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Significance

 Infectious pathogens, such as 
viruses and bacteria, pose a huge 
threat to human daily life, 
photocatalytic antibacterial 
method has been considered as 
an effective solution. Metal-
organic frameworks (MOFs), 
known as attractive 
photocatalysts, are desirable 
candidates for photocatalytic 
antibacterial applications. Herein, 
we have designed and prepared a 
photoactive and stable MOF-
based composite by introducing 
photosensitive ligand with 
tetrathienylethene unit. 
Compared with all-carbocyclic 
MOF counterparts, the 
tetrathienylethene-based MOF 
exhibits stronger visible-light 
harvesting and quicker production 
of abundant free carriers. 
Additionally, the biosafe 
composite shows near-complete 
bacterial-killing activity against 
﻿Staphylococcus aureus  and 
﻿Escherichia coli  within 1 h. This 
investigation provides a good 
proof-of-principle for constructing 
a biocompatible antibacterial 
composite and offers a direction 
to shape the next era of 
antibacterial arsenals.
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In order to reduce the risk of high-threat pathogens, a photocatalytic antibacterial method 
with a reputation for high efficiency and sustainability has attracted widespread attention. 
Recently, metal-organic frameworks (MOFs) have emerged as desirable platforms for pho-
tocatalytic applications by virtue of their structural diversity and functional adjustability. 
Herein, we report that we have synthesized a stable and photosensitive zirconium-based 
MOF (Zr-MOF) with a photoactive tetrathienylethene-based organic linker, Zr-TSS-1. 
Compared with all-carbocyclic Zr-MOF counterparts, Zr-TSS-1 shows a substantial 
improvement in visible-light harvesting and free-carrier generation, enabling it to be a prom-
ising candidate for photocatalytic antibacterial applications. In order to validate the advan-
tages of this framework as an antibacterial protective material, a composite was fabricated 
by incorporating robust Zr-TSS-1 onto sustainably accessible bacterial cellulose (BC) using 
an in situ growth method. This composite exhibits near-complete lethality toward typical 
Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus within 1 h under 
mild irradiation and preserves outstanding antibacterial capability after five cycles of reuti-
lization. In addition, the high biocompatibility is confirmed by the low cytotoxicity toward 
human skin fibroblast, suggesting its potential for biomedical and healthcare applications. 
This research demonstrates the efficacious integration of a purposely designed photosensitive 
porous framework onto a sustainable substrate for synergistic functionality, paving a practical 
way for the development of the next-generation high-efficiency antimicrobial technology.

metal-organic frameworks | reticular chemistry | photocatalytic antibacterial method

 Infectious pathogens like bacteria and viruses have posed a huge risk to the health of 
humankind for a long time. The latest case—the sudden outbreak of COVID-19—caught 
people off guard and posed a serious threat to public security and economic progress ( 1 , 
 2 ). Moreover, it has been reported that many patients, infected clinically with COVID-19, 
suffered from secondary bacterial infections and attack from drug-resistant bacteria ( 3 ). As 
a result, efficient inactivation of infectious pathogens and inhibition of their secondary or 
even multiple transmissions are in high demand ( 4 ). The photocatalytic antimicrobial 
method is considered an attractive solution to lessen the menace of high-risk pathogens 
( 1 ,  5 ). The efficient inactivation of microbes is achieved by photoinduced reactive oxygen 
species (ROS) with good oxidative capacity and little side effects. Also, the photocatalysts 
play a pivotal role in the generation of ROS, which determines the antibacterial efficiency 
during photocatalysis ( 1 ,  5 ). Therefore, it is of importance to design high-performance and 
biologically compatible materials for photocatalytic sterilization.

 Metal-organic frameworks (MOFs), composed of organic and inorganic building blocks, 
have recently attracted much attention in various applications owing to their controllable 
structures and adjustable functionalities, including gas storage and separation, sensing and 
catalysis, as well as biomedical applications ( 6         – 11 ). Zirconium-based MOFs (Zr-MOFs) 
are one of the most explored MOFs owing to their high thermal, chemical, and mechanical 
stabilities ( 12 ). Recently, Zr-MOFs have been applied extensively in the photocatalysis field 
thanks to their tunable structures ( 13     – 16 ). Organic molecules containing multiple thiophene 
units are employed commonly in the design of efficient perovskite solar cells and fluorescent 
sensors ( 17   – 19 ). It is worth noting that photosensitive Zr-MOFs, constructed with ligands 
containing functional tetrathienylethene units, have yet to be explored ( 20 ,  21 ). In addition, 
the realization of functional composites for practical antibacterial applications requires the 
successful integration of photosensitive materials onto suitable substrates ( 22   – 24 ). In some 
previous studies, light-driven protective composites have been prepared by incorporating 
typical ZIF-8 and CAU-1 onto fabrics ( 25 ,  26 ). Another photocatalytic antibacterial com-
posite has been prepared by embedding microcrystalline NU-1012 onto cotton cloths ( 27 ). 
It remains a challenge, however, to fabricate desirable MOF-based composites based on D
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molecular-level design ( 1 ,  28 ,  29 ). Moreover, the bioavailability of 
MOF-based composites, which has been less explored, is significant 
when it comes to their practical adoption in healthcare-related appli-
cations ( 1 ,  29 ).

 In this context, we have designed and constructed a stable and 
photoactive Zr-MOF—Zr-TSS-1—by introducing a photorespon-
sive tetrathienylethene-based linker [TSS-1 = 5   ,5′,5″,5‴ -(e the ne-  
1,1 ,2, 2-t etr ayl )te tra kis (th iop  hen e-2-ca rbo xylic acid)]. In  com par ison 
to t he  rep res en tat ive  al l-carbocyclic  MO Fs  w ith  an alo gou s t opological 
networks, like Zr-TC P E a nd  NU- 903  [T CPE  =  1,1 ,2, 2-t etra ( 4- 
c arb oxyl-phenyl)ethylene, NU = Northwestern University], the 
as-prepared Zr-TSS-1 with multiple functional thiophene units 
exhibits stronger visible-light capture and quicker carrier separation 
and transport, implying excellent photocatalytic applicability. In 
order to solve the inconvenience of employing powdery MOFs in 
practical applications, we embedded microcrystalline Zr-TSS-1 onto 
porous bacterial cellulose (BC) in order to fabricate ( Scheme 1 ) a 
photoactive composite—Zr-TSS-1@BC. In line with our expecta-
tions, the Zr-TSS-1@BC displays outstanding inactivation to 
﻿Escherichia coli  and Staphylococcus aureus . In addition, insignificant 
changes in antibacterial activity of the composite were found after 
consecutive reuse. More importantly, this composite causes negligible 
damage to living mammalian cells in cytotoxicity assays, confirming 
its suitability for the manufacture of protective equipment, antibac-
terial textiles, and wound dressings.         

Results and Discussion

Synthesis and Structural Analysis. In contrast to a plethora of TPE-
based MOFs (TPE = tetraphenylethene) (30), tetrathienylethene 
(TTE) with a similar structure to classic TPE (31) has yet to be 

introduced into MOF-based materials, potentially because of the 
challenging synthetic procedure. In addition, TTE with its four 
photosensitive thiophene units is ideal for the use of visible light, 
making it a promising building block for the construction of porous 
MOF-based photocatalysts (32, 33). Herein, we have designed a 
carboxylate-based organic ligand (TSS-1) using TTE as the core unit. 
It was prepared by the reaction of CO2 with lithiated TTE under 
anhydrous and anaerobic conditions. Next, we decided to construct a 
stable Zr-MOF according to the principles of reticular chemistry and 
the theory of Hard–Soft Acid–Base (6, 13) (HSAB). A solvothermal 
reaction of TSS-1 and ZrCl4 in N,N-dimethylformamide with formic 
acid as a modulator affords (Fig. 1A and SI Appendix, Fig. S2) yellowish 
single crystals of Zr-TSS-1 under optimal conditions (SI Appendix, 
Table  S1). Single-crystal X-ray diffraction analyses reveal that Zr-
TSS-1 crystallizes in the orthorhombic space group Ibam with the 
lattice parameters a = 28.2838(6), b = 18.9646(4), c = 19.9599(4) Å 
(SI Appendix, Table S2) at 193 K. Each TSS-1 is connected to four 
Zr6 clusters, while each cluster is coordinated with eight carboxylates 
from eight different linkers. Adjacent Zr6 clusters are reinforced by 
two in situ inserted formates (FAs), forming a robust network (Fig. 1A 
and SI Appendix, Fig. S3–S5) similar to that in the reported (34–36) 
NU-901-NDC, PCN-224-BPDC, and MTV-MOFs, synthesized by 
postmodification. The unsaturated sites in the Zr6 clusters are occupied 
by four FA molecules. We identified the formula of Zr-TSS-1 to 
be [Zr6O8(FA)6(TSS-1)2], which is also supported by 1H NMR 
spectroscopy (SI Appendix, Fig. S6) carried on digested Zr-TSS-1. In 
addition, the structure contains (Fig. 1B) two pockets, one of which 
is a vacant diamond-shaped channel viewed along the c-axis, while 
the other is segmented by FAs viewed in the direction of the b-axis.

 Topologically, if the FAs bridging adjacent Zr6  clusters are omit-
ted, the TSS-1 linkers can be simplified as square blocks which link 

Protective equipment

Antibacterial textiles

Wound dressings

ROS

Dead pathogens

Zr-TSS-1@BC

Scheme 1.   The schematic diagram of antibacterial fibers containing Zr-TSS-1 with promising practical applications.
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to the clusters to form a ( 4 ,  8 )-connected scu  net ( 37 ) (SI Appendix, 
Fig. S4 ). Alternatively, the underlying network of Zr-TSS-1 can be 
analyzed as a ( 4 ,  10 )-connected sqc246  net, if the Zr6  clusters are 
simplified as 10-connected nodes while the FAs can be considered 
as linkers ( 38 ) (SI Appendix, Fig. S7 ). In addition, the three- 
dimensional (3D) structure of Zr-TSS-1, visualized intuitively by 
3dt software ( 39 ), contains two types of tiles with a transitivity of 
[2332] in the sqc246  net ( Fig. 1C  ).  

Characterization and Chemical Stability. The phase purity of 
bulk samples of Zr-TSS-1 was validated (Fig. 2A and SI Appendix, 
Fig.  S8) by a high congruence of simulated and experimental 
powder X-ray diffraction (PXRD) patterns. Scanning electron 
microscope (SEM) images reveal the tablet-like morphology of 
the microcrystalline Zr-TSS-1 (SI Appendix, Figs. S9 and S10). 
SEM equipped with energy dispersive X-ray spectroscopy (EDX) 
system was used to determine the distribution of C, O, Zr, and 
S element in Zr-TSS-1 (SI Appendix, Fig. S11). Additionally, the 
X-ray photoelectron spectroscopy (XPS) illustrates the presence 
and chemical state of C, O, Zr, and S in Zr-TSS-1 (SI Appendix, 
Fig. S12). The high-resolution XPS of Zr 3d can be deconvoluted 
into two peaks for Zr 3d5/2 and Zr 3d3/2 at 182.6 and 184.9 eV, 
respectively (SI Appendix, Fig. S12C). The high-resolution XPS 
of C 1 s, S 2p, and O 1 s were identified to prove the structure 
of Zr-TSS-1 (SI Appendix, Fig. S12). Moreover, the permanent 
porosity is evaluated by N2 adsorption–desorption isotherms at 77 
K, confirming the microporous nature of Zr-TSS-1 (37) (Fig. 2B). 
The apparent Brunauer–Emmett–Teller surface area was calculated 

to be 950 m2 g−1, and the experimental total pore volume was 
estimated to be 0.45 cm3 g−1 at P/P0 = 0.95, matching the theoretical 
pore volume of 0.46 cm3 g−1. In addition, we have assessed the 
chemical stability and thermal resistance, as these properties are 
important for the photocatalytic applications of Zr-TSS-1. The 
PXRD patterns of Zr-TSS-1 are almost unchanged (Fig. 2C) after 
exposure to aqueous solutions with pH values ranging from 1 to 
11. The framework, morphology, and particle size of Zr-TSS-1 
after treatment were evaluated by N2 sorption, PXRD, and SEM 
characterizations (SI  Appendix, Figs.  S13–S15). These results 
indicate that the crystalline framework and micromorphology of 
Zr-TSS-1 can generally be retained at different pH, implying that 
Zr-TSS-1 has good acid and base resistance (40). Furthermore, 
the crystalline structure and porous framework are retained after 
activation from water (SI Appendix, Figs. S16 and S17), suggesting 
its high hydrolytic stability (41). Additionally, the thermal stability 
of Zr-TSS-1 exceeds 200 ̊ C according to N2 adsorption isotherms 
activated at different temperatures (Fig. 2D). The thermogravimetric 
analysis of Zr-TSS-1 suggests that its decomposition temperature 
under air flow is about 300 °C (SI Appendix, Fig. S18). These results 
show that Zr-TSS-1 is a stable material for further manufacture 
and practical use.

Photoelectric Properties and Band Structures. We investigated 
the photoelectric properties of Zr-TSS-1, which are critical 
for the determination of photocatalytic capability (42, 43). 
For comparison, we also prepared (SI Appendix, Fig. S19) two 
typical all-carbocyclic Zr-MOFs (Zr-TCPE and NU-903) with 

B C

A

a

b

a

c

a

b

Fig. 1.   Structural illustration of Zr-TSS-1. (A) The construction of Zr-TSS-1 from Zr6 cluster and TSS-1 ligand. The single net of Zr-TSS-1 viewed along the c-axis. 
(B) The illustration of pockets in Zr-TSS-1 viewed along the c- and b-axis. (C) The natural tiling of 3D structure in Zr-TSS-1. Zr light purple, C gray, O red, and S 
orange. H atoms are omitted for the sake of clarity.
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analogous topologies to Zr-TSS-1 according to the literature (44, 
45). The PXRD patterns (SI Appendix, Fig. S20) of as-prepared 
microcrystalline powders are well matched with those of the 
simulated structures. UV/Vis diffuse reflectance spectroscopic 
measurements of the as-prepared samples indicate that Zr-
TCPE and NU-903 exhibit (420 nm) mainly narrow optical 
absorbance within the blue edge of the visible light spectrum. 
In contrast, a broader absorbance extending to about 500 nm 
was acquired (Fig. 3A) by Zr-TSS-1 through the introduction of 
tetrathienylethene. This observation suggests that higher visible-
light utilization and more photogenerated exciton formation can 
be achieved (46, 47). Besides, the photocurrent density of Zr-
TSS-1 was measured to be about three- to four-fold higher than 
those of Zr-TCPE and NU-903 (Fig. 3B), implying more efficient 
photoinduced charge separation and transfer for photocatalysis 
(48, 49). Additionally, the photocurrent density of Zr-TSS-1 
also surpassed that of its ligand—TSS-1 (SI Appendix, Fig. S21), 
suggesting the advantage of porous framework for high-efficiency 
charge transfer (50). To this end, the findings are aligned with 
our design concept, indicating that this Zr-TSS-1 with a strong 
visible-light response and good photoelectric properties is a 
promising photocatalyst.

 Furthermore, the optical energy gap (Eg ) of Zr-TSS-1 is deter-
mined to be 2.51 eV from a Tauc plot (SI Appendix, Fig. S22 ). To 
confirm the band energy structure, Mott–Schottky (M–S) plots 
were employed to estimate the energy level of the conduction band 
minimum ( 51 ) (ECB ). Based on the M-S plots ( Fig. 3C  ), the ECB  
of Zr-TSS-1 is about −0.83 V vs. Ag/AgCl, corresponding to −0.63 
V vs. NHE (Normal Hydrogen Electrode). Thus, the energy level 
(EVB ) of the valence band maximum of Zr-TSS-1 is calculated 

( Fig. 3D  ) to be 1.88 V vs. NHE according to the equation (42) of 
Eg  = EVB  − ECB . With respect to the energy level necessary for 
generating common ROS-like •O2﻿

−  and •OH, the conduction 
band (CB) of Zr-TSS-1 meets the required potential for producing 
•O2﻿

− . The valence band (VB) of Zr-TSS-1, however, is unfavorable 
for the generation of •OH. The findings imply ( Fig. 3D  ) that 
Zr-TSS-1 possesses sufficient driving force for some type of pho-
toinduced ROS generation, suggesting its potential as a photocat-
alytic antimicrobial agent ( 1 ). For the purpose of comparing the 
ability of Zr-TSS-1 to produce ROS with those of two all-carbocyclic 
Zr-MOFs, nitro-blue tetrazolium (NBT) and furfuryl alcohol 
(FFA) were selected to indicate the 1 O2  and •O2﻿

−  generation kinet-
ics (SI Appendix, Fig. S23 ), respectively. The results suggest that 
Zr-TSS-1 has the highest 1 O2  and •O2﻿

−  generation rate, implying 
its high antibacterial activity as we can predict ( 52 ,  53 ).  

Preparation and Characterization of the Composite. We have 
fabricated protective materials by integrating photosensitive 
Zr-MOFs onto sustainable substrates, yielding excellent light-
driven self-cleaning effects. Among various substrates, BC is well 
known as a porous, biocompatible, and biodegradable natural 
polymer (54). Its 3D network possesses acceptable surface areas 
with hydroxyl groups, which are beneficial for water retention and 
filler loading. Its hydrophilic characteristics contribute to its high 
wettability, and thus ensuring wear comfort (54).

 BC, owing to its exceptional porousness, biodegradation, bio-
compatibility, flexibility, rigidity, and durability ( 55   – 57 ), is con-
sidered as a support for embedding microcrystals to produce 
functional materials. Next, we incorporated microcrystalline 
Zr-TSS-1 onto the porous BC (Zr-TSS-1@BC) by adopting an 

A B

DC

Fig. 2.   (A) Experimental and simulated PXRD patterns of Zr-TSS-1. (B) Nitrogen sorption isotherm profile of Zr-TSS-1. (C) PXRD patterns of Zr-TSS-1 after exposure 
to aqueous solutions with pH values ranging from 1 to 11. (D) N2 sorption isotherms of Zr-TSS-1 activated at different temperatures.
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in situ growth method ( 27 ), suggested by the well-matched PXRD 
pattern ( Fig. 4A  ) to that of Zr-TSS-1 microcrystals. SEM images 
taken from the surface and cross-section of Zr-TSS-1@BC show 
( Fig. 4 B  and C   and SI Appendix, Fig. S24 ) that the microcrystals 
are distributed regularly in the 3D microstructure, which is dis-
tinct from that of pristine BC (SI Appendix, Fig. S25 ). Elemental 
mappings using SEM-EDX reveal the uniform distribution of 
Zr-TSS-1 on the BC substrate (SI Appendix, Fig. S26 ). Overall, 
the microfibrils and porous network of BC can lessen the agglom-
eration of microcrystals.        

 Additionally, the mechanical properties of BC and Zr-TSS-1@BC 
were assessed at nanoscale by atomic force microscope (SI Appendix, 
Fig. S27 ). The findings demonstrate that the Young’s modulus of 
the composite is ~13.5 GPa while that of pure BC is about 9.5 
GPa, suggesting the brittleness slightly increases after loading of 
Zr-TSS-1 onto BC ( 58 ,  59 ).The composite shows good mechanical 
strength ( Fig. 4B  , Inset ) potentially on account of the supramolec-
ular and interfacial interactions ( 4 ,  22 ) between Zr-TSS-1 and BC. 
Concomitantly, the color change from white to yellow was observed 
visually (SI Appendix, Fig. S28 ). The water contact angle of BC 
materials was measured at the moment of applying a water droplet 
onto the surfaces of specimens (SI Appendix, Fig. S29 ). BC retains 
good surface wettability after incorporating Zr-TSS-1, ensuring 
wear comfort ( 54 ). The smaller contact angle also implies better 
contact between bacterial suspensions and composites ( 60 ). The 
N2  sorption isotherms of Zr-TSS-1@BC suggest that Zr-TSS-1@BC 
has a similar microporosity as powdery Zr-TSS-1 (SI Appendix, 
Fig. S30 ). The adsorbed volume closely relates to the loading of 
Zr-TSS-1 on the composites, and Zr-TSS-1@BC has a mass load-
ing of about 57.3 wt% deduced from the results measured by 
inductively coupled plasma-optical emission spectroscopy ( 27 ). 

These results suggest that the porous BC structure allows good 
distribution of powdery Zr-TSS-1, and it also has no obvious neg-
ative impact on the microcrystals.  

Antibacterial Activity and Biosafety Assessment. We have evaluated 
the antibacterial performance of the as-prepared composites against 
representative Gram-negative E. coli and Gram-positive S. aureus in 
the light of the modified version of AATCC 100:2019–Test Method 
for Antibacterial Finishes on Textile Materials (29, 61). In detail, 
10 μL of activated bacterial strains were incubated separately on 
pure BC and Zr-TSS-1@BC under visible-light irradiation with a 
light intensity of ~4.71 W/m2 for 1 h. This MOF-based composite 
exhibits (Fig. 4D) nearly 100 % inactivation of E. coli and S. aureus 
while pure BC poses few threats to both microbes. Its antibacterial 
efficiency under mild irradiation is comparable to those of MOF-
related materials under harsher conditions reported previously (25, 
27, 62–65) (SI Appendix, Table S3). Moreover, the crystallinity of 
the composite remains unchanged after consecutive photocatalytic 
cycles as proved by the unchanged PXRD patterns (SI Appendix, 
Fig. S31). Encouraged by the good stability of Zr-TSS-1, five cycles 
of antibacterial experiments were conducted. The results show 
that Zr-TSS-1@BC demonstrates enduringly high antibacterial 
efficiency against E. coli for over five consecutive cycles (Fig.  4E 
and SI Appendix, Fig. S32), suggesting Zr-TSS-1 microcrystals are 
firmly anchored onto the porous BC. The photocatalytic efficiency 
of three different batches of composites to E. coli was evaluated. 
The findings show that different batches of composites have similar 
antibacterial activity, indicating good batch-to-batch reproducibility 
(SI Appendix, Figs. S33 and S34). Additionally, control experiments 
imply that Zr-TSS-1@BC induce limited damage to E. coli in the 
absence of light (SI Appendix, Fig. S35). In order to understand the 
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photocatalytic mechanism, electron paramagnetic resonance (EPR) 
measurements were performed on Zr-TSS-1. The characteristic peaks 
of DMPO-•O2

− and TEMP-1O2 were acquired under irradiation 
while no signals were observed under dark conditions (SI Appendix, 
Fig. S36). This finding suggests that •O2

− and 1O2 play a critical role 
in the light-driven antibacterial activity. We assume that •O2

− and 1O2 
could stem mainly from the metal-to-ligand charge transfer (MLCT) 
process in Zr-TSS-1 according to the combined experimental and 
calculation results (SI Appendix, Fig. S37 and S38) (66, 67). The 
ROS most likely oxidizes the biomolecules of bacterial cell walls and 
cell membranes, inducing the death of the bacteria (28). Besides, 

the porous framework of BC enables the Zr-TSS-1 to disperse on 
the substrate uniformly, exposing more surfaces for light- harvesting 
and bacterial contact. Thus, the excellent antibacterial efficiency of 
the composite is realized by the synergy of visible-light responsive 
Zr-TSS-1 and porous BC.

 The biosafety of MOFs should be given careful consideration 
when it comes to biomedical applications in healthcare-related fields 
( 1 ). Hence, we have evaluated the bioavailability of Zr-TSS-1@BC 
via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) assay, an extensively adopted method for sensitive detection 
of cell growth and survival ( 68 ). The relative cell viability of human 

Control  BC Zr-TSS-1@BC

0

20

40

60

80

100

R
el

at
iv

e 
ce

ll 
vi

ab
ili

ty
 (%

)

100 100 98.98 98.34 98.37

1 2 3 4 5
0

20

40

60

80

100 ~

Pe
rc

en
t r

ed
uc

tio
n

(%
)

Cycles

~

S. aureus

E. coli

Pure BC Zr-TSS-1@BC

5 10 15 20 25 30

R
el

at
iv

e 
In

te
ns

ity
 (a

.u
.)

2 Theta (deg)

 PXRD of Zr-TSS-1@BC
 PXRD of Zr-TSS-1

A B

5 μm

C

Zr-TSS-1@BCControl Pure BC

5 μm

D

96.2 %

~100 %

E

G

F

Fig. 4.   (A) Comparison of experimental PXRD of Zr-TSS-1 and Zr-TSS-1@BC. (B) SEM images of Zr-TSS-1@BC from surface section, Inset: photograph of flexible 
composite with good mechanical strength. (C) SEM images of Zr-TSS-1@BC from cross-section. (D) Photographs of Staphylococcus aureus and Escherichia coli 
incubated with Zr-TSS-1@BC and pure BC under visible-light irradiation for 1 h (1:10000 dilution). (E) Antibacterial efficiency against E. coli for five consecutive 
cycles. (F) The relative cell viability of human skin fibroblasts after 24 h incubation. (G) Confocal micrographs: bright-field and merged fluorescent images of 
Calcein AM/PI-stained NIH-3T3 fibroblasts after 24 h incubation with blank, pure BC, and Zr-TSS-1@BC. (Scale bar, 100 mm.)

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 H
O

N
G

 K
O

N
G

 P
O

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SI

T
Y

 o
n 

A
pr

il 
7,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
15

8.
13

2.
16

1.
18

0.

http://www.pnas.org/lookup/doi/10.1073/pnas.2423052122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2423052122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2423052122#supplementary-materials


PNAS  2025  Vol. 122  No. 15 e2423052122� https://doi.org/10.1073/pnas.2423052122 7 of 8

skin and NIH 3T3 fibroblasts after 24 h incubation with the com-
posite reveals that Zr-TSS-1 has weak cytotoxic activity toward 
living mammalian cells ( 69 ) ( Fig. 4F   and SI Appendix, Fig. S39 and 
S40 ). The bright-field confocal microscopic images of human skin 
and NIH 3T3 fibroblasts also confirm visually that the cell mor-
phologies have suffered no obvious damage after exposure to the 
composite ( Fig. 4G   and SI Appendix, Fig. S41 ). Moreover, the 
merged fluorescent images of Calcein AM/PI-stained human skin 
and NIH 3T3 fibroblasts among experimental and control groups 
suggest that little harm is inflicted by the composites on living cells 
owing to its low cytotoxicity ( 70 ,  71 ) ( Fig. 4G   and SI Appendix, 
Fig. S42 ). Overall, the Zr-TSS-1@BC displays good biocompati-
bility and is a desirable photocatalytic antibacterial platform.   

Conclusions

 An advanced photosensitive composite—Zr-TSS-1@BC—has 
been designed and prepared by incorporating a stable Zr-MOF 
to sustainable and highly durable BC as a result of in situ growth. 
The as-prepared composite achieves an exceptional antibacterial 
efficiency against E. coli  and S. aureus  on account of photogen-
erated •O2﻿

−  and 1 O2 , which can be attributed to the strong visible-
light response and excellent photoelectric properties of Zr-TSS-1 
as well as to its regular distribution on porous BC. Thanks to the 
good chemical stability and high thermal tolerance of Zr-TSS-1, 
this composite displays a long-lasting and effective bacterial killing 
serviceability in multiple reuse scenario. Despite this remarkable 
efficiency, cytotoxicity assessment reveals that the composite 
demonstrates hypotoxicity with acceptable biocompatibility. These 
findings prove that Zr-TSS-1@BC has a bright future for practical 
applications including protective equipment, antibacterial textiles, 
and wound dressings. Our investigation provides an example of 
designing a bioavailable composite at the molecular level, and 
offers a viewpoint to shape the next era of antibacterial arsenals.  

Materials and Methods

Chemicals and Materials. All reagents were obtained from commercial sources 
and used without further purification or treatment, unless otherwise noted. 
BC hydrogel was prepared from commercially available Nata de Coco (Kara 
Santan Pertama, Bogor 16964, Indonesia). 1,1,2,2-tetra(4-carboxylphenyl)
ethylene (TCPE) and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene were obtained 
from Shanghai Bide Pharmaceutical Technology Co., Ltd. Mouse fibroblasts 
(iCell-m041) were derived from mouse embryos and human fibroblasts (iCell-
0051a) were derived from human dermal tissue, both of which were purchased 
from iCell Bioscience Inc, Shanghai.

Characterization. General characterization procedures are provided in 
SI Appendix.

The Synthesis of Single Crystals of Zr-TSS-1. TSS-1 (2 mg) and ZrCl4 (4 mg) 
were added into a 15 mL vial, followed with 2 mL N,N-dimethylformamide (DMF) 
and formic acid (0.6 mL). Then, the mixture was sonicated for 2 mins, heated 
up to 130 °C, and maintained for 20 h. After returning to room temperature, 
yellow single crystals were washed with fresh DMF twice for single crystal X-ray 
diffraction measurements.

The Synthesis of Microcrystalline Zr-TSS-1. TSS-1 (30 mg), ZrOCl2·8H2O (60 
mg), 2 mL DMF, and formic acid (0.6 mL) were added sequentially into 15 mL vial. 
Then, the mixture was sonicated for 2 mins, heated up to 130 °C, and maintained 
for 20 h. After returning to room temperature, the polycrystalline powders were 
collected by centrifugation and washed with fresh DMF twice. Then, the obtained 
samples were soaked in DMF and replaced with fresh DMF every 12 h in 2 d, 
further soaked in acetone and replaced with fresh acetone every 12 h in 2 d. 
Ultimately, the target powders were dried in a vacuum oven at 60 °C overnight 
and ready for subsequent characterization or performance tests.

Synthesis of Zr-TSS-1/Bacterial Cellulose Composite (Zr-TSS-1@BC). Under 
optimal conditions, BC (4 g), ZrOCl2 (60 mg, 186.19 μmol), and TSS-1 (30 mg, 
56.33 μmol) were added to DMF (1 mL) in glass vial. To ensure uniform distribu-
tion of metal clusters and linkers within the BC, the mixture was first subjected 
to ultrasonic treatment for homogenization. Formic acid (3 mL, 65.17 mmol) 
was added to the mixture in a ratio of 1:0.6 (DMF: formic acid) to modulate the 
growth of MOF crystals. BC with precursors then reacted at 130 °C for 15 h. The 
product was then collected and washed with DMF and acetone several times.

Antibacterial Efficiency Tests. With the presence of Zr-TSS-1-loaded on BCs, 
we then evaluated their antibacterial performance against Gram-negative bacte-
ria S. aureus (ATCC 6538) and Gram-negative E. coli (CMCC 44102) according to 
the modified version of AATCC 100:2019 – Test Method for Antibacterial Finishes 
on Textile Materials. The antibacterial efficiency test is conducted with three par-
allel groups. The activated test bacterial strains were diluted to ~1.2 to 4.1 × 107 
colony-forming units (CFU)/mL. 10 µL of each inoculum bacteria were added onto 
individual pristine BC and Zr-TSS-1@BC (1 piece, 1 cm × 1 cm), respectively. They 
were then irradiated under fluorescent lamp (PHILIPS TLD 18 W/865 YZ18RR25 
COOLDAYLIGHT 6500 K) with a light intensity of ~4.71 W/m2 for 1 h. Immediately 
after light irradiation, 990 µL of phosphate-buffered saline (PBS) was added to 
each specimen, and the solution was shaken vigorously for 1 min to rinse off the 
adhered bacteria. The solution with recovered bacteria was then serially diluted 
with PBS for agar plating, and the agar plates were then cultured at 37 °C for 18 h. 
The bacterial counts of specimens were then obtained, and the percent reduction 
was calculated according to the equation: R = 100 (B − A)/B, where R represents 
the percent reduction, A is the number of viable bacteria recovered from the 
treated specimen over the contact period, and B is the number of viable bacteria 
recovered from the untreated specimen over the contact period.

Data, Materials, and Software Availability. X-ray crystallographic coordi-
nates for structures reported in this study data have been deposited in Cambridge 
Crystallographic Data Centre (CCDC) [2328617 (Zr-TSS-1), http://www.ccdc.cam.
ac.uk/data_request/cif] (72). All study data are included in the article and/or 
SI Appendix.
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