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A B S T R A C T

Reconstructing neural radiance fields from limited or sparse views has given very promising potential for this
field of research. Previous methods usually constrain the reconstruction process with additional priors, e.g.
semantic-based or patch-based regularization. Nevertheless, such regularization is given to the synthesis of
unseen views, which may not effectively assist the field of learning, in particular when the training views
are sparse. Instead, we propose a feature Field Fusion (FFusion) NeRF in this paper that can learn structure
and more details from features extracted from pre-trained neural networks for the sparse training views, and
use as extra guide for the training of the RGB field. With such extra feature guides, FFusion predicts more
accurate color and density when synthesizing novel views. Experimental results have shown that FFusion can
effectively improve the quality of the synthesized novel views with only limited or sparse inputs.
1. Introduction

Neural Radiance Field (NeRF) [1–3] and 3D Gaussian Splatting
(3DGS) [4], with an impressive ability of novel-view synthesis, have
attracted widespread attention in the domain of pattern recognition [5,
6] as well as in the vision and graphics community [7–10] in recent
years. For NeRF, it is typically trained on a large number of views,
requiring tens of input images with varied camera poses for a specific
3D scene, which has imposed a crucial restriction on the applications
of NeRF. This is because in real-life scenarios, it is very difficult, if not
impractical, to collect such a large number of input views of a 3D scene
for training purpose.

Learning a radiance field from limited or a few shots (e.g., sparse
inputs with only three input views), therefore, has attracted a great deal
of research attention. A key approach is to design novel regularization
for NeRFs, such as DietNeRF [12], RegNeRF [13], FreeNeRF [14],
SimpleNeRF [15], SparseNeRF [11], ConsistNeRF [16], ZeroRF [17],
and mi-MLP [18]. These methods exploit additional information, such
as depth, geometry, or semantics, to constrain the optimization process.
Nevertheless, such extra information is often applied as a ‘weak con-
straint’ for training, meaning that even though it guides the learning
process, it is not explicitly incorporated into the model for the view
synthesis. Existing methods suffer from this limitation of lacking ex-
plicit control in the novel-view synthesis; it is thus still challenging to
make accurate predictions of each sample point’s properties (e.g., color,
depth, or geometry) along the ray, especially in sparse scenarios.
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Compared to RGB images, feature maps capture more high-level
and abstract information, beyond simple color, and preserve spatial
correspondence well. Moreover, features are more robust to varia-
tions in lighting, viewpoint, and background, because they focus on
meaningful patterns and structures rather than raw pixel values. In
this paper, we propose a novel approach called feature field fusion
(FFusion) for few-shot novel-view synthesis. As shown in Fig. 2,
FFusion is a multi-task learning network that simultaneously learns
both a feature map field and an RGB field in order to capture implicit
3D representations of the scene for the feature maps and RGB colors,
respectively. We use features both as regularization during training and
as prior information incorporated into the model functioning as explicit
condition guidance for view synthesis. Learning feature representations
in addition to colors can help NeRF capture the main content of the
image more effectively and reconstruct finer details. Specifically, we
extract feature maps from a pre-trained CNN model and train a NeRF,
called a neural feature radiance field, which models a 3D scene with
features. To visualize the additional information a learned feature field
can provide, Fig. 1(b) shows an example of the reconstructed image of
rendered feature maps from the feature field using a 2D CNN decoder. It
can be seen that the image reconstructed from rendered feature maps
accurately captures the shape of the flower stamen even though the
image is blurry. This demonstrates that while the feature field may not
fully capture all the fine details and textures, it still conveys essential
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Fig. 1. Novel view synthesized by (a) baseline of SparseNeRF [11], (b) feature field, and (c) our FFusion. By combining knowledge from the feature field, our FFusion reconstructs
a better shape of the flower stamen and captures finer details, maintaining high-quality RGB field learning.
Fig. 2. Concept illustration of FFusion NeRF: We learn a feature field and a RGB radiance field simultaneously and the abstract feature is employed to help the learning of RGB
field. The feature radiance field and RGB radiance field share the same geometry.
structure of the image. Fig. 2 shows that the feature field and the RGB
field share the same geometry. This is because that, in our formulation,
the feature maps correspond to the RGB images at each pixel, the
feature field therefore influences the learning of each sample point’s
properties, including color, depth, and semantics. It serves as a strong
constraint for novel-view synthesis at the pixel level. By incorporating
the knowledge from the feature field, our FFusion gives more accurate
color predictions, as demonstrated in Fig. 1(c) in comparison to the
baseline in Fig. 1(a).

The main contributions of the present work are as follows:

• We propose a novel approach that exploits spatial feature maps to
enhance the scene representation of NeRF for sparse view inputs.
To the best of our knowledge, this is the first work to employ
spatial feature maps in NeRF.

• A feature field fusion module is proposed to incorporate the
learned feature field to the color field so as to fully utilizing the
knowledge contained in the feature field as a condition guidance
for novel view synthesis.

• Extensive experiments have shown the effectiveness of our pro-
posed method on LLFF and DTU datasets. Moreover, our method
2 
is model-agnostic that integrates seamlessly with various state-
of-the-art approaches, achieving superior performance on both
datasets.

2. Related work

Novel-view Synthesis with Sparse Inputs. The original NeRF is
designed for scenarios with very dense input views, which do not
meet the needs of real-world applications because such data capturing
process is time consuming and real camera poses are required [19,
20]. Our work focus on 3D scene synthesis from sparse input views
(e.g., as few as 3). The existing NeRFs and 3DGS [10] for sparse
input views can be broadly classified into transfer learning-based
methods and regularization-based methods. The transfer learning-based
methods [21–24] attempt to pre-train a NeRF on large-scale curated
multi-view datasets and fine-tune the NeRF on the target scene. pixel-
Splat [25] trains a model to predict feed-forward 3D Gaussians with
2 inputs. MVSplat [26] improves the quality and feed-forward speed
of pixelSplat with a cost volume for valuable geometry cues. However,
they rely on large-scale datasets and their effectiveness is constrained



J. Li et al.

m

t
u
t

i
e
a
o
a

G
m

t
d
u

e

l

m

l

c
o
d
f
o

b
f
t
u

s
F
o
i

p
c
p
a
a

t
a

d

t

w
a
s

a
r

r

m

Image and Vision Computing 156 (2025) 105465 
by the domain gap between the pre-trained model and the target scene,
which can lead to sub-optimal results if the domains differ significantly.
In contrast, regularization-based methods [2,11–14] do not depend
on large-scale pre-trained models. Instead, they improve the model’s
ability to generalize to new or diverse scenes by incorporating prior
knowledge or constraints, thereby mitigating the effects of domain

ismatch.
Regularization-based radiance field. Diet-NeRF [12] regularizes

the field by comparing the semantic embedding of unseen viewpoints to
hat of known viewpoints. RegNeRF [13] regularizes unobserved views
sing patch-based depth and color constraints. Instead of constraining
he field from unobserved views, other methods explore to improve the

results from the limited training views. SparseNeRF [11] distills depth
nformation predicted from a prior model to constrain the geometry. Li
t al. [27] improved sparse view synthesis with both geometry and
ppearance regularization. FSGS [28] handles the sparse initialization
f 3DGS with proximity-guided gaussian unpooling and online depth
ugmentation. GeoRGS [29] explores seed-based geometric regulariza-

tion with depth similarity and consistency for 3DGS in sparse input.
aussianObject [30] trains a Gaussian Repair Model, which is diffusion
odel, to help the Structured 3D gaussians with a Distance-Aware Sam-

pling. FreeNeRF [14] explores the frequency of position encoding and
rains the field in a coarse-to-fine process. ReconFusion [31] exploits a
iffusion prior for novel view synthesis. Although regularization from
nobserved views is useful for sparse input, existing methods do not

fully explore using prior information as guidance for training views. Zhi
t al. [32] used semantic labels as additional supervision to learn a field

for segmentation. DFF [33] uses semantic features as supervision to
earn a semantic field that can decompose different parts of a scene.

LeRF [34] distinguishes different parts of a scene through a language
odel. Furthermore, Latent-NeRF [35] generates 3D scenes represented

by latent 3D representations. In these studies, a semantic field can be
earned to form 2D supervision. Nevertheless, the detailed information

of each 3D point is not known yet, in particular in field learning under
sparse inputs.

Feature field. In NeRF, the RGB field is learned to predict the
olor values for each point in the 3D scene, enabling the generation
f photo-realistic images by combining these color predictions with
ensity information. Differently, the feature field is learned to predict
eature values and generate feature maps. With feature fields, a variety
f applications can be realized, including image editing [36], style

transfer [33,37], keypoint transfer [38], segmentation transfer [6,33,
39], and label transfer [32]. Typically, these methods involve learning
oth the feature field and the RGB field simultaneously. The learned
eature field can then be utilized directly for various tasks or applied
hrough knowledge distillation. However, the feature field has not been
tilized to assist NeRF with sparse input views.

3. Method

In this paper, we propose a novel framework for neural radiance
fields in a sparse setting. Specifically, our method is based on the
original NeRF (described in Section 3.1) so that its variants can also
erve as backbones in our framework. For sparse views, we propose
Fusion NeRF framework (Section 3.2) that not only takes advantage
f feature supervision as regularization but also functions as additional
nformation incorporated for novel-view synthesis.

3.1. Preliminary

Different from classical approaches that rely on explicit geometry or
oint clouds, NeRF represents a 3D scene as a continuous 3D function,
alled a radiance field. It is a neural network consisting of multiple
erception layers (MPLs). It maps any given 3D point 𝐩 = (𝑥, 𝑦, 𝑧) and
 view direction 𝐝 to the volume density 𝜎 representing scene opacity

nd view-dependent radiance (RGB color) capturing its appearance and

3 
color. More specifically, the 𝐩 and 𝐝 are encoded as 𝛾(𝐩) and 𝛾(𝐝) by a
positional encoding 𝛾, and the 𝛾(𝐩) is then fed into a backbone block to
learn the backbone feature 𝑓𝑏 = 𝑀 𝐿𝑃𝑏(𝛾𝐿(𝐩)), which is fed into an MPL
to output the density 𝜎 = 𝑀 𝐿𝑃𝜎 (𝑓𝑏). After that, the feature 𝑓𝑏 and the
direction 𝐝 are both fed into a color prediction block 𝑀 𝐿𝑃𝑐 to predict
the corresponding color 𝑐𝑖 conditioned on the view direction 𝐝, which
is given as

𝑐𝑖 = 𝑀 𝐿𝑃𝑐 (𝑓𝑏, 𝛾(𝐝)) (1)

To compute the color radiance at a pixel (𝑢, 𝑣) in an image, NeRF
ypically casts a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝 through this pixel where 𝑡 varies
long the ray from a near plane 𝑡𝑛 to a far plane 𝑡𝑓 , and then evenly

partition [𝑡𝑛, 𝑡𝑓 ] into 𝑀 shading points {𝐭𝑗 |𝑖 = 1,… , 𝑀} along the ray.
The expected pixel color radiance is computed by volume render:

𝐶̂ =
𝑁
∑

𝑖=1
𝑤𝑖𝑐𝑖 (2)

𝑤𝑖 = 𝑇𝑖(1 − 𝑒𝑥𝑝(−𝜎𝑖𝛿𝑖)), (3)

where 𝛿𝑖 = 𝑡𝑖 − 𝑡𝑖−1, and 𝑇𝑖 = 𝑒𝑥𝑝(−
∑𝑖−1

𝑗=1 𝜎𝑗𝛿𝑗 ) is the transmittance
of the ray which presents the probability that information from the
1st sampled point can pass through to the 𝑖 − 1𝑡ℎ sampled point. For
model training, Mean Squared Error (MSE) is exploited to minimize the
istance between expected colors and ground truth colors:

𝐿𝑐 =
∑

𝐫∈𝑅
‖𝐶̂(𝐫) − 𝐶(𝐫)‖22 (4)

where 𝑅 represents a batch of sampling rays and 𝐶(𝐫) is the ground-
ruth pixel color.

3.2. FFusion NeRF

3.2.1. Feature field
Based on the original NeRF, a feature radiance field, denoted as

𝑀 𝐿𝑃𝑓 , is proposed to predict the feature representation of images,
hich captures more high-level features other than RGB colors, such
s edge, shape, and texture. To avoid the problem of overfitting and
ave computation resources, the feature radiance field and the color

radiance field share the backbone, whereas the backbone feature 𝑓𝑏
dds two MLPs (denoted as 𝑀 𝐿𝑃𝑓 in Fig. 3) to predict the feature
adiance 𝑓 as follows:

𝑓 = 𝑀 𝐿𝑃𝑓 (𝑓𝑏) (5)

Similar to the volume rendering of pixel colors, the feature 𝐹 is
endered using Eqs. (2) and (3) by replacing the 𝑐 with 𝑓 .

To train the feature field, we extract the corresponding feature
aps 𝐹 of input images from a VGG network [40] pretrained on the

ImageNet dataset [41] for classification. More specifically, we compare
in later experiment section that the use of different layers from the
VGG network, including ReLU1-1, ReLU2-1 and ReLU3-1, as the ground
truths to supervise feature field training, which correspond to the 3rd,
10th, and 17th layers of the VGG network. The model parameters are
optimized by minimizing the distance between the rendered feature
representations 𝐹 and the estimated features 𝐹 with 𝐿2 loss:

𝐿𝑓 =
∑

𝐫∈𝑅
‖𝐹 (𝐫) − 𝐹 (𝐫)‖22 (6)

where 𝑅 represents a batch of sampling rays and 𝐹 (𝑟) is the ground-
truth pixel representation, namely an extracted feature map.

3.2.2. Feature field fusion
To leverage feature radiance knowledge for RGB field training, a

feature field fusion module 𝑀 𝐿𝑃𝑓 𝑢𝑠𝑖𝑜𝑛 is designed. As shown in Fig. 3,
the feature radiance 𝑓 and the backbone feature 𝑓𝑏 are processed
by two linear layers 𝐿𝑁𝑡 and 𝐿𝑁𝑏, respectively, and projected to
a space that is compatible with that of the view direction 𝐝. The
channel numbers of 𝐿𝑁 and 𝐿𝑁 are set to match the dimensions of
𝑡 𝑏
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Fig. 3. Network structure of our FFusion, where the proposed new structure, comparing to NeRF, are highlighted in red and blue. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
their corresponding inputs, i.e., [CH𝑓 ] the channel number of 𝑓 and
256, respectively. Subsequently, the projected feature field 𝐿𝑁𝑡(𝑓 ), the
backbone feature 𝐿𝑁𝑏(𝑓𝑏), and the view direction 𝐝 are concatenated
together. This concatenated vector is then processed by an MLP layer
𝑀 𝐿𝑃𝑡 to generate a fused feature. The channel number of 𝑀 𝐿𝑃𝑡 is
set to 128 to compress the representation for color prediction. Finally,
the fusion feature is fed into another MLP layer 𝑀 𝐿𝑃𝑐 to produce the
output color radiance 𝑐. The channel number of 𝑀 𝐿𝑃𝑐 is set to 3 in
order to match the dimension of the RGB image.

𝑐𝑖 = 𝑀 𝐿𝑃𝑐 (𝑀 𝐿𝑃𝑡(𝐿𝑁𝑡(𝑓 )⊕ 𝐿𝑁𝑏(𝑓𝑏)⊕ 𝛾(𝐝))) (7)

After that, the expected color 𝐶̂ is computed through volume rendering
using Eqs. (2) and (3). It should be noted that during volume rendering,
the same density values are used in the alpha blending process of both
the feature and the color fields, thereby ensuring that the feature and
RGB fields share the same geometry. During training, the expected
color 𝐶̂ is optimized by minimizing the loss function defined in Eq. (4).
With reference to Fig. 3, the difference between the network structure
of NeRF and our FFusion model is the feature field (FF) 𝑀 𝐿𝑃𝑓 , and the
feature fusion module 𝑀 𝐿𝑃𝑓 𝑢𝑠𝑖𝑜𝑛 has an additional feature input 𝑓 com-
pared to the color prediction block 𝑀 𝐿𝑃𝑐 of the original NeRF model.
Our framework is adaptable and can work with different backbones,
which we will further discuss later in Section 4.4.

3.2.3. Loss function
The overall model optimization is guided by the loss function:

𝐿 = 𝜆𝐿𝑓 + 𝐿𝑐 (8)

where 𝜆 balances the learning between features 𝐿𝑓 and colors 𝐿𝑐 .

4. Experiments

4.1. Datasets, metrics and implementation details

Datasets. We conducted experiments on the LLFF [1] dataset and
the DTU [42] dataset to evaluate the effectiveness of our method. LLFF
dataset consists of 8 forward-facing scenes. Following [1], we kept
every 8th image as the hold-out test set and evenly selected the training
views from the remaining images to build the training set. DTU dataset
is an object-level dataset containing various objects in multiple views
in a controlled indoor setting. Following previous work [1,13,22], 15
scenes with 49 frames in each scene were selected for training.

Evaluation Metrics. To evaluate view synthesis performance, we
used peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM) [43] and learning perceptual image patch similarity
(LPIPS) [44] as evaluation metrics. For the DTU dataset, all three
metrics were computed within the mask of the object in the scene.
For a fair comparison, we evaluated these metrics on the test set and
4 
Table 1
Ablation study evaluating the impact of the proposed modules of our FFusion network
for sparse setting of 3 input views on the LLFF dataset.

Model PSNR↑ SSIM↑ LPIPS↓

Vanilla – NeRF [1] 16.81 0.539 0.447
Vanilla + LPIPS 14.17 0.450 0.510
Vanilla + SSIM 14.08 0.447 0.543
Vanilla + FF 16.12 0.506 0.481
Vanilla + Fusion 17.32 0.520 0.504
Ours (FFusion– NeRF [1]) 17.70 0.557 0.363

calculated the mean value among all scenes in the dataset.
Implementation Details. Our experiment was based on the open

source code of RegNeRF. We used the Adam optimizer in training the
models, with the exponential learning rate decreasing from 5 × 10−4
to 5 × 10−5. We set the batch size to 1024 and trained each scene
on one 3090 Ti GPU. For the LLFF dataset, we trained 69k/13k/20k
iterations for 3/6/9 input views at a resolution of 504 × 378. For
the DTU dataset, we trained 43k/87k/131k for 3/6/9 input views at
a resolution 400 × 300. For the LLFF and DTU datasets, we used the
Relu3-1 and Relu1-1 layer, respectively, of a VGG encoder [40] as the
supervision for training our model, namely 𝐹 in Eq. (6). We loaded
the weights from Adain [45] for the VGG model. For the DTU dataset,
we masked the background region following previous methods when
calculating metrics to ensure a fair comparison with other methods.

4.2. Ablation study

In order to examine the effectiveness of the proposed FFusion in
a sparse setting, we conducted an ablation study on the LLFF dataset.
To avoid impacts brought by other methods such as the use of depth
information or semantics, we chose the vanilla model of NeRF [1] as
our baseline for the ablation study to analyze the effects of individual
modules of our proposed framework, including the feature field (FF)
and the fusion module.

The qualitative and quantitative results are shown in Fig. 4 and
Table 1, respectively. The qualitative results in Fig. 4 show that the
reconstructed feature field (the depth map in ‘vanilla (feature)’ column,
which is obtained by volume rendering using Eqs. (2) and (3) and
replacing color 𝑐 with feature 𝑓 ) can show clear geometry of the scene.
Such feature field is even more accurate than the rgb field (i.e., the
depth map in ‘vanilla (rgb)’ column) in a sparse setting, because feature
field remains the same regardless of view directions. Nevertheless, as
shown in the column marked with ‘vanilla +FF’, by simply introducing
a feature field cannot result in better quality synthesized views. On the
other hand, the result in the column marked with ‘vanilla + Fusion’
shows that when additional features are input to the color prediction
block as a condition guidance, it can contribute to better output, even



J. Li et al. Image and Vision Computing 156 (2025) 105465 
Fig. 4. Ablation study comparing synthesized views and corresponding depth maps utilizing vanilla NeRF model [1] in a very sparse setting of 3 input views based on the flower
scene of the LLFF dataset.
though the feature loss 𝐿𝑓 is obtained together with color prediction
loss, i.e., 𝜆=0 in Eq. (8). Lastly, the column marked with ‘Ours’ shows
the result of our full model of FFusion, in which the feature is tactically
used as a condition to guide the novel view synthesis, resulting in better
quality of output in a sparse setting.

Moreover, to show that our method improves pixel-level consistency
rather than visual perceptual consistency, we compared our FFusion
with the vanilla NeRF with LPIPS and SSIM losses, in which SSIM loss
is often used in 3DGS related studies. For 3DGS, SSIM loss is computed
based on the entire image in every rendering step. In contrast, NeRF
samples a random subset of pixels, typically around 1024 pixels, from
one or more images during each training iteration. These pixels are
not necessarily from neighboring patches. To apply LPIPS or SSIM loss
to NeRF, we randomly sampled 4096 pixels from a patch, as LPIPS
requires a patch of at least 64 × 64 pixels for computation. During
training, we used the same loss formulation as 3DGS, i.e., 0.8𝐿1+ 0.2𝐿𝑥,
where 𝐿𝑥 can be either LPIPS or (1-SSIM). However, even with a batch
size four times larger than ours, the results of vanilla with LPIPS or
SSIM loss are significantly worse than that of the original (vanilla)
NeRF. This could be due to the fact that, although LPIPS or SSIM
introduces local regularization, the patch-based computation does not
capture good global information of the scene.

Table 1 presents the quantitative results of the ablation study in a
3-view setting for a baseline of NeRF, and with incorporation of only
feature field (FF), with feature fusion module (without loss guidance)
and that of our full model (with loss guidance). As shown, the perfor-
mance slightly degrades when only the feature field is added to the
NeRF. This degradation occurs because both the feature field and the
RGB field share the same backbone, leading to difficulties in accurate
geometry learning due to noise in the feature maps. The fusion of
feature can integrate the knowledge from the feature, resulting in better
color prediction, and our full model brings significant improvements to
all three metrics, namely, PSNR increases from 16.81 to 17.70, SSIM
rises from 0.539 to 0.557, and LPIPS decreases from 0.447 to 0.363.

4.3. Comparison with SOAT methods

We compared our FFusion with 9 state-of-the-art methods, including
transfer learning-based and regularization-based methods, on the LLFF
and DTU datasets to evaluate the effectiveness of our FFusion method.
For a fair comparison, we do not compare to those diffusion-based
methods [31,46], because they benefit from large pre-trained diffusion
models and can generate high-fidelity images, yet they have completely
different structures and principles.

Comparison based on the DTU dataset. For the DTU dataset,
our method used FreeNeRF [14] as a baseline and the quantitative
comparison results with these SOTA methods are given in Table 2. As
shown, our FFusion outperforms all listed state-of-the-art methods in
terms of PSNR with 3, 6, and 9 input views. Specifically, compared to
5 
the existing regularization methods, our FFusion, based on FreeNeRF,
achieves a PSNR improvement of 20.83 versus 19.92 with 3 input
views, 23.81 versus 23.25 with 6 input views, and 26.26 versus 25.38
with 9 input views. The training of SparseNeRF was not stable on the
DTU dataset and it failed to generate results for some scenes with 6
or 9 input views ( Table 2). The qualitative comparison results with
five selected state-of-the-art methods based on the DTU dataset are
given in Fig. 5. The qualitative comparison shows that our FFusion not
only achieves better depth estimation but also reconstructs the scene’s
structure and shape more accurately.

Comparison based on the LLFF dataset The quantitative and
qualitative comparison results with state-of-the-art methods based on
the LLFF dataset are shown in Tables 3 and 6, respectively. As shown
in Table 3, our FFusion based on SparseNeRF outperforms all the listed
methods on the metric of SSIM. Specifically, our FFusion achieves SSIM
scores of 0.735, 0.829, and 0.860 with 3, 6, and 9 views, respectively.
Additionally, in the 3-view setting, our FFusion outperforms all other
methods across all metrics. From Fig. 6, it can be seen that all state-
of-the-art methods fail to accurately reconstruct the details of the
breastbones, whereas our FFusion successfully captures these details.

4.4. Discussion

Model-Agnostic Study. We demonstrate the model-agnostic char-
acteristics of our method using the LLFF dataset. Table 4 presents the
comparison results across various baselines. It is evident that our FFu-
sion method consistently improves performance on almost all metrics
compared to each baseline. Specifically, compared to DietNeRF [12],
which regularizes the consistency of semantic features, our FFusion
achieves improvements of 17.92 versus 17.20 in PSNR, 0.564 versus
0.522 in SSIM, and 0.374 versus 0.395 in LPIPS. When FreeNeRF [14]
is used as the baseline, our FFusion achieves higher PSNR and SSIM but
underperforms in LPIPS. This is because FreeNeRF’s longer frequency
curriculum and our feature field lead to smoother scenes, which may
adversely affect the LPIPS score, despite the more competitive PSNR
score.

The effect of feature layers. In our framework, we extract features
from a pretrained network to supervise feature field training, i.e., 𝐹
in Eq. (6). Since different layers of a pre-trained network contain
different levels of information about the scene, this may influence the
reconstruction process to different degrees. The quantitative results
corresponding to different feature layers in Table 5 confirm the selec-
tion of Relu3-1 on NeRF baseline for the LLFF dataset and Relu1-1 on
FreeNeRF [14] baseline for the DTU dataset. For the LLFF dataset, the
use of Relu3-1 achieves the highest performance because the whole
image is reconstructed whereas high-level features give more global
information. For object-level DTU dataset, the introduction of feature
field fusion, regardless of the layer of feature being adopted, does con-
tribute to performance improvement when objects are being masked.
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Fig. 5. Qualitative comparison results: with extra feature guides, our method can reduce floaters and reconstruct better quality objects.
Table 2
Quantitative Comparison with SOAT methods on the DTU dataset. np means not provided in the original article.

Method 3 views 6 views 9 views

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SRF [21] 15.32 0.671 0.304 17.54 0.730 0.250 18.35 0.752 0.232
SRFfine-tuned [21] 15.68 0.698 0.281 18.87 0.757 0.225 20.75 0.785 0.205
PixelNeRF [22] 16.82 0.695 0.270 19.11 0.745 0.232 20.40 0.768 0.220
PixelNeRF fine-tuned [22] 18.95 0.710 0.269 20.56 0.753 0.223 21.83 0.781 0.203
MVSNeRF [23] 18.63 0.769 0.197 20.70 0.823 0.156 22.40 0.853 0.135
MVSNeRF fine-tuned [23] 18.54 0.769 0.197 20.49 0.822 0.155 22.22 0.853 0.135
Mip-NeRF [2] 8.68 0.571 0.353 16.54 0.741 0.198 23.58 0.879 0.135
DietNeRF [12] 11.85 0.633 0.314 20.63 0.778 0.201 23.83 0.823 0.173
RegNeRF [13] 18.89 0.745 0.190 23.10 0.760 0.206 24.86 0.820 0.161
SimpleNeRF [15] 16.25 0.751 0.249 20.60 0.828 0.190 22.75 0.856 0.176
FreeNeRF [14] 19.92 0.787 np 23.25 0.844 np 25.38 0.888 np
SparseNeRF [11] 19.55 0.769 0.201 error error error error error error

Ours–FreeNeRF 20.83 0.804 0.201 23.81 0.861 0.153 26.26 0.895 0.126
Table 3
Quantitative Comparison with SOAT methods on the LLFF dataset.

Method 3 views 6 views 9 views

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SRF [21] 12.34 0.250 0.591 13.10 0.293 0.594 13.00 0.297 0.605
SRF fine-tuned [21] 17.07 0.436 0.529 17.39 0.438 0.521 17.39 0.465 0.503
PixelNeRF [22] 7.93 0.272 0.682 8.74 0.280 0.676 8.61 0.274 0.665
PixelNeRF fine-tuned [22] 16.17 0.438 0.512 17.03 0.473 0.477 18.92 0.535 0.430
MVSNeRF [23] 17.25 0.557 0.356 19.79 0.656 0.269 20.47 0.689 0.242
MVSNeRF fine-tuned [23] 17.88 0.584 0.327 19.99 0.660 0.264 20.47 0.695 0.244
Mip-NeRF [2] 14.62 0.351 0.495 20.87 0.692 0.255 24.26 0.805 0.172
DietNeRF [12] 14.94 0.370 0.496 21.75 0.717 0.248 24.28 0.801 0.183
RegNeRF [13] 19.08 0.587 0.336 23.10 0.760 0.206 24.86 0.820 0.161
SimpleNeRF [15] 19.24 0.623 0.375 23.05 0.737 0.296 23.98 0.762 0.286
FreeNeRF [14] 19.63 0.612 0.302 23.73 0.779 0.195 25.13 0.827 0.160
SparseNeRF [11](our imp) 19.84 0.620 0.325 23.10 0.749 0.233 24.37 0.795 0.198

Ours–SparseNeRF 20.09 0.735 0.296 23.48 0.829 0.218 24.63 0.860 0.189
The FFusion with Relu1-1 achieves the largest improvement, because
lower-level features provide more detailed information, such as edges
and texture.

The effect of loss weight 𝜆. We also examine hyperparameter
setting in our method, namely the balancing weight 𝜆 in Eq. (8). The
precision of geometry of the reconstructed field can be affected by
the balancing weight 𝜆 between the feature and the rgb color. As
evidence in Table 6, a balancing weight of 𝜆 = 0.01 is suggested for a
6 
FreeNeRF [14] baseline to balance between feature loss and color loss
for better quality of outputs.

The effect of feature extractors. We compare different feature
extractors, including VGG16 [40], ResNet18 [47] and Lseg [48], in
our framework. Specifically, we extract feature maps from Relu1-1 of
VGG16 network, and from Conv1 of ResNet18 network. For Lseg [48],
we compute the word–pixel correlation tensor from the Lseg(ViT-L/16)
as the feature maps. The comparison results are shown in Table 7,
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Fig. 6. The qualitative results of our method based on SparseNeRF baseline in comparison to other SOTA methods.
Table 4
Comparison results of our methods with different baselines.

Method PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF [2] 16.54 0.561 0.448
FFusion–Mip-NeRF 17.21 0.616 0.396

DietNeRF [12] 17.20 0.522 0.395
FFusion–DietNeRF 17.92 0.564 0.374

RegNeRF [13] 19.14 0.681 0.353
FFusion–RegNeRF 19.64 0.712 0.314

FreeNeRF [14] 19.59 0.618 0.302
FFusion–FreeNeRF 19.97 0.620 0.320

SparseNeRF [11] 19.84 0.620 0.325
FFusion–SparseNeRF 20.09 0.735 0.296

Table 5
Performance and efficiency comparisons for different layers of feature maps on both
datasets. For a fair efficiency comparison, the memory consumption and runtime are
calculated using the same chunk size (1024 × 16), netchunk size (1024 × 128) and
image size (1008 × 756) on a GeForce RTX 3090 GPU.

Layers LLFF dataset DTU dataset Memory Time

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (MB) (s)

Baseline 16.81 0.539 0.447 19.49 0.761 0.223 2602 14.7
Relu1-1 17.45 0.551 0.443 20.82 0.803 0.201 2766 19.9
Relu2-1 17.61 0.570 0.427 20.60 0.805 0.201 2798 20.3
Relu3-1 17.70 0.557 0.363 19.77 0.786 0.216 2992 21.3

Table 6
Comparison of different loss weights on DTU dataset.
𝜆 PSNR↑ SSIM↑ LPIPS↓

Baseline [14] 19.49 0.761 0.223
0.1 20.35 0.794 0.210
0.01 20.83 0.803 0.201
0.001 20.39 0.800 0.201

where our FFusion brings performance improvements with all three
feature extractors. Comparatively, our FFusion with VGG feature maps
performs better than those with ResNet18 and Lseg feature maps. This
is because VGG feature maps provide more color and texture informa-
tion, which are good for image reconstruction. Compared to ResNet,
the pre-trained VGG network has a better ability to capture the visual
style of an image [49]. For the same reason, Lseg [48] mainly focuses
7 
Table 7
Comparison of different feature extractors for feature supervi-
sion on the LLFF dataset.

Feature PSNR↑ SSIM↑ LPIPS↓

Baseline (Mip-NeRF [2]) 16.54 0.561 0.448
VGG [40] (Relu1-1) 17.21 0.616 0.396
ResNet18 [47] (Conv1) 16.57 0.568 0.441
Lseg [48] (ViT-L/16) 16.67 0.576 0.434

on semantic segmentation, and the learned features contain more high-
level semantic information, which are not conducive to supplementing
and restoring details. The VGG network pre-trained on ImageNet is,
therefore, suggested for extracting feature maps for the supervision of
the feature field in our framework.

Efficiency analysis. We compared the memory consumption and
runtime of the baseline method with our FFusion, using different layers
of feature maps. The comparison results are shown in Table 5. As
shown, our FFusion has a small increase in memory consumption and
runtime compared to the baseline. This is because the feature maps
do not need to be rendered during the inference stage. Specifically,
FFusion with ReLU1-1 increases memory consumption by 164 MB
(6.3%) and runtime by 5.2 s. FFusion with ReLU2-1 and ReLU3-1 has
higher memory consumption and takes a longer runtime than that with
ReLU1-1, because the feature maps being used have larger channel
numbers.

5. Conclusions and future work

In this paper, we propose a novel framework FFusion to synthesize
novel views with sparse view inputs. To tackle the under-constrained
few-shot NeRF problem, our proposed FFusion learns a feature field
to help the learning of the RGB color field. The experimental results
have also shown that our method significantly improves the synthe-
sis performance in a sparse setting and is complementary to various
methods.

Limitations and future work. Although our work has demonstrated
that the training of a feature field can benefit the training of the target
RGB field, it is challenging to balance the learning of both fields in
a multi-task learning manner, especially when combined with other
regularization losses, thereby leading to lower LPIPS scores. Fig. 7
shows an example failure case of our method on the DTU dataset.
Even though our method improves the quality of synthesized novel
views, our method will still fail if the testing view is very different
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Fig. 7. Failure case on the DTU dataset. When the test view is very different from the training views, our method will still generate error result, suffering from the same limitation
as that of SparseNeRF and FreeNeRF.
from the training view. As a future work, we will explore using the
state-of-the-art loss weighting methods to address this issue. We will
also explore integrating with diffusion models [30,31] to improve these
views. Moreover, we will also study applying FFusion to 3D Gaussian
splatting [4].

CRediT authorship contribution statement

Junting Li: Software, Methodology, Data curation, Conceptual-
ization. Yanghong Zhou: Writing – original draft, Visualization,
Methodology, Investigation. Jintu Fan: Supervision, Funding
acquisition. Dahua Shou: Supervision. Sa Xu: Resources. P.Y. Mok:
Writing – review & editing, Supervision, Investigation.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Jin-tu Fan reports financial support was provided by The
Hong Kong Polytechnic University. Sa Xu reports financial support
was provided by Lunaler Healthy Technology Co., Ltd. P.Y. Mok
reports financial support was provided by General research grant of
Hong Kong Special Administrative Region. P.Y. Mok reports financial
support was provided by Research Centre of Textiles for Future
Fashion. Yanghong Zhou reports financial support was provided
by Research Centre of Textiles for Future Fashion. If there are
other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The work described in this paper is supported, in part, by The Hong
Kong Polytechnic University (Grant Numbers Q-8883; CD95/P0049355;
BDVH/P0051330; BBFL/P0052601), and by the General Research
Grant of the Hong Kong Special Administrative Region (Grant Number
15602323).

Data availability

The data used is publicly available, and has been explained in the
paper.

References

[1] B. Mildenhall, P.P. Srinivasan, M. Tancik, J.T. Barron, R. Ramamoorthi, R. Ng,
NeRF: Representing scenes as neural radiance fields for view synthesis, in: ECCV,
2020.

[2] J.T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, P. Hedman, Mip-nerf 360:
Unbounded anti-aliased neural radiance fields, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 5470–5479.
8 
[3] J.T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, P. Hedman, Zip-nerf:
Anti-aliased grid-based neural radiance fields, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 19697–19705.

[4] B. Kerbl, G. Kopanas, T. Leimkühler, G. Drettakis, 3D gaussian splatting for
real-time radiance field rendering, ACM Trans. Graph. 42 (4) (2023) 139–1.

[5] A. Mirzaei, T. Aumentado-Armstrong, K.G. Derpanis, J. Kelly, M.A. Brubaker,
I. Gilitschenski, A. Levinshtein, SPIn-NeRF: Multiview segmentation and
perceptual inpainting with neural radiance fields, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
20669–20679.

[6] S. Zhou, H. Chang, S. Jiang, Z. Fan, Z. Zhu, D. Xu, P. Chari, S. You, Z. Wang, A.
Kadambi, Feature 3dgs: Supercharging 3d gaussian splatting to enable distilled
feature fields, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024, pp. 21676–21685.

[7] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-
Brualla, T. Simon, J. Saragih, M. Nießner, et al., State of the art on neural
rendering, in: Computer Graphics Forum, 39, (2) Wiley Online Library, 2020,
pp. 701–727.

[8] A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk, W. Yifan, C.
Lassner, V. Sitzmann, R. Martin-Brualla, S. Lombardi, et al., Advances in neural
rendering, in: Computer Graphics Forum, 41, (2) Wiley Online Library, 2022,
pp. 703–735.

[9] M. Gu, J. Li, Y. Wu, H. Luo, J. Zheng, X. Bai, 3D human avatar reconstruction
with neural fields: A recent survey, Image Vis. Comput. (2024) 105341.

[10] J. Luo, T. Huang, W. Wang, W. Feng, A review of recent advances in 3D
Gaussian Splatting for optimization and reconstruction, Image Vis. Comput.
(2024) 105304.

[11] G. Wang, Z. Chen, C.C. Loy, Z. Liu, Sparsenerf: Distilling depth ranking for
few-shot novel view synthesis, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 9065–9076.

[12] A. Jain, M. Tancik, P. Abbeel, Putting nerf on a diet: Semantically consistent few-
shot view synthesis, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 5885–5894.

[13] M. Niemeyer, J.T. Barron, B. Mildenhall, M.S. Sajjadi, A. Geiger, N. Radwan,
Regnerf: Regularizing neural radiance fields for view synthesis from sparse
inputs, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 5480–5490.

[14] J. Yang, M. Pavone, Y. Wang, Freenerf: Improving few-shot neural rendering
with free frequency regularization, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 8254–8263.

[15] N. Somraj, A. Karanayil, R. Soundararajan, Simplenerf: Regularizing sparse
input neural radiance fields with simpler solutions, in: SIGGRAPH Asia 2023
Conference Papers, 2023, pp. 1–11.

[16] S. Hu, K. Zhou, K. Li, L. Yu, L. Hong, T. Hu, Z. Li, G.H. Lee, Z. Liu, Consistentnerf:
Enhancing neural radiance fields with 3d consistency for sparse view synthesis,
2023, arXiv preprint arXiv:2305.11031.

[17] R. Shi, X. Wei, C. Wang, H. Su, ZeroRF: Fast sparse view 360deg reconstruction
with zero pretraining, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 21114–21124.

[18] H. Zhu, T. He, X. Li, B. Li, Z. Chen, Is vanilla MLP in neural radiance field
enough for few-shot view synthesis? in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 20288–20298.

[19] Z. Fan, W. Cong, K. Wen, K. Wang, J. Zhang, X. Ding, D. Xu, B. Ivanovic,
M. Pavone, G. Pavlakos, et al., Instantsplat: Unbounded sparse-view pose-free
gaussian splatting in 40 seconds, 2024, arXiv preprint arXiv:2403.20309. 2 (3)
4.

[20] H. Li, Y. Gao, C. Wu, D. Zhang, Y. Dai, C. Zhao, H. Feng, E. Ding, J. Wang,
J. Han, Ggrt: Towards pose-free generalizable 3d gaussian splatting in real-time,
in: European Conference on Computer Vision, Springer, 2025, pp. 325–341.

[21] J. Chibane, A. Bansal, V. Lazova, G. Pons-Moll, Stereo radiance fields (srf):
Learning view synthesis for sparse views of novel scenes, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 7911–7920.

http://refhub.elsevier.com/S0262-8856(25)00053-8/sb1
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb1
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb1
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb1
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb1
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb2
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb2
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb2
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb2
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb2
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb3
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb3
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb3
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb3
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb3
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb4
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb4
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb4
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb5
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb6
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb7
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb8
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb9
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb9
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb9
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb10
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb10
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb10
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb10
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb10
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb11
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb11
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb11
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb11
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb11
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb12
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb12
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb12
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb12
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb12
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb13
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb14
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb14
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb14
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb14
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb14
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb15
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb15
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb15
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb15
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb15
http://arxiv.org/abs/2305.11031
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb17
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb17
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb17
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb17
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb17
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb18
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb18
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb18
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb18
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb18
http://arxiv.org/abs/2403.20309
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb20
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb20
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb20
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb20
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb20
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb21


J. Li et al. Image and Vision Computing 156 (2025) 105465 
[22] A. Yu, V. Ye, M. Tancik, A. Kanazawa, Pixelnerf: Neural radiance fields from
one or few images, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 4578–4587.

[23] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, H. Su, Mvsnerf: Fast generaliz-
able radiance field reconstruction from multi-view stereo, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 14124–14133.

[24] H. Lin, S. Peng, Z. Xu, Y. Yan, Q. Shuai, H. Bao, X. Zhou, Efficient neural radiance
fields for interactive free-viewpoint video, in: SIGGRAPH Asia 2022 Conference
Papers, 2022, pp. 1–9.

[25] D. Charatan, S.L. Li, A. Tagliasacchi, V. Sitzmann, Pixelsplat: 3d gaussian splats
from image pairs for scalable generalizable 3d reconstruction, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024,
pp. 19457–19467.

[26] Y. Chen, H. Xu, C. Zheng, B. Zhuang, M. Pollefeys, A. Geiger, T.-J. Cham, J.
Cai, Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images, in:
European Conference on Computer Vision, Springer, 2025, pp. 370–386.

[27] Q. Li, R. Fu, F. Tang, Depth assisted novel view synthesis using few images,
Image Vis. Comput. 147 (2024) 105079.

[28] Z. Zhu, Z. Fan, Y. Jiang, Z. Wang, Fsgs: Real-time few-shot view synthesis using
gaussian splatting, in: European Conference on Computer Vision, Springer, 2025,
pp. 145–163.

[29] Z. Liu, J. Su, G. Cai, Y. Chen, B. Zeng, Z. Wang, GeoRGS: Geometric regulariza-
tion for real-time novel view synthesis from sparse inputs, IEEE Trans. Circuits
Syst. Video Technol. (2024).

[30] C. Yang, S. Li, J. Fang, R. Liang, L. Xie, X. Zhang, W. Shen, Q. Tian,
Gaussianobject: High-quality 3d object reconstruction from four views with
gaussian splatting, ACM Trans. Graph. 43 (6) (2024) 1–13.

[31] R. Wu, B. Mildenhall, P. Henzler, K. Park, R. Gao, D. Watson, P.P. Srinivasan, D.
Verbin, J.T. Barron, B. Poole, et al., Reconfusion: 3d reconstruction with diffusion
priors, 2023, arXiv preprint arXiv:2312.02981.

[32] S. Zhi, T. Laidlow, S. Leutenegger, A.J. Davison, In-place scene labelling
and understanding with implicit scene representation, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 15838–15847.

[33] S. Kobayashi, E. Matsumoto, V. Sitzmann, Decomposing nerf for editing via
feature field distillation, Adv. Neural Inf. Process. Syst. 35 (2022) 23311–23330.

[34] J. Kerr, C.M. Kim, K. Goldberg, A. Kanazawa, M. Tancik, Lerf: Language embed-
ded radiance fields, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 19729–19739.

[35] G. Metzer, E. Richardson, O. Patashnik, R. Giryes, D. Cohen-Or, Latent-nerf
for shape-guided generation of 3d shapes and textures, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
12663–12673.
9 
[36] N. Müller, A. Simonelli, L. Porzi, S.R. Bulò, M. Nießner, P. Kontschieder, Autorf:
Learning 3d object radiance fields from single view observations, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 3971–3980.

[37] K. Liu, F. Zhan, Y. Chen, J. Zhang, Y. Yu, A. El Saddik, S. Lu, E.P. Xing,
Stylerf: Zero-shot 3d style transfer of neural radiance fields, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 8338–8348.

[38] J. Ye, N. Wang, X. Wang, Featurenerf: Learning generalizable nerfs by distilling
foundation models, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 8962–8973.

[39] G. Liao, K. Zhou, Z. Bao, K. Liu, Q. Li, Ov-nerf: Open-vocabulary neural
radiance fields with vision and language foundation models for 3d semantic
understanding, 2024, arXiv preprint arXiv:2402.04648.

[40] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: 3rd International Conference on Learning Representations,
ICLR 2015, Computational and Biological Learning Society, 2015.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2009, pp. 248–255.

[42] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, H. Aanæs, Large scale multi-view
stereopsis evaluation, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 406–413.

[43] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment:
from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4)
(2004) 600–612.

[44] R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable
effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.

[45] X. Huang, S. Belongie, Arbitrary style transfer in real-time with adaptive instance
normalization, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 1501–1510.

[46] J. Wynn, D. Turmukhambetov, Diffusionerf: Regularizing neural radiance fields
with denoising diffusion models, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 4180–4189.

[47] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[48] B. Li, K.Q. Weinberger, S. Belongie, V. Koltun, R. Ranftl, Language-driven
semantic segmentation, 2022, arXiv preprint arXiv:2201.03546.

[49] P. Wang, Y. Li, N. Vasconcelos, Rethinking and improving the robustness of
image style transfer, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 124–133.

http://refhub.elsevier.com/S0262-8856(25)00053-8/sb22
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb22
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb22
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb22
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb22
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb23
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb23
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb23
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb23
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb23
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb24
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb24
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb24
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb24
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb24
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb25
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb26
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb26
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb26
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb26
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb26
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb27
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb27
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb27
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb28
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb28
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb28
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb28
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb28
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb29
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb29
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb29
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb29
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb29
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb30
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb30
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb30
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb30
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb30
http://arxiv.org/abs/2312.02981
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb32
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb32
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb32
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb32
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb32
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb33
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb33
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb33
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb34
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb34
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb34
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb34
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb34
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb35
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb36
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb37
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb38
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb38
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb38
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb38
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb38
http://arxiv.org/abs/2402.04648
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb40
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb40
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb40
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb40
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb40
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb41
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb41
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb41
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb41
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb41
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb42
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb42
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb42
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb42
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb42
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb43
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb43
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb43
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb43
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb43
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb44
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb44
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb44
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb44
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb44
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb45
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb45
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb45
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb45
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb45
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb46
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb46
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb46
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb46
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb46
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb47
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb47
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb47
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb47
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb47
http://arxiv.org/abs/2201.03546
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb49
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb49
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb49
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb49
http://refhub.elsevier.com/S0262-8856(25)00053-8/sb49

	Feature Field Fusion for few-shot novel view synthesis
	Introduction
	Related Work
	Method
	Preliminary
	FFusion NeRF
	Feature field
	Feature field fusion
	Loss function


	Experiments
	Datasets, Metrics and Implementation Details
	Ablation Study
	Comparison with SOAT Methods
	Discussion

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


