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Abstract. The consumption of digital content products (e.g., video
games and live streaming) is often associated with multi-faceted,
dynamically interacting consumer behavior that is subject to influ-
ence from pertinent external events. Inspired by these characteristics,
we develop a novel attention-based neural point process approach to
holistically capture the richness and complexity of consumer behav-
ioral dynamics in modern digital content consumption. Our model fea-
tures a new multi-representational, continuous-time attention mecha-
nism that can flexibly model dynamic interactions between different
types of behavior under external influence. Using learned representa-
tions as sufficient statistics of past events, we build a marked point
process to efficiently characterize the occurrence time, behavior com-
bination, and consumption quantity of consumers’ future activities.
We illustrate our model development and applications in the empirical
context of a sports video game, showing its superior predictive perfor-
mance over a wide range of baseline methods. Leveraging individual-
level parameter estimates, we further demonstrate our model’s util-
ity for conducting segmentation analysis and evaluating the effects of
past events on consumers’ future engagement. Our model provides
managers and practitioners with a powerful tool for developing more
effective and targeted marketing strategies and gaining insights into
consumer behavioral dynamics in digital content consumption.
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1. Introduction

The production and consumption of digital content is one of the most profound developments in
business and technology in the last two decades. Fueled by advances in information technolo-
gies, products such as music streaming, on-demand movies and videos, live event streaming, and
video games have become a prominent component of consumption by modern-day consumers. It
is estimated that in 2020, the average consumer spent nearly 7 hours per day consuming digital
content (DoubleVerify 2020), and the revenue of digital content industries exceeded $257 bil-
lion (Statista 2020). To capture business opportunities in these markets, it is imperative to develop
new methods that can best harvest the value in the consumption data of increasing granularity and
complexity to gain insights into consumer behavioral dynamics. Such insights can help content
developers and marketing practitioners implement more effective product design and promotion
strategies.

As compared with the consumption of traditional products and services, digital content con-
sumption has several unique characteristics. First, consumer behavior in digital content consump-
tion is often multi-faceted. A single session of content consumption activity often consists of
various types of consumer behavior that may occur concurrently. For instance, consumers can
leave live comments or tip video streamers when watching videos on a streaming platform, and
video game players can make in-consumption purchases when playing a game session. The variety
and concurrency of different behaviors greatly shape consumers’ content consumption experience.
Therefore, to understand consumer engagement, it is critical to model multiple types of consump-
tion behavior jointly and their concurrent patterns, rather than examining each type of behavior
separately. Second, digital content consumption often occurs episodically, with consumers access-
ing the content repeatedly over time, which results in complex intertemporal dynamics across
different consumption activities. The multi-faceted nature of consumption behavior further com-

plicates the dynamics. As a result, consumers’ future engagement is no longer only determined



Yin et al.: Modeling Behavioral Dynamics in Digital Content Consumption
Article submitted to Marketing Science 3

by their past experiences in a single type of consumption behavior. A clear picture of consumer
engagement should consider the dynamic interactions between the same and different types of con-
sumption behavior. Third, consumer behavior in digital content consumption is often influenced by
external events related to the product, particularly when the digital content has a real-world back-
drop. For example, music artists’ offline activities may affect consumers’ music consumption in
online streaming services, and players’ video game consumption could be influenced by real-world
events relevant to where the game is situated (e.g., sports, gardening, construction). To gain more
accurate insights into consumer behavioral dynamics, it is crucial to account for the influence of
pertinent external events.

Despite a growing body of research examining consumer behavioral dynamics in different dig-
ital content consumption contexts, no existing methods can be effectively applied to account for
the aforementioned three characteristics. Most studies focus on modeling only one facet of con-
sumption behavior and treat others as fixed variables without considering their dynamic interplay
and potential external influences (e.g., Dew and Ansari 2018, Huang et al. 2019). To account for
the variety of consumer behavior, one line of work in the business literature relies on classic mul-
tivariate point processes (Xu et al. 2014, Aggarwal et al. 2021), where each marginal process is
calibrated to model one type of behavior. However, this class of statistical models (e.g., multivariate
Hawkes processes (Hawkes 1971a,b)) typically makes strong assumptions, such as that interac-
tions between different types of behavior are mutually exciting according to a particular parametric
form, which may fail to capture the complexity of behavioral dynamics in digital content consump-
tion. Moreover, the nature of multivariate point processes allows only one type of behavior to occur
in a session of consumption activity, so they cannot directly model the concurrency of multiple
behaviors.

In the more general context of modeling event dynamics (Aalen et al. 2008), an emerging stream

of research in the machine learning literature has started to leverage the flexibility of recurrent
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neural network (RNN) to alleviate the potential model misspecification problem of classic point
processes (e.g., Du et al. 2016, Mei and Eisner 2017). The main idea is to employ variants of
RNN to learn a representation of the event history and use the learned representation as sufficient
statistics of a marked point process to characterize the occurrence of future events. Although these
approaches have improved performance over classic models in various event prediction tasks, they
still suffer from several limitations when applied to model consumer behavioral dynamics in digital
content consumption (see Section 5.1 for more details of these approaches). First, they heavily rely
on RNN, which encodes a consumer’s historical consumption information into a single hidden state
vector to make future predictions. Consequently, they have limited capacity for capturing long-
term influence from past events and complex dynamics of multiple behaviors. Second, when these
approaches need to handle the concurrency of multiple behaviors, they must explicitly enumerate
all possible behavior combinations (i.e., which subset of behaviors would occur in a consumption
activity), leading to an exponential explosion in the number of parameters to be estimated. Third,
in the presence of concurrent behaviors, the mark density function in these approaches needs to
be used to specify the distribution of all possible behavior combinations. Hence, there is no sys-
tematic way to model and predict consumption quantity (e.g., the duration of song listening and
video watching, purchase amount), which is highly indicative of a consumer’s in-consumption
engagement.'

In this paper, we develop a new attention-based neural point process approach to holistically
account for the three essential characteristics of consumer behavior in digital content consumption.
To capture the complex dynamics of multi-faceted consumption behavior under external influ-
ence, we first introduce a novel multi-representational, continuous-time attention mechanism on
top of a widely used RNN architecture to learn multiple representations of consumption history.

!'See Table EC.1 in Online Appendix A for a summary of more literature on modeling consumer behavioral dynamics.
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Then we use the learned representations to build a univariate marked point process that couples
the occurrence of multiple consumption behaviors. Moreover, we integrate hurdle models into the
mark density function of the process to efficiently model the concurrency and consumption quan-
tity of multiple behaviors. Our approach has three major innovations. First, unlike state-of-the-art
RNN-based methods (e.g., Du et al. 2016, Mei and Eisner 2017) that encode a consumer’s his-
torical information into a single hidden state vector, our attention mechanism adaptively learns
the relevance of all previous hidden states to form multiple representations of past events. Each
representation identifies a unique and relevant aspect of the history for influencing each type of
consumption behavior, thus significantly reducing irrelevant noises and increasing the flexibil-
ity to model dynamic interactions of multiple behaviors. Second, as consumption activities often
occur at irregular time intervals, classic discrete-time attention mechanisms (e.g., Bahdanau et al.
2015) cannot account for continuous-time information in a consumer’s consumption journey. We
introduce a new time-decaying factor into the calculation of attention weights that can seamlessly
incorporate rich elapsed time information into the learned representations of history. Third, the
univariate nature of the process, together with custom-designed hurdle models, allows our method
to efficiently handle the concurrency and all possible behavior combinations without an exponen-
tial explosion in the number of model parameters. The hurdle models also provide a systematic
approach for characterizing and predicting the distribution of consumption quantity, thus generat-
ing a more comprehensive picture of consumer engagement.

We use a dataset from a major sports video game as an example of digital content consumption
to illustrate the model development and applications. We focus on two main types of consumption
behavior in video games, namely game-play and in-game purchase, and their dynamic interactions
under the influence of relevant real-world professional sports matches. Based on players’ past tra-

jectories, our proposed approach can predict the occurrence time, behavior combination (i.e., login
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only, game-play only, purchase only, and concurrent game-play and purchase), and consumption
quantity (i.e., game-play duration and purchase count) of future activities. Extensive experiments
show that our model consistently outperforms a wide range of baseline methods, including two
state-of-art recurrent marked point processes, a Bayesian survival model, a hidden Markov model,
and other classic machine learning and statistical models. Various ablation studies are conducted
to demonstrate the importance of incorporating each characteristic of digital content consump-
tion into our framework. Leveraging individual-level parameter estimates, we further illustrate our
model’s utility of generating in-depth insights into consumer behavioral dynamics by performing
consumer segmentation and evaluating the effects of past events. Our proposed approach provides a
flexible and effective tool to help marketing practitioners and business managers better understand
consumer behavior in digital content consumption and shed new light on their strategic designs
and targeted marketing actions.

The remainder of the paper is organized as follows. We discuss the conceptual research back-
ground for our work in Section 2. Section 3 provides an overview of our dataset in the empirical
context of sports video games. Model development, evaluation, and applications are described in
Sections 4, 5, and 6. We conclude the paper with a discussion of managerial implications and
avenues for future research in Section 7.

2. Research Background

In this section, we first summarize the essential characteristics of consumer behavior in digital con-
tent consumption that serve as the foundation and motivation for our model development. We then
review the literature on player engagement, which provides further psychological and behavioral

support for our concrete model specifications in the context of sports video games.

2.1. Digital Content Consumption
Digitization has revolutionized the production and consumption of media and entertainment prod-

ucts. The hedonic nature of these products, coupled with the fast and flexible delivery enabled
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by digital technologies, have made digital content consumption an on-demand and multi-tasking
process. Consumers have unprecedented control over when, what, and how much to consume. Our
discussion below focuses on three characteristics essential to capturing the richness and complex-
ity of consumer behavior in digital content consumption: multi-faceted, dynamically interacting,
and susceptible to external influence.

First, a typical business model of digital content consumption is characterized by various types
of behavior that may occur concurrently, rather than just a single type of consumption behavior,
in a session of consumption activity. For example, users can make live comments when watching
online videos with a series of temporal variations in content (Zhang et al. 2020). The duration of
video watching and the volume of live comments are highly indicative of a user’s in-consumption
engagement. Recent live-streaming platforms enable tipping behavior when viewers watch shows.
Lu et al. (2021) examine the concurrency of tipping and viewing behaviors on a live-streaming
platform and find that tipping behavior is influenced by the number of viewers. In the context of
video games, as more features begin to be incorporated into games to improve the user experience,
players are not restricted to only playing the core content in a game session. They may also engage
in other types of behaviors, such as purchasing enhancement packs and communicating with other
players.

Second, unlike many traditional products, such as consumer packaged goods, digital content
does not disappear upon consumption. As compared to “finishing” a bottled drink, consumers
can repeatedly access digital content (e.g., music, movies, video games) over time. Because of
the hedonic and experiential nature of digital content consumption, a consumer’s prior consump-
tion experience can significantly influence subsequent engagement. The complexity of behavioral
dynamics is further aggravated by the multifaceted nature of consumption behavior: different types

of behaviors can dynamically interact with each other in an entangled way. For instance, Schweidel
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and Moe (2016) study the effects of previously viewed content and advertising on binge-watching
behavior on a streaming video platform. The results indicate that viewers’ previous viewing behav-
ior stimulates future engagement, whereas viewers’ response to advertisements (i.e., ads click)
appears to discourage subsequent watching behavior. Dynamic interactions also exist between
game-play and in-game purchase behaviors in the context of video games, as discussed in Sec-
tion 2.2.

Third, due to the virtual nature of digital content, pertinent real-world events can affect digital
content consumption. For instance, a music artist’s social activities can influence how consumers
listen to the artist’s songs on streaming services. Martinez et al. (2021) show that the sociopolitical
activism of popular singers has a significant impact on whether their songs would appear in a Spo-
tify playlist. Similarly, the scores of real-world sports matches could affect players’ behaviors (e.g.,
game-play and in-game purchase) in a sports video game. In the context of television advertising,
Fossen and Schweidel (2019) find that product placement as a real-world promotional event can
increase the volume of social media activities and website traffic for the featured brand. More gen-
erally, the interaction between online and offline events is prominent in omnichannel retail (Jing
2018, Tong et al. 2020, Ofek et al. 2011).

Our model simultaneously accounts for these important characteristics of digital content con-
sumption. Though we illustrate its development and applications in the empirical context of sports
video games, the modeling framework is very general and flexible. It can be easily adjusted or
extended to other marketing contexts with multi-faceted, dynamically interacting consumption
behavior under external influence.

2.2. Player Engagement in Video Games
Previous literature has identified various psychological factors that influence player engagement in

video games. For example, applying self-determination theory (SDT; Deci and Ryan 1985), Ryan
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et al. (2006) find that the likelihood and duration of future game-play are associated with players’
satisfaction of psychological needs for competence and relatedness in past in-game experiences.
Another study by Colwell (2007) also confirms that multiple factors, including fun and stress relief,
are major predictors of the frequency and duration of future game-play behaviors. In terms of
players’ repeat in-game purchase behaviors, the existing literature (e.g., Abdul-Muhmin 2010, Hsu
et al. 2015) finds that factors such as satisfaction and trust are important drivers of consumers’
future purchases. Therefore, players’ game-play and purchase intentions are influenced by their
past in-game experiences and can either grow or decay depending on the evolving direction of
these factors. If previous game-play experiences decrease players’ perceptions of their competence,
or past in-game purchases cause frustration and dissatisfaction, players’ motivation and future
engagement may be undermined.

Moreover, researchers have documented the dynamic interaction between game-play and in-
game purchase behaviors in the context of video games. For example, using an online survey,
Mintymiki and Salo (2011) demonstrate that recurring game-play can motivate players’ future pur-
chases of virtual goods. Analyzing online posts on two game bulletin boards, Lin and Sun (2011)
observe mixed effects of in-game purchases on game-play activities: after making purchases, some
players became more active, as they perceived improvements in game-play quality, whereas others
decreased their participation, feeling that such purchases would weaken their appeal for fairness
and put other players at a disadvantage. These findings suggest that game-play and in-game pur-
chase behaviors can dynamically interact with variations in direction and strength. However, the
existing literature on modeling the evolution of player engagement in video games considers only
one type of behavior, either game-play (Huang et al. 2019) or purchase (Dew and Ansari 2018),
while ignoring their dynamic and stochastic interactions.

Another group of factors that can shape player engagement relates to the influence of the real

world. For example, Jung and Pawlowski (2014) interview 93 users from multiple virtual worlds,
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such as the online teenage community and online video games. Their study reveals that instead
of completely isolating themselves in the virtual worlds, users consume virtual goods mainly to
achieve real-world-oriented goals, such as seeking realistic experiences and simulating real-world
activities. Specifically focusing on sports video games, Kim and Ross (2006) find that several fac-
tors, including knowledge and identification of real-world sports, are positively correlated with
player engagement. Priming effects identified in social psychology provide further theoretical sup-
port for the influence of pertinent real-world events (Lashley 1951, Molden 2014). It has been
shown that external stimuli can “prime” individuals to activate relevant concepts in their minds,
with consequent effects on their subsequent behaviors (Wheeler et al. 2014). According to Yi
(1990), such priming has an affective component, which triggers individuals’ emotional reactions,
and a cognitive component, which shapes their perceptions of relevant concepts (Srull and Wyer
1980, Erdley and D’ Agostino 1988). In the context of video games, real-world matches from the
professional sports league take the role of stimuli that may draw players’ attention to related sports
products. To account for potential influences from real-world sports matches, we adopt two impor-
tant match characteristics from the league’s official statistics, the number of highlights and the
absolute score difference, to capture the affective and cognitive priming effects, respectively. The
number of highlights indicates the number of exciting moments in a sports match’, which can
prime players’ affective feelings. Previous research has found that excitement is a crucial factor
for motivating player engagement (Kim and Ross 2006, Ryan et al. 2006). At the same time, the
absolute score difference indicates the match result and can prime players’ cognitive impressions
of the strength of competing teams. As a result, players dissatisfied with a crushing loss in a recent

match might be motivated to play virtual sports games to reduce their cognitive dissonance, while

2 Each sports league has specific measures of exciting moments, such as three-pointers in basketball, shootings in soccer, and big
plays in American football. We use the general term “the number of highlights” here to indicate the number of exciting moments in

a match, which is usually released by the league’s official statistics.
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players whose expectations are confirmed by the result might also play virtual games to enhance
their perceptions.

Motivated by the aforementioned findings, we develop a novel multi-representational attention-
based neural point process to flexibly model players’ complex behavioral dynamics under the
influence of past in-game activities and external sports matches. Our model specification allows the
effects of past events to be either stimulating or inhibiting, and their direction and strength can be

inferred in a data-driven manner. The details of the model development are provided in Section 4.

3. Data Overview

We use a dataset from a leading American video game company” to illustrate the development of
our model and its applications. The video game is designed and officially licensed to simulate the
action and strategy of a real-world professional sports league. We observe two types of consump-
tion behavior in the dataset: players can play game sessions in various modes (game-play) and may
optionally purchase card packs to enhance their game experience (in-game purchase).

The dataset spans August 2014 to February 2015. Players with a minimum of five in-game activi-
ties were selected”, resulting in a dataset of 2,020 players with a total of 143,509 in-game activities.
For each in-game activity, we observe its occurrence time (i.e., login time), behavior combina-
tion (i.e., login only, game-play only, purchase only, and concurrent game-play and purchase), and
consumption quantity (i.e., game-play duration and purchase count). The summary statistics of
all in-game activities are reported in the upper part of Table 1. By examining the distribution of
the behavior combination, we find that most in-game activities (75.57%) involve game-play only

3 We are unable to reveal the name of the company and the video game because of a non-disclosure agreement.

* When evaluating the performance of all models (Section 5), we use 60%, 20%, and 20% of player activities in each event sequence
for training, validation, and testing, respectively. Players with fewer than five in-game activities are not applicable in such an
evaluation procedure, so they were removed. Only eight players with 27 in-game activities in total were not included in our study,

accounting for less than 0.4% of all players.
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Table 1 Event-Level Summary Statistics

Event Characteristics/Marks Mean SD Min Max
.. Game-play duration (in hours) 1.87 2.28 0 43.46
In-game player activity
Purchase count 0.44 1.21 0 30
Real-world sports match Number of highlights 12.97 4.08 4 25
Absolute score difference 12.61 9.54 0 52

Note. Number of in-game player activities [N = 143, 509. Number of real-world sports matches in the same time period Ng = 268.

without any enhancement pack purchase. In comparison, 2.88% are purchase-only activities, and
16.39% of in-game activities have concurrent game-play and purchase. The rest comprise login-
only records (5.16%), probably because players were browsing the e-shop or visiting the video
game community without any game-play or purchase.

As discussed in Section 2.2, players’ in-game activities may be influenced not only by their past
activities but also by relevant real-world events. To investigate the influence of pertinent sports
matches, we collected statistics on all 268 real-world matches from the professional sports league
in the same time period. We consider the affective and cognitive priming effects from the exter-
nal stimuli, and thus focus on the two important match characteristics available on the official
league website: the number of highlights (i.e., exciting moments) and the absolute score difference
between the competing teams. The summary statistics of these two variables are shown in the lower

part of Table 1.

Table 2 Sequence-Level Summary Statistics

Variable Mean SD Min Max
Total number of in-game player activities 71.04 42.45 5 186
Total number of real-world sports matches 214.48 86.13 1 268
Total game-play duration (in hours) 133.20 116.28 0 901.42
Total purchase count 31.70 43.62 5 563

Note. Number of sequences/players I = 2,020.
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Figure 1 An lllustrative Example from Our Dataset of a Sports Video Game

O In-Game Player Activity A Real-World Sports Match
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Player A Dur:3.1 Dur: 0 Highlight: 21 Dur: 1.9 Dur: ?
Cnt: 3 Cnt: 2 ScoreDiff: 9 Cnt: 0 Cnt:?

Note. For each player, we observe a sequence of in-game activities where the player can play game sessions or purchase card
packs. For each in-game activity (depicted as circles), we observe the player’s consumption quantity, i.e., game-play duration (Dur,
in hours) and purchase count (Cnt). Real-world sports matches (depicted as triangles), with the number of highlights (Highlight)

and absolute score difference (ScoreDiff) as the event characteristics, may influence players’ in-game activities.

In our dataset, we have access to the timestamp when each player activated the game, which
allows us to calculate the elapsed time of each event (i.e., in-game player activity or real-world
sports match) since the activation of the game. Based on the occurrence time, we construct an event
sequence for each player by sorting the events that the player has experienced in chronological
order. Figure 1 provides an illustrative example of a player’s event sequence with both in-game
activities and real-world sports matches. The sequence-level summary statistics are provided in
Table 2. On average, each event sequence includes about 71 in-game player activities and 215
sports matches.

4. Model Development

We use the context of video games to illustrate our attention-based neural point process approach
to modeling complex consumer behavioral dynamics under external influence. Our approach can
be naturally extended to other digital content consumption contexts. In this section, we first provide
a brief overview of our proposed model and then explain its different modules and estimation

procedure in detail.

4.1. Overview
Consider we have observed the consumption journey of I video game players, where each player

¢ has experienced /NV; in-game activities and sports matches during our observation period. We can
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Figure 2 A High-Level lllustration of Our Proposed Model

O In-Game Player Activity /A Real-World Sports Match
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Recurrent Neural Network Multi-Representational Attention Marked Point Process

represent player i’s event history with a sequence of vectors S; = { (¢, ¢!

i, ¢, mi)} ordered by time,

where tj- is the occurrence time of the j-th event, cé denotes whether the event is an in-game activity
(¢t = 1) or a real-world sports match (¢} = 2), and m/} is a vector (known as marks) capturing
the consumption quantity of in-game activities or characteristics of real-world sports matches. For
the major sports video game introduced in Section 3, the marks of an in-game activity include the
game-play duration and purchase count, and the number of highlights and absolute score difference
are used as marks of a real-world sports match (see Figure 1 and Table 1). Given player ¢’s event

history H; = {(¢%, ¢}

‘¢, mb) [ th < t}, we aim to construct a probabilistic model to characterize the

occurrence time and consumption quantity of future in-game activities.’
Figure 2 shows a high-level overview of our proposed model. The model consists of three key
modules: a variant of RNN architecture known as GRU, multi-representational attention mecha-

5 The occurrence time and marks of real-world sports matches are not stochastically modeled, as we assume that they are not
influenced by virtual in-game activities. Therefore, we construct our probabilistic model of in-game activities conditioned on the

observed real-world sports matches.
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nism, and marked point process. GRU employs highly nonlinear mappings to encode a player’s

event history H; = {(¢%, "

t,¢h,m}) |t <t} into a sequence of hidden state vectors {h’}. Our novel

multi-representational attention mechanism adaptively learns the relevance of {h;} to form mul-
tiple continuous-time representations of past influence on future in-game activities: si;_.(¢) for
initiating an activity and {spy,(t), sp,(t)} for conducting each type of consumption behavior
(i.e., game-play and purchase). The marked point process module uses the learned representations
as sufficient statistics of the event history to parameterize its ground intensity and mark density
functions. The ground intensity function A} (¢) characterizes the instantaneous occurrence rate of
in-game activities and thus can be used to predict the next activity time t; +1- The mark density

function { f}pyy (M | £), fipy(m | t)} specifies the distribution of players’ consumption quantity,

1.e., game-play duration M4 1 play and purchase count M4 pur

4.2. Recurrent Neural Network
Our first step is to use a variant of RNN to extract nonlinear patterns from players’ event history.

For each event (t}, ¢, m’), we compute an embedding vector x as follows:

) = W [At), mj] + b, M

i
where At! =’ — ! | is the elapsed time (with a week as the unit of time) since the last event.”
Using two distinct sets of weight and bias parameters {Wc; , bc; } can account for the possibility
that the influential strength of marks might be different for in-game activities (cé- = 1) and external
events (c} = 2). For example, an in-game activity with 5 hours of game-play and 3 purchases may
have different influence on a player’s subsequent behaviors compared with a sports match with 5
highlights and an absolute score difference of 3. Our estimation procedure described in Section 4.5

is able to infer the different weight and bias parameters in a data-driven manner.

6 Recall from Section 3 that each player has a unique activation time in our dataset, so using the time interval between consecutive

events can offset the different starting timestamps of each player’s event sequence.
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After this embedding step, the vectors {a;z} are of the same length for both in-game activities
and sports matches, so we use them as the unified input to the RNN module. As a class of deep
neural networks, RNN is designed to extract complex nonlinear patterns from sequential data into a
set of hidden states. However, RNN is known to suffer from the “vanishing and exploding gradient
problem” when handling long sequences (Goodfellow et al. 2016). Since many players in our
dataset have long event sequences, we replace standard RNN with gated recurrent unit (GRU) (Cho
et al. 2014), a widely used RNN variant, to avoid this issue. Compared with standard RNN, GRU
incorporates two additional gating units, namely the update gate and reset gate, to selectively keep
relevant information from the past and prevent the gradient from exploding/vanishing.” To apply
GRU to our embedded event vectors {«}, the hidden states {h}} are recursively updated by

processing the current input of the event and the previous hidden state:

h)=GRU(h ,,x}). )
4.3. Multi-representational Attention Mechanism

Although GRU can alleviate the vanishing and exploding gradient problem, it encodes a player’s
historical information into a single hidden state vector, limiting its capacity for capturing long-term
influence from past events and complex dynamics of multiple behaviors. Each hidden state of past
events may have different relevance for future game-play and purchase, but GRU does not account
for it. Moreover, when they are used to characterize the occurrence of future events, the discrete-

time hidden states of GRU cannot incorporate elapsed continuous-time information in players’

event history.

" The structure of GRU and its comparison with standard RNN are provided in Online Appendix B. We also develop a variant of
our model with GRU replaced by the long short-term memory (LSTM, Hochreiter and Schmidhuber 1997). The two variants of our
model show similar predictive performance, but the LSTM variant takes a much longer time and requires more memory to train
because of its more complex structure. This is consistent with the conclusion from other sequence modeling tasks (Chung et al.

2014). Hence, we choose GRU as hidden units in our model.
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To address these issues, we develop a novel multi-representational attention mechanism on top
of GRU that adaptively learns the relevance of all hidden states to form multiple continuous-time
representations of past influence on future in-game activities: s, (¢) for initiating an activity,
Spiay (1) for playing the game, and sp,, () for making a purchase. Specifically, for each hidden state
h’; in GRU, we use the following form to specify its influential scores {€/ ripe (t), €/ pray (), €} pur () }

with respect to a future in-game activity at time ¢:
e’ (t) = tanh (u,;rhjfyk(t —1%)), k € {Time, Play, Pur}, 3)

where the term 7, (t) = e~ “** accounts for the time-decaying effect of past influence. By learning
the parameters {u;} and {wy}, the influential scores {€’ 1y (t), € piay (), €5 py (1) } can adaptively
determine how relevant is each previous hidden state h; for initiating an in-game activity and
conducting each type of behavior (i.e., game-play and purchase) at a future time ¢, with higher
scores being more relevant. For each k € {Time, Play, Pur}, our attention mechanism uses the

normalized influential scores {ag «(t) € (0,1)}, known as attention weights, to construct a weighted

average of all previous hidden states {h} : t} <t}:

exp(ej;,(t))
Zj:t;. <t &XP (eé',k ()

si(t) = Z a’ (t)h, where al (b)) = 4)

Jiti<t
As aresult, 87, (t), Spy,, (1), and sp,, (t) form continuous-time representations of past influence on
initiating a future activity, playing the game, and making a purchase, respectively.

Compared with GRU, our proposed attention mechanism utilizes the information embedded in
the hidden states {h; : t; < t} of all previous events to learn multiple representations of a player’s
event history. Each representation selectively identifies a unique and relevant aspect of the history
for influencing each type of behavior, thus significantly reducing irrelevant noises and increasing

the flexibility to capture dynamic interactions of multiple behaviors. Moreover, the time-decaying
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factor ,(t) in Equation (3) incorporates rich elapsed time information {(t — t}) | ¢\ <t} from
players’ irregular consumption journey into the learned continuous-time representations, enabling
them to be used as sufficient statistics of the history #; U {(t —t?) | t; <t} for characterizing the

occurrence of future in-game activities.

4.4. Marked Point Process

A marked point process is a continuous-time stochastic process that characterizes the occurrence
rate of random events and the generative mechanism of associated marks.® Its multivariate exten-
sions have been found successful in various applications to capture dynamic interactions between
multiple behaviors (e.g., Xu et al. 2014, Aggarwal et al. 2021). However, their multivariate nature
makes them unable to directly model concurrent game-play and purchase as well as login-only
activities observed in our dataset (see Section 3). When each marginal process is used to model one
type of behavior, players can only engage in either game-play or purchase when an in-game activ-
ity occurs. To address this issue, we use the learned representations of the event history to build a
univariate marked point process that couples the occurrence of multiple behaviors. We also inte-
grate hurdle models into the process to efficiently handle the concurrency and all possible behavior
combinations without an exponential explosion in the number of model parameters.

Specifically, let S/ = {(t%, ¢’

o J,mé) | cé- = 1};&'1 be player i’s in-game activity sequence. Each

i

activity (¢}, cj,

m;) can be viewed as a point with marks m; occurring at tj- along the time line. Our
goal is to learn the ground intensity function and mark density function of a marked point process
to describe the generative mechanism of S; and future in-game activities. The ground intensity

function A () characterizes the instantaneous occurrence rate of player i’s in-game activities con-

ditioned on the event history Hi = {(%, ¢!

% ¢,my) |t <t} up to time ¢ (including both in-game

activities and real-world sports matches):

* i . ]PNZ-/t—i-At —Ni’t >0|H
Ni(5) 2 (| HY) = Jim. (Vi >At (1) > 0| i)

(&)

8 Online Appendix C provides a general introduction to marked point processes, including classic multivariate point processes.
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where N/(t) = le | 1(t} <t) is a counting process that counts the number of in-game activities
up to time ¢. The mark density function f(m | t) 2 fi(m | Hi,t) specifies the distribution of
associated marks, namely game-play duration and purchase count.

Since the learned representations {87, (t), Spiay (t), Spy,(t) } in Equation (4) encode the influence
of past events on initiating a future activity, playing the game, and making in-game purchases, we
can use them as sufficient statistics of the event history to parameterize the marked point process
module. Specifically, we first use s&. () to formulate the ground intensity function \}(¢):

A (t) = osp (v"}rimeszfime( )+ leme) = 0gp Z a’;",Time< )lemehZ + leme ) (6)
Jiti<t

where Vi is a parameter to learn and b, specifies the baseline occurrence rate of player i’s

Time
in-game activities to account for consumer heterogeneity. We choose the softplus specification
osp(x) = log(1 + €) to guarantee that the ground intensity function is always positive. More
importantly, our specification allows for both stimulating and inhibiting effects of past events: the
sign of ’lemehZ determines whether event j increases or decreases the ground intensity, and thus
the occurrence rate of in-game activities.

Next, we use {spy,, (1), Sp,,(t)} as sufficient statistics to specify two hurdle models for the mark
density function of game-play duration and purchase count. The hurdle models assume that players

make decisions in a two-step manner. Each player ¢ first decides whether to play or purchase with

probability 7y, (t) and 7, (t), respectively, where

Tr%’lay@) =03 (’Ull—laysélay(t) + bi’lay) and 71-f‘:’ur (t) =03 (vl;rurséur<t> + bi‘:’ur)' (7)

Here og(z) = e”/(1 + €*) is the sigmoid function that ranges from 0 to 1. Given the decision to

play the game, the game-play duration is then assumed to follow a Gamma distribution,

f;:Play(m ’ t? m > 0) = B_moa—le—ﬁm7 (8)

[(a)
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with a and [ parameterized by s@lay(t), the past influence on future game-play,

A i i i A i i i
o= aPlay(t) = 0sp (’UP—’an,aSP]ay (t) + bPlay,a)? B = /BPlay (t) = USP(”;’an,BSPIay(t) + bPlay,B)‘ )

Similarly, conditioned on the decision to make an in-game purchase, the purchase count follows a

negative binomial distribution truncated at zero,

L(m+r)(1—p)p"

fipu(m|t,m >0 , (10)
Pl O = TG (1 - ]
with 7 and p parameterized by sb,.(t), the past influence on future purchase,
A i T G A i T i
r= TPur(t) = USP(qur,rsPur< ) + bPur r) p= pPur(t) =0s (qur,pSPur( ) + bPur p) (1 1)

In summary, given behavior-specific representations {sp,,(t),sp,(t)} of past influence, we

specify the mark density function of game-play duration and purchase count as

1—mi(t) m = 0;
fix(m|t) = k € {Play, Pur}. (12)
T (t) i (m | t,m > 0) m >0,
Such a specification of the mark density function, together with the univariate nature of our point
process, allows us to efficiently model the concurrency and consumption quantity of multiple
behaviors. Moreover, similar to the ground intensity function specified in Equation (6), the mark
density function in Equations (7) to (12) also allows the effects of past events to vary in direction
and strength: they could either increase or decrease the parameter values in the hurdle models (i.e.,
{Thtay (1), Obiay (1), Bbray (1), Thue (), Thu (), Phur () 1), and thus affect players’ future game-play and
purchase behaviors accordingly.
4.5. Parameter Estimation

The probabilistic characterization of the occurrence time and consumption quantity allows us to

train our model with a maximum likelihood approach. Given the observed event sequences {S; }._,
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of I players, where S; = {(t%, ¢, m?)}.* | includes inputs from both in-game activities (c; = 1) and
real-world sports matches (cz- = 2), the likelihood function can be written as (Daley and Vere-Jones
2003):
I N; T
@ =TI | TT %) TI sutmselen] e (- [ xmar). a3
i=1 | jici=1 ke {Play, Pur} 0
where O is a set of model parameters, the ground intensity function A} () is given in Equation (6),
and the mark density function { f;p,, (m | 1), fip,(m | 1)} is defined in Equation (12). It is worth
noting that Equation (13) is the likelihood of in-game activities only because real-world sports
matches are not stochastically modeled. However, real-world sports matches still contribute to the
calculation of the likelihood function, as their occurrence time and marks are part of the event
history used to specify the ground intensity and mark density of future in-game activities (see Equa-
tions (6) to (12)). As the stochastic integral fOT Af(7)dr does not have a closed-form expression
with our specification of the ground intensity function, we apply the Monte Carlo method to evalu-
ate such term. The algorithmic details are provided in Online Appendix D. We further employ the
Adam optimizer (Kingma and Ba 2015) to maximize the likelihood and estimate the parameters
CH
We conduct the following simulation studies to demonstrate the accuracy of our estimation
procedure. First, we use the original sports video game dataset to obtain the estimated model
parameters e. Next, we extend Ogata’s thinning algorithm (Ogata 1981) and develop a simulation
algorithm to simulate / = 2,020 sequences of in-game activities (the same sample size as the orig-
inal dataset) from our model with the parameters ©. The details of the simulation algorithm are
provided in Online Appendix E. We then re-estimate the model parameters, denoted as ©, based

on the simulated sequences. If our estimation procedure is accurate, the re-estimated intensities

A(t; @)) should closely approximate the target ground intensities \(¢; C:)) Figure 3 shows a visual
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Figure 3  Comparison of the Target and Re-Estimated Ground Intensity Functions
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Note. Blue dotted lines: the target ground intensity functions A(¢; (:)) are evaluated with the model parameters © estimated from
the original sports video game dataset. Red solid lines: the re-estimated ground intensity functions A(¢; G~)) are evaluated with the
model parameters © estimated from the simulated datasets. The simulated datasets are generated from our point process with the

model parameters @, using the simulation algorithm in Online Appendix E.

comparison of the target and re-estimated intensity functions for four randomly selected players in
a representative run of the simulation, demonstrating that our estimation procedure can success-
fully recover target ground intensity functions of different trends. We present a more qualitative
comparison and quantitative evaluation based on residual analysis in Online Appendix F.
5. Model Evaluation
Our proposed framework, based on an attention-based neural point process, provides a principled
way to simultaneously forecast the dynamics of multiple behaviors in digital content consumption.
In this section, we first demonstrate its superior performance over a wide range of baselines in
predicting the occurrence time, behavior combination, and consumption quantity (i.e., game-play
duration and purchase count) of future in-game activities on our sports video game dataset. We
then conduct ablation studies to illustrate the importance of introducing the multi-representational
attention mechanism, modeling the dynamic interplay between game-play and purchase behaviors,
and accounting for the influence from external sports matches.

When evaluating the predictive performance of each model, we split the sports video game

dataset introduced in Section 3 into training, validation, and test sets in chronological order so
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that they include 60%, 20%, and 20% of total in-game activities, respectively.” We first train each
model on the training set with different hyperparameter values. Then we select the optimal values
of hyperparameters that achieve the best predictive performance on the validation set. For RNN-
based models, the hyperparameters to be tuned include the size of the embedding layer {32, 64,
128,256} (i.e., the dimension of :cj-), the size of hidden layer {32, 64, 128,256} (i.e., the dimension
of h;), and the initial learning rate for the Adam optimizer {0.00001, 0.001, 0.01}. Finally, each
model trained with the optimal values of hyperparameters is evaluated based on its out-of-sample

prediction on the test set.

5.1. Predicting Future In-Game Activities

5.1.1. Predicting the Occurrence Time. As the ground intensity function A} (¢) in Equa-
tion (6) characterizes the instantaneous occurrence rate of player ¢’s in-game activities, we use
it to predict the occurrence time f; .1 of the player’s (j + 1)-th activity based on the conditional

expectation:

s =B[ta[ty] = [ s (14)

Here, f(t) is the probability density function of the next activity time conditioned on the

i.
79
£

player’s event history 7', which is related to the ground intensity function A\}(¢) as f;(t) =
A5 (t) exp <— ftj )\j(T)dT) (Daley and Vere-Jones 2003). We compare the predictive performance
of our model against two state-of-the-art recurrent marked point processes, two classic proportional
hazard models, and a Bayesian survival model.

e Recurrent Marked Temporal Point Processes (RMTPP) (Du et al. 2016): RMTPP is one of the

first recurrent marked point processes to refrain from the strong assumptions made in classic

models, such as Hawkes processes. RMTPP employs a standard RNN to learn a discrete-time

% We also split the dataset by individuals to demonstrate the performance of our model in predicting the behaviors of out-of-sample

players. The results are provided in Online Appendix G.
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representation of the event history and uses it to parameterize the ground intensity function of a
point process. In our experiment, we replace the standard RNN with GRU for a fair comparison.

e Neural Hawkes (Mei and Eisner 2017): Neural Hawkes is another type of recurrent marked point
process. In contrast to RMTPP, Neural Hawkes proposes a continuous-time LSTM to learn a
time-varying representation of the event history. To apply it to our context, we use the learned
representation to parameterize four marginal point processes, one for each distinct behavior
combination of in-game activities (i.e., login only, game-play only, purchase only, and concur-
rent game-play and purchase). The total ground intensity of the process is given by the sum of
four marginal intensity functions.

e Proportional Hazard Models (PHMs) (Seetharaman and Chintagunta 2003): PHMs are classic
continuous-time stochastic models that have been applied to investigate how covariates sum-
marized from the event history affect the occurrence time of individual behaviors. The ground
intensity function of PHMs is specified as \*(t) = \o(t)e*i”, where the baseline hazard A, (t) is
a univariate function of time and the covariate vector X; contains the summary statistics of the
event history before time ¢.'"” For the baseline hazard \q(t), we choose two parametric specifica-
tions for comparison: Weibull PHM (WB PHM), where \o(t) = ya(yt)*~!; Log-logistic PHM
(LL PHM), where \o(t) = ya(vt)* /(1 + (71)2).

e Bayesian Survival Model (BSM):!! We consider a Bayesian survival model in which the cumu-
lative distribution function (CDF) of player i’s next activity time conditioned on the event history

A p

Hl

> ie., Fr(t)=F(t| ’HZZ ft *(7)dr, has a Beta-Stacy process prior (Walker and Muliere

1997). That is, F;*(t) ~ BS(ci(t), G} (t)), where the scale function ¢ (¢) controls the dispersion

19 Specifically, we follow Fader et al. (2005) to create a combination of recency (the occurrence time of the most recent in-game
activity and sports match), frequency (the number of prior in-game activities and sports matches), and monetary value (average

mark values per event) as the covariate vector. The same covariate vector is used for all the non-RNN-based baseline models.

"' We thank an anonymous reviewer for suggesting this baseline.
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Table 3 Performance of Predicting the Occurrence Time of In-Game

Activities
Model RMSE MAE
Our Model 0.42 0.35
RMTPP 0.92 0.38
Neural Hawkes 0.69 0.53
WB PHM 2.63 0.71
LL PHM 2.64 0.67
BSM 1.25 0.62

of the random CDFs around the mean function G} (t). In our specification, we follow the com-

mon practice in the literature (Arfe et al. 2021) to assume ¢; (t) = 1. We further choose a Weibull

CDF (Rigat and Muliere 2012) for the mean function G*(t) = 1 — e~ %, which is parameterized

with the same summary statistics X, of the event history used in PHMs.

Table 3 reports the results of predicting the occurrence time of in-game activities. Our proposed
model achieves the lowest root mean squared error (RMSE) and mean absolute error (MAE).
The Bayesian survival model performs much better than classic proportional hazard models, i.e.,
Weibull PHM and Log-logistic PHM, because of its greater flexibility in modeling the occurrence
time of in-game activities. However, there is still a considerable performance gap between the
Bayesian survival model and RNN-based approaches (our model, RMTPP, and Neural Hawkes),
which is mainly due to the greater capacity of RNN to extract more useful information from play-
ers’ event history. Compared with RMTPP and Neural Hawkes that heavily rely on RNN, the novel
continuous-time attention mechanism employed on top of RNN in our model is able to learn a
more effective representation of a player’s entire event history (i.e., s%.(t)) that is relevant for
making predictions of future time. Consequently, our model significantly outperforms these two

baselines.

5.1.2. Predicting the Behavior Combination. After obtaining the estimated occurrence time
fé 1 of the (j + 1)-th in-game activity, we then predict whether player 7 plays or purchases in the

activity. We use w?,; = (', pjoy; Wi, pyr) to represent the behavior combination of the (j 4 1)-th



Yin et al.: Modeling Behavioral Dynamics in Digital Content Consumption
26 Article submitted to Marketing Science

in-game activity, with wé +1,play — 1 Indicating that player ¢ would play and w§ +1,pur = 1 indicating
that player ¢ would purchase. This leads to four possible combinations of game-play and pur-
chase behaviors (i.e., login only, game-play only, purchase only, and concurrent game-play and
purchase). As gy, (t) and 75, (t) in Equation (7) specify the probability of player i to play and
purchase at time ¢, we combine them with the estimated occurrence time f; 41 to predict the behav-

. . . ~ Z . /\Z /\Z . . . .
ior combination W, = (!, piay» @i pyr) Of the next in-game activity:
i 1l (fi ~i 1 (i (i
Wit pay = 1 [Wplay( j+1) > 05} and Wiy p, =1 [Wpur( j—l—l) > 0-5} . (15)

We compare the performance of our model against a set of relevant baselines, including RMTPP,

Neural Hawkes, Hidden Markov Model, Logistic Regression, and Naive Bayes:

e RMTPP (Du et al. 2016): Using the learned discrete-time representation as sufficient statistics
of the event history, RMTPP employs a softmax layer (i.e., a multinomial distribution) to output
the probability of each possible behavior combination. Because of the discrete-time nature of
the learned representation, the predicted probability does not depend on the estimated occur-
rence time f; 41 of the next activity, so it cannot take into account the elapsed continuous-time
information from the most recent event in the history 'Hié (i.e., f} 1 t;).

e Neural Hawkes (Mei and Eisner 2017): Based on the learned continuous-time representation
of the event history, Neural Hawkes parameterizes four marginal point processes, one for each
possible behavior combination. The predicted probability of each behavior combination is pro-
portional to its corresponding marginal intensity evaluated at the estimated occurrence time f; 41
of the next activity.

e Hidden Markov Model (HMM) (Rabiner 1989):'? Following Huang et al. (2019), we specify a
discrete-time HMM in which the discrete latent state variables model the evolution of players’

12 We thank an anonymous reviewer for suggesting this baseline.
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Table 4 Performance of Predicting the Behavior Combination of In-Game Activities

Model Accuracy Micro-F1 Macro-F1
Our Model 0.76 0.88 0.62
RMTPP 0.74 0.87 0.49
Neural Hawkes 0.73 0.86 0.53
HMM 0.70 0.75 0.50
LR 0.67 0.68 0.48
NB 0.67 0.66 0.55

engagement level. To capture players’ game-play and purchase behaviors in different engage-

ment levels, we use two latent-state-dependent hurdle models (Gamma and negative binomial

truncated at zero) to model the distribution of game-play duration and purchase count, respec-
tively. We apply the same decision rule in Equation (15) to predict the behavior combination of
the next in-game activity.

e Logistic Regression (LR) and Naive Bayes (NB): We also train two classic machine learning
models to predict the behavior combination, with the same summary statistics X} of the event
history used in PHMs as the feature vector.

Table 4 presents the accuracy and micro/macro-averaged F1-score of all competing methods in
predicting the behavior combination. The macro-averaged score is an arithmetic mean of F1-scores
for the prediction of whether an in-game activity involves game-play or purchase. By contrast, the
micro-averaged score weights Fl-scores by the number of in-game activities with game-play or
purchase, respectively. The results show that our model achieves the best performance in all three
metrics, with the largest improvement (7% increase) on the Macro-F1 score over the second-best
method. This is because other baselines poorly predict the occurrence of less frequent purchase
behaviors, and the Macro-F1 score assigns equal importance to the correct prediction of future
game-play and purchases. As compared with RMTPP and Neural Hawkes, the effective specifica-
tion of hurdle models based on the learned behavior-specific representations of past influence (i.e.,
{8hiy(t), 8hy(t)}) allows our model to predict the behavior combination more accurately without

an exponential explosion in the number of parameters.
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5.1.3. Predicting the Consumption Quantity. Finally, given the predicted behavior combi-

7

nation wj, ;, we forecast the consumption quantity of the next in-game activity, i.e., the game-

play duration m; +1,play and purchase count m; +1.par- Specifically, for & € {Play, Pur}, we predict

)

miq,=0if d;; +14 = 0 and use the following conditional expectations if (Z); +1., = 1, which have

closed-form expressions with our specified mark density function in Equations (8) and (10):

~

. , . . 1 ab (F )
z _ % 70 ~ _ i | _ “Play\"j+1
M4 1 Play — E [mj-i-l,Play’tj+lij+l,Play =1, ”t;] =

—— (16)
Blfélay (ﬁy—l—l)

~r

) 7 % 7
i ~i —1 Hl . pPur(thrl)TPur(thrl)
Uit Wig1 pur = 1, ] =

() (1 - 1 )

We compare our method with the classic hurdle models and HMM for model evaluation.

A

_ i
M1 pur — E [mj—i—l,Pur

e Hurdle Models (Cameron and Trivedi 2013): We use the Gamma hurdle model (Gamma Hur-
dle) and negative binomial hurdle model (NB Hurdle) to predict future game-play duration and
purchase count, respectively. The hurdle models have a similar probabilistic specification as in
Equations (7) to (12), except that the sufficient statistics vector {spy,,(t), Sp,.(t)} is replaced
with the covariate vector X of the event history (up to time ¢) used in PHMs.

e Hidden Markov Model (HMM) (Rabiner 1989): As HMM has two latent-state-dependent hurdle
components, it can also be used to predict future consumption quantity.

The results in Table 5 clearly demonstrate the advantage of our approach in flexibly modeling
the complex dynamics and efficiently learning rich information from the event history. Although all
competing methods share the same probabilistic distributions for game-play duration and purchase
count, they use historical information differently. Hurdle models use a simple summary statistics
vector of the event history; HMM incorporates such a vector to capture the evolution of discrete
latent state (i.e., players’ engagement level); our model learns multiple sufficient statistics of past
events, creating a unique representation of the event history for influencing each type of consump-

tion behavior (i.e., s'{;lay (t) for game-play and s, (t) for purchase). Moreover, as compared with
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Table 5 Performance of Predicting the Consumption Quantity of In-Game

Activities
Game-Play Duration Purchase Count
Model RMSE MAE RMSE MAE
Our Model 2.05 1.30 1.25 0.45
Gamma Hurdle 5.55 1.83 - -
NB Hurdle - - 5.48 0.71
HMM 2.45 1.57 1.48 0.66

HMM, our attention-based approach has a much higher model capacity: (1) the hidden states in
our model are continuous high-dimensional vectors, which can store much richer information of
the dynamics than a few discrete hidden states in HMM; (2) HMM uses simple transition rules,
whereas our model employs highly nonlinear mappings to update hidden states, allowing it to more

flexibly adapt to the complex behavioral dynamics of in-game activities.

5.2. Ablation Studies
We developed our novel framework to model complex player behavior that is multi-faceted,
dynamically interacting, and subject to external influence. To demonstrate the importance of var-
ious design choices in our approach that can jointly capture these essential characteristics, we
conduct the following ablation studies.

First, our model introduces a new multi-representational attention mechanism to adaptively learn
a unique representation of past events for influencing each type of consumption behavior, e.g.,
Spiay(t) for game-play and s, (t) for purchase. As a result, the model allows the dynamics of
each behavior to be influenced by a distinct and relevant aspect of the event history. To verify
the effectiveness of our multi-representational attention mechanism, we replace it with a standard
single-representational attention mechanism, such that only a single sufficient statistics s°(t) =
> jeti <t a§. (t)h; of the event history is learned to parameterize the dynamics of both game-play
and purchase behaviors. The predictive performance of the resulting model drops, as shown in
Table 6, demonstrating the importance of multi-representational learning in modeling multi-faceted

consumption behavior.
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Table 6 Results of the Ablation Studies

Occurrence Time Behavior Combination Game-Play Duration Purchase Count

SeUing  pMSE  MAE  Micro-FI  Macro-FI  RMSE ~ MAE ~ RMSE  MAE

(0) 0.42 0.35 0.88 0.62 2.05 1.30 1.25 0.45

(1) 0.65 0.37 0.87 0.55 2.09 1.33 1.29 0.46
2.1 0.54 0.42 - - 2.12 1.44 - -

(2.2) 0.62 0.48 - - - - 1.46 0.52

3) 0.60 0.41 0.87 0.53 2.16 1.39 1.35 0.48

Note. (0): full model and full dataset; (1): alternative model with single-representational attention mechanism and full dataset; (2.1):
alternative model that treats purchase count as fixed and full dataset; (2.2): alternative model that treats game-play duration as fixed and full
dataset; (3): full model and partial dataset without sports matches.

Second, a unique advantage of our method is that it can flexibly model the dynamic interplay
between game-play and purchase behaviors. To illustrate its effectiveness, we conduct another
ablation study by training two variants of our model on the full dataset. Specifically, each model
variant “turns off” the stochastic nature of one behavior, either game-play or purchase, and treats
its marks as fixed inputs. The resulting model variants still use the same ground intensity function
as in Equation (6), but consider only the mark density function of one behavior (see Equation (12))
in the likelihood. In this way, one type of behavior cannot be influenced by and predicted from
past events, so the model can only account for the unidirectional influence between game-play
and purchase behaviors. The results in Table 6 clearly show that effectively capturing dynamic
interactions can lead to a more accurate prediction of future in-game activities.

Third, our model includes real-world sports matches as part of players’ event history to learn the
ground intensity and mark density functions of in-game activities (see Equations (6) to (12)). To
show the benefit of incorporating related external influence, we construct another event sequence
S;={(t}, ¢, mz)}ﬁl for each player i from the original dataset, with all sports matches removed
(i.e., cé = 1 for all the events). We then retrain our model based on this partial dataset that contains
the sequences of in-game activities only. The performance gap between the original model and the
new retrained model in Table 6 provides further evidence that the influence from related real-world
events is one of the major factors for shaping player engagement in video games, as discussed in

Section 2.2.
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6. Model Applications

Our model shows superior performance in predicting players’ future activities. Above and beyond
this strength, we illustrate our model’s ability to generate further insights into consumer behav-
ioral dynamics using the video game data. We first demonstrate how individual-level parameter
estimates in our model can be used to segment players based on their game-play and purchase
propensities.'* We then perform simulations and regressions to evaluate the effects of past events

on players’ future engagement.

6.1. Player Segmentation

We perform segmentation analysis based on each player’s two intrinsic behavioral characteris-
tics: baseline game-play and purchase propensities, which are defined as the player’s expected
total game-play duration and purchase count in a week'* without the influence of past events.
To estimate player 7’s baseline propensities, we set the event history H! as empty and the rep-

resentations of past influence {87, (t), Spiay (t), Spy,(t)} as zero vectors. Accordingly, the ground

intensity function A} (¢) in Equation (6) becomes constant with A (¢) = ogp (b%;,..), where b, . is

the player-specific parameter in our model. Similarly, the parameters of the mark density function
for player i’s game-play duration and purchase count in Equations (7) to (11) are also constant
over time with ﬂ-li)]ay (t) =os (bélay) 70'/%’1ay (1) = osp (bélay,a) 761i>1ay (t) = ose (b{:'lay,ﬁ) and 7y, (t) =
05 (bpur) s e (1) = 05p (byr,) + Phur (t) = 0sp (Db ) - Therefore, based on our model specification
and player-specific parameter estimates, the two baseline propensities of player ¢ can be calculated
by

osp(bs:Vos(bby. )osp(bi
Game—Play Propensityi _ SP( Tlme) S(([)l;’lay) )SP( Play,a) :
0P\ Yppay g

( Pur) Osp (b%’ur 7‘)0-5 ( %’ur,p)

) (1= (1= 0 (b))

a7
g
Purchase Propensity,; = 5P (Dime )
)

(1_0- ( Pur,p

13 We thank a reviewer for this valuable suggestion.

14 We choose the time period to be a week to match the unit of time used in our model input (see Section 4).
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We segment players based on the median splits of their baseline propensities'> (0.493 hours for
game-play and 1.081 counts for purchase), resulting in four segments: (1) “hardcore” players who
have high propensities in both game-play and purchase; (2) “gamer” players with high game-play
but low purchase propensities; (3) “buyer” players with low game-play but high purchase propen-
sities; and (4) “casual” players who are in the lower halves for both behaviors. Table 7 provides
the descriptive statistics of each segment. The average game-play propensity of the “hardcore”
and “gamer” segments is almost twice that of the “buyer” and “casual” segments. Moreover, we
observe the distribution of game-play propensity in the “hardcore” and “gamer” segments is more
right-skewed than the distribution of purchase propensity in the “hardcore” and “buyer” segments,
suggesting that players are less “extreme” in making purchases than playing the game. Interest-
ingly, further analysis of login time reveals that the “casual” players log in more frequently on
weekends than players in the other groups (0.444 vs. 0.278/0.385/0.370, all p-values < 0.05). By
contrast, the “hardcore” players log in more often on weekdays. At the daily level, the “casual”
players log in less frequently in the evening (from 6 p.m. to midnight) than the other three seg-
ments (0.274 vs. 0.336/0.337/0.347, all p-values < 0.01). These results generate useful insights for
the video game firm seeking to understand the heterogeneity in players’ game-play and purchase
propensities. They also provide direct guidance on the best time frame to capture a target player

segment.

6.2. Effects of Event Occurrence on Players’ Future Engagement
The segmentation analyses consider players’ intrinsic game-play and purchase propensities with-
out the influence of past events. Next, we evaluate how the occurrence of past events (i.e., in-game

activities and real-world sports matches) affects players’ future engagement. Our procedure is

15 We segment players using the baseline propensities estimated from the first 1, 2, 3, 4, 5, and the entire 6 months of data since the
game was released, respectively. The results show that player segments are stable over time with respect to the similarity measured

by the Rand index. The segmentation results reported in the paper are based on the entire 6 months of data.
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Table 7 Summary Statistics of Different Player Segments

Login Time Game-Play Propensity Purchase Propensity
Segment % of weekend logins % of evening logins Mean SD  Skewness Mean SD Skewness
Hardcore 0.278 0.336 0.686 0.179 1.702  1.344 0.194 1.103
Gamer 0.385 0.337 0.705 0.188 1.762  0.858 0.140 -0.299
Buyer 0.370 0.347 0.362 0.084 -0.388 1.315 0.179  1.200
Casual 0.444 0.274 0.369 0.080 -0.392 0.866 0.128 -0.219

inspired by Xu et al. (2014), who use a simulation approach to estimate the conversion effects of
ad clicks. Specifically, for each in-game activity and sports match in a player’s event history, we
investigate the effects of its occurrence by simulating the player’s subsequent behaviors in the next
week under two scenarios: (1) the “actual” scenario, which includes the occurrence of the event,
and (2) the “hypothetical” scenario, which assumes the event did not happen. We then examine the
effects of this event occurrence on the player’s future engagement by measuring the differences
in the player’s subsequent (a) login frequency, (b) game-play duration, and (c) purchase count
between the two scenarios. All the details are provided in Online Appendix H.

The boxplots in Figure 4 show the distributions of the effects incurred by different event cate-
gories (i.e., in-game activity including login only, game-play only, purchase only, and concurrent
game-play and purchase; and real-world sports match). Overall, despite the substantial heterogene-
ity in players’ susceptibility to past events, the medians of their effects on players’ subsequent
(a) login frequency, (b) game-play duration, and (c) purchase count are all positive. Interestingly,
the result suggests that the occurrence of real-world sports matches tends to have greater effects
than in-game activities, and the effects incurred by login-only activities are consistently limited
for future login, game-play, and purchases. Moreover, we observe that future behaviors are more
affected by past behaviors of the same type; see the effects incurred by game-play only vs. purchase
only activities on future (b) game-play duration and (c) purchase count. For future (c) purchase
count, the occurrence of game-play only activities shows limited effects, similar to the occurrence

of login-only activities.
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Figure 4  Effects of Event Occurrence on Players’ Future Engagement
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(b) Average Effects of Real-World Sports Matches

Our simulation results also generate insights into how the effects of event occurrence vary as
a function of player experience. Each player’s experience is measured by the number of weeks

since the player’s first-time login to the game. As shown in Figure 5, the average effects of prior
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in-game activities on subsequent login frequency, game-play duration, and purchase count show a
decreasing trend as players become more experienced with the video game. By contrast, the aver-
age effects incurred by real-world sports matches on future engagement gradually increase with
the growth of player experience, indicating that more experienced players are more susceptible to
the influence of real-world events. These interesting findings suggest different marketing strategies
for the video game firm based on player experience. Beginners might be more curious about game
features and eager to level up, so game content and design can be used to effectively motivate their
future engagement. On the other hand, real-world events, such as sports matches relevant to the
video game, are more appealing to experienced players and thus can be leveraged as marketing

tools to engage them.

6.3. Effects of Event Marks on Players’ Future Engagement
Recall that each event in a player’s history is associated with a vector of marks, i.e., the game-play
duration and purchase count for in-game activities, and the number of highlights and absolute score
difference for sports matches. As events differ in their marks, we further conduct a set of regres-
sions to estimate how a one-unit increase in each event mark would, on average, affect players’
future engagement. The dependent variables are the outcomes generated by the simulations in Sec-
tion 6.2, i.e., changes in login frequency, game-play duration, and purchase count due to an event
occurrence, and the independent variables are the corresponding event marks. Fixed-effects regres-
sion models are applied to account for player heterogeneity, and we include player experience and
time dummies as control variables.

Because of the page limit, we provide the details of the regression analysis in Online Appendix
I and summarize the main findings here. Overall, the regression results are qualitatively consis-
tent with our findings in Section 6.2. Players’ future consumption behaviors are more affected by
past behaviors of the same type, e.g., past game-play duration has a greater effect than past pur-

chase count on future game-play, suggesting inertia in players’ consumption behaviors. Moreover,
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in-game purchases have a larger effect than game-play on subsequent logins, but they are less
motivated by past game-play, implying that more promotions are needed to foster players’ in-game
purchases. In terms of external stimuli, we find that the number of highlights in real-world sports
matches shows stronger positive effects than the score difference on players’ future engagement.
Therefore, the video game firm can take this advantage to advertise in athletic fields and stadi-
ums to attract potential players who have experienced exciting moments during the matches, or to
send notifications and newsletters reminding the existing players of exciting moments from recent
matches.

We also examine the effects of event marks on players’ future engagement across the four player
segments. Overall, the results suggest that the positive effects of past consumption behaviors are
stronger among players who intrinsically like the same behavior. As such, “casual” players should
be the main target group for marketing practitioners to improve their engagement, because their
future game-play and purchases are relatively less susceptible to past in-game activities. The video
game firm can adjust the difficulty level of the game so that “casual” players can win more easily
to increase their feelings of efficacy and pleasure. The firm can also introduce more functions to
raise “casual” players’ curiosity to keep playing the game. To encourage them to make purchases,
the firm can offer larger product discounts and promotions. In comparison, for players with high
behavioral propensities, the video game firm can focus on improving their game satisfaction and
customizing their in-game experiences. For example, the firm can recommend more enhancement
packs to “hardcore” and “buyer” groups, or create more challenges for “hardcore” and “gamer”
segments, which may also increase their need to make in-game purchases for enhancing their
ability to level up. On the other hand, the effects of event marks from real-world sports matches
are relatively stable across player segments. More discussions on the results and their implications

can be found in Online Appendix 1.
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7. Discussion and Conclusions

Inspired by three unique characteristics of digital content consumption, we develop a novel
attention-based neural point process approach to modeling behavioral dynamics in this fast-
growing market. We illustrate the model development and applications in a major video game
context as an example of digital content consumption. Our results highlight the superior capability
of our model over a wide range of baselines in predicting the occurrence time, behavior combina-
tion, and consumption quantity of future player activities. The ablation studies further verify the
importance of incorporating each characteristic of digital content consumption into our approach.
Leveraging the individual-level parameter estimates, we further demonstrate our model’s ability to
segment players based on their behavioral propensities and evaluate the effects of past events on
players’ future engagement.

7.1. Model Contributions and Generalizability

Methodologically, our proposed model presents significant advances over existing approaches to
model the complex dynamics of multi-faceted consumption behavior under external influence.
Previous works either focus on modeling a single facet of consumption behaviors (e.g., Dew and
Ansari 2018, Huang et al. 2019), or rely on classic multivariate point process models that make
strong assumptions about interacting patterns and cannot directly model concurrent behaviors (e.g.,
Xu et al. 2014, Aggarwal et al. 2021). Despite the progress in the machine learning literature that
makes use of more flexible RNN (e.g., Du et al. 2016, Mei and Eisner 2017), these approaches still
suffer from several limitations in our application context, and our new attention-based neural point
process offers substantial advantages. Instead of encoding all historical information into the last
hidden state of RNN for making predictions, our novel multi-representational attention mechanism
can automatically learn the relevance of all previous hidden states to form multiple representations

of consumers’ past events. Each representation adaptively identifies a unique and relevant aspect
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of the history for influencing each type of consumption behavior, thus significantly increasing the
model capacity and flexibility. Moreover, our continuous-time attention mechanism can seamlessly
incorporate rich elapsed irregular-time information embedded in the event history. To handle the
concurrency, we use the learned representations to build a univariate point process that couples
the occurrence of multiple consumption behaviors. With custom-designed hurdle models as the
mark density function, our approach can efficiently handle all possible behavioral combinations
and model consumption quantity of multiple behaviors without an exponential explosion in the
number of model parameters. As a result, our model can be used to generate a comprehensive
picture of consumer engagement in digital content consumption with individual heterogeneity.
Since our model specifications do not rely on strong assumptions about video games, the pro-
posed approach can be readily generalized to other digital content consumption contexts or other
types of marketing data with similar characteristics of consumer behaviors, namely multi-faceted
and concurrent, dynamically interacting, and susceptible to external influence. For instance, our
approach can be adapted to predict consumer engagement in video-streaming services, where con-
sumers may engage in multiple behaviors concurrently (e.g., watching videos and leaving com-
ments) and be exposed to external influences (e.g., midroll ads). Our modeling framework can
also be applied to traditional marketing contexts without making a priori assumptions about how
consumer behaviors may evolve over time. For example, our framework can be used to model the
increasingly rich and multidimensional shopping behavior found in retail stores. By repeatedly
observing consumers’ historical visits and purchase behaviors, the store can apply our method to
precisely forecast consumers’ future visit time, purchase decisions, and consumption features (e.g.,
purchase count and shopping duration). External events, such as marketing promotions and cam-
paigns, can be further incorporated into the model to improve the predictive performance. Under

a similar framework, we can also capture other consumer decisions of interest by customizing
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the mark density functions, such as using a multinomial distribution to model consumers’ brand

choices.

7.2. Managerial Implications

In addition to the methodological contributions, our proposed approach provides an effective tool
to help businesses better understand consumer behavioral dynamics in digital content consumption
and has useful managerial implications.

Making efficient business plans. Our model provides a powerful tool that firms can use to
forecast when, what, and how consumers will engage in different consumption activities. Firms
can leverage this information to improve product development and marketing strategies to best
capture business opportunities. For instance, based on the prediction of each player’s game-play
duration, firms can design and place advertisements more precisely, thereby increasing ad expo-
sure and improving ad click-through rates. As a result, advertisers will be willing to pay a higher
rate to the game platform. Knowing each player’s purchase decisions can also help firms improve
their content designs to generate personalized product recommendations, leading to more in-game
purchases and higher revenues. Moreover, the prediction of future occurrence time offers specific
advice on the timing of firms’ actions. As such, firms can optimize when to push ads and make rec-
ommendations, and thus deliver their marketing designs more efficiently. In terms of operations, as
consumers expect to keep a stable connection with digital content platforms, it is essential for firms
to allocate the capacity to avoid service congestion or overload. Unfortunately, even leading global
video-game teams, such as Blizzard’s World of Warcraft, could suffer from service overload (Vaz
2020). Our model helps generate effective forecasting of consumer engagement and thus enables
firms to optimize resource and capacity allocation to prevent operational problems. Having an ex-
ante accurate understanding of consumers’ activities, compared with ad hoc measures, is much
more necessary and beneficial for improving consumer experience and satisfaction and ultimately

firms’ revenues.
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Implementing targeted marketing. By generating individual-level parameter estimates of con-
sumer behavioral dynamics, our model provides great opportunities for consumer segmentation
and targeted marketing. As the findings of the video game data illustrate, consumers differ in
game-play and purchase propensities and have varying susceptibilities to past events. Therefore,
the video game firm can implement targeted marketing for different player segments. For example,
the firm can adjust the difficulty level of the game and offer larger product discounts for “casual”
players who are less self-motivated to stimulate their game-play and purchases. Our findings sug-
gest that the best time window for targeting “casual” players is weekends rather than weekday
evenings. Moreover, even though the average effects of past events on consumers’ future engage-
ment are positive, each consumer may have substantial heterogeneity in their susceptibility to past
events. Relying on individual-level estimates of the effects, firms can detect idiosyncratic con-
sumers whose past activities cannot motivate further engagement. Personalized interventions could
then be taken to retain these consumers from fading out of digital content consumption.

Evaluating event-contingent campaigns. Our model can be used to incorporate external events
and assess their effects on consumers’ future engagement. In the video game example, we have
demonstrated how to examine the effects of real-world sports matches on players’ future game-
play and in-game purchases. Note that according to our model specifications, such events need
not be strictly “external”; they can be any activities outside consumers’ in-consumption behaviors.
For example, marketing promotions can be considered as external events affecting consumers’
shopping behavior, and thus firms can apply our approach to estimate the effect of marketing
promotions on each consumer’s future purchase decisions; online platforms can assess the effect
of midroll ads on a user’s video watching, given that playing long ads may sometimes inhibit
continuous watching. Based on the design of the occurrence time and event marks, e.g., the rate of

a promotional discount or the length of a midroll ad, our approach provides an exciting opportunity
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for firms to evaluate the effectiveness of these marketing events in advance. This can provide firms

with more confidence in developing and implementing marketing campaigns.

7.3. Limitations and Future Research

We conclude the paper by highlighting a few limitations and future research opportunities. First,
when specifying the likelihood of our model, we assume that players in the video game act indepen-
dently, given real-world events. However, consumers may communicate with each other through
virtual communities, such as embedded discussion forums and third-party applications (e.g., Dis-
cord), and social interactions may potentially influence their in-consumption behaviors. While we
acknowledge this data limitation, our model can be extended to account for interactions between
consumers if such data becomes available. For instance, we can treat social interactions as a third
event category in the observed event sequences, in addition to in-consumption activities and exter-
nal events, and use the proposed RNN module to incorporate their occurrence time and marks
according to Equations (1) and (2).

Second, our work provides a framework to flexibly model consumer behavioral dynamics with
superior predictive power based on the data of consumers’ historical behaviors and external sports
matches alone. However, we acknowledge that we do not consider detailed marketing mix vari-
ables in the model because of data limitations, such as promotions and advertising. It would be
interesting for future work to incorporate these marketing mix components and provide addi-
tional insights. Our modeling framework is very general and flexible to incorporate these variables,
such as directly including them as event marks or allowing the individual-specific parameters
{Db1ay» Ubiay s Ublay. 3> Uburs Dbur.rs Db+ in Equations (7) to (11) to depend on these new explana-
tory variables.

Finally, although our model is empirically illustrated in the video game context, the proposed
modeling framework can be generalized to other digital content consumption businesses with simi-

lar characteristics, such as video-streaming services and social media platforms, or even traditional
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marketing contexts. Moreover, as the majority of players in our dataset have a rich event history,
it would be interesting to evaluate our model in the contexts that involve relatively sparse event
sequences (e.g., the purchasing of big-ticket durable goods). We leave the exploration of other

contexts for future research.
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