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Abstract 

Accurate estimation of sideslip angle and vehicle velocity is crucial for effective control of distributed drive electric 
vehicles. However, as these states are not directly measured, Kalman-based approaches utilizing in-vehicle sen-
sors have been developed to estimate them. Unfortunately, existing methods tend to ignore the impact of data 
loss on estimation performance. Furthermore, the process noise, which changes dynamically due to varying driv-
ing conditions, is not adequately considered. In response to these constraints, we propose a novel method called 
the fuzzy adaptive fault-tolerant extended Kalman filter (FAFTEKF). Initially, a fault-tolerant EKF is devised to handle 
missing measurements. Additionally, a fuzzy logic system that dynamically updates the process noise matrix, is built 
to improve estimation accuracy under different driving conditions. Extensive experimental results validate the superi-
ority of the FAFTEKF over the traditional EKF across various scenarios with different degrees of data loss.
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1 Introduction
Traffic accidents have always been a major cause of sig-
nificant casualties and economic losses [1]. To mitigate 
these issues, extensive efforts have been made to develop 
autonomous driving systems and advance chassis con-
trol systems [2, 3]. In complex traffic scenarios, motion 
state estimation of vehicles plays a vital role in ena-
bling autonomous driving [4, 5]. Once a high-level driv-
ing decision has been made, distributed drive electric 
vehicles (DDEV) will execute some control commands 

based on some key information on the vehicle state [6]. 
Among various influential factors, the accurate estima-
tion of vehicle states, particularly sideslip angle and vehi-
cle velocity, is crucial during vehicle control. However, 
directly measuring these key states using onboard sen-
sors remains challenging. Therefore, the research focus is 
currently on developing methods to estimate these vehi-
cle states solely based on onboard sensor data.

Recently, a variety of techniques have been employed 
for vehicle state estimation. Zhang et al. [7] devised an H 
infinity observer to forecast the sideslip angle using front-
wheel angle data. The controller output observer [8] has 
been explored for estimating tire and traction forces sep-
arately. Zhao et al. [9] introduced a nonlinear observer for 
vehicle velocity estimation, demonstrating superior per-
formance in certain tests compared to a linear observer. 
Gao et al. [10] formulated a high-gain nonlinear observer 
for sideslip angle estimation. Among these methods, the 
sliding mode observer (SMO) is widely adopted. Variants 
like the reduced-order SMO [11] and higher-order SMO 
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[12] have emerged for enhanced vehicle state estimation. 
Nonetheless, the accuracy of these observer-based tech-
niques heavily depends on precise vehicle models, which 
are often challenging to acquire in practical scenarios.

Unlike observer-based methods, the Kalman filter algo-
rithm and its variations are highly effective in achiev-
ing minimum mean squared error estimates when 
dealing with Gaussian noise. Consequently, Kalman-based 
approaches have gained extensive traction in vehicle state 
estimation. Within this domain, the extended Kalman fil-
ter (EKF) emerges as a favored option. In their work, Wen-
zel et al. [13] introduced a dual EKF estimation framework 
for predicting vehicle state, which addresses both param-
eter identification and state estimation problems. Baffet 
et  al. [14] developed an EKF-based estimator specifically 
for predicting sideslip angle. Doumiati et al. [15] employed 
the EKF for the prediction of both sideslip angle and lateral 
tire forces. Meanwhile, Nam et al. [16] applied the EKF to 
a real vehicle for predicting sideslip angle using tire force 
sensor data. Additionally, to improve the robustness of the 
EKF, an extended H-infinity Kalman filter was introduced 
in [17]. Furthermore, the interacting multiple model EKF 
was utilized for vehicle state prediction [18]. Apart from 
the sideslip angle, it is also crucial to dynamically pre-
dict the vehicle velocity. Guo et al. [19] devised an EKF to 
estimate vehicle velocity using a field-programmable gate 
array, demonstrating high computational efficiency in test 
results. Katriniok et al. [20] presented a kinematics-based 
estimation method for predicting vehicle velocity. Addi-
tionally, Zhang et  al. [21] developed an adaptive Kalman 
filter for predicting vehicle velocity and the experimental 
results proved the superiority of the proposed method. 
Similar studies have been reported [22].

While there have been significant research achieve-
ments in estimating vehicle state using the EKF, many 
of these studies fail to consider the impact of missing 
measurements. In practice, sensor data is often incom-
plete [23]. In response to this challenge, a robust EKF 
approach was proposed [24] to estimate vehicle state 
in the presence of missing measurements. This method 
enhances estimation performance specifically when data 
loss follows a uniform distribution. Similar investigations 
have been reported [25]. Additionally, real-time changes 
in vehicle dynamics due to varying driving conditions 
such as icy roads, snowy roads, and asphalt roads intro-
duce time-varying process noise. However, most prior 
research assumes the process noise matrix is known, 
which leads to decreased estimation performance in 
complex driving conditions.

Based on the preceding discourse, a novel approach called 
the fuzzy adaptive fault-tolerant extended Kalman filter 
(FAFTEKF) has been devised to address the challenges of 
measurement loss and unknown process noise. This method 

consists of two fundamental components: the fault-tolerant 
extended Kalman filter (FTEKF) and the fuzzy logic system. 
The FTEKF serves to mitigate the impact of missing meas-
urements on estimation accuracy. Additionally, a dynamic 
fuzzy logic system has been developed to update the pro-
cess noise matrix, thereby enhancing the adaptability of the 
FTEKF. The key contributions of this approach can be sum-
marized as follows.

(1) A novel FAFTEKF is proposed to estimate vehicle 
state in case of data loss and unknown process noise. 
The FAFTEKF algorithm combines the FTEKF with 
a fuzzy logic system, enabling improved estimation 
performance in diverse working conditions.

(2) Comprehensive simulations and real vehicle experi-
ments are conducted to validate the effectiveness 
of the FAFTEKF. The experimental results provide 
compelling evidence of the algorithm’s capability to 
accurately estimate the sideslip angle and vehicle 
velocity, reinforcing its practical viability.

The paper is structured as follows. Section 2 provides 
an overview of the vehicle model used in this study. In 
Section 3, the details of the FAFTEKF approach are pre-
sented. The simulation and experimental results are 
discussed in Section  4. Finally, Section  5 concludes the 
paper by summarizing the main findings and highlighting 
future research directions.

2  Vehicle Model and Problem Formulation
We have chosen the four-wheel vehicle model [26] as a rep-
resentation of the vehicle’s dynamic response. The diagram 
of this model can be seen in Figure 1. The precise mathemat-
ical equations for this model are provided in Eqs. (1)–(4).

(1)
m(v̇x − rvy) = (Fx1+Fx2) cos δ + Fx3 + Fx4−(Fy1 + Fy2) sin δ,
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Figure 1 The four-wheel model
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where i = 1, 2, 3, 4 , which correspond to the left-front, 
right-front, left-rear, and right-rear wheels, respectively. 
a and b denote the distances from the center of gravity 
to the front and rear axles. Fxi , Fyi represent longitudinal 
and lateral tire forces, respectively. r , m represent the yaw 
rate and vehicle mass, respectively. Tf  and Tr represent 
the front and rear track widths. δ denotes the front wheel 
angle. vx , vy , β represent longitudinal vehicle velocity, lat-
eral vehicle velocity, and sideslip angle, respectively. Iz 
denotes the moment of inertia about the vehicle’s verti-
cal axis. ωi represents the wheel rotational speed; Li is the 
wheel radius; Tbi , Tdi , Ji denote the braking torque, driv-
ing torque, and moment of inertia, respectively.

We utilize a brushed tire model [27] to depict the 
dynamic characteristics of tires. The following equations 
outline specific aspects

(2)
m(v̇y + rvx) = (Fx1+Fx2) sin δ + Fy3 + Fy4 + (Fy1 + Fy2) cos δ,

(3)
ṙ =

{

a
[

(Fx1 + Fx2) sin δ + (Fy1 + Fy2) cos δ
]

−b(Fy3 + Fy4)
}

/Iz ,

(4)Jiω̇t = Tdi − Tbi − LiFxi i = 1, 2, 3, 4,

(5)Fx,i =
Cx

(

si
1+si

)

fi
Fi,

(6)Fy,i = −
Cy

(

tan αi
1+si

)

fi
Fi,

(7)

Fi =











fi −
1

3µFz,i
f 2i +

1

27µ2F2
z,i

f 3i , if fi ≤ 3µFz,i,

µFz,i , else,

(8)fi =

√

C2
x

(

si

1+ si

)2

+ C2
y

(

tan αi

1+ si

)2

,

(9)Fz,1 =
mgb

2(a+ b)
−

maxh

2(a+ b)
−

mayh

Tf
·

b

a+ b
,

(10)Fz,2 =
mgb

2(a+ b)
−

maxh

2(a+ b)
+

mayh

Tf
·

b

a+ b
,

(11)Fz,3 =
mga

2(a+ b)
+

maxh

2(a+ b)
−

mayh

Tr
·

a

a+ b
,

where ax and ay represent longitudinal and lateral accel-
erations;h denotes the height of the center of gravity; µ is 
tire-road friction coefficient; Cx , Cy , Fz,i denote the lon-
gitudinal, lateral stiffness coefficients, and vertical tire 
forces, respectively;  si , αi stand for the longitudinal slip 
ratio and wheel sideslip angle; i = 1, 2, 3, 4 , it shares the 
same physical significance as the vehicle model.

Based on the aforementioned equations, we have estab-
lished a discrete vehicle state-space model that incorporates 
missing measurements. The model is as follows.

The process noise denoted as ψτ , has a covariance of �τ . 
Similarly, the measurement noise denoted as ςτ , has a covar-
iance of Rτ . τ represents the sampling instant; the measure-
ment vector is zτ ; the state transition function is denoted as 
Ŵ ; the input vector is uτ . Additionally, the measurement out-
put function is h . The state vector is denoted as χτ , and it is 
important to note that the process noise and measurement 
noise are uncorrelated. �τ = diag{ε1τ , ε

2
τ , · · · , ε

n
τ } , where 

εiτ (i = 1, 2, · · · , n) denotes n independent random variables 
and is not related to any noise signals. diag{·} is a diagonal 
matrix, and the probability density function is represented 
as εiτ . Furthermore, it should be noted that the initial state χ0 
is also not related to any noise signals.

(12)Fz,4 =
mga

2(a+ b)
+

maxh

2(a+ b)
+

mayh

Tr
·

a

a+ b
,

(13)si = sgn(vx − Liwi)
|vx − Liwi|

max(Liwi, vx)
,

(14)α1 = δ − arctan

(

vy + ar

vx − Tf r/2

)

,

(15)α2 = δ − arctan

(

vy + ar

vx + Tf r/2

)

,

(16)α3 = − arctan

(

vy − br

vx − Trr/2

)

,

(17)α4 = − arctan

(

vy − br

vx + Trr/2

)

,

(18)
{

χτ+1 = Ŵ(χτ ,uτ )+ ψτ ,

zτ = �τh(χτ ,uτ )+ ςτ ,











χτ = [vx, vy, r]
T,

zτ = [r, ax, ay]
T,

uτ = [δ]T.
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3  Methodology
In this section, we present the flowchart of the vehicle state 
estimation process based on the FAFTEKF, as shown in 
Figure 2. The FTEKF calculates the prior vehicle state, fol-
lowed by the computation of the prior covariance using the 
updated process noise. The fuzzy system utilizes longitu-
dinal and lateral acceleration and yaw rate information to 
update the process noise. Subsequently, the posterior vehicle 
state is updated using Eq. (20). Finally, Eq. (29) is employed 
to update the posterior covariance. These iterative steps are 
continuously cycled to ensure an accurate estimation of the 
vehicle state. Initially, we introduce the iterative formulation 
of the FTEKF. Subsequently, we integrate a fuzzy logic sys-
tem to enhance the adaptability of the FTEKF.

3.1  The FTEKF
Within the framework of the traditional EKF, the recur-
sive filtering can be expressed as follows:

where Mτ+1 is a filter gain, �τ+1=E(�τ+1).

(19)χ̂−
τ+1 = Ŵ(χ̂−

τ ,uτ ),

(20)
χ̂+
τ+1 = χ̂−

τ+1 +Mτ+1

[

zτ+1 −�τ+1h(χ̂
−
τ+1,uτ+1)

]

,

Let us define the posterior state prediction error as 
ω+
τ+1=χτ+1−χ̂+

τ+1 and the prior state prediction error as 
ω−
τ+1=χτ+1−χ̂−

τ+1 . By combining Eqs. (18), (19), and (20), 
we obtain Eqs. (21) and (22).

To linearize the Ŵ(χτ ,uτ ) and h(χτ+1,uτ+1) , we uti-
lize a first-order Taylor series expansion and disregard the 
higher-order terms.

(21)ω−
τ+1 = Ŵ(χτ ,uτ )+ ψτ − Ŵ(χ̂+

τ ,uτ ),

(22)
ω+
τ+1

=Ŵ(χτ ,uτ )+ ψτ − χ̂−
τ+1

−Mτ+1

[

zτ+1 −�τ+1h(χ̂
−
τ+1

,uτ+1)

]

,

(23)Ŵ(χτ ,uτ )=Ŵ(χ̂+
τ ,uτ )+

∂Ŵ(χτ ,uτ )

∂χτ

∣

∣

∣χτ=χ̂+
τ
ω+
τ ,

(24)ω−
τ+1 =

∂Ŵ(χτ ,uτ )

∂χτ

∣

∣

∣χτ=χ̂+
τ
ω+
τ + ψτ ,

(25)

h(χτ+1,uτ+1)=h(χ̂−
τ+1,uτ+1)+

∂h(χτ+1,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

ω−
τ+1,

(26)

ω+
τ+1

= Ŵ(χ̂+
τ ,uτ ) +

∂Ŵ(χτ ,uτ )

∂χτ

�

�

�χτ = χ̂+
τ
ω+
τ + ψτ − Ŵ(χ̂+

τ ,uτ )

−Mτ+1







(�τ+1 − �̄τ+1)h(χ̂
−
τ+1

,uτ+1)

+ςτ+1 +�τ+1

∂h(χτ+1,uτ+1)

∂χτ+1

�

�

�χτ+1 = χ̂−
τ+1

ω−
τ+1







= (I −Mτ+1�τ+1

∂h(χτ+1,uτ+1)

∂χτ+1

�

�

�χτ+1 = χ̂−
τ+1

)ω−
τ+1

−

Mτ+1 �̃τ+1h(χ̂
−
τ+1

,uτ+1)−Mτ+1ςτ+1,
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Figure 2 The flowchart of vehicle state estimation using the FAFTEKF
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where �̃τ+1=�τ+1 −�τ+1.

According to Eq. (24), the prior covariance P−
τ+1 can be 

expressed as Eq. (27).

where (·)T is matrix transpose. Referring to Eq. (26), the 
expression for the posterior covariance P+

τ+1 is as follows. 
Let us rewrite it as:

where I is the identity matrix. Because ψτ , ωτ , ζτ and �̃τ+1 
are not related to each other, Eq. (28) can be rewritten as

By taking the partial derivative of P+
τ+1 with respect to 

Mτ+1 , we obtain Eq. (30).

By equating Eq. (30) to zero, we can obtain the expres-
sion for the gain Mτ+1 as follows:

(27)

P−
τ+1 = E

[

ω−
τ+1

(

ω−
τ+1

)T
]

=
∂Ŵ(χτ ,uτ )

∂χτ

∣

∣

∣χτ=χ̂+
τ
P+
τ

(

∂Ŵ(χτ ,uτ )

∂χτ

∣

∣

∣χτ=χ̂+
τ

)T

+�τ ,

(28)

P+
τ+1 = E

[

ω+
τ+1

(

ω+
τ+1

)T
]

= E{ [ (I −Mτ+1�τ+1

∂h(χτ+1,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

)ω−
τ+1−

Mτ+1 �̃τ+1h(χ̂
−
τ+1,uτ+1)−Mτ+1ςτ+1 ]×

[ (I −Mτ+1�τ+1

∂h(χτ+1,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

)ω−
τ+1−

Mτ+1 �̃τ+1h(χ̂
−
τ+1,uτ+1)−Mτ+1ςτ+1 ]T },

(29)

P
+
τ+1

=

(

I −Mτ+1�τ+1

∂h(χτ+1
,uτ+1)

∂χτ+1

∣

∣

∣χτ+1 = χ̂−
τ+1

)

P
−
τ + 1

×

(

I −Mτ+1�τ+1

∂h(χτ+1
,uτ+1)

∂χτ+1

∣

∣

∣χτ+1 = χ̂−
τ+1

)T

+

Mτ+1Rτ+1M
T
τ+1 +Mτ+1E

[

�̃τ+1h(χ̂
−
τ+1

,uτ+1)×

h
T(χ̂−

τ+1
,uτ+1)�̃

T
τ+1

]

M
T
τ+1,

(30)

∂tr(P+
τ+1

)

∂Mτ+1

= −2(I −Mτ+1�τ+1

∂h(χτ+1
,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

)P−
τ+1

×

(

∂h(χτ+1
,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

)T

�T
τ+1 + 2Mτ+1×

{

E

[

�̃τ+1h(χ̂
−
τ+1

,uτ+1)× h
T (χ̂−

τ+1
,uτ+1)�̃

T
τ+1

]}

+ 2Mτ+1Rτ+1,

where (·)−1 is the inverse of a matrix.
The key to the ability of the FTEKF to handle data 

loss problems compared to traditional EKF is the use of 
probability density functions to describe measurement 
loss and embed it in the measurement transfer function. 
The new measurement transfer function is then used to 
derive new filtering equations following the iterative fil-
tering framework that allows the calculation of the data 
loss term to be included in the FTEKF algorithm.

3.2  The Fuzzy Logic System
In the FTEKF, it is presumed that the process noise is con-
stant and predetermined. However, the vehicle driving 

(31)

Mτ+1 =

[

P−
τ+1

(

∂h(χτ+1,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

)T

�T
τ+1

]

×

[

�τ+1

∂h(χτ+1,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

P−
τ+1×

(

∂h(χτ+1,uτ+1)

∂χτ+1

∣

∣

∣χτ+1=χ̂−
τ+1

)T

�T
τ+1 + Rτ+1+

E
(

�̃τ+1h(χ̂
−
τ+1,uτ+1)×hT(χ̂−

τ+1,uτ+1) �̃
T
τ+1

)]−1
,

conditions are intricate, encompassing continuous turning, 
uphill and downhill terrains, among others. Additionally, 
the roads on which vehicles travel exhibit varied surfaces, 
including ice and snow, asphalt, and gravel. These factors 
can directly or indirectly influence changes in the process 
noise. To optimize estimation performance, we propose 
the integration of a fuzzy logic system that dynamically 
updates the process noise of the robust EKF. The updated 
equation �τ is as follows:

where, e represents a vector of deviations of the actual 
and estimated values of the three variables: longitudi-
nal acceleration, lateral acceleration, and yaw rate, α is a 

(32)�τ ,new = α(e)�τ ,old ,
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fuzzy factor. The range of deviations from the longitudi-
nal acceleration is [− 2, 2], the range of deviations from 
the lateral acceleration is [− 1, 1], and the range of devia-
tions from the yaw rate is [− 8, 8]. They are partitioned 
into three levels: NB, Z, and PB. The domain of α is 
[0.001, 0.02], partitioned into five levels: NB, NM, Z, PM, 
and PB. For the degree of membership (DOM), the DOM 
of the input and output variables are depicted in Figure 3, 
respectively.

Since there are three input variables they are categorized 
into three classes and thus there are 27 fuzzy rules. The 
basic principle of setting the rules is to reduce the process 
noise if the deviation is too large and vice versa. Based on 
the aforementioned fuzzy rules, the FTEKF is capable of 
adaptively updating the process noise matrix.

3.3  The Boundness of FAFTEKF
In Section  3.3, the performance of the estimator will 
be evaluated, and certain conditions that guarantee the 
expected covariance remains bounded will be established. 
To begin with, we introduce a lemma.

Lemma 1: [28] For any two symmetric positive matri-
ces, (B+ D)−1 > B−1 + B−1DB−1 , one has

Theorem 1: For the system described by Eq. (4), if there 
exist real constants f  , f  , h,h  = 0 , and p,p,α α,α , ε,ε , q , q , 
r , r > 0 such that the following inequalities are satisfied 
for τ > 0.

If � > 1− 1

f
2 , then

Proof: To simplify the proof process, we use the �τ 
instead of �τ . Therefore,

Combing Eqs. (29), (34) and the fact that �2τ+1 = �τ+1 , 
we have

(33)(B+ D)−1 > B−1 + B−1DB−1.

(34)















qI ≤ Qτ ≤ qI , f 2I ≤ AτA
T
τ ≤ f

2
I ,

rI ≤ Rτ ≤ rI , h2I ≤ CτC
T
τ ≤ h

2
I ,

α ≤ α(e) ≤ α, ε I ≤ ℵ ≤ ε I , p ≤ p ≤ p.

(35)E
(

P−
τ+1

)

≤ pI .

(36)







































P+
τ+1=(I −Mτ+1�τ+1Cτ+1)P

−
τ+1 × (I −Mτ+1�τ+1Cτ+1)

T+

Mτ+1Rτ+1M
T
τ+1 +Mτ+1E

�

�̃τ+1h(χ̂
−
τ+1,uτ+1)×

hT(χ̂−
τ+1,uτ+1)�̃

T
τ+1

�

MT
τ+1,

Cτ+1 =
∂h(χτ+1,uτ+1)

∂χτ+1

�

�

�χτ+1=χ̂−
τ+1

(a) The DOM of longitudinal acceleration error

(b) The DOM of lateral acceleration error

(c)The DOM of yaw rate error

(d) The DOM of 
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Figure 3 The DOM of input and output variables
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Based on Lemma 1, we have

Then, the prior covariance P−
τ+1 with adaptive process 

noise can be rewritten as

Combing Eqs. (34) and (39), we have

At first, when τ = 1 , from Eq. (41), we have

where p = max
{

∥

∥E
(

P−
1

)∥

∥, (r + ε)f
2
h−2 + αq

}

.

Furthermore, it is recursively proved

Thus, if � > 1− 1

f
2 , then

This completes the proof.

4  Results and Discussion
The effectiveness of FAFTEKF was verified through sim-
ulation experiments and offline validation with real vehi-
cle data, respectively. To verify the applicability of our 
algorithm to different working conditions and consider 
the safety factor, the vehicle speed is higher in the sim-
ulation experiment, while the vehicle speed is relatively 
lower in the real vehicle experiment.

(37)
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Sτ+1 = �Cτ+1P
−
τ+1C

T
τ+1 + Rτ+1 + ℵ,

ℵ = �̃τ+1E
�

h(χ̂−
τ+1,uτ+1)h

T(χ̂−
τ+1,uτ+1)

�

�̃T
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(38)P+
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(
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)
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AτP
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(41)
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AτE
(
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AT
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[
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E
(
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2

)

≤ (1− �)f
2
pI + pI = p

1
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i=0

{

(1− �)f
2
}i
I ,

(43)E
(

P−
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)

≤ p

τ
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i=0

{

(1− �)f
2
}i
I .

(44)E
(

P−
τ+1

)

≤ pI .

4.1  The Simulation Results
In the test, we compared the output values from Carsim 
software with the estimated values obtained from the 
EKF, FTEKF, and FAFTEKF. The initial velocity of the 
vehicle is set to 50 km/h, and the vehicle is continuously 
steered by a virtual driver. The steering wheel angle is 
shown in Figure 4.

Throughout the simulation, we defined three different 
steering conditions. The period from 1 to 4 s represents 
a medium steering angle, the period from 4 to 6 s repre-
sents a large steering angle, and the period from 6 to 10 
s represents a small steering angle. To simulate missing 
measurements, we incorporated the output values from 
a Bernoulli distribution with the original acceleration 
and yaw rate. The probability of data loss is set to 10%. 
As shown in Figures 5, 6, and 7, the acceleration and yaw 
rate abruptly change to zero at certain points, indicating 
that measurements were missing during those moments.

Figure  8 illustrates the estimation results for various 
approaches to the lateral velocity in the simulation test 
(ST). The vehicle state output from the Carsim software, 
represented by the red solid line, serves as the reference 
value. It can be observed that the estimated results of the 
EKF deviate from the reference value, as the EKF relies 
on all measured information being available for effec-
tive operation. On the other hand, the FTEKF demon-
strates better estimation accuracy compared to the EKF 
because it accounts for the influence of missing meas-
urements in its iterative process. However, the FTEKF 
assumes a fixed process noise, leading to decreased esti-
mation accuracy in complex working conditions. For 
clearer distinction between the different algorithms for 
the reader, FAFTEKF is replaced by Fuzzy-FTEKF in 
the estimation result figures. In contrast, the FAFTEKF 
surpasses both the FTEKF and EKF in terms of estima-
tion accuracy. In the FAFTEKF, a fuzzy logic system is 
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Figure 4 The steering wheel angle in the simulation test
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employed to dynamically adjust the process noise matrix 
based on lateral acceleration information. Hence, the 
FAFTEKF not only addresses the issue of missing meas-
urements but also achieves adaptability in varying work-
ing conditions.

In Figure  9, the prediction results for longitudinal 
velocity are depicted. Similar to the estimation results for 

the lateral velocity, the FAFTEKF demonstrates superior 
performance compared to the other two methods. The 
proposed algorithm displays a high level of adaptability 
to changing driving conditions. Figure 10 depicts the esti-
mation curves of the different methods for the sideslip 
angle, the estimation curve based on FAFTEKF is clos-
est to the reference value. Figure 10 depicts the estima-
tion curves of the different methods for the sideslip angle, 
the estimation curve based on FAFTEKF is closest to the 
reference value. To provide a clearer representation of 
the estimation error, the accuracy of different algorithms 
is showcased using the root mean square error (RMSE). 
Table 1 reveals that the FAFTEKF demonstrates the low-
est RMSE values, indicating that the FAFTEKF achieves 
optimal estimation accuracy.

4.2  The Real Vehicle Test Results
To provide a more comprehensive understanding of 
the proposed estimation approach, we begin by collect-
ing offline data through real vehicle tests (RVT) con-
ducted on a dry asphalt road. The test involves a skilled 
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Figure 5 Longitudinal acceleration with data loss in the ST
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Figure 6 Lateral acceleration with data loss in the ST
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Figure 7 The yaw rate with data loss in the ST
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Figure 8 The estimated lateral velocity in the ST
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Figure 9 The estimated longitudinal velocity in the ST
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driver performing a lane change maneuver to capture 
the required data. The specific test scenario is illustrated 
in Figure  11. Furthermore, we utilize measurements 
acquired from the differential global position system 
(DGPS) as reference values, enabling us to compare the 
estimation results obtained from various algorithms. The 
proposed algorithm is executed on a personal computer 
equipped with an AMD Ryzen 7 5800 HS CPU and 16.0 
GB of RAM. Each cycle of the FAFTEKF algorithm takes 
0.541 milliseconds to compute.

Figure  12 illustrates the variations in the front wheel 
angle. Compared to Figure  4, the curve represent-
ing the front wheel angle exhibits fluctuations instead 
of a smooth profile. This deviation originates from the 

inherent limitations of human drivers, who cannot 
achieve perfectly smooth control akin to a machine. In 
Figure 13, the variations in longitudinal acceleration are 
depicted. Figure 14 shows the variations in lateral accel-
eration. In Figure 15, the variations in yaw rate are illus-
trated. Similarly, akin to Figures 5, 6, and 7, we replicate 
missing measurements by combining the output values of 
the Bernoulli distribution with the original acceleration 
and yaw rate. The probability of data loss from onboard 
sensors is 25%. Figures 13, 14, and 15 show abrupt drops 
to zero at specific points, indicating where measurements 
were missing.

Figure  16 illustrates the estimation results of differ-
ent methods for estimating the lateral velocity. The red 
solid line represents the vehicle state output obtained 
from the DGPS, which serves as the reference value. 
The estimated curve produced by the EKF deviates sig-
nificantly from the reference value due to its inability to 
handle data loss. On the other hand, the FTEKF dem-
onstrates enhanced estimation accuracy by accounting 
for the impact of missing measurements. During the 
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Figure 10 The estimated sideslip angle in the ST

Table 1 RMSE of vehicle state in the ST

Symbol β vx vy

EKF 0.1173 0.1323 0.1026

FTEKF 0.0996 0.0251 0.0869

FAFTEKF 0.0653 0.0071 0.0570

Figure 11 The DDEV on a dry asphalt road

0 3 6 9
Time(s)

-120

-80

-40

0

40

80

120

St
ee

rin
g
w
he

el
an

gl
e(
de

g)

Figure 12 The steering wheel angle in the RVT
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Figure 13 Longitudinal acceleration with data loss in the RVT
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conducted test, we introduce a random value as the 
initial process noise and then utilize a fuzzy logic sys-
tem to dynamically adjust the process noise matrix. As 
a result, it becomes evident that the FAFTEKF outper-
forms the FTEKF in terms of estimation performance.

Figure  17 illustrates the prediction outcomes of vari-
ous approaches for longitudinal velocity. The FAFTEKF 
demonstrates the highest level of accuracy in estimating 
longitudinal velocity compared to the other two meth-
ods. Figure 18 depicts the estimation curves of the differ-
ent methods for the sideslip angle, the estimation curve 
based on FAFTEKF is closest to the reference value.

In Table  2, it can be observed that the FAFTEKF 
exhibits the lowest values for RMSE, indicating that the 
FAFTEKF achieves optimal estimation accuracy. These 
findings underscore the effectiveness of the FAFTEKF 
in precisely estimating both the sideslip angle and vehi-
cle velocity. Moreover, the proposed algorithm exhibits 
robustness in adapting to variations in different data loss 
scenarios.

5  Conclusions
In this article, we have proposed the FAFTEKF as a 
novel approach for simultaneous estimation of sideslip 
angle and vehicle velocity in the presence of missing 
measurements. Through extensive testing, the results 
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Figure 14 Lateral acceleration with data loss in the RVT
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Figure 15 The yaw rate with data loss in the RVT
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Figure 16 The estimated lateral velocity in the RVT
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Figure 17 The estimated longitudinal velocity in the RVT
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Figure 18 The estimated sideslip angle in the RVT
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demonstrate that the FAFTEKF outperforms the tra-
ditional EKF in terms of estimation accuracy. By effec-
tively mitigating the effects of missing measurements, 
our proposed method showcases robustness and adapt-
ability, particularly in response to variations in process 
noise. It should be noted that due to the dangers of real 
vehicle experiments, the vehicle speed is set to be rela-
tively low and the speed fluctuations are kept minimal. 
Similarly, to demonstrate the consistency between real 
vehicle experiments and simulation results, the vehi-
cle speed in the simulation scenarios also has minimal 
fluctuations.

Due to the limitation of some experimental sites, in 
the future, we will conduct more real vehicle experi-
ments to verify the effectiveness of FAFTEKF, such as 
acceleration and deceleration conditions. Meanwhile, 
online estimation of vehicle model parameters and data 
loss probability distributions is also a worthy direction 
for future research.
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