into deep-neural-network-based seman-
tic segmentation.

Figure 10 showcases the results of semantic segmentation
obtained in Room A and Room B, respectively. The IoU metric
was calculated to quantify the accuracy of semantic segmentation
in both environments, as presented in Table 4. Remarkable
enhancements in recognition accuracy were observed following
the integration of mmWave radar reflectivity information into
the segmentation process. Our SmokeNav system (utilizing
mmWave radar and IMU with reflectivity) significantly outper-
formed both the “mmWave radarþ odometry”-based mapping
and the “mmWave radarþ IMU”-based mapping without
reflectivity.

Specifically, in Room A, the introduction of point cloud reflec-
tance information resulted in substantial improvements.

Figure 9. The results of mmWave-radar-based mapping and semantic segmentation in smoky environments of Test 2: a) mmWave/odometry-based
mapping and b) mmWave/IMU-based mapping (SmokeNav, ours).

Table 3. The results of semantic segmentation in smoky environment
(IoU).

Wall Box Average

mmWaveþ odometry (without intensity) 0.4412 0.2741 0.3577

mmWaveþ odometry (with intensity) 0.8543 0.5176 0.6860

mmWaveþ IMU (without intensity) 0.3622 0.1802 0.2712

mmWaveþ IMU (with intensity) (ours) 0.9028 0.6685 0.7857
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The wall recognition accuracy rate exhibited a notable increase of
101.26%, while the accuracy rate for recognizing paper obstacle
boxes improved by 232.10%. Moreover, the visibility of metal
obstacle boxes was significantly enhanced, making them easily
distinguishable. As a result, the overall recognition accuracy
rate experienced a substantial boost of 228.74%. Similarly, in

Room B, the inclusion of point cloud reflectance information
led to a wall recognition accuracy rate increase of 105.71%, a
paper obstacle box recognition accuracy rate increase of
192.94%, and transformed the metal obstacle boxes from being
unrecognizable to visible. Consequently, there was a remarkable
overall recognition accuracy rate improvement of 234.24%.

Figure 10. The comparison of different semantic mappingmethods under smoky conditions in Test 3: a) mmWave/odometry-based mapping in Room A;
b) mmWave/IMU-based mapping (SmokeNav, ours) in Room A; c) mmWave/odometry-based mapping in Room B; and d) mmWave/IMU-based map-
ping (SmokeNav, ours) in Room B.

Table 4. The results of semantic segmentation in smoky environments (IoU).

Room A Room B Average

Wall Carton box Metal box Average Wall Carton box Metal box Average

mmWaveþ odometry (without intensity) 0.3633 0.1134 0.0154 0.1640 0.4981 0.1839 0.0166 0.2329 0.1984

mmWaveþ odometry (with intensity) 0.6911 0.2676 0.4979 0.4855 0.8667 0.5496 0.4062 0.6075 0.5465

mmWaveþ IMU (without intensity) 0.3976 0.1187 0.0151 0.1771 0.3955 0.1544 0.0125 0.1875 0.1823

mmWaveþ IMU (with intensity) 0.8002 0.3942 0.5522 0.5822 0.8136 0.4523 0.6140 0.6267 0.6044
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5. Conclusion and Discussion

This work aims to address the problems of localization, mapping,
and semantic understanding in challenging smoky environ-
ments, particularly in scenarios involving first responders.
Our proposed SmokeNav system, which combines mmWave
radar and IMU data, exhibits superior performance across vari-
ous evaluation scenarios. The integration of reflectivity informa-
tion effectively enhances the recognition accuracy of walls and
various object categories, surpassing baseline methods such as
“mmWave radarþ odometry”- and “mmWave radarþ IMU”-
based method. The promising results obtained in different
environments validate the effectiveness and adaptability of
SmokeNav, making it a valuable solution for accurate localiza-
tion, mapping, and obstacle detection in challenging real-world
settings. SmokeNav enables improved situational awareness,
facilitating more effective navigation and decision-making for
emergency responders in challenging and hazardous conditions.

Although mmWave radar systems are relatively low cost,
energy efficient, and capable of penetrating smoke and fog, they
have certain limitations due to the intrinsic properties of their
signals and devices. For instance, mmWave radar typically offers
lower spatial resolution than LiDAR, leading to less detailed
maps and reduced accuracy in detecting smaller objects or fine
features in the environment. Additionally, mmWave radar is sus-
ceptible to multipath effects, where signals reflect off multiple
surfaces, creating clutter and ghost objects that complicate accu-
rate localization and mapping. While mmWave radar can pene-
trate through smoke, fog, and dust, its effective range is generally
shorter than that of LiDAR, particularly in clear conditions,
which can limit its utility in large open spaces. The angular reso-
lution of mmWave radar is also often inferior to that of LiDAR,
making it less effective in distinguishing closely spaced objects
or in providing precise angular information. Therefore, future
research is needed to develop novel data processing techniques
and more advanced measurement platforms to further enhance
the performance of mmWave radar systems.

Future research can focus on expanding the capabilities of
SmokeNav by incorporating additional sensing modalities and
advanced machine-learning techniques. Exploring the integra-
tion of other data sources, such as thermal imaging or gas sen-
sors, could further enhance the system’s performance and enable
comprehensive perception in highly dynamic and unpredictable
environments. Additionally, refining the system’s real-time proc-
essing capabilities and exploring optimization techniques can
contribute to its practical deployment in real-world scenarios,
supporting first responders in their critical missions.
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